Math 214 - Midterm 1
 Blue Version Answers

by Michael Cap Khoury

Problem 1:

Let d, s, m be the numbers of sacks of Dragon, Serenity, and Miracle Tea that Datura buys, respectively.

$$
\begin{aligned}
d+s+m & =9 \\
2 d+3 s+5 m & =25 \\
25 d+30 s+20 m & =230
\end{aligned}
$$

This system has a unique solution $(d, s, m)=(6,1,2)$. Datura bought six sacks of Dragon Tea, one sack of Serenity Tea, and two sacks of Miracle Tea.

Problem 2:

We use the projection formula. Let L be the line spanned by $\left(\begin{array}{c}3 \\ 4 \\ 12\end{array}\right)$.

$$
\operatorname{proj}_{L}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\frac{\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
4 \\
12
\end{array}\right)}{\left(\begin{array}{c}
3 \\
4 \\
12
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
4 \\
12
\end{array}\right)}\left(\begin{array}{c}
3 \\
4 \\
12
\end{array}\right)=\frac{13}{169}\left(\begin{array}{c}
3 \\
4 \\
12
\end{array}\right)=\left(\begin{array}{c}
3 / 13 \\
4 / 13 \\
12 / 13
\end{array}\right)
$$

Problem 3:

There are infinitely many solutions. What all solutions have in common is that each column consists of cnumbers in arithmetic progression and that the five columns are not all a multiple of a common vector. An example follows.

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 7 & 9 \\
1 & 4 & 7 & 10 & 13
\end{array}\right)
$$

Problem 4:

Since T is compatible with scalar multiples,

$$
T\binom{1}{0}=\frac{1}{3}\left(\begin{array}{l}
21 \\
15 \\
12
\end{array}\right)=\left(\begin{array}{l}
7 \\
5 \\
4
\end{array}\right) \quad T\binom{0}{1}=\frac{1}{2}\left(\begin{array}{l}
10 \\
12 \\
14
\end{array}\right)=\left(\begin{array}{l}
5 \\
6 \\
7
\end{array}\right) .
$$

This gives the matrix representing T, column-by-column: $\left(\begin{array}{cc}7 & 5 \\ 5 & 6 \\ -4 & 7\end{array}\right)$.

Problem 5:

So many possibilities..

$$
\begin{gathered}
\mathcal{B}_{1}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} \\
\mathcal{B}_{2}=\left\{\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)\right\} \\
\mathcal{B}_{3}=\left\{\left(\begin{array}{c}
9 \\
1 \\
\sqrt[3]{42}
\end{array}\right),\left(\begin{array}{c}
0 \\
\sqrt{19} \\
0
\end{array}\right),\left(\begin{array}{l}
\pi \\
6 \\
1
\end{array}\right)\right\}
\end{gathered}
$$

Problem 6:

First, we need the rref of $A . \quad \operatorname{rref}(A)=\left(\begin{array}{ccccc}1 & 0 & -2 & 5 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$.
a) The solutions of $A \vec{x}=\overrightarrow{0}$ have the form $\left(\begin{array}{c}2 r-5 s \\ -r+s \\ r \\ s \\ 0\end{array}\right)$; a basis for $\operatorname{ker} A$ is $\left\{\left(\begin{array}{c}2 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-5 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$.
b) The third and fourth columns are redundant. A basis of im A is $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}4 \\ 1 \\ 5\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$.
(Indeed the image is all of \mathbb{R}^{3}, so any basis of \mathbb{R}^{3} will do.) (Indeed the image is all of \mathbb{R}^{3}, so any basis of \mathbb{R}^{3} will do.)
c) The rank is 3 .
d) The nullity is 2 .

Problem 7:

a) $C=A B=\left(\begin{array}{ccc}-10 & 10 & 3 \\ 16 & -5 & 3 \\ -5 & 2 & 1\end{array}\right)$.
b) $A^{-1}=\left(\begin{array}{ccc}1 & -4 & -15 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right)$.
c) $B^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 7 & -2 & 1\end{array}\right)$.
d) $C^{-1}=B^{-1} A^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 7 & -2 & 1\end{array}\right)\left(\begin{array}{ccc}1 & -4 & -15 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & -4 & -15 \\ -1 & 5 & 18 \\ 7 & -30 & -110\end{array}\right)$

Problem 8:

a) False
b) True
c) True
d) False
e) True f) True
g) True
h) True
i) False
j) True

