Math 214 - Midterm 1
 (Blue Version)

This is an 80 -minute exam, but you have the full $110-$ minute class period to complete it. There are a total of 100 points possible; the value of each problem is marked. Partial credit may be given for significant progress toward the solution to a problem. Except where otherwise indicated, you must show sufficient work to make it clear to me what you are doing and why in order to obtain full credit.

Problem 1 (10 pts)

The Mysterious Merchant sells three types of tea. Dragon tea costs 2 gold coins for a sack with 25 pounds of tea. Serenity Tea costs 3 gold coins for a sack with 20 pounds of tea. Miracle Tea costs 5 gold coins for a sack with 30 pouns of tea. If Datura spends 25 gold coins to buy nine sacks, containing a total of pounds of tea, how many sacks of each type did Datura buy?

Problem 2 (10 pts)

Compute the orthogonal projection of the vector $\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ onto the line L spanned by $\left(\begin{array}{c}3 \\ 4 \\ 12\end{array}\right)$.

Problem 3 (10 pts)

Write down a 4×5 matrix so that the image of your matrix (that is, the image of the transformation it represents) is the space spanned by $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.

Problem 4 (10 pts)

Write down the matrix which represents the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ satisfying

$$
T\binom{3}{0}=\left(\begin{array}{c}
21 \\
15 \\
-12
\end{array}\right), \quad T\binom{0}{2}=\left(\begin{array}{c}
10 \\
12 \\
14
\end{array}\right)
$$

Problem 5 (10 pts)

Write down three different bases of \mathbb{R}^{3}. You may not repeat any vectors in your solution. (That is, your answer must involve nine different vectors.)

Problem 6 (15 pts)

Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 4 & 2 & 1 & 1 \\
0 & 1 & 1 & -1 & 0 \\
1 & 5 & 3 & 0 & 0
\end{array}\right)
$$

and let T be the transformation represented by A.
a) Write down a basis for the kernel of T.
b) Write down a basis for the image of T.
c) What is the rank of A ?
d) What is the nullity of A ?

Problem 7 (15 pts)

Consider the following matrices:

$$
A=\left(\begin{array}{ccc}
1 & 4 & 3 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-5 & 2 & 1
\end{array}\right)
$$

a) Compute $C=A B$.
b) Compute A^{-1} or explain why A is not invertible.
c) Compute B^{-1} or explain why B is not invertible.
d) Compute C^{-1} or explain why C is not invertible. (Hint: there is more than one way to do this part.)

Problem 8 (20 pts)

Indicate whether each item is true or false. Each item is worth 2 points. No explanation necessary, no partial credit possible.
a) \mathbf{T} / \mathbf{F} ? Every system of five linear equations in three variables is consistent.
b) \mathbf{T} / \mathbf{F} ? For any 5×6 matrix A and any vector \vec{b}, the system $A \vec{x}=\vec{b}$ does not have a unique solution.
c) $\mathbf{T} / \mathbf{F} ?$ If A is a 4×4 matrix and $\operatorname{rref}(A)$ is not the identity matrix, then the columns of A must be linearly independent.
d) \mathbf{T} / \mathbf{F} ? The map from the plane to itself which sends a vector $\binom{x}{y}$ to $\binom{x+1}{y+1}$ is linear.
e) \mathbf{T} / \mathbf{F} ? The matrix $\left(\begin{array}{cc}3 / 5 & 4 / 5 \\ -4 / 5 & 3 / 5\end{array}\right)$ represents a rotation.
f) \mathbf{T} / \mathbf{F} ? If V is a five-dimensional space and $\vec{v}_{1}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}, \overrightarrow{v_{5}}$ span V, then $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}$, $\overrightarrow{v_{5}}$ are linearly independent.
g) $\mathbf{T} / \mathbf{F} ?$ If A is an invertible matrix, then A is square.
h) \mathbf{T} / \mathbf{F} ? If the list of vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{e}, \vec{f}, \vec{g}$ contains three redundant vectors, then the list of vectors $\vec{g}, \vec{f}, \vec{e}, \vec{d}, \vec{c}, \vec{b}, \vec{a}$ also contains at least three redundant vectors.
i) \mathbf{T} / \mathbf{F} ? If a 3×7 matrix represents a transformation T and the image of T is a plane, the kernel of T is a line.
j) \mathbf{T} / \mathbf{F} ? If L is a 1-dimesnionsl subspace of \mathbb{R}^{3}, then there are infinitely many subspaces of \mathbb{R}^{3} containing L.

