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Abstract

In 1969, Strassen shocked the computational world with his subcubic algorithm for mul-
tiplying matrices. Attempting to understand the best possible algorithm for this problem,
Strassen went on to develop his magnificent theory of asymptotic spectra in three papers between
1986–1991. Expressed in the great generality of partially ordered semirings, the centerpiece of
this theory is a duality theorem between the asymptotic “rank” of elements, and a topological
space which is called asymptotic spectrum. This duality theorem is a vast generalization of
linear programming duality (in which we have a semigroup rather than a semiring), and indeed
also of certain versions of the Positivstellensatz, the duality theorem of polynomial inequalities
over the reals. Focusing on understanding the structure of the asymptotic spectrum of matrix
multiplication, the theory has provided surprising connectivity and convexity theorems for it.

Strassen’s theory has led to many subsequent results, especially new algorithmic, structural
and barrier results on matrix multiplication, and more generally for the semiring of tensors (which
includes the matrix multiplication tensors). Perhaps even more impressively, the generality of
Strassen’s theory has been applied recently to the study of a variety of very different settings
and parameters, in diverse fields including communication theory, graph theory, probability
theory, quantum information theory and computational complexity.

We feel that these developments call for an exposition of this growing field. This paper
gives a comprehensive, self-contained, modern survey of Strassen’s theory of asymptotic spectra
and its various old and new application areas. For accessibility we provide many examples and
high-level discussions of definitions and techniques.

The paper contains some new ingredients. We disentangle some proofs to make them more
modular, and each part as general as possible. We introduce some new notions, which sometimes
lead to simpler, more intuitive proofs, as well as to some stronger or more general theorems.
One such consequence is our connectivity theorem for the asymptotic spectrum of any tensor
network, greatly generalizing Strassen’s connectivity theorem for the special case of matrix
multiplication. Another consequence is progress on a conjecture of Strassen which generalizes
Schönhage’s tau theorem.
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1. Introduction

In his seminal 1969 paper “Gaussian elimination is not optimal”, Strassen sent a clear message to
the (very young at the time) community of algorithm designers and complexity theorists, which
has become part of its ethos since: natural, obvious and centuries-old methods for solving natural,
important computational problems may be far from the fastest. For the problem of multiplying
n× n matrices1, he proved that the obvious O(n3) algorithm known to Gauss (and in some form,
already to the Egyptians and Chinese millennia earlier) is far from optimal, by designing a new
one which takes only O(nlog2 7) ≈ O(n2.8) arithmetic operations.2 The possibility of obtaining even
faster algorithms for this central problem set Strassen and many other computer scientists on a
quest to obtain them (with the current record below O(n2.4)). The quest to understand the matrix
multiplication exponent, namely the smallest3 real number ω such that multiplying n× n matrices
can be performed in nω arithmetic operations, is still raging on.

Then in the years 1986–1991 Strassen published three magnificent papers elaborating his theory
of asymptotic spectra.4 While chiefly motivated by trying to understand the complexity of matrix
multiplication, Strassen’s theory is far more general, putting the quest for proving upper and lower
bounds on ω in a broader framework that suits other problems and settings. This theory sent
another clear message to the same community, which too became part of its ethos: studying the
computational complexity of natural problems may both require and generate deep and sophisticated
mathematics. And indeed, today researchers from many different disciplines use and develop this
theory.

This paper is devoted to a modern, self-contained exposition of Strassen’s theory. In this
introduction we begin by motivating it. Naturally, this introduction will be described in high-level,
intuitive terms, which will be formalized in the technical sections.

1.1. Amortization and asymptotics
The following question arises in numerous parts of mathematics, physics, economics and computer
science. Let R be a universe, and f : R → N be an N-valued function on R. In different contexts
these objects may have a variety of meanings. In complexity theory, R may be a set of computational
tasks, and for each task r ∈ R the number f(r) may be the minimal cost (in some resource, e.g.,
time, space, communication, etc.) which is required to perform r. In economics, R may be a set of
commodities or services, and f(r) may denote the monetary value of r. In graph theory, R may be
the set of undirected graphs, and f(r) may be some graph parameter, for example the size of the
largest clique or matching in r. And so on. To fix terminology, we will use “task” for elements of R
and “cost” for the function f , but of course any of the many other interpretations are valid for what
follows. In general, the cost f(r) of a task r may be very complex to understand and compute.

1A problem whose computational complexity dominates all linear algebra calculations (e.g., solving systems
of linear equations, computing the determinant, inversion of a matrix, etc.) and thus central to numerous other
mathematical computations that use it. While this complexity may depend on the underlying field, almost all our
discussions hold for every field.

2This algorithm works for any field and so do all the subsequent matrix multiplication algorithms and results that
we discuss.

3More precisely, the infimum of such numbers.
4The theory was first presented at the conference FOCS in 1986 [Str86]. The work in [Str87, Str88, Str91] was

accompanied by the PhD theses of Strassen’s students Bürgisser [Bür90], Tobler [Tob91], and (later) Mauch [Mau98],
and was followed up by Strassen’s paper [Str05] which surveys the theory and presents new ideas.
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Assume now that for every task r ∈ R, and every integer n, also the task denoted rn is in R.
Here rn intuitively means “n copies of r”, namely the task of performing r n times. Then the
asymptotic behavior of f(rn) for any fixed r as n gets larger, and the limit5 f̃(r) of (f(rn))1/n as n
tends to infinity, captures some notion of “bulk” or “amortized” cost of performing r.

Remark 1.1. The choice of multiplicative notation for asymptotic behavior is standard and natural
in Strassen’s theory, as we shall see. Moreover, in many settings the “cost” tends to accumulate
multiplicatively with additional tasks. Of course, in many other settings “cost” tends to add up
with additional tasks, and it may be more natural to work additively. Namely, denoting nr for “n
copies of r”, and assuming nr ∈ R for all n, one can study the asymptotics of f(nr)/n for large n.
Needless to say, in the generality above one can switch between the two by replacing such “additive”
cost function f by (say) 2f to move to the multiplicative notation. Moreover, as in Strassen’s theory
the universe R will be a (semi)ring under addition and multiplication, both asymptotic notions can
be (and are) studied simultaneously. Nonetheless, the focus is on the multiplicative notion, and we
proceed with it.

The main object of study of Strassen’s theory is this amortized cost f̃(r). There are multiple
reasons for studying it, some very general, and some depending on the setting and application area.
The most obvious general reason is that in many computational and economic settings problems
do indeed come in batches (e.g., computing the same function on multiple inputs, simultaneously
communicating many messages through parallel channels, buying or selling many identical items,
etc.). In others, multiple copies are generated artificially to achieve some “amplification”, making
hard problems harder (e.g., for cryptographic purposes or in optimization settings.) In many areas
of mathematics and physics, “direct sum” and “tensor product” apply to different types of objects,
and it is natural to study how various parameters of these objects are affected by sum and product.6
Finally, in many cases the amortized cost f̃ is an analytically easier function to study or compute
than the cost f , and thus, for example, f̃(r) can be used to bound f(r). Moreover, as we shall
see in the next subsection on matrix multiplication, sometimes f̃(r0) for a single, fixed r0 ∈ R can
approximate f̃(r) extremely well for infinitely many r ∈ R!

A particularly basic question is understanding the settings in which amortization does not help,
namely f̃(r) is equal, or very close to f(r) for every r. In such settings one often says that a
“direct sum” or “direct-product” theorem holds. When direct sum does not hold, one often says
that “economy of scale” is achieved. Such an understanding is essential for many of the applications
above. We conclude this subsection with a list of different settings, and some (sample of) references
to what is known about this basic question and amortization in general. This list is not meant to be
exhaustive (nor is the list of references complete), but rather to impress the reader with the variety
of areas in which it arises and is studied. We will expand on some of these and others in Section 2.3.

• Communication: In the setting of one-sided, zero-error communication, surprising economy
of scale can be achieved. This led Shannon to the asymptotic notion of Shannon capacity of
graphs, conjecturing a direct sum for this notion which was refuted by Alon [Alo98b]. For
(interactive) communication complexity, such economy of scale was characterized for every
problem via the information-theoretic notion of information complexity [BR14].

5Assuming a limit exists, which will be the case throughout the paper.
6Such investigations are often carried out not only for many copies of identical objects, but also for many copies of

objects selected from a collection of few, different objects.
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• Optimization: Direct sum and direct product theorems were proved for linear program-
ming (under natural notions of sum and product), both for linear and convex objective
functions [JM64, Mon65]. A direct product theorem for the SDP (semidefinite program)
defining the Lovász theta function ϑ of a graph plays a central role in establishing the Shannon
capacity of the pentagon [Lov79].

• Amplification: A large family of (approximate) direct product theorems (often named by
the related concept of “XOR lemmas” or “parallel repetition”) were proved for a variety of
computational models, mainly for hardness amplification in cryptographic, pseudorandomness
and optimization applications. These models include Boolean circuits (see the survey [GNW11]),
multiparty communication and F2-polynomials [VW07], decision trees [NRS98], (classical and
quantum) 2-prover proof systems [Raz98, Hol07] and many others.

• Computation: Perhaps the most famous economy-of-scale result is the following. Fix a
field F and consider the number of operations (additions and multiplications of numbers in F)
required to compute the linear transformation Ax for a fixed n× n matrix A and an input
n-vector x. It is known (and quite easy) to see that for every matrix this complexity is at most
O(n2/ log n), and that this is tight up to constant factors for most matrices A. Strikingly, for
any matrix A, the total complexity of this problem for n input vectors x1, . . . , xn is below n2.4,
namely the amortized complexity per vector is only n1.4! This is a simple consequence of the
best-known algorithm for the matrix multiplication problem.7

The last example segues us to the next subsection on matrix multiplication, explaining how its
arithmetic complexity begs an asymptotic study of the nature discussed above.

1.2. From matrix multiplication to preordered semirings and asymptotic
rank

The following natural sequence of ideas interpolates between Strassen’s algorithm for the very specific
problem of matrix multiplication, to the general framework of preordered semirings, in which he
develops the theory of asymptotic spectra.

Idea 0. Matrix multiplication is a bilinear function of its two input matrices, thus requiring
additions and multiplications. In analyzing algorithms we will focus on counting multiplications
only. As it happens (and is not hard to see), for this problem and the approach below, there is no
loss of generality, as the number of additions will be at most a constant factor larger. Below we
denote the problem of multiplying two n× n matrices by MMn, and by f(MMn) the multiplicative
complexity of this problem.

Idea 1. Matrix multiplication is a “self-reducible” problem, so one can recurse, by viewing an
n × n matrix as a 2 × 2 block-matrix, with each block being an n/2 × n/2 matrix. Thus, any
algorithm for MM2 (in which we think of entries as belonging to a non-commutative ring) using
k multiplications, allows reducing one instance of MMn to k instances of Mn/2. This leads to a
bound of nlog2 k multiplications.8 Clearly, 2× 2 matrix multiplication can be performed using k = 8

7Simply, regard all input vectors as one matrix X, and compute AX. As A is fixed, only linear operations in X
are performed.

8Up to constants, one can assume that n is a power of 2 for this argument without losing generality.
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multiplications (namely, f(MM2) ≤ 8). Strassen’s seminal paper [Str69], which introduced the idea
above, does it using k = 7 multiplications (proving f(MM2) ≤ 7), leading to the first subcubic
algorithm for MMn, with O(nlog2 7) ≈ O(n2.8) multiplications.

Idea 2. For such recursive algorithms, it suffices to have an asymptotic bound on the complexity
of the 2× 2 matrix multiplication problem. Namely, assume we had an upper bound of km+o(m)

multiplications on computing MM2m for large m. Here and in the rest of the paper o(m) denotes
some function g(m) for which g(m)/m → 0. (Note that this may possibly be achievable with a
much smaller value of k than 7.) Then, we could use recursion on size 2m instead of 2, and again
obtain nlog2 k+o(1) complexity in general. This suggests studying

lim
m→∞

(f(MM2m))1/m.

We shall presently see that this expression is precisely f̃(MM2) in the asymptotic notation of the
previous subsection.

Idea 3. Matrix multiplication, like any bilinear map, may be naturally viewed as a (3-dimensional)
tensor Tn = TMMn

of size n2 in each dimension (for entries of each of the two input matrices as
well as the output matrix).9 With this representation it is easy to see that the multiplicative
complexity f(MMn) equals R(Tn), with the usual notion of tensor rank.10 Observe that taking
Kronecker products of two such matrix multiplication tensors yields another matrix multiplication
tensor; more precisely, for any s, r, Ts ⊗ Tr = Tsr. With the idea above, we are led to study the
asymptotic rank of any tensor T ,

R̃(T ) = lim
m→∞

R(T⊗m)1/m,

and see immediately that f̃(MMn) = R̃(Tn) for every n. Indeed, we see that understanding R̃(T2),
the asymptotic rank of a single tensor, determines the complexity of matrix multiplication in general
(up to constant factors).

Idea 4. Tensors11 form a semiring (under direct sum and Kronecker product). We have already
seen the role of multiplication in this semiring. The importance of addition arises from the additive
definition of tensor rank. Namely, one can express any upper bound R(T ) ≤ k (k positive integer)
as an inequality T ≤ kI with I a unit (diagonal) tensor, and ≤ denotes a “reduction” that allows
applying linear transformations12 on each of the tensor “legs” (or fiber directions) and transform kI
to T . Moreover, the relation T ≤ T ′ can be extended using this notion of reduction to any pair
of tensors T, T ′. To summarize, this semiring of tensors naturally comes with a preorder13 that
captures naturally the rank (and asymptotic rank) parameter, and is easily seen to be consistent
with the addition and multiplication in this semiring.14

9Simply, T ((i, j), (j, k), (k, i)) = 1 and all its other entries are 0.
10Namely, R(T ) is the smallest number of rank-1 tensors which add up to T , where a tensor has rank 1 if it is the

outer product of vectors.
11We think of d-dimensional tensors for fixed d, for example d = 3. This d is sometimes called the order of the

tensor.
12Not necessarily invertible.
13Throughout we use preorder rather than the closely related notion of partial order, which is a preorder that is

antisymmetric.
14Explicitly, if S ≤ T and S′ ≤ T ′, then S ⊕ S′ ≤ T ⊕ T ′ and S ⊗ S′ ≤ T ⊗ T ′.
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Idea 5. The above preordered semiring of tensors is just one of many (as we will see in Section 2.3)
natural semirings R with preorder, in which the positive integers N≥1 are embedded in a similar
natural way, as a totally ordered subsemiring. It is precisely in this vast generality of preordered
semirings (with some added simple technical conditions) that Strassen develops his asymptotic
theory. In each such preordered semiring one can define a notion of rank of an element r ∈ R in
exactly the same way: R(r) is the smallest15 positive integer k ∈ N≥1 such that r ≤ k, using the
given preorder ≤ on R. Moreover, it is equally natural, and in some semirings more interesting16 to
consider the subrank Q(r) of elements r ∈ R, defined as the largest integer k ∈ N≥1 such that k ≤ r.
For each of these we can define the analogous amortized, asymptotic notions, R̃(r), Q̃(r), which can
now be real-valued.

Idea 6. The final generalization is that there is no reason to consider asymptotic relations of
semiring elements to integers only. Indeed, from the given preorder ≤, one can define a new,
asymptotic preorder . as follows: for any two elements a, b ∈ R let a . b, iff a has an “amortized
reduction” to b, namely, if for large n we have an ≤ bn+o(n).17 In particular, this means that the
amortized complexity of a is at most that of b. (It turns out that this asymptotic preorder essentially
generalizes the notions of asymptotic rank (resp. asymptotic subrank), in which we essentially take b
(resp. a) to be an integer.) Thus, the goal of the theory is to understand this asymptotic preorder .
for general preordered (and bounded) semirings.

1.3. The asymptotic spectrum and duality
In this very general, abstract set-up, how does one prove inequalities like a . b? Let us see that we
at least understand the answer in a very concrete set-up, namely when the semiring consists of all
continuous non-negative real functions on a compact space. Let X be a compact topological space
(for concreteness, the reader can imagine simply a compact subset of some Euclidean space Rd). Let
RX = C(X ,R≥1) be the set of continuous R≥1-valued functions on X . Clearly, RX is a semiring
under pointwise addition and multiplication, namely (f+g)(x) = f(x)+g(x) and (fg)(x) = f(x)g(x)
for all f, g ∈ RX and x ∈ X . Moreover, RX comes with a natural preorder ≤ of pointwise ordering,
namely f ≤ g iff for all x ∈ RX we have f(x) ≤ g(x) (where here ≤ is the standard ordering of real
numbers).

The family of preordered semirings RX is extremely friendly. First, compactness guarantees that
it is bounded, as each function f ∈ R attains a maximum max(f) (and a minimum min(f)) over X .
Second, the asymptotic preorder here is the same as the non-asymptotic one, namely defined by
inequalities of real numbers, since for any x in X , f(x)n ≤ g(x)n+o(n) if and only if f(x) ≤ g(x).

Now comes the main message of Strassen’s theory: every preordered semiring has such a simple
form! More precisely, Strassen’s duality theorem states that for every preordered semiring R there
exists a compact space X such that R is isomorphic to a subsemiring of RX . Namely, there is a
semiring homomorphism Φ : R → RX which preserves the asymptotic preorder .. The pair (X ,Φ)
is called the asymptotic spectrum18 of R. Strassen proves further that the asymptotic spectrum of

15In some rings it may be that no such finite bound exists; we will demand that our semirings are bounded (or
Archimedean), namely that rank is defined for all elements in R.

16As is the case in the semiring of graphs, where subrank corresponds to the Shannon capacity — an example we’ll
discuss in detail.

17The general definition will be slightly different, as we will see when we formally define this in Section 2.
18In commutative algebra, the spectrum of a ring R (the set of prime ideals) is a topological space X such that

elements of R can be viewed as functions on X. In real algebra, there is an analogous object called spectrum (the set

8



every preordered semiring is essentially unique!
Let us denote fa = Φ(a) the image of a ∈ R in RX . By definition, fa ≤ fb if for all x ∈ X we

have fa(x) ≤ fb(x).
The impact of this theorem is astounding. Let us start from the most direct consequence, which

is also the most important. The theorem characterizes the asymptotic preorder on R: for any
two elements a, b, a . b in R iff fa ≤ fb. This leads to a characterization of asymptotic rank
by R̃(a) = max(fa), converting a minimization problem into a maximization one. Similarly, the
asymptotic subrank satisfies Q̃(a) = min(fa), turning a maximization problem into a minimization
one.19 These are strong duality theorems in a very general context. Indeed, in the next subsection
we will see how they vastly generalize linear programming duality, and indeed even some versions of
the Positivstellensatz, the duality theorem for systems of polynomial inequalities in real algebraic
geometry. We will also explain a less direct consequence of the duality theorem to Schönhage’s tau
theorem, a central tool for developing fast matrix multiplication algorithms. But before these, let us
see how much simpler the duality theory becomes when we specialize it to finitely generated rings.

The fact that the mapping Φ is a semiring homomorphism means that it commutes with any
polynomial. More precisely, if p ∈ N[Z1, Z2, . . . , Zd] is any multivariate polynomial with non-negative
integer coefficients, then Φ(p(a1, a2, . . . , ad)) = p(Φ(a1),Φ(a2), . . . ,Φ(ad)). Thus, if our semiring
R is finitely generated, say by some d elements a1, a2, . . . , ad, then every element b ∈ R is such
a polynomial, say pb. Thus Φ(b) is uniquely determined (via pb) by the (coordinate) functions
Φ(a1),Φ(a2), . . . ,Φ(ad). In other words, the asymptotic spectrum X may be identified with a
compact set in Rd≥1, a much friendlier object than the abstract set in the general duality theorem.
Moreover, as elements in such semirings are in 1-1 correspondence with polynomials, the asymptotic
order b . c between any pair of elements holds iff pc − pb ≥ 0 holds on X .

The study of finitely generated semirings is extremely natural and useful. Indeed, in many cases
we care really about the asymptotic rank or subrank of specific elements in a ring (e.g., the Shannon
capacity of the 7-cycle C7, or the asymptotic complexity of the 2× 2 matrix multiplication tensor).
In such cases we can restrict ourselves to the subsemiring generated by that single element, whose
asymptotic spectrum is simply a subset of R≥1, namely a union of closed intervals. Let us use this
understanding.

Schönhage’s tau theorem (a.k.a. asymptotic-sum inequality) One of the most important
advances in the design of fast matrix multiplication algorithms was Schönhage’s tau theorem [Sch81]
(see also [Blä13]). To state it, recall that we denoted by MMn the matrix multiplication problem
(equivalently, tensor), and we capture its asymptotic complexity by ω, the smallest real number
such that R̃(MMn) ≤ nω. Thus trivially, an upper bound of the form R̃(MMn) ≤ nτ (presumably
via a new algorithm, as Strassen’s first breakthrough gave ω ≤ 2.8) immediately implies ω ≤ τ .
Schönhage’s tau theorem greatly generalizes this to upper bounds on the asymptotic rank of the
direct sum of any number of matrix multiplication tensors (e.g., to algorithms which compute many
matrix multiplication problems on disjoint variables). It states20 for any k, ni ∈ N≥1 and τ ∈ R≥0
that R̃(

∑k
i=1 MMni

) ≤
∑k
i=1 n

τ
i also implies ω ≤ τ . Giving an algorithm proving such an inequality

for a direct sum of two specific (rectangular) matrix multiplication tensors, Schönhage improved
Strassen’s initial bound to ω ≤ 2.55. This was a great advance, which led to the development of

of “pre-primes”) [Mar08], which is the origin of the name asymptotic spectrum.
19The precise conditions under which this holds are discussed in Section 3.5.
20He has a more general version for rectangular matrix multiplication that we discuss further in Section 7.31 — we

state it here only for square matrices.
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even better algorithms. Schönhage’s proof is a very clever exercise in asymptotic analysis! Now let
us see that the tau theorem (and more) directly follows from the duality theorem specialized to
univariate rings.

Let MM be the semiring generated by MM2. While this ring contains MMn not for every n, but
only powers of 2, this need not bother us as we are doing asymptotic analysis. Let us denote the
asymptotic spectrum of MM by ∆ ⊆ R≥1. By Strassen’s duality, as R̃(MM2) = max Φ(MM2) =
max ∆ we see that21 2ω is an element of ∆, indeed the largest one! Recall the assumption of the
tau theorem was R̃(

∑k
i=1 MMni) ≤

∑k
i=1 n

τ
i , that is,

∑k
i=1 MMni .

∑k
i=1 n

τ
i . Assuming (wlog)

that the sizes ni appearing in the assumption of the tau theorem to be powers of 2, the LHS is a
polynomial in MM2. Applying Φ to it we get

∑k
i=1 n

ω
i ≤

∑k
i=1 n

τ
i , and can conclude ω ≤ τ . This

argument followed essentially just from the membership of 2ω in ∆. Moreover, as 2ω is in fact the
largest element in the spectrum, we have also proved that Schönhage’s theorem is in fact tight! It is
not clear how one can prove this without the duality theorem. This argument implies a direct sum
theorem for asymptotic rank, namely that

R̃
(∑

i

MMni

)
= Ω

(∑
i

R̃(MMni)
)
.2223

It is easy to see now how to generalize the tau theorem to any semiring with an identical proof.
Let a ∈ R denote any element whose asymptotic rank we are after. Then the argument above shows
bounding the rank of any element generated by a immediately bounds R̃(a). More precisely, for any
polynomial (again, univariate with non-negative integer coefficients) p, the assumption p(a) . p(r)
for any real number r implies R̃(a) ≤ r.

In Section 9.2 we will discuss even more general statements than Schönhage’s tau theorem that
rely on Strassen’s duality.

1.4. Optimization: Linear programming duality and Positivstellensatz
Understanding systems of polynomial inequalities (and the special case of linear inequalities) is a
central quest of real algebraic geometry and optimization. Let us see how these connect to Strassen’s
theory, in its special case of finitely generated semirings. We will do so informally, and send the
interested readers to a formal and detailed exposition in [Fri21, Fri17, RZ22]. Strassen starts with a
preordered semiring, and finds its dual, the asymptotic spectrum, which in the finitely generated
case turns out to be a set cut out by polynomial inequalities. We will reverse the order now — start
from such a semi-algebraic set, and generate a preordered semiring from it.

Consider an arbitrary semi-algebraic set, say X in Rd, cut out by a system of k integer24
polynomial inequalities in d variables {pi ≤ 0}. Moving negative coefficients in each pi to the RHS,
we obtain an equivalent system {p′i ≤ p′′i } where p′i, p′′i ∈ N[Z1, Z2, . . . , Zd] have non-negative integer
coefficients. We can define an abstract preordered semiring RX as follows. It is generated by d

21The appearance of the exponential function is natural, as we ω is the exponent of matrix multiplication. This
observation is more general, and indeed in any setting it is natural to consider log Φ(b) as the exponent governing the
rate of growth in R̃(b).

22In fact, this equality is true even without the Ω.
23We do not know if a similar result holds for rank. One result in this direction is that direct-sum holds for MM2,

that is, R(
∑

i MM2) =
∑

i R(MM2) [Bür90, Rem 17.13 (6) and Eq. 14.8]. It is not known whether this direct-sum
statement is true for larger square matrix multiplication tensors MMn, n > 2. Generally, Shitov proved that there are
tensors T1, T2 such that R(T1 ⊕ T2) < R(T1) + R(T2) [Shi19].

24We could allow rational coefficients, and then clear denominators to get integer ones.
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abstract elements Z1, Z2, . . . , Zd, and its elements are all non-negative integer polynomials in these
generators. The preorder is generated by the given system of inequalities. More explicitly, for
any non-negative integer polynomial in k variables q ∈ N[X1, X2, . . . , Xk], we have the inequality
q(p′1, p

′
2, . . . , p

′
k) ≤ q(p′′1 , p′′2 , . . . , p′′k) between these two elements of our semiring. Finally, define the

asymptotic preorder . extending ≤. Note that the constant polynomials provide the embedding
of the integers in RX . In this case it turns out that X is the asymptotic spectrum of RX . So, by
Strassen’s duality, the maximum value of any non-negative integer polynomial r over X is, say, α
precisely if the asymptotic rank of that polynomial in the semiring RX is α.

Here the reader might wonder what is going on. By the celebrated Positivstellensatz of real alge-
braic geometry (there are several versions [Kri64, Ste74, Put93, Sch91] which we will not distinguish
for this level of exposition) the duality should have a completely different form. Positivstellensatz
essentially states that the maximum value of any polynomial r is α on X precisely if the polynomial
r − α is in the cone generated by the system {pi ≥ 0} with sum-of-square coefficients. This looks
extremely different from Strassen’s characterization. While one can try to find the differences in the
exact technical assumptions in each duality theorem25 the difference is too striking and demands
explanation. This is done in some detail in the paper of Fritz [Fri21]. But at a high level, these
seemingly very different duality theorems are practically equivalent. Let us say a few words on each
of the two directions.

In one direction, Positivstellensatz implies Strassen’s duality for rings RX as above (namely,
when both the elements and the preorder are finitely generated). We remark that this is non-trivial,
and crucially requires the transition from the preorder ≤ to the asymptotic preorder .. The key
point is that in every preordered semiring, asymptotic inequalities of the form 2ab . a2 + b2 are true
for every a, b in the semiring.26 In our case this leads to the equivalent non-negativity of any square
of any27 integer polynomial (via 0 . (p− q)2), and this can be used within Strassen’s framework to
generate the coefficients in the sum-of-squares combination of the given inequalities defining X .

In the other direction Strassen’s duality seems far more general, as it pertains to arbitrary
semirings where elements and preorder may not be finitely generated, and thus having asymptotic
spectra X which may be infinite-dimensional and may require an infinite number of polynomial
inequalities to define. Here the connection is that Strassen’s original proof actually uses a vast
generalization of Positivstellensatz of Kadison and Dubois (more precisely, the version of Becker
and Schwartz [BS83]) to such settings. The proof of Strassen’s duality theorem we will give in this
paper (based on Zuiddam [Zui18]) will be however completely self-contained, without appeal to
these general results.

Finally, we note that if we demand that polynomials pi in the definition of X above are actually
affine, everything becomes much simpler, and at the same time very interesting. Here full details are
provided in [RZ22], and we only give the gist of the argument. Carrying out the same construction
as for polynomials, one obtains a finitely generated semigroup (under addition) instead of a semiring,
again with a finitely generated preorder via non-negative affine functions q. It is thus natural to
define amortization, and thus the asymptotic rank additively. In this linear setting Strassen’s duality
theorem becomes equivalent to the duality theorem of linear programming! Here a key point in
using linear programming duality to prove Strassen’s duality is showing that the former implies a
certain “catalytic” inequality, in the defined preorder ≤. One then uses the asymptotic preorder

25These are important, and are related to different “boundedness” conditions in both Positivstellensatz and in
Strassen’s framework.

26Proving this is a really good exercise for understanding the power of asymptotics.
27Namely, allowing negative coefficients.
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. to remove the catalyst and show that the asymptotic rank of any non-negative integral affine
function r over X is certified by the asymptotic rank of r in this semigroup.

1.5. Connectivity and convexity of the asymptotic spectrum
Let us return to Strassen’s duality theorem. As we have seen, if the spectrum of a semiring of
interest is known, everything becomes simple, and we can in principle compute asymptotic rank
and subrank of any element. But even in extremely simple semirings generated by a single element,
where the asymptotic spectrum is just a union of intervals in the real line, (so the maximum and
minimum points respectively determine the asymptotic rank and asymptotic subrank), it is hard to
find these points, or sometimes indeed any point in the spectrum.

Strassen’s next insight is that even if we cannot determine the asymptotic spectrum, proving
additional structural results can lead to further understanding of the basic semiring parameters it
encodes. Natural questions to explore beyond compactness can be: Is it connected? Is it convex?
Strassen’s major result answers all of these in the affirmative for matrix multiplication, namely the
spectrum ∆ of the semiring generated by MM2 which we discussed above. We have already observed
that ∆ ⊆ R≥1, and compactness guarantees that it is a union of closed intervals. We know that
its largest point is 2ω, where ω is the (yet unknown) matrix multiplication exponent. It turns out
that the asymptotic subrank of MM2 is known to be 4, and so this is the smallest point of ∆. For
example, it is a priori possible that ∆ looks like a union of two disjoint closed intervals:

4 2ω

Of course, if ω = 2, then the minimum and maximum points in ∆ coincide and so ∆ consists of one
single point :

4

Thus, if we were able to prove by any argument whatsoever that ∆ is not connected, we would prove
the lower bound ω > 2. Strassen’s result rules out this line of attack on a lower bound, by proving
the theorem that ∆ is connected. Thus, it must be one closed interval:

4 2ω

In other words, the theorem says that the asymptotic spectrum of matrix multiplication is given by
the closed interval ∆ = [4, 2ω].

Let us comment first that connectivity of the spectrum is a special and possibly rare situation;
It is not hard to see that even for univariate semirings, the spectrum can be an arbitrary compact
subset of the non-negative reals. Indeed as we have discussed before, one can pick any compact
set X ⊆ R, and take the semiring of all non-negative integer polynomials under pointwise addition,
multiplication and ordering.

Thus Strassen’s proof of connectivity of the matrix multiplication spectrum must make use of
very special properties of this specific problem. Indeed, the proof is ingenious, and we will soon
return to discuss it. But before, let us demonstrate its power by showing how it significantly extends
Schönhage’s tau theorem.
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Schönhage’s tau theorem revisited and generalized Here is an equivalent phrasing of the
original tau theorem: If

∑
i MMni . r then

∑
i n

τ
i ≤ r for every τ ∈ ∆. Now since the real

function r −
∑
i n

τ
i is decreasing in τ , we can solve the equation r −

∑
i n

τ
i = 0 and the resulting

value of τ is in fact an upper bound on ω, the largest point in ∆. The assumption of the tau
theorem,

∑
i MMni

. r, can naturally arise from a clever algorithm for such a direct sum of matrix
multiplication problems (as indeed Schönhage demonstrated in his original paper). But other
approaches to matrix multiplication algorithms, in particular the group-theoretic approach of Cohn
and Umans [CU03, CKSU05, CU13], give rise to more general inequalities, in which the RHS is not
a diagonal tensor, but another direct sum of matrix multiplication tensors. Namely, inequalities of
the form

∑
i MMni

.
∑
j MMmj

. We can again conclude from the duality theorem that for every
τ ∈ ∆ we have

∑
i n

τ
i ≤

∑
jm

τ
j . Can we again use this numeric inequality to derive an upper

bound on ω? Notice that now the real function
∑
jm

τ
j −

∑
i n

τ
i is not necessarily decreasing, and

so potentially can be negative at some α < ω as in Fig. 1.

2 α ω

Figure 1: Can there be a non-monotone curve negative at some α with 2 < α < ω? No, because ∆
is connected.

Of course, such α will not be part of the spectrum, but how in this situation can we get an upper
bound on ω? Clearly, the connectivity of ∆ rules out this possibility, and allows us again to upper
bound ω by the smallest root τ ≥ 2 of the function above.

Characterizing connectivity: type theory of polynomials and anchors We have seen that
proving connectivity of spectra can be extremely powerful both for obtaining upper bounds on
asymptotic rank, and ruling out lower bound approaches (and the opposite for asymptotic subrank).
Now the question remains, how to prove connectivity for any preordered semiring? Indeed, how does
Strassen prove his connectivity result for the spectrum of matrix multiplication? Our main impetus
for this write-up was our attempt to understand Strassen’s ingenious (and mysterious) proof, and
to write it up in as much clarity and generality as possible. At a very high level, there are four
main steps to his argument. We state them rather informally, and then try to explain and abstract
the contents of each below, but caution that this subsection may be too complex to understand to
readers without any background in this area; in this case please see the relevant technical sections,
in which precise definitions and far more intuition are provided.

1. A “compression” or “self-correcting” theorem. Any algorithm which multiplies n× n matrices
and errs only on matrices outside some large dimensional subspace (say of co-dimension
< n2/4), can be converted into an errorless algorithm of essentially the same complexity for
multiplying (n/2)× (n/2) matrices.

2. A “cancellation” theorem: Assume that we manage to prove an asymptotic inequality MMn .
T + R, where the RHS is the direct sum of two arbitrary tensors (not necessarily matrix
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multiplication ones). Assume further that the dimension of T as a subspace of n×n matrices28
is at most d ≤ n2/4 as above. Then, using the compression theorem above, we can remove T
from the RHS at the cost of a small reduction in the size of matrices we multiply: MMn/2 . R.

3. A “monomial ordering” theorem: any inequality between a pair of arbitrary direct sums
of matrix multiplication tensors,29 can be converted into an asymptotic inequality between
(specially chosen) Kronecker products of these tensors, each a monomial of a high power of the
original inequality.

4. A “connectivity” theorem: If the given preorder of polynomial inequalities can always be
converted to an asymptotic “monomial ordering” between high powers, then the spectrum
must be connected.

The description above already disentangles some parts of Strassen’s presentation, and we try
to clarify more by saying a few words about each part, and how we further separate, abstract and
generalize each. Step (1) is a non-trivial linear algebra exercise, which the reader may attempt.
We will give a new proof of it, which generalizes way beyond matrix multiplication tensors to all
tensor networks. Step (2) is a rather simple use of linear projection, and generalizes as well to tensor
networks as above. Step (3) is the most subtle and complex. Notice first the interplay between
working in the general semiring of tensors, while being interested in the spectrum of the subsemiring
of matrix multiplication. Moreover (and this cannot be clear without the spelling out of appropriate
order of quantifiers in the statement), the following magic occurs. The value of a single point in
the asymptotic spectrum (here, it is the dimension of the matrix subspace above) implies bounds
on the whole (unknown) spectrum. We capture this magic in our notion of an anchor, which can
be defined in the context of any semiring. Step (4) as well holds in the generality of any semiring,
and is rather simple given (3). The proofs of steps (3) and (4) require several tools of asymptotic
analysis of polynomial inequalities, which is developed in this generality.

Rectangular matrix multiplication and convexity Let us briefly conclude with the issue of
convexity of the spectrum, a far stronger property (if it holds) than simply connectivity. We note
that in the reals, every connected set is obviously convex as well. So, we trivially know that the
(1-dimensional) spectrum of square matrix multiplication is convex. However, Strassen’s theorem is
much more general, and applies to the spectrum of rectangular matrix multiplication as well. The
semiring which captures the complexity of rectangular matrix multiplication is generated by three
tensors, and so its asymptotic spectrum is a subset of R3

≥1. Here connectivity certainly does not
imply convexity. While the question of convexity remains open, Strassen’s proof comes close to that:
it shows that the spectrum is not only connected, but in fact it is “star-convex” with respect to a
subset of the spectrum: for every point in this subset the line segments from it to every other point
are fully contained in the spectrum.

We note that we do not know of applications (in practice) of convexity of the spectrum, either
for the special case of matrix multiplication, or to any other semiring.

28Observe that each of the three “sides” of T is indexed by n× n matrices, and we can think of the fibers along any
fixed side we choose as a set of matrices. It is the dimension of their span we refer to here as the “dimension” of T
(this is sometimes called a “flattening rank”).

29As in the generalized tau theorem above.

14



1.6. Organization of this paper
While it is fair to say that almost all ideas presented here appear in Strassen’s three celebrated
papers on the subject, our treatment of many of them, and their evolution, is often quite different,
hopefully more accessible, general and current. We provide many modern examples and applications
of the theory which did not exist when the original papers were written. We introduce new notions,
interesting in their own right, which sometimes enable more intuitive, streamlined proofs, stronger
theorems, and clearer connections to newly studied settings.

The paper may be viewed as having three separate (but obviously related) parts. We briefly
describe each, and the contents of each section, highlighting (if any) new ingredients added here.

• Part I (Sections 2, 3 and 4): Here we develop the main aspects of the theory of asymptotic
spectra. In Section 2 we will give a self-contained introduction to the general framework
of preordered semirings, amortized complexity and the key parameters of interest. We
conclude this section with numerous (some very recent) concrete examples from diverse fields
of mathematics, information theory, optimization and computer science which fit into this
framework. In Section 3 we introduce the asymptotic spectrum, and prove the main duality
theorem of the theory, namely Strassen’s duality theorem. Our proof is completely self-
contained, without any reference to the Kadison–Dubois duality theory for semirings (which
Strassen uses in his proof). In this we mainly follow the treatment in [Zui18]. As a new
element, we define the fractional rank and subrank, which are relaxations of the integral ones.
These help simplify the construction of the asymptotic spectrum.

• Part II (Sections 5, 6, 7, 8 and 9): Here we develop tools for asymptotic analysis of polynomial
inequalities, with the central aim of understanding and characterizing connectivity and
convexity of the asymptotic spectrum. We choose to focus on univariate polynomials only,
as this situation is much simpler to describe, while it still captures all ideas (namely, it can
be easily extended to multivariate polynomials in the same way). In Section 5 we give basic
characterizations of boundedness and connectedness of the spectrum. In Section 6, the most
technical in this part, we abstract and generalize, using new terminology, many of the technical
manipulations of asymptotic polynomial inequalities in Strassen’s (and later) papers as a “type
theory” for polynomials, somewhat analogous to (and motivated by) the “typical sequences”
used in Shannon’s information theory. Section 7 then uses these to give new necessary and
sufficient conditions for the connectedness of the spectrum. This is done using a new asymptotic
partial order, called a monomial order, which uses the type decomposition above. The necessary
condition is based on an interesting use of von Neumann’s minimax theorem which uses the
above information-theoretic representation in a natural way. In Section 8 we give a sequence
of weaker and weaker sufficient conditions for connectivity, culminating in the existence of
what we call an anchor of the semiring. We feel that this new notion clarifies a mysterious
element in Strassen’s connectivity proof for matrix multiplication, and makes it more modular.
It separates an ingredient definable in any semiring, from the complementary ingredient of
compression essential to the proof (which is dealt with in Part III). Finally, in Section 9 we
discuss the consequences of connectivity of asymptotic spectra.

• Part III (Sections 11 and 12): In this part we return to the concrete semiring of tensors. It is
devoted to shifting and compression theorems, and deriving from them connectivity proofs of
spectra. In Section 11 we explain the fundamental notion of basis shifting and compression,
and give a new proof of Strassen’s basis shifting theorem for linear spaces of matrices. Our
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new proof easily extends by induction to basis shifting linear spaces of tensors of arbitrary
dimension. Moreover, it is far simpler as our base case for the induction is 1-dimensional,
namely basis shifting linear spaces of vectors, which is particularly simple (in contrast to
Strassen’s proof which deals directly with the 2-dimensional case). We also relate shifting
to bounds on dimension of matrix and tensor subspaces, which were studied independently
with different motivations. In Section 12 we define tensor networks, a special family of tensors
important in quantum information theory and computation. Our generalization above of
shifting and compression in all dimensions results in a connectivity theorem for the spectra of
all tensor networks (of which matrix multiplication is the simplest non-trivial example).

• In the final Section 13 we discuss open problems and research directions (some very concrete,
and some very broad) related to all the material in the paper.
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In Part I we develop the main aspects of Strassen’s theory of asymptotic spectra. In Section 2
we introduce the basic definitions of this theory. In Section 3 we prove the main duality theorem.
Finally, in Section 4 we discuss applications, variations and extensions of the theory.

Looking ahead to the other parts, in Part II we will discuss methods to gain structural insights in
the theory of asymptotic spectra. In Part III we will apply these to a specific setting, namely matrix
multiplication and tensor networks. While Part II and Part III are for a large part independent of
Part I, their motivation comes directly from the material in Part I.

2. Semirings, Strassen preorders, rank and asymptotic rank

In this section we lay out the playing field by defining the kind of objects (elements of a semiring)
and the kinds of reductions between them (Strassen preorders) that the theory of asymptotic spectra
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deals with. We introduce the main parameters of interest: rank, subrank, and their asymptotic
versions. Then we discuss interesting fundamental examples.

2.1. Basic objects of study
Understanding the behavior of objects under natural addition and multiplication operations is a
central theme in mathematics, computer science and physics. Examples of such basic objects include
communication channels in information theory, computational problems in algebraic complexity
theory, entangled states in quantum computing, and graphs in discrete mathematics. The addition
and multiplication operations correspond to natural ways of combining the objects to form new
ones. For example, for communication channels the addition and multiplication operations will
correspond to combining channels in series or in parallel. Sometimes the existence and construction
of a natural algebraic structure on such objects is far from obvious and requires some work.

In instances of interest, the addition and multiplication operations behave nicely with each other,
so that the objects form a structure known as a commutative semiring. A commutative semiring
is essentially a commutative ring without the requirement for every element to have an additive
inverse. The formal definition is as follows.

Definition 2.1 (Commutative semiring). For any set R and binary operations + and · on R, the
triple (R,+, ·) is called a commutative semiring or semiring, for short, if the following properties
hold:

1. The addition + is associative and commutative.

2. The multiplication · is associative and commutative.

3. The multiplication distributes over the addition: a · (b+ c) = (a · b) + (a · c).

4. There is a multiplicative unit 1.

We abbreviate a · b to ab. We write 2 = 1 + 1, 3 = 1 + 1 + 1, etcetera, for the elements in R
obtained by adding 1 to itself. In this way in any commutative semiring we have the positive integers
N≥1 = {1, 2, . . .}.30 We do not require these elements in R to be distinct from each other at this
point, but this will be a requirement that we impose later. We point out that we can artificially add
or remove a zero element from the semiring without changing anything else. We tried to choose the
definition that makes notation and proofs simplest and, therefore, we will not have a zero in our
semiring.

Simple examples of commutative semirings are the natural numbers N≥1, the rationals ≥ 1
and the reals ≥ 1, with their usual addition and multiplication. Another example, which will
play an important role later as a complete example, is the set of continuous functions from some
topological space to the reals ≥ 1 under pointwise addition and multiplication. We will see much
more complicated and interesting examples.

Besides addition and multiplication operations, we are interested in objects that naturally come
with a (partial) ordering. This ordering will often correspond to some notion of reduction as is
common in complexity theory, so that the larger the object in the ordering, the more expensive it is
in terms of computational resources or communication resources, but also the more useful it is. The
formal notion that we use — which captures the most basic and obvious properties that any kind of
reduction should have — is that of a preorder relation.

30In this paper we use N = {0, 1, 2, . . .}.
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Definition 2.2 (Preorder relation). A relation ≤ on a set R is called a preorder relation, or preorder,
if it satisfies the following properties:31

1. Reflexive: for every a ∈ R we have a ≤ a.

2. Transitive: for every a, b, c ∈ R, if a ≤ b and b ≤ c, then a ≤ c.

When we are manipulating preorders, it will often be convenient to identify our preorder ≤
on R with the set of pairs P = {(a, b) ∈ R2 : a ≤ b}. Vice versa, given such a set P we will denote
the corresponding inequality symbol by ≤P . That is, for any a, b ∈ R we have a ≤P b if and only
if (a, b) ∈ P . As usual, we write a 6≤P b if and only if (a, b) 6∈ P . Naturally, we call any set P ⊆ R2

a preorder if the relation ≤P is a preorder.
We are interested in the interaction between the semiring operations + and · and the preorder ≤.

For this we first require the semiring operations and the preorder to be compatible. Namely, thinking
of the preorder as a notion of reduction, we require reductions to compose under the semiring
operations, in the same way that they do for the simple examples above. This is formalized as
follows.

Definition 2.3 (Semiring preorder). A preorder ≤ on a semiring R is called a semiring preorder if
for every a, b, c, d ∈ R, if a ≤ b and c ≤ d, then also a+ c ≤ b+ d and ac ≤ bd.

Note that a preorder ≤ is a semiring preorder if and only if for every a, b, c ∈ R, if a ≤ b, then
also a+ c ≤ b+ c and ac ≤ bc. This more compact characterization is often easier to deal with.

Finally, we will assume our preorder has three more properties. First, we assume that the
simplest example of a semiring, the semiring of natural numbers N≥1, is embedded in our semiring
in their natural order. In applications these embedded natural numbers will always correspond to
the objects that we understand best. Secondly, we assume that elements are “non-negative”. Third,
we assume that the elements of our semiring are “not too large” and “not too small”.3233 The formal
notion that we use is as follows.

Definition 2.4 (Strassen preorder). Let R be a semiring. (Then R by definition contains the
positive integers N≥1 by adding the multiplicative unit 1 to itself.) A semiring preorder P on R is
called a Strassen preorder if it satisfies the following properties:

1. Embedding of natural numbers: for every n,m ∈ N≥1 we have n ≤ m in N≥1 if and only
if n ≤P m in R.

2. For every a, b ∈ R it holds that a ≤P a+ b.34

31One could go one step further and require the relation to satisfy the antisymmetry property: for any a, b ∈ R, if
a ≤ b and b ≤ a, then a = b. A preorder satisfying antisymmetry is called a partial order. We will not use partial
orders.

32Compared to Strassen’s treatment, we simplify the whole discussion by using a simplified version of his “not too
small” condition. Namely we will simply require that all elements are at least 1 (as this serves all applications that we
discuss), whereas Strassen’s original condition asks that every (nonzero) element is at least 1 after being multiplied by
some natural number. The condition that we use is a stronger version of what is commonly called the Archimedean
property, so we will refer to it as the strong Archimedean property.

33It is easy to find semirings that do not satisfy the (strong) Archimedean property, for example the semiring of
functions on a non-compact space.

34When there is a zero in the semiring, this condition can equivalently be replaced by 0 ≤P 1, since then
0 = 0 · a ≤P 1 · a = a and so a ≤P a+ b, using that P is a semiring preorder. However, in our exposition we have no
zero in our semiring.
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3. Strong Archimedean property: for every a ∈ R it holds that 1 ≤P a ≤P n for some n ∈ N≥1.35

Semirings R with a Strassen preorder P (with inequality symbol denoted by ≤P ) will be our
object of study for the rest of the section.

2.2. Rank, subrank and their asymptotic versions
Our main goal is to understand how the elements in the semiring relate to the natural numbers in
the semiring in an asymptotic fashion. In order to discuss this, we first introduce two functions that
relate the semiring elements to the natural numbers:

Definition 2.5 (Rank). For every a ∈ R the rank RP (a) is defined as the smallest number n ∈ N≥1
such that a ≤P n.

Definition 2.6 (Subrank). For every a ∈ R the subrank QP (a) is defined as the largest number n ∈
N≥1 such that n ≤P a.

We may think of the rank RP (a) as the cost of the element a in terms of our currency, the
natural numbers. Similarly, the subrank QP (a) is the value of the element a in terms of the natural
numbers. Of course value is at most cost, and they need not be equal: QP (a) ≤ RP (a). Note that
both rank and subrank require optimization over the integers. It is thus not surprising that they
capture NP-hard parameters (like the rank of tensors and the independence number of graphs).

We will now discuss some basic properties of rank and subrank. To do this we will use the
following terminology for any function φ : R → R≥1. We say that φ is sub-additive if for every
a, b ∈ R we have φ(a+ b) ≤ φ(a) + φ(b). We say that φ is sub-multiplicative if for every a, b ∈ R we
have φ(ab) ≤ φ(a)φ(b). The terms super-additive and super-multiplicative are defined similarly. We
say that φ is normalized if φ(1) = 1. Finally, we say that φ is P -monotone if for every a, b ∈ R, if
a ≤P b, then φ(a) ≤ φ(b). The basic properties of rank and subrank are as follows; note that these
are the properties we would intuitively expect from a cost function and a value function.

Lemma 2.7. The rank RP is sub-additive, sub-multiplicative, normalized and P -monotone. The
subrank QP is super-additive, super-multiplicative, normalized and P -monotone.

Proof. The properties follow directly from the definition of a Strassen preorder and the definition of
rank and subrank.

We have introduced the rank and subrank as cost and value functions with respect to the natural
numbers. We now introduce the main parameters we want to understand, which are amortized cost
and amortized value. More precisely, we want to understand how the rank and the subrank behave
under taking large powers. For example, it is possible that RP (a) = 2 while RP (a2) = 3 < 22, that
is, large powers of the element a are relatively cheap compared to the cost of a. The following two
parameters capture the amortized cost and amortized value:

Definition 2.8 (Asymptotic rank). For every a ∈ R the asymptotic rank R̃P (a) is defined as the
infimum of RP (an)1/n over all n ∈ N.

35As remarked, Strassen’s definition of a “good” preorder uses the Archimedean property rather than the strong
Archimedean property. The Archimedean property says that for every a, b ∈ R with b 6= 0 there is an n ∈ N such that
a ≤P nb. Although the notion of good preorder is more general than our notion of Strassen preorder, we use the
latter notion since it is a lot simpler and suffices for the applications that we discuss.
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Definition 2.9 (Asymptotic subrank). For every a ∈ R the asymptotic subrank Q̃P (a) is defined
as the supremum of QP (an)1/n over all n ∈ N.

The following standard lemma, which is known as Fekete’s Lemma [PS98, no. 98] (see also [Sch03,
Theorem 2.2]), allows us to replace the infimum and supremum in the definition of asymptotic
subrank and asymptotic rank by limits, highlighting their asymptotic quality.

Lemma 2.10 (Fekete’s lemma). Let r1, r2, . . . be a sequence of non-negative real numbers that
satisfy the sub-additivity property rn+m ≤ rn + rm for all n,m ∈ N. Then infn rn/n = limn→∞ rn/n.

Corollary 2.11 (Consequence of Fekete’s Lemma). For every a ∈ R the asymptotic rank is given
by the limit R̃(a) = limn→∞R(an)1/n.

Proof. Apply Fekete’s Lemma to the sequence rn = log R(an)1/n while using the fact that rank is
sub-multiplicative (Lemma 2.7).

Corollary 2.12 (Consequence of Fekete’s Lemma). For every a ∈ R the asymptotic subrank is
given by the limit Q̃P (a) = limn→∞QP (an)1/n.

Proof. This proof is similar to the proof of Corollary 2.11.

In several applications it is meaningful to know whether the limits in the expression for asymptotic
rank and asymptotic subrank are attained at a finite power n ∈ N. There is a natural abstract example
(semiring R and a Strassen preorder P ) that we will discuss in the next section (Example 2.17)
which shows that generally:

• for every n ∈ N there is an element a ∈ R for which the asymptotic rank (or asymptotic
subrank) is attained at the nth power but not at any smaller power

• there is an element for which the asymptotic rank (or asymptotic subrank) is not attained at
any finite power.

Besides the aforementioned abstract example, there are also concrete examples where asymptotic
rank and asymptotic subrank are not attained at any finite power, namely for the semirings of
graphs (Example 4.4) and tensors (Example 4.5).

We conclude by discussing how the asymptotic rank and asymptotic subrank share some of the
properties of the rank and the subrank (Lemma 2.7 and Lemma 2.7). Besides these properties
being fundamental, these proofs serve as a warm-up to more abstract proofs later that use similar
ingredients.

Lemma 2.13. The asymptotic subrank Q̃P is super-additive, super-multiplicative, normalized and
P -monotone.

The proof of Lemma 2.13 is simple except for the proof of super-additivity, which we will give
here. We will use the following basic lemma.

Lemma 2.14 (AM-GM inequality). For any non-negative real numbers x1 and x2 it holds that

max
0≤p≤1

2h(p)xp1 x
1−p
2 = x1 + x2

where h(p) := −p log p− (1− p) log(1− p) is the binary entropy function in which 0 log 0 is defined
to be 0.
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Proof. The AM-GM inequality states that for any non-negative real numbers y1 and y2 the p-
weighted geometric average is at most the p-weighted arithmetic average, yp1y

1−p
2 ≤ py1 + (1− p)y2,

with equality if and only if y1 = y2. Expanding the definition of h(p) in the claim of the lemma, we
need to prove that

max
0≤p≤1

(x1

p )p ( x2

1−p )1−p = x1 + x2.

We may assume that both x1 and x2 are nonzero, since the case that either is zero can be dealt
with directly. It then suffices to prove that

max
0<p<1

(x1

p )p ( x2

1−p )1−p = x1 + x2.

Letting y1 = x1/p and y2 = x2/(1− p), we thus need to prove that

yp1 y
1−p
2 ≤ py1 + (1− p)y2

holds for all p, with equality for some choice of p. By the AM-GM inequality we have that
yp1 y

1−p
2 ≤ py1 + (1 − p)y2 for every p. We now choose p such that y1 = y2. One may verify that

this is true for p = x1/(x1 + x2). The tightness condition of the AM-GM inequality then gives the
equality yp1 y

1−p
2 = py1 + (1− p)y2.

Proof of Lemma 2.13. Super-multiplicativity, normalization and monotonicity are not hard to prove.
We give the proof of super-additivity. For any fixed n ∈ N, we consider the binomial expansion
(a+ b)n =

∑
p

(
n
pn

)
apnb(1−p)n, where the sum goes over all 0 ≤ p ≤ 1 such that pn is integral. We

will use the important relation between binomial coefficients and the binary entropy function, which
says that

(
n
pn

)
= 2nh(p)−o(n). Then by the super-additivity and super-multiplicativity of the subrank,

we find that
Q((a+ b)n) ≥

∑
p

(
n

pn

)
Q(apn) Q(b(1−p)n),

where the sum goes over all 0 ≤ p ≤ 1 such that pn is integral. We may lower bound the sum on the
right-hand side by lower bounding its largest summand as:∑

p

(
n

pn

)
Q(apn) Q(b(1−p)n) ≥ max

p
2nh(p)−o(n) Q(apn) Q(b(1−p)n),

where the maximization goes over all 0 ≤ p ≤ 1 such that pn is integral. Taking the nth root of the
right-hand side and letting n go to infinity gives

lim
n→∞

(
max

0≤p≤1:
pn∈N

2nh(p)−o(n) Q(apn) Q(b(1−p)n)

)1/n

= max
0≤p≤1

2h(p) Q̃(a)p Q̃(b)1−p.

Combining the above three steps gives

Q̃(a+ b) ≥ max
p

2h(p) Q̃(a)p Q̃(b)1−p

where the maximization goes over all 0 ≤ p ≤ 1. From Lemma 2.14 we know that

max
p

2h(p) Q̃(a)p Q̃(b)1−p = Q̃(a) + Q̃(b)

which finishes the proof.
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Lemma 2.15. The asymptotic rank R̃P is sub-additive, sub-multiplicative, normalized and P -
monotone.

Proof. Again the sub-multiplicativity, normalization and monotonicity are not hard to prove. The
sub-additivity is proven similarly as for Lemma 2.13 with one additional observation, namely
that the number of summands in the binomial expansion (a + b)n =

∑
p

(
n
pn

)
apnb(1−p)n grows

polynomially in n. This extra polynomial factor disappears when taking the nth root and letting n
go to infinity.

2.3. Examples
We will now discuss examples of semirings and Strassen preorders, building from the simplest
examples to the most complicated. In some of these semirings, even understanding the asymptotic
rank or subrank of one particular element is not only difficult (e.g., the graph C7 in Example 2.20),
but actually captures a major problem in a field (e.g., for MM2,2,2 in Example 2.22 it captures
the whole complexity of matrix multiplication, and for the trivial hypergraph in Example 2.24 it
captures the full cap set problem.)

Example 2.16 (Natural numbers). We begin with the absolutely simplest example, and build up
from there. Let R be the semiring N≥1 = {1, 2, 3, . . .} of positive integers, with the usual addition
and multiplication operations, and let P be the usual preorder on N≥1.

This preorder P is directly verified to be a Strassen preorder. The rank, subrank, asymptotic
rank and asymptotic subrank all coincide, namely for every n ∈ N they take value n. Two very
special properties of this simplest example that are very much unlike the typical examples, are that
(asymptotic) subrank and rank coincide and that the preorder P is a total order (i.e., linear order).
In the following examples, we will be moving away from these special properties towards preorders
that have a more intricate structure, and that are in particular not total orders. Moving away from
total orders is really necessary to get any interesting examples: every totally ordered Archimedean
semiring is a subsemiring of the positive real numbers.

Example 2.17 (Reals). This example slightly extends the previous example (Example 2.16). The
preorder will still be total, but the rank and subrank will no longer be equal. Let R be the
semiring R≥1 of all real numbers ≥ 1, with the usual addition and multiplication operations, and let
P be the usual preorder on R≥1. Again, P is trivially a Strassen preorder. The natural numbers are
obviously embedded in R. The rank is the ceiling function and the subrank is the floor function.
The asymptotic rank and asymptotic subrank simply have value r for every r ∈ R≥1. Indeed,
infndrne1/n = supnbrnc1/n = r. Thus subrank and rank no longer coincide with each other and
with their asymptotic versions, although the gaps are at most 1. However, we are still in the atypical
situation that the preorder is total.

Example 2.18 (Matrices). Here is another simple example, but in disguise. Indeed, this example
will turn out to be essentially equivalent to the example of the natural numbers (Example 2.16),
but only after some work. We will later extend this example to tensors (Example 2.21), where it
becomes highly non-trivial. Another related non-trivial example that we will discuss later is the
example of graphs (Example 2.20), which can be thought of as a symmetric and combinatorial
variation on this example.

Let F be any field and let R be the set of all nonzero matrices of any dimensions with coefficients
in F. So S contains all the nonzero n ×m matrices for any n,m ∈ N≥1. We define addition and
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multiplication on R as the direct sum ⊕, which puts matrices as blocks on the main diagonal,

A⊕B =

(
A 0
0 B

)
,

and the tensor product ⊗ (a.k.a. the Kronecker product), which is the matrix consisting of all
pairwise products of the coefficients of A and B,

A⊗B = (AijBk`)(i,k),(j,`).

To make R a commutative semiring we identify any two matrices that are equal up to permuting
rows and permuting columns. We define the preorder P on R by saying that for any matrices X
and Y we have X ≤P Y if and only if there are matrices A and B such that X = AY B, where A
and B must have the appropriate shape such that the matrix product AY B makes sense. In other
words, X ≤P Y if and only if X can be obtained from Y by taking linear combinations of the rows
and the columns. The natural numbers are embedded in R as the 1 × 1 identity matrix I1, the
2× 2 identity matrix I2, and so on. With these definitions it is not hard to see that P is a Strassen
preorder. The most fundamental matrix parameter is the matrix rank. One verifies directly that
the matrix rank rk(A) of a matrix A equals the smallest number n such that A ≤P In. On the
other hand, it follows from Gaussian elimination that the matrix rank of A also equals the largest n
such that In ≤P A. Thus rank and subrank are equal to matrix rank, and it then follows from
the general relation Q(A) ≤ Q̃(A) ≤ R̃(A) ≤ R(A) that also their asymptotic versions are equal to
the matrix rank. To put it differently, for every matrices A and B we have A ≤P B if and only if
rk(A) ≤ rk(B). Thus, identifying matrices with their matrix rank (and noting that matrix rank is
additive under direct sum and multiplicative under Kronecker product) shows that this example is
equivalent to the example of natural numbers Example 2.16.

Example 2.19 (Continuous functions). We have seen only examples of total preorders so far. We
now go from the simplest examples straight to the richest example. We will in fact see that this
example is complete, in the sense that all possible behavior of any semiring with a Strassen preorder
can be simulated by this semiring (Section 4.4). Fortunately, although this is the richest example,
we do fully understand it.

We start with a subcase that is more concrete than the general case, but already shows the
new behavior. Let k ≥ 1 be some integer and let R be the set of k-tuples Rk≥1, with addition and
multiplication defined pointwise. Thus for any two k-tuples f = (f1, . . . , fk), g = (g1, . . . , gk) ∈ R
we have f · g = (f1g1, . . . , fkgk) and f + g = (f1 + g1, . . . , fk + gk). Let P be the pointwise preorder
on R, that is, for every f, g ∈ R we have f ≤P g if and only if for every i = 1, . . . , k we have fi ≤ gi.
The natural numbers in this semiring are the tuples (1, . . . , 1), (2, . . . , 2), (3, . . . , 3), and so on. It is
clear that with these definitions P is a Strassen preorder. Note that if k = 1, then R is simply R≥1
and P is the total preorder as discussed in Example 2.17. However, when k ≥ 2 the preorder P
becomes manifestly non-total. We see that the subrank QP (f) is the floor of mini fi and the rank
RP (f) is the ceiling of maxi fi. The asymptotic subrank equals mini fi and the asymptotic rank
equals maxi fi.

For the general case, instead of considering k-tuples of elements from R≥1, we consider certain
collections of elements from R≥1 indexed by topological spaces. More precisely, let X be any
nonempty compact space — we will use compactness to apply the extreme value theorem. Let R be
the semiring C(X ,R≥1) of all continuous functions from X to R≥1 with addition and multiplication
defined pointwise. In other words, for every f, g ∈ R and x ∈ X we have (f · g)(x) = f(x)g(x)
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and (f + g)(x) = f(x) + g(x). Let P be the pointwise preorder on R, that is, for every f, g ∈ R
we have f ≤P g if and only if for every x ∈ X it holds that f(x) ≤ g(x). One verifies that this
is a Strassen preorder; indeed the strong Archimedean property follows from the extreme value
theorem which says that every continuous function on a compact space attains a maximum. We
see that the earlier subcase corresponds to taking X to be a discrete space of k points. From the
extreme value theorem, it is easy to see, as a natural extension of the situation in the simpler
subcase, that minx∈X f(x) = Q̃P (f) and R̃P (f) = maxx∈X f(x). We conclude, imagining that X is
explicitly given to us, that we know everything there is to know about the asymptotic subrank and
the asymptotic rank, as they are simply the pointwise minimum and pointwise maximum over X ,
respectively. The next examples will be much more interesting since we do not have this level of
understanding.

Example 2.20 (Graphs and the Shannon capacity). Now we are ready for the first example that we
do not understand, and for which progress is an open research problem in discrete mathematics and
information theory. This example is about a combinatorial parameter called the Shannon capacity
of a graph, which arises from basic combinatorial objects (graphs) and operations, and models
efficient communication. This combinatorial parameter was introduced by Shannon in his seminal
paper from 1956 [Sha56]. One way to think about this example is as a symmetric and combinatorial
variation on the example of matrices (Example 2.18). We will consider an extension of this example
(to k-uniform hypergraphs) later (Example 2.23).

For any finite set V we denote by
(
V
2

)
the set of all subsets of V of size two. For any subset

E ⊆
(
V
2

)
we call the pair G = (V,E) a graph. The elements of V are called the vertices of G and the

element of E are called the edges of G, and thus V is called the vertex set of G and E is called the
edge set of G. For any two vertices u, v ∈ V we say that u and v are adjacent in G if {u, v} ∈ E,
and we say that u and v are non-adjacent in G if {u, v} 6∈ E. Given a graph G we will denote its
vertex set by V (G) and its edge set by E(G).

For every n ∈ N we denote by Kn the graph with vertex set V (Kn) = {1, 2, . . . , n} and all
possible edges, E(Kn) =

(
V (Kn)

2

)
. This graph is called the complete graph on n vertices. In other

words, Kn is the graph on n vertices in which any two vertices are adjacent. For any graph G we
denote by G the graph with vertex set V (G) = V (G) and edge set E(G) =

(
V
2

)
\ E(G). This is

called the complement graph of G. In other words, we go from G to the complement graph G by
making adjacent vertices non-adjacent and vice versa. For example, the empty graph on n vertices
Kn is the graph with vertex set V (Kn) = {1, 2, . . . , n} and no edges, E(Kn) = ∅.

For two graphs G and H we say φ : G → H is a homomorphism if φ is a map V (G) → V (H)
such that for every u, v ∈ V (G), if {u, v} ∈ E(G), then {φ(u), φ(v)} ∈ E(H). Two graphs G and
H are called isomorphic if |V (G)| = |V (H)| and there is a bijective map π : V (G) → V (H) such
that for every u, v ∈ V (G) we have that {u, v} ∈ E(G) if and only if {π(u), π(v)} ∈ E(H). In other
words, G and H are isomorphic if they are the same up to relabeling on their vertex names. Since
we are only interested in properties of graphs that are invariant under such relabelings, we may
tacitly identify any two isomorphic graphs, that is, formally we are not working with graphs but
with isomorphism classes of graphs.36 We need this technicality in the following.

The objects of our semiring R will be all (non-empty) graphs. To turn this into a commutative
semiring we need an addition and a multiplication operation. The natural choice that is motivated

36This is exactly the same with what we did with matrices in Example 2.18, allowing permutations of rows and
columns. Indeed, it is often useful to identify graphs with their adjacency matrix. Then graphs are isomorphic
precisely when their adjacency matrices are equal up to simultaneously permuting rows and columns.
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by communication channels (more about this later) is to define the addition via the disjoint union
and the multiplication via the strong product (also called and-product). Let G and H be two graphs.
The disjoint union G tH is the graph with vertex set given by the disjoint union of the vertex
sets of G and H and edge set given by the disjoint union of the edge sets of G and H. The strong
product G�H is the graph with vertex set given by the cartesian product V (G)× V (H) and edge
set given by all pairs {(u1, v1), (u2, v2)} such that (u1, v1) 6= (u2, v2) and

({u1, u2} ∈ E(G) or u1 = u2) and ({v1, v2} ∈ E(H) or v1 = v2).

For example, the strong product of the graph with one edge K2 and the path with three vertices P3

looks like

� =

The strong product is essentially the same as the Kronecker product ⊗ for matrices. Namely, letting
A(G) be the adjacency matrix of G with 1’s on the main diagonal, we have A(G�H) = A(G)⊗A(H).
Recall that we are implicitly working with isomorphism classes of graphs and here is why: The
disjoint union and the strong product are commutative operations, since G t H and H t G are
isomorphic, and G�H and H �G are isomorphic. We will write G ·H for G�H, and G+H for
G tH. Under these operations the set of graphs becomes a semiring.

The role of natural numbers in the semiring of graphs is played by the graphs Kn for n ∈ N,
which have n vertices and no edges. Indeed, Kn = K1 t · · · tK1 (n summands) and K1 acts as a
multiplicative unit in the semiring.

To discuss the natural preorder on graphs we start by discussing two important graph parameters,
namely the independence number α(G) and the clique cover number χ(G). For any graph G, a
subset S ⊆ V (G) is called an independent set in G if every two vertices u, v ∈ S are non-adjacent.
The independence number α(G) is the largest number n ∈ N such that there is an independent set
in G of size n. A subset S ⊆ V (G) is called a clique in G if every two distinct vertices u, v ∈ S
are adjacent. A clique cover of G is a partition of the vertices of G into cliques, that is, it is a
collection of (disjoint) subsets S1, . . . , Sn ⊆ V (G) such that ∪iSi = V (G) and each Si is a clique.
The number of cliques in the clique cover is called its size. The clique cover number χ(G) is the
smallest number n such that there is a clique cover of G of size n.

There is a natural preorder P on the set of graphs such that the corresponding notion of rank RP

equals the clique cover number while the notion of subrank QP equals the independence number.
Namely, we define the cohomomorphism preorder P on graphs by saying that G ≤P H if and only if
there is a graph homomorphism G → H.37 It is then readily verified that indeed RP (G) = χ(G)
and QP (G) = α(G). It is also readily verified that P is a Strassen preorder. This preorder is not
total. We refer to the book [HN04] for more information on the cohomomorphism preorder.

The asymptotic subrank Q̃P (G) = limn→∞ α(Gn)1/n, which we will denote as is usual by Θ(G),
is known as the Shannon capacity in graph theory, and this is the main graph parameter that we
want to understand. So far, the value of Θ(G) is known precisely for very few types of graphs. For a
subclass of graphs called perfect graphs, α(G) = Θ(G) = χ(G). A non-perfect graph for which the
Shannon capacity is known is the cycle of length 5 [Lov79], but the Shannon capacity of any larger
odd cycle is not known (see, e.g., [PS19]). Other basic questions include: Can the Shannon capacity

37Thus G ≤P H if and only if there is a (not necessarily injective) map from the vertices of G to the vertices of H
which preserves non-edges.
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be computed? [AL06] What tools are there to bound the Shannon capacity? [Hae79, Lov79, BC19]
How does the Shannon capacity behave under the semiring operations? [Hae79, Alo98b] How does
the Shannon capacity behave on random graphs? [Juh82] We will get partial answers to and deeper
insight into some of these questions using the theory of asymptotic spectra.

To conclude this example, we say something about Shannon’s [Sha56] motivation behind the
definition of the Shannon capacity of a graph. A graph G models a communication channel from
one party to another, in which V (G) is the alphabet of symbols that may be transmitted, and
E(G) captures the pairs of symbols which the channel my confuse during transmission. Shannon
asked the mathematically clean question of how much information can be sent over the channel if
we are allowed to use the channel many times and if no errors are allowed. For one usage of the
channel the answer is the independence number of G. For k usages of the channel the answer is the
independence number of the kth power G�k. In this way the Shannon capacity of a graph measures
the amount of information that can be sent over the channel, per usage of the channel, in the limit.

Example 2.21 (Tensors). Understanding tensors (high-dimensional matrices) is deeply connected
to several hard mathematical and computational problems, including problems in additive combina-
torics [Tao16], the P versus NP problem [Raz09] and the theory of quantum entanglement [DVC00].
Strassen introduced the theory of asymptotic spectra in [Str88] in order to understand the computa-
tional complexity of matrix multiplication. We will discuss matrix multiplication in Example 2.22.
Tensors are higher-dimensional matrices, so this example will obviously extend our matrix example
Example 2.18. Recall that in Example 2.18 we considered the semiring of matrices under direct
sum and Kronecker product and a preorder corresponding to taking linear combinations of rows
and columns. Via Gaussian elimination we observed that this preordered semiring is essentially
equivalent to the simplest semiring N. The natural generalization to tensors that we are about to
consider turns out to be much more complex. In particular, we do not understand it well and its
study is an active research area, with links to quantum information theory, additive combinatorics
(Example 2.24) and complexity theory (Example 2.22) that we will see later.

Let us define tensors and their semiring operations. Let k ≥ 2 and let F be a field. For positive
integers n1, . . . , nk we call any k-dimensional array T = (Ti1,...,ik)i1∈[n1],...,ik∈[nk] of field elements
Ti1,...,ik ∈ F an n1 × · · · × nk tensor over F or a k-tensor over F. Thus a 2-tensor is simply a matrix.
We let Fn1×···×nk denote the set of n1 × · · · × nk tensors.

To simplify the notation we will now focus on k = 3. Let R be the set of all nonzero n1×n2×n3
tensors going over all possible values of n1, n2, n3. We tacitly identify any two tensors that are equal
up to a permutation among each of the three indices, like we did for matrices. We also define direct
sum and Kronecker product analogously. Namely, the direct sum T ⊕ T ′ ∈ F(n1+n

′
1)×(n2+n

′
2)×(n3+n

′
3)

of T ∈ Fn1×n2×n3 and T ′ ∈ Fn′1×n′2×n′3 is defined by setting (T⊕T ′)i1,i2,i3 = Ti1,i2,i3 for i1 ∈ [n1], i2 ∈
[n2], i3 ∈ [n3] and setting (T ⊕ T ′)n1+j1,n2+j2,n3+j3 = T ′j1,j2,j3 for j1 ∈ [n′1], j2 ∈ [n′2], j3 ∈ [n′3]; the
other coefficients are set to zero. Pictorially, the direct sum thus looks as follows:

T
⊕

T ′
=

T ′

T

The Kronecker product T ⊗ T ′ ∈ F(n1n
′
1)×(n2n

′
2)×(n3n

′
3) of T ∈ Fn1×n2×n3 and T ′ ∈ Fn′1×n′2×n′3

is defined by setting (T ⊗ T ′)(i1,j1),(i2,j2),(i3,i3) = Ti1,i2,i3T
′
j1,j2,j3

. The direct sum and Kronecker
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product are commutative operations on isomorphism classes of tensors and turn R into a semiring.
Also the embedding of the integers into this semiring is analogous to matrices. Namely, for every
n ∈ N we let In denote the n× n× n tensor with ones on the main diagonal and zeros elsewhere,
that is, (In)i1,i2,i3 equals 1 if i1 = i2 = i3 and 0 otherwise. These are called unit tensors. The
natural numbers in R are then given by the tensors In for n ∈ N.

The preorder that we will define not only naturally extends the preorder that we defined on
matrices, but also models natural notions of reduction in applications (e.g., the notion of reduction
between arithmetic circuits by linear projections by Valiant [Val79]). We define the restriction
preorder P on R by saying for any tensors T ∈ Fn1×n2×n3 and T ′ ∈ Fn′1×n′2×n′3 that T ≤P T ′ if T ′
can be transformed to T by applying, for each of the three directions, a linear transformation to all
fibers of T ′ in that direction. Formally, T ≤P T ′ if there are matrices A1, A2, A3 of the appropriate
size such that T = (A1, A2, A3) ·T ′ where ((A1, A2, A3) ·T ′)u,v,w =

∑
i,j,k(A1)u,i(A2)v,j(A3)w,kT

′
i,j,k.

It is not hard to verify that this is a Strassen preorder.
What is the meaning of rank RP and subrank QP for the chosen preorder P ? An important and

natural extension of matrix rank to tensors is the notion of tensor rank. The tensor rank is defined
as follows. We say that a tensor S ∈ Fn1×n2×n3 has tensor rank one if and only if there are nonzero
vectors u ∈ Fn1 , v ∈ Fn2 , w ∈ Fn3 such that Tijk = uivjwk. For every tensor T we define the tensor
rank rk(T ) as the smallest number n such that T =

∑n
i=1 Si where the Si are tensors of rank one.

(Here the sum is the entry-wise sum, not the direct sum.) Recall that the rank RP (T ) is defined
as the minimum number n such that T ≤P In. It is not hard to prove that the tensor rank rk(T )
equals the rank RP (T ). Recall that for matrices it followed from Gaussian elimination that subrank
equals rank. For tensors this is not the case; the subrank QP (T ), which is defined as the largest
number n such that In ≤P T , can in fact be strictly smaller than the rank. It is known that the
tensor rank is NP-hard to compute (and NP-complete over finite fields) [Hås90]. The same is likely
true for the subrank.

We are interested in the asymptotic rank R̃P (T ) and the asymptotic subrank Q̃P (T ). The
asymptotic rank R̃P (T ) is the amortized tensor rank of T⊗n when we let n go to infinity, and
similarly the asymptotic subrank Q̃P (T ) is the amortized subrank of T⊗n when we let n go to
infinity. Several applications require the study of asymptotic rank and subrank of tensors. For
example such parameters are central in the theory of matrix multiplication and in problems in
additive combinatorics and quantum information theory.

Example 2.22 (Matrix multiplication). We have already discussed matrix multiplication in the
introduction, but will now discuss it more carefully and rigorously. Matrix multiplication is an
important subroutine in many algorithms. It is an open problem what the computational complexity
of this problem is. To multiply two n×n matrices, the standard matrix multiplication algorithm uses
O(n3) arithmetic operations (additions and multiplications of scalars). Strassen in 1969 designed an
algorithm that uses only O(n2.81) operations [Str69]. Strassen’s algorithm was only the beginning
of the search for ever faster algorithms, powered by ever more ingenious techniques. The best
algorithm currently [AW21] uses O(n2.37...) operations. On the other hand, we know that at least n2
operations are required, leaving open the question whether the exponent 2.37 . . . can be improved all
the way down to 2. The exponent of matrix multiplication, denoted by ω, is defined as the infimum
over all real numbers such that the complexity of multiplying two n× n matrices is O(nω). Thus we
know that 2 ≤ ω ≤ 2.37.

It was realized early on [Str72, Pan72, Pan78] that tensors provide the right framework to
study the complexity of matrix multiplication via the general correspondence between bilinear maps
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Fn1 × Fn2 → Fn3 , trilinear maps Fn1 × Fn2 × Fn3 → F and tensors in Fn1×n2×n3 . We will now
discuss how the matrix multiplication problem is phrased in terms of tensors and thus connects to
Example 2.21, and in particular to asymptotic tensor rank. Multiplication of a× b and b× c matrices
is a bilinear map Fab×Fbc → Fca, where we think of Fab as the space of a× b matrices, etcetera. Via
the aforementioned general correspondence, the corresponding trilinear map Fab × Fbc × Fca → F
is the function (X1, X2, X3) 7→ Tr(X1X2X3) that takes the trace of the product of three matrices.
The corresponding tensor in F(ab)×(bc)×(ac), denoted by MMa,b,c is defined as follows. Denote by
e(i,j),(k,`),(m,n) the standard basis elements of the space F(ab)×(bc)×(ac). Then

MMa,b,c :=
∑
i∈[a]

∑
j∈[b]

∑
k∈[c]

e(i,j),(j,k),(k,i) ∈ F(ab)×(bc)×(ca)

where the sum is the usual element-wise sum. We will denote MMa,a,a by MMa. Crucially, first
of all, it is true (and the reader is challenged to prove) that if R(MMn) ≤ r, then there is an
arithmetic algorithm to multiply any two n × n matrices using r scalar multiplications. The
implication in the opposite direction is also true, up to a constant factor. Second of all, the
matrix multiplication tensors have the property that the product of matrix multiplication tensors
MMa,b,c ∈ F(ab)×(bc)×(ca) and MMd,e,f ∈ F(de)×(ef)×(fd) is again a matrix multiplication tensor:
MMa,b,c ⊗MMd,e,f = MMad,be,cf ∈ F(adbe)×(becf)×(cfad). This is essentially for the same reason
that multiplying block matrices can be done block-wise. From these ingredients it can be shown
that R̃(MM2) = 2ω [Str88], that is, the matrix multiplication exponent ω is characterized by the
asymptotic rank of the matrix multiplication tensor MM2.

Example 2.23 (Hypergraphs). We have seen in Example 2.20 how to define a semiring and preorder
on graphs in order to define the Shannon capacity as an asymptotic subrank. In this example we
will consider a generalization of graphs, namely k-uniform hypergraphs. The generalization is fairly
direct. There is one technical issue to take care of in the definition of the preorder so that it remains
a Strassen preorder. Uniform hypergraphs are basic objects in combinatorics and we will see in
Example 2.24 how they play a role in problems like the cap set problem and the sunflower problem.

Let k ≥ 2. For any finite set V we denote by
(
V
k

)
the set of all subsets of V of size k. For any

subset E ⊆
(
V
k

)
we call the pair G = (V,E) a k-uniform hypergraph, or simply k-graph. We will use

the same terminology and notation of vertices and edges as for graphs.
For every n ∈ N≥1 we denote by Kn the k-graph with vertex set V (Kn) = {1, 2, . . . , n} and

all possible edges, E(Kn) =
(
V (Kn)
k

)
. This is the complete k-graph. For any k-graph G we denote

by G the k-graph with vertex set V (G) = V (G) and edge set E(G) =
(
V
k

)
\ E(G). This we call the

complement k-graph of G. Thus Kn is the k-graph with vertex set V (Kn) = {1, 2, . . . , n} and no
edges, E(Kn) = ∅.

We say that two k-graphs G and H are isomorphic if |V (G)| = |V (H)| and there is a bijective
map π : V (G) → V (H) such that for every v1, . . . , vk ∈ V (G) we have that {v1, . . . , vk} ∈ E(G)
if and only if {π(v1), . . . , π(vk)} ∈ E(H). Like for graphs, we need this technicality to obtain a
commutative semiring, as follows.

We define addition and multiplication operations on the set R of (non-empty) k-graphs. They
are natural in the light of problems like the cap set problem and the sunflower problem, and directly
extend the disjoint union and strong product of graphs. Let G and H be k-graphs. The disjoint
union G tH is the k-graph with vertex set given by the disjoint union of the vertex sets of G and
H and edge set given by the disjoint union of the edge sets of G and H. The strong product G�H
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is the k-graph with vertex set given by the cartesian product V (G)× V (H) and edge set given by
all sets {(u1, v1), (u2, v2), . . . , (uk, vk)} ∈

(
V (G)×V (H)

k

)
such that

({u1, u2, . . . , uk} ∈ E(G) ∨ u1 = u2 = · · · = uk) ∧ ({v1, v2, . . . , vk} ∈ E(H) ∨ v1 = v2 = · · · = vk).

The k-graphs GtH and H tG are isomorphic, and the k-graphs G�H and H �G are isomorphic.
We will write G ·H for G�H, and G+H for G tH. Under these operations the set of k-graphs
becomes a commutative semiring.

For any k-graph G, a subset S ⊆ V (G) is called an independent set in G if no k vertices in S
form an edge. The independence number α(G) is the largest number n ∈ N such that there is an
independent set in G of size n.

At this point we will diverge from the way we treated graphs in Example 2.20. We need to
extend a modified notion of a preorder for graphs in order to obtain a Strassen preorder on k-graphs.
The modified preorder on graphs still has the independence number as the corresponding subrank,
but it has the number of vertices as its rank.

We define the preorder P on R by saying that G ≤P H if and only if there is an injective
map π from V (G) to V (H) such that for every set {v1, v2, . . . , vk} ∈

(
V
k

)
\ E(G) we have that

{π(v1), π(v2), . . . , π(vk)} ∈
(
V
k

)
\ E(H). It is then readily verified that indeed RP (G) = |V (G)| and

QP (G) = α(G). It is also readily verified that P is a Strassen preorder.
The asymptotic rank R̃P (G) simply equals the number of vertices |V (G)| and is thus not of much

interest. The asymptotic subrank Q̃P (G), however, is highly non-trivial and equals the amortized
independence number of strong powers of the k-graph G, that is, Q̃P (G) = limn→∞ α(Gn)1/n.

Example 2.24 (Additive combinatorics). We will give one example of a problem in additive
combinatorics that corresponds to computing the asymptotic subrank Q̃P (G) from Example 2.23
for a specific k-graph G. This is the cap set problem.

The cap set problem started in arithmetic combinatorics, in the study of 3-term arithmetic
progressions in the integers, and seeking bounds on the size of sets which don’t have any. The
problem in Z/3Z (and over other groups) was devised as an analog to gain intuition and for a long
time only moderate bounds were known even for this “simpler” problem (see [AD93, Mes95, Tao08]).
The problem asks: what is the largest subset S ⊆ (Z/3Z)n such that no three different elements
x, y, z ∈ S lie on a line, that is, what is the largest subset S ⊆ (Z/3Z)n such that for every three
distinct elements x, y, z ∈ S we have x + y + z = 0.38 Such a set S is called a cap set. Let G
be the 3-graph with vertex set V = {0, 1, 2} and a single edge, E = {{0, 1, 2}}. Then any cap
set S ⊆ (Z/3Z)n corresponds precisely to an independent set in Gn. Thus Q̃P (G) determines the
asymptotic rate of growth of cap sets and models the cap set problem. The breakthrough of Ellenberg
and Gijswijt [EG17] (following the techniques of the closely related result by Croot, Lev and Pach
[CLP17]) gave the upper bound Q̃P (G) ≤ 2.756 < 3. The best lower bound Q̃P (G) ≥ 2.216 was
obtained by Edel [Ede04] by lower bounding the subrank of a finite power of G.

2.4. Summary
In this section, we have introduced the kind of objects that the theory of asymptotic spectra is
about. The main components are:

• a commutative semiring (R,+, ·) with a multiplicative unit 1

38It is easily seen that, in Z/3Z, x+ y+ z = 0 is equivalent to there being u, v such that (x, y, z) = (u, u+ v, u+ 2v).
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• a Strassen preorder P on R, also denoted by ≤P

• the rank function RP and the subrank function QP on R with respect to P

• the asymptotic rank R̃ and asymptotic subrank Q̃.

The rank and asymptotic rank are sub-additive, sub-multiplicative, normalized and P -monotone,
and the subrank and asymptotic subrank have the same properties but with sub-additive and
sub-multiplicative replaced by super-additive and super-multiplicative.

A prototypical example is the semiring of tensors under the direct sum and the Kronecker
product (Example 2.21). The Strassen preorder is the restriction preorder and the rank function is
the usual tensor rank. The asymptotic rank of the matrix multiplication tensor exactly characterizes
the asymptotic arithmetic complexity of matrix multiplication.

Another prototypical example is the semiring of graphs under the disjoint union and the strong
graph product (Example 2.20). The Strassen preorder is the cohomomorphism preorder, the subrank
is the independence number, the rank is the clique cover number, and the asymptotic subrank is the
Shannon capacity (and the asymptotic rank is the asymptotic clique cover number, which turns out
to be equal to the fractional clique cover number).

In the next section we introduce and prove the duality theorem for the setting that we have set
up in this section. We will then also return to the main examples that we introduced in this section.

3. Strassen’s duality theorem

We will in this section state and prove Strassen’s duality theorem. In Section 3.1 we initiate a
crucial shift of focus from the class of Strassen preorders to the subclass of closed Strassen preorders,
and we prove that the latter has very special properties. In Section 3.2 we characterize the closed
Strassen preorders as an intersection of total closed Strassen preorders. This characterization is a
non-trivial extension of the well-known analogous statement for ordinary preorders, and constitutes
the main content of the duality theory, albeit in very abstract form. The remainder of the section is
dedicated to giving a meaningful description of the duality theory in terms of the more concrete
monotone homomorphisms. In Section 3.3 we introduce relaxations of rank and subrank, which
we call respectively fractional rank and fractional subrank. We then prove their special properties.
In Section 3.4 we prove that the fractional rank and fractional subrank defined by total Strassen
preorders are equal and give rise to monotone homomorphisms. Using these we define the asymptotic
spectrum. We then prove Strassen’s duality theorem for the asymptotic preorder in terms of this
asymptotic spectrum. In Section 3.5 we use the duality theorem for the asymptotic preorder to prove
the duality theorems for asymptotic rank and asymptotic subrank. The proof of the aforementioned
duality theorems uses a compactness property of the asymptotic spectrum. We defer the proof of
this to Section 3.6. (In Part II we will prove and use further, stronger properties than compactness
of the asymptotic spectrum, for specific important preorders.) In Section 3.7 we revisit the examples
of semirings and preorders that we introduced in Section 2.3 and discuss their asymptotic spectra.
Finally, in Section 3.8 we give a summary of the important concepts, notation and results from this
section.
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3.1. Closed Strassen preorders
Starting with any Strassen preorder P on a semiring R, we defined the rank and subrank, and we
have set ourselves the goal of understanding the asymptotic rank and asymptotic subrank. We will
do this by first defining and studying the asymptotic preorder associated to P . This is a preorder
that contains P and that itself has a natural interpretation in applications. We will prove that the
asymptotic preorder is again a Strassen preorder and that taking the asymptotic preorder again will
not make a difference. Taking the asymptotic preorder should thus be thought of — and this is a
simple but helpful change of terminology — as a closure operation, and the asymptotic preorder
associated to any Strassen preorder as a closed Strassen preorder. We will prove that the closed
Strassen preorders have strong properties that resemble the properties of the usual ordering of the
non-negative reals.

Definition 3.1 (Closure of a Strassen preorder). For any preorder P , and any a, b ∈ R we will
write an ≤P bn2o(n) when there is a function f : N→ N such that f(n) = o(n)39 and for all n ∈ N
it holds that an ≤P bn2f(n). We will then also write (an, bn2o(n)) ∈ P . We define the closure P̃
of P as

P̃ := {(a, b) : (an, bn2o(n)) ∈ P}.

In other words, for every a, b ∈ R we have a ≤P̃ b if and only if an ≤P bn2o(n). The preorder P̃ is
also called the asymptotic preorder associated to P .

In many applications (in particular for continuous functions (Example 2.19), tensors (Exam-
ple 2.21) and graphs (Example 2.20)), the above Definition 3.1 is equivalent to a slightly different
definition in which the term bn2o(n) is replaced by bn+o(n). That is, we write an ≤P bn+o(n) when
there is a function f : N→ N such that f(n) = o(n) and for all n ∈ N it holds that an ≤P bn+f(n).
We will state and prove this equivalence later for the aforementioned applications.40

Remark 3.2. The o(n) slack in the definition of the asymptotic preorder will in particular allow us
to swallow subexponential co(n) or poly(n) factors on the right-hand side.

Given any two relations P and Q on R we say that Q is an extension of P if and only if P ⊆ Q.
In other words, Q extends P if and only if for every a, b ∈ R, if a ≤P b, then a ≤Q b.

Lemma 3.3. The closure P̃ of a Strassen preorder P is a Strassen preorder that extends P .

Proof. The only property that is non-trivial to prove is that a ≤P̃ b implies a+ c ≤P̃ b+ c. Suppose
that an ≤P bn2f(n) where f(n) = o(n). We may assume that f(n) is non-decreasing by replacing it

39We recall that this means that f(n)/n→ 0.
40In our proofs of the abstract theory we will use the expression an ≤P bn2o(n), since this allows us to have a

transparent treatment of the theory and a duality theorem that covers our applications.
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with maxm≤n f(m). Then

(a+ c)n =

n∑
i=0

(
n

i

)
aicn−i

≤P
n∑
i=0

(
n

i

)
bi2f(i)cn−i

≤P
n∑
i=0

(
n

i

)
bicn−i2f(n)

= (b+ c)n2f(n).

This proves the claim.

Recall that we used Fekete’s Lemma (Lemma 2.10) to prove that the asymptotic rank can be
understood in two equivalent ways: as an infimum or as a limit (Corollary 2.11), and similarly for
the asymptotic subrank. We will now state the analogous statement for the asymptotic preorder,
which also follows from Fekete’s Lemma (which we leave to the reader). This will give us useful
flexibility in the upcoming proofs.

Lemma 3.4 (Consequence of Fekete’s lemma). Let a, b ∈ R. Then an ≤ bn2o(n) if and only if there
is a function g : N→ N such that infn g(n)/n = 0 and for all n ∈ N41 it holds that an ≤ bn2g(n).

The closure of a Strassen preorder has several special properties that we will discuss now. First
we justify the term closure by proving that taking the closure is an idempotent operation:

Lemma 3.5. For any Strassen preorder it holds that ˜̃P = P̃ .

Proof. We already know that P̃ ⊆ ˜̃
P . We need to prove that ˜̃P ⊆ P̃ . Suppose that (a, b) ∈ ˜̃P . Then

an ≤P̃ b
n2f1(n) where f1(n) = o(n). This means that

anm ≤P (bn2f1(n))m2f2(n,m) = bnm2f1(n)m+f2(n,m)

where f2(n,m) = o(m) for every n. We may then select elements m(n) so that

inf
n

(f1(n)m+ f2(n,m(n)))/(nm(n)) = 0.

This implies (a, b) ∈ P̃ (Lemma 3.4).

Definition 3.6. We say that P is closed if it coincides with its closure: P̃ = P .

In particular, for every Strassen preorder P we have that the closure P̃ is closed (Lemma 3.5).

Lemma 3.7 (Key properties of a closed Strassen preorder). Let P be a closed Strassen preorder.
Then the following properties hold.

1. Multiplicative cancellation property: for every a, b, c ∈ R if ac ≤P bc, then a ≤P b.
41For us N does not contain 0, so g(n)/n cannot cause division by zero.
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2. Additive cancellation property: for every a, b, c ∈ R, if a+ c ≤P b+ c, then a ≤P b.

3. Gap property: If a 6≤P b, then for every c ∈ R there is an m ∈ N≥1 such that ma 6≤P mb+ c.

The gap property says that if a 6≤P b, then in particular, taking c = 1, there is an m ∈ N≥1 such
that also ma 6≤P mb + 1. We may intuitively think of the latter as saying that a 6≤P b + 1

m . In
other words, the inequality a ≤P b remains false even if we add a “small fraction” to the right-hand
side. That is, we can create a small “gap” in which the inequality remains false. Contrapositively,
the gap property says that for any a, b, c ∈ R, if for all m ∈ N≥1 we have ma ≤P mb+ c (which we
may think of as: for all m ∈ N≥1 we have a ≤P b+ c

m ), then also a ≤P b. That is, a closed Strassen
preorder can “absorb infinitesimals”.

Proof. Obviously, in order to prove this lemma, we need to make heavy use of the fact that P is
closed. Let a, b, c ∈ R. By the strong Archimedean property (Definition 2.4) we have 1 ≤P c, and
c ≤P r for some r ∈ N≥1, and in particular c ≤P 2o(n). For the multiplicative cancellation property,
suppose that ac ≤P bc. Then an ≤P anc ≤P bnc ≤P bn2o(n).This means that a ≤P b since P is
closed.

The gap property we prove by proving its contrapositive. Suppose that for every m ∈ N≥1
we have ma ≤P mb + c. By the strong Archimedean property, there is a k ∈ N≥1 such that
c ≤P kb. Then for every m ∈ N≥1 we have (km)a ≤P (km)b+ c ≤P k(m+ 1)b and by multiplicative
cancellation ma ≤P (m+ 1)b. By an inductive argument, we find for every n ∈ N≥1 that

an ≤P an−1b2 ≤P an−2b23 ≤P · · · ≤P bn(n+ 1).

Since (n+ 1) ≤ 2o(n) and P is closed we get a ≤P b.
For the additive cancellation property, suppose that a+ c ≤P b+ c. Then by induction for every

m ∈ N≥1 we have that ma ≤P ma+ c ≤P mb+ c. By the gap property we get a ≤P b.

3.2. Total closed Strassen preorders
Any relation is called total if every pair of elements is comparable, that is, a relation P on R is total
if for every a, b ∈ R it holds that (a, b) ∈ P or (b, a) ∈ P or both. Recall that for any relations P
and Q we say that Q extends P if P ⊆ Q. For for any Strassen preorder P we say that P is closed
if P̃ = P with the closure P̃ defined as in Definition 3.1.

The main theorem of this section (Theorem 3.11) is a characterization of any closed Strassen
preorder as the intersection of all its extensions that are total closed Strassen preorders.

This theorem is very similar to a well-known theorem about ordinary preorders, and only slightly
harder to prove (given the work that we have already done on Strassen preorders). Let us state this
theorem about ordinary preorders and its simple proof first, as to illuminate the proof structure
for our theorem about Strassen preorders later. (The experienced reader may safely skip ahead to
Theorem 3.11.)

Theorem 3.8. Every preorder is the intersection of all total preorders that extend it.

The proof has two parts: a construction of an extension and an argument for the existence of a
total extension. To make the second part work, we need to use the concept of the symmetric part of
a preorder P , which is defined as the set {(x, y) ∈ R2 : (x, y) ∈ P and (y, x) ∈ P}. Keeping track of
the symmetric part will make sure that we do not add too many new relations in our extension,
which would render our extensions useless. (Alternatively, in the following discussion, instead of
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keeping track of the symmetric part, one can turn the preorder into a partial order by working with
equivalence classes. We are not doing this to stay close to the later discussion of closed Strassen
preorders.)

Lemma 3.9 (One-step extension lemma). Let P be a preorder on a set R and let a, b ∈ R such
that (a, b) 6∈ P . Then there is a preorder Q that extends P , satisfies (b, a) ∈ Q and has the same
symmetric part as P .

Proof. We start by defining the relation R = P ∪ {(b, a)}. This relation satisfies (b, a) ∈ R but it
may not be transitive. Thus, we let Q be the transitive closure of R, that is, for every x, y ∈ R we
have (x, y) ∈ Q if and only if (x, y) ∈ P or [(x, b) ∈ P and (a, y) ∈ P ]. It remains to verify that the
symmetric part of Q equals that of P , but this follows directly from the construction of Q.

Lemma 3.10 (Total extension lemma). For every preorder P there is a preorder Q that extends P ,
is total and has the same symmetric part as P .

Proof. Let P be the poset of all preorders Q that extend P and have the same symmetric part as
P , with partial order given by the inclusion partial order. Let C ⊆ P be a chain. Then the union of
(all elements of) C is again in P and obviously upper bounds every element in C in the inclusion
partial order. Thus, by Zorn’s Lemma, P contains a maximal element Q. If Q were not total, then
we could extend it using Lemma 3.9 and thus Q would not be maximal. Therefore, Q is total and
satisfies the claim.

Proof of Theorem 3.8. Let P be a preorder. We need to prove that P is the intersection of all total
preorders that extend it. Clearly P is contained in that intersection. For the other direction, suppose
that (a, b) 6∈ P . Then there is a preorder Q extending P such that (b, a) ∈ Q and with the same
symmetric part as P (Lemma 3.9). For this preorder Q we can find a total extension R such that
(b, a) ∈ R and with the same symmetric part as Q (Lemma 3.10). In particular, (a, b) 6∈ R.

We will now prove the analogous statement for closed Strassen preorders. The proof follows the
same pattern as above, but requires adjustments to make sure that all extensions that we obtain are
Strassen preorders.

Theorem 3.11 (Representation of a closed Strassen preorder by total closed Strassen extensions).
Let P be a closed Strassen preorder. Then P =

⋂
P⊆QQ where the intersection is over all total

closed Strassen preorders Q extending P .

The proof has two parts again: a construction of an extension and an argument for the existence
of a total extension.

Lemma 3.12 (One-step extension lemma). If P is a closed Strassen preorder such that (a, b) 6∈ P ,
then there is a Strassen preorder Q that extends P and satisfies (b, a) ∈ Q and (a, b) 6∈ Q.

Here we already see a difference with the ordinary one-step extension lemma (Lemma 3.9).
Namely, the extension Q that we construct in Lemma 3.12 does not necessarily have the same
symmetric part as P , that is, we allow new equivalences to be introduced in the extension. However,
it is true that the preorders P and Q have the same symmetric part when restricted to the natural
numbers, since P and Q are both Strassen preorders.
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Proof of Lemma 3.12. We construct Q in such a manner that most of the required properties hold
by construction, namely we set

Q := {(x, y) ∈ R2 : ∃s ∈ R, (x+ sa, y + sb) ∈ P}.

This is a semiring preorder by construction, and it clearly extends P . It remains to prove that it is
a Strassen preorder. The Archimedean property follows from P being Archimedean: any extension
of an Archimedean preorder is also Archimedean. It remains to prove that for every n,m ∈ N≥1
if n ≤Q m, then n ≤ m in N≥1. Suppose n ≤Q m. Then there exists an element s ∈ R such that
n + sa ≤P m + sb. Suppose that n ≥ m + 1. Since P is closed, we can use additive cancellation
to get 1 + sa ≤P sb, which implies sa ≤P sb. Then we can apply multiplicative cancellation to
sa ≤P sb to get a ≤P b, which contradicts (a, b) 6∈ P . We conclude that n ≤ m.

Lemma 3.13 (Total extension lemma). For every closed Strassen preorder there is a Strassen
preorder Q that extends P , is maximal, and thus total and closed.

The same comment as above applies to Lemma 3.13: contrary to the ordinary total extension
lemma (Lemma 3.10), the extension Q that we find in Lemma 3.13 does not necessarily have the
same symmetric part as P .

Proof of Lemma 3.13. Let P be a Strassen preorder. Let P be the poset of all Strassen preorders
that extend P , ordered by inclusion. We will apply Zorn’s lemma to P. If there is a chain C ⊆ P,
then one verifies that the union of all elements of C is again in P and contains all elements of C.
Therefore, by Zorn’s lemma, P contains a maximal element, Q. If Q were not total, then we could
extend it (Lemma 3.12) and thus Q would not be maximal. If Q were not closed, then we could
take the closure (Lemma 3.3) and thus Q would not be maximal.

We will now prove Theorem 3.11. Since the one-step extension lemma (Lemma 3.12) and total
extension lemma (Lemma 3.13) may introduce new equivalences, the proof of Theorem 3.11 needs an
extra trick compared to the proof of the ordinary Theorem 3.8 to ensure that if (x, y) 6∈ P , then we
can find a Strassen preorder Q extending P that is total and closed and that still satisfies (x, y) 6∈ Q.
This extra trick is the gap property (Lemma 3.7) that closed Strassen preorders have. Namely, the
gap property allows us to boost the assumption (x, y) 6∈ P to (nx, ny + 1) 6∈ P before embarking on
extending P .

Proof of Theorem 3.11. By Lemma 3.13 there exists at least one total closed Strassen preorder
that extends P , so the intersection over all total closed Strassen preorders that extend P is a
sensible object. Clearly P is contained in this intersection. For the other direction, suppose
that (x, y) 6∈ P . Use the gap property (Lemma 3.7) to make a gap, so (nx, ny + 1) 6∈ P . Extend P
to a Strassen preorder Q1 such that (ny + 1, nx) ∈ Q1 (Lemma 3.12). Extend Q1 to a total and
closed Strassen preorder Q2 (Lemma 3.13). Then still (ny + 1, nx) ∈ Q2 and thus (x, y) 6∈ Q2, for
otherwise (x, y) ∈ Q2 would imply the statement ny + 1 ≤Q2

ny and thus ny + 2 ≤Q2
ny + 1. By

additive cancellation this implies the contradictory statement 2 ≤Q2
1. This proves the claim.

We may rephrase Theorem 3.11 as a characterization of the closure of any Strassen preorder P
in the following straightforward way:

Corollary 3.14. Let P be a Strassen preorder. Then P̃ =
⋂
P⊆QQ where the intersection is over

all total closed Strassen preorders Q extending P .
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3.3. Fractional rank and fractional subrank
We now return to the study of rank and subrank. We will follow an approach that is common
and successful in combinatorial optimization. Namely, we consider the fractional relaxation of the
(integral) rank and subrank. It turns out that these functions are as well-behaved as rank and
subrank. Later (Section 3.4) we will see how they are related to total Strassen preorders, and then
use them in the proof of Strassen’s duality theorem.

Let R be a semiring and let P be a Strassen preorder on R. Recall that we have defined,
for every a ∈ R, the rank RP (a) as the minimum over all n ∈ N such that a ≤P n, and the
subrank QP (a) as the maximum over all n ∈ N such that n ≤P a. The obvious way to make these
parameters fractional is as follows:

Definition 3.15. For every a ∈ R the fractional rank ρP (a) is defined as the infimum over all
rational numbers n/m such that ma ≤P n.

Definition 3.16. For every a ∈ R the fractional subrank κP (a) is defined as the supremum over
all rational numbers n/m such that n ≤P ma.

The definitions of fractional rank and fractional subrank given above are the down-to-earth
definitions. However, our intuition (and readability of proofs) is aided a great deal by writing the
inequality ma ≤P n appearing in Definition 3.15 as a fractional upper bound a ≤P n/m. We have in
fact appealed to this intuition before when discussing the gap property of a closed Strassen preorder
(Lemma 3.7): if a 6≤P b, then for every c there is an m ∈ N such that a 6≤P b+ c

m . We will use this
fractional notation in some of our proofs.

How do the fractional rank and fractional subrank compare to rank and subrank? We naturally
have that QP (a) ≤ κP (a) and ρP (a) ≤ RP (a). Moreover, it follows from transitivity and embedding
of the rational numbers that κP (a) ≤ ρP (a). Therefore, it holds that

QP (a) ≤ κP (a) ≤ ρP (a) ≤ RP (a).

We will develop a precise understanding of when the middle inequality is an equality in Section 3.4.
It turns out that fractional rank and fractional subrank have the same nice properties as rank and

subrank (Lemma 2.7 and Lemma 2.7). Recall that for any function φ : R → R≥1 we use the following
terminology. We say that φ is sub-additive if for every a, b ∈ R we have φ(a + b) ≤ φ(a) + φ(b).
We say that φ is sub-multiplicative if for every a, b ∈ R we have φ(ab) ≤ φ(a)φ(b). The terms
super-additive and super-multiplicative are defined similarly. We say that φ is normalized if φ(1) = 1.
Finally, we say that φ is P -monotone if for every a, b ∈ R, if a ≤P b, then φ(a) ≤ φ(b).

Lemma 3.17. The fractional rank ρP is sub-additive, sub-multiplicative, normalized and P -
monotone.

Proof. The proof is fairly direct. Let a, b ∈ R. For sub-multiplicativity and sub-additivity, suppose
that a ≤P na/ma and b ≤P nb/mb where na, nb,ma,mb are positive integers. Then ab ≤P na

ma

nb

mb

as well as a+ b ≤P na

ma
+ nb

mb
. For P -monotonicity, if a ≤P b and b ≤P n/m, then also a ≤P n/m.

For ρP being normalized, one verifies directly that the infimum over n/m such that 1 ≤ n/m
equals 1.

Lemma 3.18. The fractional subrank κP is super-additive, super-multiplicative, normalized and
P -monotone.

Proof. A similar proof.
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3.4. Monotone homomorphisms, the asymptotic spectrum and duality
theorem for asymptotic preorder

We proved that every closed Strassen preorder can be represented as the intersection of its maximal
(and thus total and closed) Strassen extensions (Theorem 3.11). We will now discuss the special
properties of these maximal Strassen preorders. We will see that each corresponds precisely to
a monotone homomorphism. To prove this we will make use of our knowledge of the fractional
rank and subrank from the previous section. This will be used to define the central notion of the
asymptotic spectrum (Definition 3.20) of a Strassen preorder. Finally, in the main duality theorem
Theorem 3.22 we will see that P̃ is characterized by its spectrum XP . As a first application, we
will see how to use this duality theorem to characterize “rates of transformation” between semiring
elements.

Let P be a Strassen preorder on R. Recall that ρP denotes the fractional rank corresponding
to P , and that κP denotes the fractional subrank corresponding to P . In general, for every a ∈ R it
holds that the fractional subrank is at most the fractional rank, κP (a) ≤ ρP (a).

For any function φ : R → R≥1 we will use the following terminology. We say φ is additive if
for every a, b ∈ R we have φ(a+ b) = φ(a) + φ(b). We say φ is multiplicative if for every a, b ∈ R
we have φ(ab) = φ(a)φ(b). We say that φ is a homomorphism if φ is additive, multiplicative and
normalized.

Lemma 3.19. If P is total, then the fractional subrank and fractional rank coincide, that is, for
every a ∈ R we have κP (a) = ρP (a), and thus ρP is a P -monotone homomorphism.

Proof. Suppose that there is an element a ∈ R such that κP (a) < ρP (a). Then there is a rational
number in between: κP (a) < n/m < ρP (a). Then by the definition of ρP we have that not
a ≤P n/m. Thus, since P is total, we have n/m ≤P a. However, this implies by the definition
of κP that n/m ≤ κP (a), which contradicts our assumption. Finally, from κP = ρP it follows using
Lemma 3.17 and Lemma 3.18 that ρP is a homomorphism.

We are about to define the central object of the theory, the asymptotic spectrum. This object will
serve as the dual space in all our duality theorems. Its definition is simple, but explicit construction
will in many cases be hard.

Definition 3.20. Let R be a semiring with a Strassen preorder P . The asymptotic spectrum is
defined as the set of all P -monotone homomorphisms φ : R → R≥1. We will denote the asymptotic
spectrum by XP . We refer to the elements of Xp as spectral points.42

The asymptotic spectrum is in principle an infinite-dimensional object. Often it is useful to
consider the following finite-dimensional rendering.

Definition 3.21. Let a1, . . . , ak ∈ R. The asymptotic spectrum of a1, . . . , ak we define as the set
of simultaneous evaluations of the spectral points at the given semiring elements:

XP (a1, . . . , ak) := {(φ(a1), . . . , φ(ak)) : φ ∈ XP } ⊆ Rk≥1.
42The terminology “spectrum” and “spectral” goes back to Strassen [Str88] and to older terminology used in real

algebra for objects that play a similar role as the spectrum of a ring (the set of all prime ideals of the ring) in
commutative algebra [Mar08].
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Studying the finite-dimensional X (a1, . . . , ak) is in particular natural when trying to understand
specific semiring elements ai or when the semiring of interest is finitely generated (by the ai). We
note that X (a1, . . . , ak) and X (b1, . . . , bk) may be different even if the semiring generated by the ai
and the semiring generated by the bi are the same. The sets X (a1, . . . , ak) play an important role
in Part II and Part III.

Using Lemma 3.19 we can now present the duality theorem for closed Strassen preorders in
terms of the asymptotic spectrum.

Theorem 3.22 (Duality theorem for the asymptotic preorder). Let P be a Strassen preorder on R.
Let a, b ∈ R. We have a ≤P̃ b if and only if for every φ ∈ XP it holds that φ(a) ≤ φ(b).

Proof. For the non-trivial direction, suppose that not a ≤P̃ b. Then there is a maximal Strassen
extension Q of P̃ such that a 6≤Q b (Theorem 3.11). The preorder Q is closed (by maximality) and
thus by the gap property, there is an n ∈ N such that a 6≤Q b+ 1

n (Lemma 3.7). Then b+ 1
n ≤Q a,

since Q is total (by maximality). The function ρQ is a Q-monotone homomorphism (Lemma 3.19),
and thus P -monotone, and thus ρQ is an element of XP . We find that ρQ(b) < ρQ(b)+ 1

n ≤ ρQ(a).

As a corollary of Theorem 3.22 we prove a duality theorem for the “asymptotic relative cost” of
one semiring element relative to another semiring element. Here the goal is to understand what is
the smallest real number r such that an ≤P bdrne2o(n), as n goes to infinity, so that r indicates how
much larger a power of b we need to take to “create” a large power of a. In other words, r describes
the “asymptotic relative cost” of a in terms of b. (One can also naturally define the “asymptotic
relative value” of b in terms of a as the supremum of all r so that abrnc ≤P bn2o(n). This turns out
to give the reciprocal of the asymptotic relative value, which we leave to the reader.)

Corollary 3.23. Let a, b ∈ R. Then the asymptotic relative cost of a in terms of b,

inf{r : an ≤P bdrne2o(n)},

equals the maximization

max
φ∈XP

log φ(a)

log φ(b)
.

For the proof of Corollary 3.23 we will use the following compactness property of the asymptotic
spectrum, which we will greatly extend and prove in Section 3.6.43

Lemma 3.24 (Lemma 3.33). For every a ∈ R the set {φ(a) : φ ∈ XP } is a compact subset of R≥1
with the Euclidean topology.

Proof of Corollary 3.23. Suppose that an ≤P bdrne2o(n). Let φ ∈ XP . Applying φ to both sides of
the inequality and using multiplicativity gives φ(a)n ≤ φ(b)drne2o(n). After taking the nth root and
letting n go to infinity, we obtain φ(a) ≤ φ(b)r, and so log φ(a)/ log φ(b) ≤ r. We conclude that

sup
φ∈XP

log φ(a)

log φ(b)
≤ inf{r : an ≤P bdrne2o(n)}.

To prove the other direction, if for all φ ∈ XP we have log φ(a)/ log φ(b) ≤ r, then φ(an) ≤ φ(bdrne)
for all n ∈ N and thus an ≤P̃ b

drne (Theorem 3.22). From this follows anm ≤P (bdrne)m2o(m) and so

43Without the compactness property we can already obtain Corollary 3.23 with max replaced by sup.
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an ≤P bdrne2o(n). We conclude that

sup
φ∈XP

log φ(a)

log φ(b)
≥ inf{r : an ≤P bdrne2o(n)}.

Finally, since {(φ(a), φ(b)) : φ ∈ XP } is compact (Lemma 3.24), the supremum is attained.

3.5. Duality theorem for asymptotic rank and asymptotic subrank

Recall that for a ∈ R the asymptotic rank is defined as R̃(a) = limn→∞R(an)1/n and the asymptotic
subrank as Q̃(a) = limn→∞Q(an)1/n. We have seen in Section 2.3 that these parameters correspond
to important problems in many applications. In this section we will use the duality theorem
Theorem 3.22 to prove duality theorems for asymptotic rank and asymptotic subrank.

We know from Fekete’s lemma (Lemma 2.10) that the limits in the definition of asymptotic
rank and asymptotic subrank can be replaced by the infimum and the supremum, respectively,
so R̃(a) = infn R(an)1/n and Q̃(a) = supn Q(an)1/n. We may thus think of the asymptotic rank
as a minimization problem and the asymptotic subrank as a maximization problem. The duality
theorems we will prove characterize asymptotic rank as a maximization, and the asymptotic subrank
as a minimization. For the latter we need to assume a mild condition on the semiring element, which
we will call “gapped”. This condition is satisfied by all our examples.

Let us deal with the asymptotic rank first. We will deal with the asymptotic subrank afterwards,
which will require a bit more work. Before moving on we note this simple rephrasing in terms of
the preorder P : the asymptotic rank R̃(a) equals the infimum over r ∈ R≥1 such that there is a
sequence of numbers f(n) ∈ N with infn f(n)1/n = r and an ≤P f(n). In the following theorem we
characterize this number in terms of the asymptotic spectrum. The first two expressions we have
already discussed here. The third is a characterization as a fractional expression, which we include
to show the fractional nature of asymptotic rank, but which is not crucial late. The fourth is the
important characterization in terms of the asymptotic spectrum X .

Theorem 3.25. For any a ∈ R, the following values are equal:

(i) R̃(a)

(ii) inf{r ∈ R≥1 : an ≤P f(n), f(n) ∈ N, infn f(n)1/n = r}

(iii) inf{ nm ∈ Q≥1 : ma ≤P̃ n}

(iv) sup{φ(a) : φ ∈ X}.

Proof. We have already observed that (i) = (ii) holds directly from the definition.
(iii) ≥ (iv). Suppose ma ≤P̃ n. Let φ ∈ X . Then applying φ to both sides and rearranging gives

the inequality φ(a) ≤ n
m .

(iv) ≥ (iii). Suppose (iii) > (iv). Let n
m be a value that is strictly in between. Then for

every φ ∈ X we have φ(a) < n
m so mφ(a) < n, and thus ma ≤P̃ n by Theorem 3.22, which is a

contradiction with our choice of r.
(ii) ≥ (iv). Let r ∈ R≥1 be any value satisfying the conditions in (ii), so that an ≤P f(n) for

some numbers f(n) ∈ N with infn f(n)1/n = r. Let φ ∈ X . Apply it to both sides, take nth roots
and take the infimum over n to get φ(a) ≤ r.
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(iv) ≥ (ii). Suppose (ii) > (iv). Let r ∈ R≥1 be a value that is strictly in between. Then
for every φ ∈ X we have φ(a) < r so φ(an) ≤ drne and so an ≤P̃ dr

ne (Theorem 3.22). Then
anm ≤P drnem2o(m) = drnem+o(m), so we find a` ≤P f(`) for some function f(`) ∈ N with
inf` f(`)1/` = r, which is a contradiction with our choice of r.

Now we deal with the asymptotic subrank. From Fekete’s lemma (Lemma 2.10) we know that
the asymptotic subrank Q̃(a) equals the supremum over r ∈ R≥1 such that there is a sequence of
numbers f(n) ∈ N with supn f(n)1/n = r and f(n) ≤P an. Note that replacing f(n) ≤P an by
f(n) ≤P an+o(n) does not change this number. We want to characterize this number in terms of the
asymptotic spectrum, just like we characterized the asymptotic rank above. However, as we will
see, the natural approach will at first lead to the characterization of a slightly different parameter,
namely the supremum over r ∈ R≥1 such that there are sequences of numbers f(n), g(n) ∈ N with
supn(f(n)/g(n))1/n = r and f(n) ≤P ang(n). (Here we imagine g(n) = 2o(n) and limn→∞ f(n)1/n =
r.) That is, a potentially more powerful slack of g(n) ∈ N is allowed on the right-hand side rather
than a slack of the form ao(n). (Note that if there is a number k ∈ N such that ak ≥P 2, then the
two notions coincide, however there may be elements a for which no such k exists.) We will prove
this characterization first, and then provide a sufficient condition for this number to be equal to the
asymptotic subrank Q̃(a).

Theorem 3.26. For any a ∈ R, the following values are equal:

(i) sup{r ∈ R≥1 : f(n), g(n) ∈ N, supn(f(n)/g(n))1/n = r, f(n) ≤P ang(n)}

(ii) sup{ nm ∈ Q≥1 : n ≤P̃ ma}

(iii) inf{φ(a) : φ ∈ X}.

Proof. (ii) ≥ (iii). Suppose n ≤P̃ ma. Let φ ∈ X . Then applying φ to both sides and rearranging
gives the inequality n

m ≤ φ.
(iii) ≥ (ii). Suppose (ii) > (iii). Let n

m be a value that is strictly in between. Then for every φ ∈ X
we have φ(a) > n

m so mφ(a) > n, and thus ma ≥P̃ n by Theorem 3.22, which is a contradiction
with our choice of r.

(i) ≥ (iii). Let r ∈ R≥1 be any value satisfying the conditions in (i), so that f(n) ≤P ang(n) for
some numbers f(n), g(n) ∈ N with supn(f(n)/g(n))1/n = r. Let φ ∈ X . Apply it to both sides, take
nth roots and take the supremum over n to get r ≤ φ(a).

(iii) ≥ (i). Suppose (i) > (iii). Let r ∈ R≥1 be a value that is strictly in between. Then for
every φ ∈ X we have r < φ(a) so brnc ≤ φ(an) and so brnc ≤P̃ a

n (Theorem 3.22). Then brncm ≤P
anm2o(m), so we find f(`) ≤P a`g(`) for some functions f(`), g(`) ∈ N with sup` f(`)1/` = r and
infn g(`)1/` = 1, so that inf`(f(`)/g(`))1/` = r, which is a contradiction with our choice of r.

As we mentioned, the value described in Theorem 3.26 may be larger than the asymptotic
subrank. To link it to the asymptotic subrank, we introduce the following sufficient condition.

Definition 3.27. We say an element a ∈ R is gapped if there is a number k ∈ N such that ak ≥P 2,
or there is a map φ ∈ X such that φ(a) = 1. We call (R, P ) gapped if all elements of R are gapped.

Note that if a ∈ R is gapped, and if there is no number k ∈ N such that ak ≥P 2, then we are
only requiring that there is a map φ ∈ X such that φ(a) = 1. In particular, we are not requiring
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that for all φ ∈ X we have φ(a) = 1 (that is, that a is equivalent to 1 under P̃ ), or that a = 1.
Indeed, requiring that either ak ≥P 2 or a = 1, will be too strong for our applications.44

Lemma 3.28. Let a ∈ R be gapped. Then the following are equal:

(i) sup{r ∈ R≥1 : f(n), g(n) ∈ N, supn≥1(f(n)/g(n))1/n = r, f(n) ≤P ang(n)}

(ii) sup{r ∈ R≥1 : f(n) ∈ N, supn≥1 f(n)1/n = r, f(n) ≤P an}

Proof. The inequality (ii) ≤ (i) is clear. Suppose f(n) ≤P ang(n). If there is a number k ∈ N such
that 2 ≤P ak, then f(n) ≤P an+k. Since supn f(n)1/(n+k) = r we have (i) ≤ (ii). Otherwise, there
is a map φ ∈ X such that φ(a) = 1. Then f(n) ≤ g(n) so r = 1. Then also (i) ≤ (ii).

Combining Theorem 3.26 and Lemma 3.28 we directly get:

Corollary 3.29. Let a ∈ R be gapped. Then Q̃(a) is equal to the (equal) values (i), (ii) and (iii)
in Theorem 3.26, and in particular Q̃(a) = infφ∈X φ(a).

Finally, using the compactness lemma Lemma 3.24 (which we will prove in the next section), we
obtain as a corollary of the above Theorem 3.26 and Corollary 3.29 the following characterizations
of asymptotic rank and asymptotic subrank (with the only difference from before that infimum is
replaced by minimum and supremum is replaced by maximum):

Corollary 3.30. Let a ∈ R. Then R̃(a) = maxφ∈X φ(a).

Corollary 3.31. Let a ∈ R be gapped. Then Q̃(a) = minφ∈X φ(a).

3.6. Compactness
In the previous subsections we have seen how the asymptotic spectrum characterizes the asymptotic
preorder. We then used this characterization to characterize asymptotic relative cost, asymptotic
rank and asymptotic subrank. These proofs relied on a compactness property of the asymptotic
spectrum to argue that the optimizations were attained. Compactness will play an important role
in applications of the duality theory that we will discuss in Section 4. We will now discuss this
compactness property in detail (and in particular the topology that we put on the asymptotic
spectrum) and give its proof. After that we briefly discuss another basic topological property of
the asymptotic spectrum that we will need later, namely that it is Hausdorff. Let P be a Strassen
preorder on the semiring R. Let X be the asymptotic spectrum.

The simplest version of the compactness property that we will prove is that for every element
a ∈ R the set {φ(a) : φ ∈ X} is a compact subset of R≥1 with the Euclidean topology. The set is
clearly bounded since 1 ≤ φ(a) ≤ R(a) for every φ ∈ X , where R(a) is the rank, so it remains to
prove that it is closed. Indeed we have been using this property in the previous sections to argue that
optimizations over X are attained, for instance infφ∈X φ(a) = minφ∈X φ(a). A higher-dimensional
version of the compactness property that is true is that for any elements a1, . . . , ak ∈ R the set
X (a1, . . . , ak) := {(φ(a1), . . . , φ(ak)) : φ ∈ X} is a compact subset of Rk≥1. Again, boundedness is
easy to see using rank, and it remains to prove closedness.

44The reason for needing a map φ ∈ X such that φ(a) = 1 is to prevent a situation where say 4 ≤P 2a` for some
` ∈ N while not 2 ≤P ak for any k ∈ N, as will get clear in the proof of the following lemma. Note that we are not
assuming P to be closed here.
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We will prove the above as a special case of the following infinite-dimensional version of the
compactness property. First we specify the topology on the asymptotic spectrum that we use here
and in the rest of the paper. For every semiring element a ∈ R there is an evaluation function

â : X → R≥1 : φ 7→ φ(a).

We endow R≥1 with the Euclidean topology. We endow the asymptotic spectrum X with the weakest
topology such that for every a ∈ R the function â is continuous, which means precisely that we
give X the topology generated by the sets {â−1(U) : a ∈ R, U ⊆ R≥1 open}. This is the same as
the topology induced by the embedding X ⊆ RR≥1 with the product topology on RR≥1. We will prove
that X with this topology is compact.

Lemma 3.32. The asymptotic spectrum X is compact.

Proof. Define the set Y =
∏
a∈R[1,RP (a)] with RP (a) the rank of a. Then X ⊆ Y ⊆ RR≥1 because

for every φ ∈ X and a ∈ R we have 1 ≤ φ(a) ≤ RP (a). Since [1,RP (a)] is compact for every a, the
set Y is compact by the Tychonoff theorem [Mun00, Chapter 5]. Every closed subset of a compact
set is compact, so it remains to show that X is closed.

To prove that X is closed, we will write X as an intersection of closed sets. These closed sets
are given by the defining properties of a monotone homomorphism: additivity, multiplicativity,
monotonicity and normalization. Namely, we may write X = Z1 ∩ Z2 ∩ Z3 ∩ Z4 where

Z1 = {(φ(a))a∈R : φ : R → R≥1 is additive}
Z2 = {(φ(a))a∈R : φ : R → R≥1 is multiplicative}
Z3 = {(φ(a))a∈R : φ : R → R≥1 is P -monotone}
Z4 = {(φ(a))a∈R : φ : R → R≥1 is normalized}.

It remains to show for each i that the set Zi is closed. This we do by showing that Zi is the inverse
image of a closed set under a continuous map. By construction of the topology on RR≥1 we know
that for every a ∈ R the function â : RR≥1 → R≥1 : φ 7→ φ(a) is continuous, and hence so is any
polynomial combination of functions âi for any collection a1, . . . , an ∈ R.

In particular, here is the proof that Z1 is closed. For every a, b ∈ R we define the function
fa,b = â+ b̂− (̂a+ b), and we note that fa,b is continuous since it is a polynomial combination of
the continuous functions â, b̂ and (̂a+ b). Then the inverse image f−1a,b ({0}) is a closed set, since {0}
is closed. Then also the intersection

⋂
a,b∈R f

−1
a,b ({0}) is a closed set. This intersection is precisely

equal to Z1, so Z1 is closed. The proofs that the other sets Zi are closed are along the same lines
and are left to the reader.

As a consequence we get:

Lemma 3.33. For every a1, . . . , ak ∈ R the subset X (a1, . . . , ak) := {(φ(a1), . . . , φ(ak)) : φ ∈ X}
of Rk≥1 endowed with the Euclidean topology is compact.

Proof. Let us first prove that for every a ∈ R the set X (a) = {φ(a) : φ ∈ X} is compact. The set
{φ(a) : φ ∈ X (a)} is the image of X under â. The set X is compact as we have shown and the
map â is continuous by definition of the topology on X . Thus {φ(a) : φ ∈ X} is compact. To see
that X (a1, . . . , ak) is compact, we use that every âi is continuous and thus (â1, . . . , âk) : X → Rk≥1
is continuous, and thus again its image is compact, which proves the claim.
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A topological space X is called Hausdorff if for every two distinct φ, ψ ∈ X there are disjoint
open neighborhoods φ ∈ U , ψ ∈ V , U ∩ V = ∅. The asymptotic spectrum has this property (by an
almost trivial proof).

Lemma 3.34. The asymptotic spectrum X is Hausdorff.

Proof. Let φ, ψ ∈ X be distinct, then there is an a ∈ R with φ(a) 6= ψ(a), so â(φ) 6= â(ψ). Then
there are disjoint opens U ′ and V ′ containing â(φ) and â(ψ) respectively, and then U = â−1(U ′)
and V = â−1(V ′) satisfy the claim.

3.7. Examples
We return to the main examples of semirings and preorders of Section 2.3 and discuss their asymptotic
spectra.

Example 3.35 (Continuous functions). Continuing Example 2.19, let R = C(X ,R≥1) be the semir-
ing of continuous functions to R≥1 on some compact set X , with pointwise addition, multiplication
and preorder P . Then we find that the asymptotic spectrum XP is naturally related to the set X .
Namely the P -monotone homomorphisms are precisely the evaluations maps ŝ : f 7→ f(s) for s ∈ X .

Example 3.36 (Matrices). We already remarked in Example 2.18 that the semiring R of nonzero
matrices under direct sum, tensor product and restriction preorder P is essentially the semiring of
natural numbers in disguise. In the language of the asymptotic spectrum, another way of saying
this is that the asymptotic spectrum XP consists of a single element, which is the matrix rank.

Example 3.37 (Tensors). We continue Example 2.21. Let R be the semiring of nonzero 3-tensors
under direct sum, Kronecker product and restriction preorder P . Contrary to Example 3.35 and
Example 3.36, here the asymptotic spectrum XP is not fully understood. There are three elements
in XP that are easy to find. They are the flattening ranks R(1), R(2) and R(3) obtained by flattening
the 3-tensor to a matrix (in one of the three ways) and computing the matrix rank. (In Definition 12.6
we will give the precise and general definition of flattening ranks.) Importantly it is known that the
asymptotic rank and asymptotic subrank are not elements of XP .

For the subsemiring Ro ⊆ R of oblique tensors, which are tensors such that in some basis
the support is an antichain, Strassen [Str91] constructed a continuous family of elements in the
corresponding asymptotic spectrum (for the same restriction preorder P ), called the support
functionals. We will not discuss these in depth here but refer to Section 9.3 for more. These support
functionals are able to recover the results in cap sets discussed in Example 2.24 and are closely
related to the slice rank [CVZ18, CLZ23]. It is not known whether the support functions are all the
elements in the asymptotic spectrum of oblique tensors.

Christandl, Vrana and Zuiddam [CVZ18] constructed a continuous family of elements in the
asymptotic spectrum of all complex 3-tensors, called the quantum functionals. We will say more
about this in Section 9.3. Also here it is not known whether the quantum functionals are all the
elements of the asymptotic spectrum of complex 3-tensors.

Example 3.38 (Graphs). The semiring of non-empty graphs with the disjoint union, strong
product and cohomomorphism preorder (Example 2.20) is another example where the asymptotic
spectrum XP is not known. However, some well-known graph parameters are in XP , including the
Lovász theta function ϑ [Lov79], the fractional Haemers bound [BC19], the fractional orthogonal
rank and the fractional clique cover number. The fractional clique cover number in fact turns out
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to be equal to the asymptotic clique cover number, which is the asymptotic rank in this setting.
Thus the asymptotic rank is in XP in this setting. The asymptotic subrank, however, which is the
Shannon capacity Θ, is known not to be in XP . We refer to [Zui19, Vra21] for more and will return
to this example briefly in Section 9.3.

Recall that the duality theorem for the asymptotic subrank Q̃(a) (Corollary 3.31) relied on the
element a being gapped (Definition 3.27), meaning that either there is a number k ∈ N such that
ak ≥P 2 or there is a map φ ∈ X such that φ(a) = 1. We mentioned that all our main examples
have this property, which we prove here.

Theorem 3.39. In each of the above examples, every element a ∈ R is gapped.

Proof. For our purposes, we can identify the semiring of matrices (Example 3.36) with the natural
numbers N. For every a ∈ N either ak ≥P 2 for some k ∈ N or a = 1. In the latter case φ(a) = 1 for
φ ∈ X (there is only one element in X ).

For continuous functions (Example 3.35), either fk ≥P 2 for some k or there is an s such that
f(s) = 1 and so for ŝ ∈ X we have ŝ(f) = 1.

For graphs (Example 3.38), either G is not a clique in which case G ≥P 2, or G is a clique in
which case the fractional clique cover number (which is an element of X ) equals 1.

Finally, for tensors (Example 3.37), it is not hard to see with a direction construction that either
there is a flattening rank of one, or T 2 ≥P 2.

From Theorem 3.39 it follows that in the above examples we have (roughly speaking) that
inequalities of the form f(n) ≤P an2o(n) are equivalent to f(n) ≤P an (Lemma 3.28). For our
examples, we can prove something slightly stronger: In Section 3.1 we have defined the asymptotic
preorder P̃ of a Strassen preorder P by saying for every a, b ∈ R that a ≤P̃ b if and only if
an ≤P bn2o(n) (Definition 3.1). We mentioned that in our main examples the asymptotic preorder
can equivalently be characterized by replacing bn2o(n) with bn+o(n), so that it is phrased purely in
terms of powers of a and b. We state this equivalence here, and leave the proofs, which are quite
similar to the proof of the above theorem, to the reader.

Theorem 3.40. In each of the above examples, for every a, b ∈ R we have an ≤P bn2o(n) if and
only if an ≤P bn+o(n).

Note that the implication an ≤P bn+o(n) ⇒ an ≤P bn2o(n) follows from the fact that every
element b ∈ R is bounded from above by some natural number (Archimedean property of the
Strassen preorder P ), so it remains to prove the reverse implication (⇐).

3.8. Summary
We summarize the section, in particular the duality theorem, and discuss an insightful rephrasing
that relates any semiring with Strassen preorder to the semiring of continuous functions.

The setup for the duality theorem is the one that we introduced in Section 2 which we now
summarize. We let R be a commutative semiring with a Strassen preorder P . We recall that a
preorder P on R is a Strassen preorder if (1) for all natural numbers n,m ∈ N≥1 we have n ≤ m
if and only if n ≤P m, (2) for every a, b, c, d ∈ R, if a ≤P b and c ≤P d, then also a+ c ≤P b+ d
and ac ≤P bd, (3) for every a, b ∈ R it holds that a ≤P a + b, and (4) for every a ∈ R it holds
that 1 ≤P a ≤P n for some n ∈ N≥1. We also defined in Section 2, for any element a ∈ R, several
notions of rank:
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• rank: RP (a) = min{n ∈ N : a ≤P n}

• subrank: QP (a) = max{n ∈ N : n ≤P a}

• asymptotic rank: R̃P (a) = inf{RP (am)1/m : m ∈ N}

• asymptotic subrank: Q̃P (a) = sup{QP (am)1/m : m ∈ N}

We also defined the asymptotic preorder P̃ by a ≤P̃ b if and only if an ≤P bn2o(n).
With this setup we introduced in this section the notion of P -monotone homomorphisms, our

dual objects. A map φ : R → R≥1 is called a P -monotone homomorphism if for all a, b ∈ R we have
φ(ab) = φ(a)φ(b), φ(a+ b) = φ(a) + φ(b), φ(1) = 1 and a ≤P b =⇒ φ(a) ≤ φ(b). The asymptotic
spectrum X = XP is the set of all P -monotone homomorphisms φ : R → R≥1. This is a compact
Hausdorff space in the coarsest topology that makes all evaluation maps ŝ : X → R : φ 7→ φ(s)
continuous. In terms of these dual objects we obtain the duality theorem. We defined an element
a ∈ R to be gapped if either ak ≥P 2 for some k ∈ N or there is a map φ ∈ X such that φ(a) = 1.

Theorem 3.41 (Duality theorem, Corollaries 3.30 and 3.31 and Theorem 3.22). Let a, b ∈ R. Then

• R̃P (a) = maxφ∈XP
φ(a)

• Q̃P (a) = minφ∈XP
φ(a) assuming a is gapped

• a ≤P̃ b ⇐⇒ ∀φ ∈ XP , φ(a) ≤ φ(b).

One of the main examples of a semiring with a Strassen preorder in Section 2.3 is the semiring of
continuous functions Example 2.19. We remarked that this example is in fact “complete” and here
we explain how. In Section 4.4 we will go into the details and proofs of this. Let C = C(X ,R≥1) be
the semiring of continuous functions from X to R≥1, with pointwise addition, multiplication and
preorder. Let Φ : R → C : s 7→ ŝ where ŝ : X → R is the evaluation map φ 7→ φ(s). Then

Φ : R → C

is a semiring homomorphism. The duality theorem translates directly:

Theorem 3.42 (Duality theorem, rephrased). Let a, b ∈ R. Then

• R̃(a) = max Φ(a)

• Q̃(a) = min Φ(a) assuming a is gapped

• a ≤P̃ b ⇐⇒ Φ(a) ≤ Φ(b).

The theorem tells us that we can map R to the semiring of continuous functions in a way that
the parameters of interest can be read off easily. The claim that the semiring of continuous functions
is “complete” becomes apparent with the density theorem that we will prove later (Theorem 4.19)
but state here already.

Let QΦ(R) denote the Q-span of Φ(R) in the ring C(X ,R) of continuous functions from X to
the reals.

Theorem 3.43 (Density theorem). The set QΦ(R) is dense in C(X ,R) under the sup-norm.
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Unrolling the statement of the density theorem we get that for any f ∈ C(X ,R) and for any ε > 0
there are a, b ∈ R and n ∈ N≥1 such that for all φ ∈ X it holds that

∣∣φ(a)/n− φ(b)/n− f(φ)
∣∣ < ε.

Combining the density theorem and the duality theorem we find with a short argument (see
Section 4.4) that any non-negative continuous function on X can be approximated with rescaled
inequalities a ≤P̃ b for elements a, b ∈ R:

Corollary 3.44 (Completeness theorem). Any element of C(X ,R≥1) can be approximated arbitrarily
well by differences 1

n b̂−
1
n â for some elements n ∈ N≥1 and a, b ∈ R that satisfy a ≤P̃ b

The completeness theorem says that the collection of all inequalities a ≤P̃ b is very rich. Namely,
any non-negative continuous function on X that we come up with we can simulate (up to scaling)
with the asymptotic preorder in R.

4. Applications, variations and extensions of Strassen duality

In this section we will discuss various applications, connections and variations of Strassen duality
results that we have covered in Section 3. We give a high-level introduction to each topic, providing
main ideas and results, references for further reading, and some directions for future research.

4.1. Additivity if and only if multiplicativity
As we discussed, the asymptotic rank is a sub-additive and sub-multiplicative parameter in every
semiring with a Strassen preorder. Clearly it is additive and multiplicative when applied to pairs
of integers in the semiring. What other pairs of elements is it additive on? Multiplicative on?
These two interesting questions seem completely unrelated. However, (perhaps counterintuitively)
it turns out that they are equivalent, which follows from the duality theorem, as we will see now.
This application of the duality theorem was brought to our attention by Ron Holzman (personal
communication) and may be thought of as a generalization of Schönhage’s tau theorem to any
semiring with Strassen preorder.

Let R be a semiring with a Strassen preorder P . Let X be the corresponding asymptotic
spectrum. We will in this section assume R to be gapped (Definition 3.27) so that the asymptotic
subrank is characterized by the asymptotic spectrum. However, the theorems about asymptotic
rank that follow hold already without this assumption of being gapped.

Theorem 4.1 (Additivitiy if and only if multiplicativity). For any a, b ∈ R the following are
equivalent:

• Q̃(a+ b) = Q̃(a) + Q̃(b)

• Q̃(ab) = Q̃(a) Q̃(b)

• there is an element φ ∈ X such that φ(a) = Q̃(a) and φ(b) = Q̃(b).

For any a, b ∈ R the following are equivalent:

• R̃(a+ b) = R̃(a) + R̃(b)

• R̃(ab) = R̃(a) R̃(b)
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• there is an element φ ∈ X such that φ(a) = R̃(a) and φ(b) = R̃(b).

Theorem 4.1 will follow from a more general theorem that we will state and prove in a moment
(Theorem 4.8). We first give some consequences which illustrate the power of Theorem 4.1.

Example 4.2 (The asymptotic rank and asymptotic subrank on univariate polynomials). We begin
with a general application of Theorem 4.1. This application generalizes Schönhage’s tau theorem
(which we will discuss in Section 4.2) from matrix multiplication tensors to any semiring R with
a Strassen preorder P . For any element a ∈ R we have by definition of the asymptotic rank and
asymptotic subrank that R̃(ak) = R̃(a)k and Q̃(ak) = Q̃(a)k for every k ∈ N. Thus by Theorem 4.1
the asymptotic rank and asymptotic subrank are additive on powers of a. For any polynomial p(x)
with non-negative integer coefficients, we may consider the element p(a) ∈ R and for this element it
follows that we have:

Corollary 4.3. For any p ∈ N[x], R̃(p(a)) = p(R̃(a)) and Q̃(p(a)) = p(Q̃(a)).

In particular, if the semiring R is generated by a single element a ∈ R, meaning that every
element in R is of the form p(a) for some polynomial p with non-negative integer coefficients, then
the asymptotic rank R̃ and the asymptotic subrank Q̃ are points in the asymptotic spectrum X
of R.

Example 4.4 (The Shannon capacity is not always attained at a finite power). It is a natural problem
to ask for which elements a in a preordered semiring the asymptotic values Q̃(a) = limn→∞Q(an)1/n

and R̃(a) = limn→∞R(an)1/n are attained already at a finite power of a, and for which they only
approach it at infinity? We consider the semiring R of graphs with P the cohomomorphism preorder
(Example 2.20). For any graph G ∈ R we say that the Shannon capacity Θ(G) = limn→∞ α(G�n)1/n

(which is the asymptotic subrank of G in this setting) is attained at the nth power if Θ(G) equals
the normalized independence number α(G�n)1/n for some fixed value of n. It is easy to find graphs
where the Shannon capacity is attained at the first power. In particular, Shannon showed that this
is true for all graphs on at most five vertices, except for the five-cycle C5, for which α(C�2

5 )1/2 =√
5 > α(C5) = 2 [Sha56]. Lovász proved that the Shannon capacity of C5 is in fact attained at the

second power and thus that Θ(C5) =
√

5 [Lov79]. Alon and Lubetzky pointed out that there are
graphs for which the Shannon capacity is not attained at any finite power [AL06], and they give as
an example the disjoint union of the five-cycle and a single vertex, C5 tK1. This easily follows from
Theorem 4.1. Indeed, the product C5�K1 is clearly isomorphic to C5, and so the Shannon capacity
is multiplicative on C5 and K1: Θ(C5 �K1) = Θ(C5) = Θ(C5)Θ(K1). Therefore, by Theorem 4.1,
the Shannon capacity is additive on C5 and K1, and so Θ(C5 tK1) = Θ(C5) + Θ(K1) =

√
5 + 1.

One verifies directly that the number
√

5 + 1 is not equal to a1/n for any non-negative integers a, n.
Therefore, the Shannon capacity Θ(C5 tK1) is not attained at a finite power.

Example 4.5. Related to Example 4.4 we note in passing that, for the semiring R of tensors
with P the restriction preorder (Example 2.21), the asymptotic rank is also not always attained
at a finite power. This is in particular true for our protagonist, the matrix multiplication tensor,
as was proved by Coppersmith and Winograd [CW82, Corollary 3.4]. Namely, they showed that
if R(MMn) = nω0 , then ω < ω0. In other words, no single algorithm for computing the product
of m ×m matrices for some fixed m, can give the optimal algorithm for computing the product
of n× n matrices for arbitrary n by recursive application as in Strassen’s algorithm [Str69]. The
proof of Coppersmith and Winograd that the matrix multiplication exponent is not attained at a
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finite power is more involved than the proof that the Shannon capacity is not attained at a finite
power, and in particular we do not see how to reproduce it as an application of Theorem 4.1.

Example 4.6 (Equivalence of Shannon’s additivity and multiplicativity conjectures). We give
another application of Theorem 4.1 to the semiring R of graphs with P the cohomomorphism
preorder (Example 2.20). Shannon made in his seminal paper [Sha56] two conjectures: (1) the
Shannon capacity is additive under the disjoint union and (2) the Shannon capacity is multiplicative
under the strong product. Haemers disproved the second conjecture in [Hae79] and Alon disproved
the first conjecture in [Alo98b]. The tight relation between addition and multiplication provided by
Theorem 4.1 implies that the two conjectures are in fact equivalent, and moreover the equivalence is
true in a “local” manner: For any two graphs G and H we have Θ(G�H) > Θ(G)Θ(H) if and only
if Θ(G+H) > Θ(G) + Θ(H).

Example 4.7. It is again natural to relate Example 4.6 to the situation for the semiring R of
tensors with P the restriction preorder. In this situation, it follows already from Strassen’s matrix
multiplication algorithm [Str69] that the asymptotic rank is not multiplicative and hence not
additive. We explain how. Recall from Example 2.22 that the matrix multiplication tensors MMa,b,c

have the recursive property that MMa,b,c ⊗MMd,e,f = MMad,be,cf .45 Strassen’s algorithm implies
that R̃(MM2,2,2) ≤ R(MM2,2,2) ≤ 7. On the other hand, we may write MM2,2,2 = MM2,1,1 ⊗
MM1,2,1 ⊗ MM1,1,2 and it is easy to see that R̃(MM2,1,1), R̃(MM2,1,1) and R̃(MM2,1,1) are all
equal to 2. Therefore, we have the strict sub-multiplicativity R̃(MM2,1,1 ⊗MM1,2,1 ⊗MM1,1,2) <

R̃(MM2,1,1) R̃(MM2,1,1) R̃(MM2,1,1). This example, in which we take a product of three elements
instead of two, leads us naturally to the following generalization of Theorem 4.1.

The next theorem generalizes Theorem 4.1 by replacing the sum and the product by polynomials
with non-negative integer coefficients. We recall that the asymptotic spectrum X is the set of
P -monotone semiring homomorphisms φ : R → R≥1. We recall that for any collection a1, . . . , an ∈ R
we defined

X (a1, . . . , an) := {(φ(a1), . . . , φ(an)) : φ ∈ X} ⊆ [1,∞)n

and clearly X (a1, . . . , an) ⊆ X (a1)× · · · × X (an).

Theorem 4.8. Fix any elements a1, . . . , an. The following are equivalent:

(i) For every polynomial p ∈ N[x1, . . . , xn] we have

Q̃(p(a1, . . . , an)) = p(Q̃(a1), . . . , Q̃(an)).

(ii) There exists a polynomial p ∈ N[x1, . . . , xn], depending on all n variables, such that

Q̃(p(a1, . . . , an)) = p(Q̃(a1), . . . , Q̃(an)).

(iii) There exist a spectral point φ ∈ X such that for all i ∈ [n] it holds that Q̃(ai) = φ(ai).

(iv) X (a1, . . . , an) contains the point (minX (a1), . . . ,minX (an)).
45We note that in our notation of tensor networks the tensor MMa,b,c equals TC3,(a,b,c). Strassen denotes MMa,b,c

by 〈a, b, c〉 in his work and this notation is often used in the matrix multiplication literature.
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The same holds with asymptotic subrank Q̃ replaced by asymptotic rank R̃ when in (iv) the expression
(minX (a1), . . . ,minX (an)) is replaced by (maxX (a1), . . . ,maxX (an)).

When the conditions of Theorem 4.8 hold we may think of the elements a1, . . . , an being “free” or
“independent” with respect to the asymptotic subrank Q̃ (or with respect to the asymptotic rank R̃,
respectively).

We will give the proof of Theorem 4.8 after some examples.

Example 4.9 (Continuing Example 4.7). Continuing the discussion of Example 4.7 we find that
Theorem 4.8 implies that the asymptotic rank of the tensor p(T2,1,1, T1,2,1, T1,1,2), for any polyno-
mial p(x1, x2, x3) with non-negative integer coefficients depending on all three variables, is strictly
smaller than p(R̃(T2,1,1), R̃(T1,2,1), R̃(T1,1,2)). This observation is consistent with Strassen’s asymp-
totic rank conjecture which says that the asymptotic rank of any concise46 n1 × n2 × n3 tensor is
equal to maxi ni, and in particular it is consistent with the possibility that the asymptotic rank of
Ta,b,c, which is a concise ab× bc× ca tensor, equals max{ab, ac, bc}.

Example 4.10. Condition (iv) of Theorem 4.8 has a simple pictorial interpretation. To show this,
let a1, a2 ∈ R (so n = 2). Then X (a1) and X (a2) are compact subsets of [1,∞), and X (a1, a2) is
a compact subset of X (a1) × X (a2) (Section 3.6). We will see in Theorem 4.16 that the natural
projections X (a1, a2)→ X (ai) are surjective. Let us for simplicity assume that X (a1) = [1, 2] and
X (a2) = [1, 2] are closed intervals, and let us then draw illustrations of two possible examples of
X (a1, a2) ⊆ [1, 2]× [1, 2], taking the aforementioned properties into account:

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(1, 1)

(1, 2)

(2, 1)

(2, 2)

In the illustration on the left, X (a1, a2) contains the point (minX (a1),minX (a2)) and thus by
Theorem 4.8 in this situation for every polynomial p ∈ N[x1, x2] we have Q̃(p(a1, . . . , an)) =

p(Q̃(a1), . . . , Q̃(an)). In the illustration on the right, on the other hand, X (a1, a2) does not contain
the point (minX (a1),minX (a2)) and thus for every polynomial p ∈ N[x1, x2] that contains both
variables x1 and x2 we have Q̃(p(a1, . . . , an)) 6= p(Q̃(a1), . . . , Q̃(an)).

Proof of Theorem 4.8. (i) =⇒ (ii). This implication is trivial.
(ii) =⇒ (iii). Let p(x1, . . . , xn) =

∑
jmj(x1, . . . , xn) be the decomposition of the (given)

polynomial p into monomials mj . Then

p(Q̃(a1), . . . , Q̃(an)) =
∑
j

mj(Q̃(a1), . . . , Q̃(an)).

46We say two tensors S and T are equivalent if S ≤ T and T ≤ S. An n1 × n2 × n3 tensor is concise if it is not
equivalent to any m1 ×m2 ×m3 tensor for which any mi is strictly smaller than ni.
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By the duality theorem (Corollary 3.31) there exists an element in the asymptotic spectrum φ ∈ X
such that Q̃(p(a1, . . . , an)) = φ(p(a1, . . . , an)), and so (since φ is additive and multiplicative)

Q̃(p(a1, . . . , an)) = φ(p(a1, . . . , an)) =
∑
j

φ(mj(a1, . . . , an)) =
∑
j

mj(φ(a1), . . . , φ(an)).

From the above, we find∑
j

mj(Q̃(a1), . . . , Q̃(an)) =
∑
j

mj(φ(a1), . . . , φ(an)).

Since for every i ∈ [n] it holds that Q̃(ai) ≤ φ(ai), it follows that for every i we have Q̃(ai) = φ(ai).
(iii) =⇒ (i). Let p ∈ N[x1, . . . , xn] be any polynomial and let p(x1, . . . , xn) =

∑
jmj(x1, . . . , xn)

be the decomposition of the polynomial p into monomials mj . Using super-additivity and super-
multiplicativity of the asymptotic subrank Q̃, additivity and multiplicativity of the (given) spectral
point φ, and the fact that φ(b) ≥ Q̃(b) for any element b, we derive

Q̃(p(a1, . . . , an)) ≥ p(Q̃(a1), . . . , Q̃(an))

= p(φ(a1), . . . , φ(an))

= φ(p(a1, . . . , an))

≥ Q̃(p(a1, . . . , an))

and all inequalities must then be equalities. In particular, p(Q̃(a1), . . . , Q̃(an)) = p(φ(a1), . . . , φ(an)).
(iii) ⇐⇒ (iv). This equivalence follows directly from the fact that minX (ai) = Q̃(ai) and the

definition of X (a1, . . . , an) as {(φ(a1), . . . , φ(an)) : φ ∈ X} and X (ai) as {φ(ai) : φ ∈ X}.
The claim for the asymptotic rank R̃ is proven in precisely the same way.

Example 4.11. Condition (ii) of Theorem 4.8 states the existence of a polynomial p ∈ N[x1, . . . , xn]

depending on all n variables x1, . . . , xn such that Q̃(p(a1, . . . , an) = p(Q̃(a1), . . . , Q̃(an)). It is
natural to ask whether this condition (ii) is equivalent to requiring that Q̃(aiaj) = Q̃(ai) Q̃(aj) for
every pair i, j ∈ [n]. The following simple abstract example shows that the answer is no. Namely, the
latter condition is strictly weaker. Let R ⊆ N3 be the subsemiring generated by the three elements
a1 = (2, 1, 1), a2 = (1, 2, 1) and a3 = (1, 1, 2) under pointwise addition and multiplication and
endowed with the pointwise preorder (cf. Example 2.19). Then for any element b ∈ R the asymptotic
subrank Q̃(b) is simply equal to the smallest coefficient min(b). The asymptotic spectrum X consists
of the three maps φi : b 7→ bi for i ∈ [3]. We see directly that min(aiaj) = 1 = min(ai) min(aj),
and so the asymptotic subrank is multiplicative on all products of pairs of generators. However,
min(a1a2a3) = 2 > 1 = min(a1) min(a2) min(a3), and so the asymptotic subrank is not multiplicative
on the product of all three generators.

In fact, we can also use the concrete matrix multiplication (tensor) setting of Example 4.9 to see
an example of the same behavior, but for the asymptotic rank, since in that example the asymptotic
rank is multiplicative on any product of pairs of generators, but not multiplicative on the product of
all generators by virtue of the fact that the matrix multiplication exponent ω is strictly less than 3.

We have in our treatment above focussed exclusively on the interaction between addition and
multiplication, but one can imagine that there are strong interactions with (or among) other
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interesting operations (on graphs or other objects). For example, in Hedetniemi’s conjecture [Hed66]
(which has been disproved by Shitov [Shi19] and the counterexamples were strengthened by He and
Wigderson [HW21], Zhu [Zhu19], and Wrochna [Wro20]) the relevant operation is the categorical
product on graphs. Simonyi [Sim21] studies this operation in the context of the asymptotic spectrum
of graphs (cf. Examples 2.20 and 3.38).

4.2. Schönhage’s tau theorem and a direct sum theorem for square matrix
multiplication

One of the most important theorems for the construction of matrix multiplication algorithms
(cf. Example 2.22) is Schönhage’s tau theorem [Sch81]. We state and prove this theorem here and
explain how it is related to the additivity if and only if multiplicativity theorem (Section 4.1) and in
particular to the univariate semiring example, Example 4.2.

The tau theorem is situated in the setting of tensors (cf. Example 2.21), where (we recall) R

denotes the tensor rank, MMm denote the matrix multiplication tensors, and ω = log R̃(MM2) is the
matrix multiplication exponent. The earliest and simplest method to upper bound ω uses the simple
fact that any rank upper bound R(MMn) ≤ r implies the exponent upper bound nω ≤ r. The tau
theorem extends this method to upper bounds on the rank of direct sums of matrix multiplication
tensors:

Theorem 4.12 (Tau theorem4748, Schönhage [Sch81]). If R(
∑
i MMni

) ≤ r, then
∑
i n

ω
i ≤ r.

It is easy to see that Theorem 4.12 (whose original proof was quite complex) follows directly
from the following direct sum theorem of Strassen, which relies on Strassen’s duality theorem.

Theorem 4.13 (Direct sum theorem, Strassen [Str88]). R̃(
∑
i MMni

) =
∑
i R̃(MMni

).

(To prove Theorem 4.12 from Theorem 4.13, we use the fact that asymptotic rank is at most
rank, R̃ ≤ R, and that R̃(MMni) = ni

ω.) Schönhage proved Theorem 4.12 before Strassen’s duality,
with a proof that is more ad hoc. This partly motivated Strassen to develop his duality theory.
Moreover, using duality, the proof not only gets much simpler, but also its tightness follows.

We discuss the proof of Theorem 4.13. It is easy to see that Example 4.2 directly implies the
special case of Theorem 4.13 when all ni are of the form 2mi . Indeed, in that case, every tensor∑
i MMni

is of the form p(MM2) for some polynomial p ∈ N[x]. We know that in such a univariate
setting (Example 4.2) we have that R̃(p(MM2)) = p(R̃(MM2)). It is intuitively clear that this special
case for powers of 2 captures the essence of Theorem 4.12. To prove the full Theorem 4.12 one
follows a similar argument as the proof of Theorem 4.8 with one additional simple fact:

Lemma 4.14. Let φ ∈ X and m ∈ N. Then φ(MMm) = φ(MM2)logm.

Proof. This follows from a straightforward approximation argument, using the multiplicativity of φ
and taking large powers of MMm to get rid of the “gap” in the approximation. Namely, for any k ∈ N
we have

2a ≤ mk ≤ 2a+1

47The name “tau theorem” comes from the fact that a variable named τ plays a central role in Schönhage’s original
proof [Blä13]. The theorem is also referred to as the asymptotic sum inequality [BCS97].

48In fact, the full version of Schönhage’s tau theorem allows the rank R to be replaced by the border rank R, which
is the (algebro-geometric) approximative version of rank. Furthermore, it allows the matrix multiplication tensors to
be rectangular, resulting in: if

∑
i R(MMai,bi,ci ) ≤ r, then

∑
i(aibici)

ω/3 ≤ r. We return to this version and further
extensions in Section 9.1.
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for a = bk logmc. Therefore we have the inequalities of matrix multiplication tensors

MM⊗a2 ≤ MM⊗km ≤ MM
⊗(a+1)
2 .

We apply φ and use multiplicativity of φ to get

φ(MM2)a/k ≤ φ(MMm) ≤ φ(MM2)(a+1)/k.

Finally, letting k go to infinity, we obtain the claim.

Now we give the proof of Theorem 4.13 using Strassen duality and Lemma 4.14.

Proof of Theorem 4.13. Strassen duality (Corollary 3.30) gives

R̃
(∑

i

MMni

)
= max

φ∈X
φ
(∑

i

MMni

)
.

Using additivity of φ and Lemma 4.14 we get

R̃
(∑

i

MMni

)
= max

φ∈X

∑
i

φ(MM2)logni .

Since the function x 7→
∑
i x

logni is monotonically increasing, we find that

max
φ∈X

∑
i

φ(MM2)logni =
∑
i

(
max
φ∈X

φ(MM2)
)logni

.

Using Strassen duality to get maxφ∈X φ(MM2) = R̃(MM2), we get

R̃
(∑

i

MMni

)
=
∑
i

R̃(MM2)logni .

Finally, using the duality (Corollary 3.30) and Lemma 4.14 once more, we find

R̃(MM2)logni = (max
φ∈X

φ(MM2))logni = max
φ∈X

φ(MM2)logni = max
φ∈X

φ(MMni
) = R̃(MMni

),

which finishes the proof.

4.3. Lifting between semirings
It often occurs that two different semirings with preorders are related to each other. A natural such
relation is via semiring homomorphisms that are order embeddings:

Definition 4.15. Given a semiring R with a Strassen preorder P and another semiring R′ with a
Strassen preorder P ′, a map

f : R → R′

is called a semiring homomorphism if for every a, b ∈ R it holds that f(ab) = f(a)f(b), and
f(a+ b) = f(a) + f(b), and f(1) = 1. We call f an order embedding if for every a, b ∈ R, we have
that a ≤P b if and only if f(a) ≤P ′ f(b).
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If two semirings are related by a semiring homomorphism that is an order embedding, then the
corresponding asymptotic spectra are also related in the following strong sense:

Theorem 4.16. Let R be a semiring with a Strassen preorder P and let R′ be a semiring with a
Strassen preorder P ′. Let

f : R → R′

be a semiring homomorphism that is an order embedding. Then the map from the asymptotic
spectrum of R′ to the asymptotic spectrum of R,

f∗ : X (R′)→ X (R),

which maps φ to the composition φ ◦ f , is surjective.

It is instructive to think of the special case of Theorem 4.16 where R is a subsemiring of R′.49
In this case, Theorem 4.16 says that the map X (R′)→ X (R) that maps φ to the restriction φ|R,
is surjective. In other words, any monotone homomorphism ψ ∈ X (R) can be extended or lifted
to a monotone homomorphism φ ∈ X (R′) that is defined on the larger semiring R′. This means
that once we have understood the asymptotic spectrum of R′ we learn also precisely the asymptotic
spectrum of R.

We will defer the proof of Theorem 4.16 for a moment, as it will follow naturally from the
density theorem that we discuss in the next section. We give examples that illustrate the power of
Theorem 4.16.

Example 4.17 (Directed and undirected graphs). We have discussed earlier the asymptotic spectrum
of (undirected) graphs in Example 2.20 to understand the Shannon capacity. It is natural to consider
the Shannon capacity of directed graphs (introduced in [KS92] and [GKV92], see also [Alo98a]) and
ask how the corresponding asymptotic spectrum relates to the one for undirected graphs. As in
Example 2.20, let R be the semiring of undirected graphs with addition given by disjoint union and
multiplication given by the strong product (defined by taking the tensor product of the adjacency
matrices where we ensure the diagonal elements to be 1), and with P the cohomomorphism preorder,
which is a Strassen preorder. Let R′ be the semiring of directed graphs with addition given by
disjoint union and multiplication given by the strong product. A cohomomorphism of directed graphs
f : G → H is a map V (G) → V (H) such that if u 6= v and (u, v) 6∈ E(G), then f(u) 6= f(v) and
(f(u), f(v)) 6∈ E(H). We define the cohomomorphism preorder P ′ on R′ by saying that G ≤P ′ H if
and only if there is a cohomomorphism G→ H. Let

g : R → R′

be the injective map that maps any undirected graphG to the associated bidirected graph, which is the
directed graph with vertex set V (G) and edge set {(u, v) : {u, v} ∈ E(G)}∪ {(v, u) : {u, v} ∈ E(G)}.
Then g is clearly a semiring homomorphism that is an order embedding. Thus the map from the
asymptotic spectrum of R′ to the asymptotic spectrum of R,

g∗ : X (R′)→ X (R),

49Although this is technically a special case, it is essentially the only case. Indeed, the definition of order embedding
implies that f is “essentially” injective: if f(x) = f(y), then we must have x ≤ y and y ≤ x, so that x and y
are indistinguishable under the ordering P . So if we work with partial orders rather than preorders, any semiring
homomorphism that is an order embedding must actually be an inclusion of one semiring in another.
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which maps φ ∈ X (R′) to the composition φ ◦ g ∈ X (R), is a surjective map by Theorem 4.16. In
other words, any element in the asymptotic spectrum of (undirected) graphs X (R) can be extended
or lifted to an element in the asymptotic spectrum of directed graphs X (R′). This implies, for
instance, that the Lovász theta function ϑ on undirected graphs can be extended to a Lovász theta
function ϑ̂ ∈ X (R′) on directed graphs.

Example 4.18 (Symmetric tensors and symmetric restriction). We have discussed earlier the
asymptotic spectrum of tensors (Example 2.21). An important class of tensors, studied already since
at least Sylvester [Syl52], is that of symmetric tensors. Symmetric tensors are very natural and
common as they are essentially equivalent to homogeneous polynomials. Of particular interest is a
symmetric version of tensor rank known as Waring rank. Symmetric tensors also form a semiring and
there is a natural way of defining a Strassen preorder on this semiring called symmetric restriction,
which induces the Waring rank as its rank.

It is natural to ask how the asymptotic spectrum of symmetric tensors with symmetric restriction
relates to the ordinary asymptotic spectrum of tensors. The answer turns out to be simple, but the
proof is too involved to discuss here and we refer to [CFTZ21]. As in Example 2.21, let R be the
semiring of 3-tensors with addition given by the direct sum and multiplication given by the tensor
product, and with P the restriction preorder. The symmetric group S3 acts on R by permuting
the coordinates. In other words, for any π ∈ S3 and any tensor T = (Ti,jk)i,j,k ∈ R, π maps T to
(Tπ(i),π(j),π(k))i,j,k. The tensor T is called symmetric if it is invariant under the action of S3. Let Rs
be the semiring of symmetric 3-tensors. This is a subsemiring of R. On symmetric tensors there is a
natural preorder Ps called symmetric restriction. This preorder Ps on R is defined by saying for any
tensors T ∈ Fn1×n2×n3 and T ′ ∈ Fn′1×n′2×n′3 that T ≤Ps

T ′ if there is a matrix A of the appropriate
size such that T = (A,A,A) · T ′ where ((A,A,A) · T ′)u,v,w =

∑
i,j,k Au,iAv,jAw,kT

′
i,j,k.

Let f : Rs → R be the natural embedding of the semiring of symmetric tensors in the semiring
of all tensors. We note that this is not an order embedding from (Rs, Ps) to (R, P )! However, it is
an order embedding from (Rs, P ) to (R, P ). Let X (R, P ) be the asymptotic spectrum of R with
respect to P and define X (Rs, P ) and X (Rs, Ps) analogously. It follows from Theorem 4.16 that
the map f∗ : X (R, P )→ X (Rs, P ) which maps φ ∈ X (R, P ) to the composition φ ◦ f ∈ X (Rs, P ),
is a surjective map. It is proven in [CFTZ21] that the asymptotic restriction preorder P̃ and the
asymptotic symmetric restriction preorder P̃s coincide. It thus follows that X (Rs, P ) = X (Rs, Ps).
We conclude that f∗ is a surjective map X (R, P ) → X (Rs, Ps). In other words, the asymptotic
spectrum of symmetric tensors under the symmetric restriction preorder is completely determined
by the asymptotic spectrum of tensors.

In the above two examples Example 4.17 and Example 4.18, the two semirings R and R′ were
similar in nature and differed only in a mild way (directed vs. undirected graphs, symmetric tensors
with symmetric restriction vs. tensors with restriction). One can imagine that there are more
elaborate ways to relate different asymptotic spectra to each other. We see this happening intuitively
in the semiring of graphs (Example 2.20). Namely, in that setting, the fractional Haemers bound,
which is an element in the asymptotic spectrum of graphs, is defined in terms of the matrix rank,
which is itself an element (the only element) in the asymptotic spectrum of matrices. One may ask,
for example, whether the Lovász theta function similarly arises from an element in the asymptotic
spectrum of a natural semiring, and whether there is a theory that explains such connections more
broadly.
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4.4. Complete semirings and the density theorem
There is a collection of semirings with Strassen preorder that is “complete” for the theory. Recall from
Example 2.17 that a natural instance of a semiring with a Strassen preorder is the semiring C(X ,R≥1)
of continuous functions from a space X (which here we will require to be compact and Hausdorff
for technical reasons that will become clear) to R≥1, under pointwise addition, multiplication and
preorder. This semiring is “complete” in the sense that any semiring with a Strassen preorder
can be naturally embedded into a semiring of this form for some X (namely for X equal to the
asymptotic spectrum), in a way that the Q-span of the image is dense in C(X ,R). The following
density theorem explains this.

Let R be a semiring with a Strassen preorder P and let X denote the asymptotic spectrum.
Recall that X with the weakest topology that makes the evaluation functions continuous is a compact
space (Section 3.6). We will also need that X is Hausdorff, which we proved in Lemma 3.34. Let
C(X ,R) be the set of continuous functions from X to the reals. For every a ∈ R let â : X → R≥1
be the evaluation map defined by φ 7→ φ(a). Let R̂ = {â : a ∈ R} denote the set of all evaluation
maps. Let QR̂ denote the Q-subspace of C(X ,R) spanned by R̂.

Theorem 4.19 (Density theorem). The set QR̂ is dense in C(X ,R) under the sup-norm. That is,
for any f ∈ C(X ,R), for every ε > 0, there are a, b ∈ R and n ∈ N≥1 such that for all φ ∈ X it
holds that ∣∣∣ b̂(φ)

n
− â(φ)

n
− f(φ)

∣∣∣ =
∣∣∣φ(b)

n
− φ(a)

n
− f(φ)

∣∣∣ < ε.

The density theorem follows from the classical Stone–Weierstrass theorem. We need some
terminology to state it. We say that a subset A ⊆ C(X ,R) is a Q-subalgebra if A is a Q-subspace
which is closed under pointwise multiplication. We call X Hausdorff if every two distinct points can
be separated by open neighborhoods. We say that A separates the elements of X if for any two
elements s, t ∈ X there is an element f ∈ A such that f(s) 6= f(t). The sup-norm on C(X ,R) is
defined by ‖f‖ = sups∈X |f(s)|.

Theorem 4.20 (Stone–Weierstrass theorem). Let X be a compact Hausdorff space and let A be a
Q-subalgebra of C(X ,R) that contains a nonzero constant function. Then A is dense in C(X ,R)
under the sup-norm if and only if A separates the elements of X .

Proof of Theorem 4.19. Let A = QR̂. Then A is a Q-subalgebra of C(X ,R). Also, A contains the
nonzero constant function 1̂. If φ, ψ ∈ X are different, then there is an a ∈ R such that φ(a) 6= ψ(a)
and hence â(φ) 6= â(ψ). Thus A separates the elements of X . We endowed X with the coarsest
topology that makes all evaluation maps â for a ∈ R continuous. Then X is compact (Lemma 3.32)
and Hausdorff (Lemma 3.34) Therefore, by the Stone–Weierstrass theorem (Theorem 4.20), the set
QR̂ is dense in C(X ,R) under the sup-norm.

Remark 4.21. The density theorem Theorem 4.19 says that we can approximate any continuous
real-valued function on the asymptotic spectrum X by spectral differences 1

n b̂−
1
n â for a, b ∈ R, n ∈ N.

It is not hard to see that, as a consequence, any non-negative continuous real-valued function on X
can be approximated by spectral differences 1

n b̂ −
1
n â for a, b ∈ R, n ∈ N≥1 that satisfy a ≤P̃ b.

The proof for this is as follows. If f ∈ C(X ,R≥0), then for any δ > 0 we have f + δ ≥ δ. Let
b̂ε/nε − âε/nε approximate f + δ. Suppose that for all ε it holds that not aε ≤P̃ bε. Then âε 6≤ b̂ε
so âε/nε 6≤ b̂ε/nε, that is 0 6≤ b̂ε/nε − âε/nε. Now let δ go to zero to prove the claim.
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Now that we have the density theorem, we can give the deferred proof of Theorem 4.16.

Proof of Theorem 4.16. Let P̃ denote the asymptotic preorder on R corresponding to P . Let P̃ ′
denote the asymptotic preorder on R′ corresponding to P ′. Let a, b ∈ R. By the duality theorem
applied to R we have

∀ψ ∈ X (R), ψ(a) ≤ ψ(b) ⇐⇒ a ≤P̃ b.

Since f is a homomorphism that is an order embedding we have

a ≤P̃ b ⇐⇒ f(a) ≤P̃ ′ f(b).

By the duality theorem applied to R′, and the using the notation f∗ for the map X (R′)→ X (R) :
φ 7→ φ ◦ f , we have

f(a) ≤P̃ ′ f(b) ⇐⇒ ∀φ ∈ X (R′), φ(f(a)) ≤ φ(f(b))

⇐⇒ ∀ψ ∈ f∗(X (R′)), ψ(a) ≤ ψ(b).

Write X = X (R) and Y = f∗(X (R′)). We know that X ⊇ Y and we need to prove that X = Y.
Suppose that there is an element ψ0 ∈ X \ Y. Since X is a compact Hausdorff space, there is
a continuous function g : X → [−1, 1] with g(Y) = 1 and g(ψ0) = −1. The function g can be
approximated by elements from QR̂ by the density theorem Theorem 4.19, in the following sense.
Applying Theorem 4.19 with ε = 1/2, there are a, b ∈ R and an n ∈ N≥1 such that for all ψ ∈ Y we
have

1

n
(â(ψ)− b̂(ψ)) > 1− ε = 1

2

and
1

n
(â(ψ0)− b̂(ψ0)) < −1 + ε = − 1

2 .

The first implies that â ≥ b̂ on Y, and so f(a) ≥P̃ f(b) and thus a ≥P̃ b, while the second implies
that not â ≥ b̂ on X and so not a ≥P̃ b.

4.5. Barrier theorems
When a mathematical problem resists being solved, it is natural to try to prove that the available proof
methods are intrinsically not powerful enough to solve the problem. Theorems on the lack of power
of a collection of methods are called barrier theorems. These are particularly common in complexity
theory, including central results like the relativization barrier in uniform complexity [BGS75], the
natural proofs barrier in circuit complexity [RR94], and the rank method barrier in arithmetic
complexity [EGdOW18] (relevant in particular for tensor rank lower bounds).

In this section we discuss the idea of proving barrier theorems within the framework of Strassen
duality. Specifically, we review recent barrier theorems for obtaining faster algorithms for matrix
multiplication (cf. Example 2.22). Interestingly, unlike all barrier results above, which “explain” the
difficulty of proving lower bounds, these barrier results “explain” the difficulty of improving the best
upper bounds. We will further see how Strassen’s duality theorem, the existence of the spectrum
and its extreme elements, asymptotic rank and asymptotic subrank, play an essential role in the
proof and its simplicity.

Recall that the matrix multiplication problem is to determine the matrix multiplication expo-
nent ω, which is the infimum over all numbers c ∈ R such that any two n × n matrices can be
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multiplied using O(nc) arithmetic operations. The matrix multiplication exponent is easily seen to
be between 2 and 3. After Strassen’s seminal paper [Str69], in which he proved that ω ≤ log 7 < 3,
the community developed increasingly sophisticated tools in order to prove increasingly better
upper bounds on ω, leading to the currently best upper bound of ω < 2.373 by Coppersmith and
Winograd [CW90], Le Gall [LG12] and Alman and Williams [AW21], leaving, however, unanswered
the question whether ω = 2 or ω > 2. Drawing a plot of the development of the best upper bound
on ω over time reveals that progress has slowed down considerably over the previous thirty years,
with the best upper bound going from the ω < 2.376 of Coppersmith and Winograd [CW90] to
the ω < 2.373 of Alman and Williams [AW21].

Ambainis, Filmus and Le Gall [AFLG15] explained this slow-down by proving a barrier theorem
for a collection of algorithmic techniques that includes the popular techniques of the last thirty years.
In particular, they showed that these techniques cannot prove ω = 2, and in fact not even ω ≤ 2.31.
This barrier theorem was greatly simplified and generalized by Alman and Williams [AW18] to apply
to an even larger collection of tools, and subsequently generalized further by Alman [Alm19] and
Christandl, Vrana and Zuiddam [CVZ19b].50 The latter work explicitly proves this barrier within
the framework of Strassen duality in a way that we will discuss now.

On a high level, the barrier theorem for upper bounds on matrix multiplication of [CVZ19b] is
based on the following ideas. First we assume that the matrix multiplication algorithm is obtained
by reducing the matrix multiplication problem to an intermediate problem (tensor) T for which
there is an efficient algorithm (small asymptotic rank). The currently fastest algorithms indeed
all have this structure, where T corresponds to a member of a family of problems going back to
Coppersmith and Winograd [CW87] (Coppersmith–Winograd tensors), but we may also take T to
be other tensors. For some choices of T there will be a barrier and for some there will not be.51
The first component for the matrix multiplication barriers is that the asymptotic subrank of the
matrix multiplication tensor is maximal (for an m2 ×m2 ×m2 tensor):

Theorem 4.22 (Strassen [Str87]). For every m ∈ N, Q̃(MMm) = m2. In particular, Q̃(MM2) = 4.

The second component for the matrix multiplication barriers, for a given intermediate problem T ,
is to prove that the asymptotic subrank of T is small. If this is indeed the case, then there cannot
be a large matrix multiplication problem embedded into T , as we will make precise and prove below,
making crucial use of Theorem 4.22. Thus, perhaps surprisingly at first, in proving barrier theorems
for asymptotic rank (the matrix multiplication exponent), we are using the seemingly unrelated
asymptotic subrank.52

Before stating and proving the barrier theorem, we make the above ideas precise using our setup
of tensors, preorders and ranks (Example 2.21) and in particular define what it means for T to
be an intermediate problem. First let us rephrase the problem of upper bounding ω in terms of

50Also Blasiak, Church, Cohn, Grochow, Naslund, Sawin, and Umans [BCC+17a] and Blasiak, Church, Cohn,
Grochow, and Umans [BCC+17b] proved barrier theorems for matrix multiplication for a subset of techniques related
to the group-theoretic method. These barrier theorems rely on very similar ideas as the later barrier theorems
in [AW18] and [CVZ19b].

51Indeed, as will become clear, there are choices of T for which no barrier can be obtained, for example, when T is
a matrix multiplication tensor or a diagonal tensor. However, those are not interesting choices of T as they do not
provide any extra leverage beyond the standard method of proving tensor rank upper bounds.

52In this section we only discuss the barrier theorem for square matrix multiplication. This has been extended
also to rectangular matrix multiplication [CGLZ20] where the asymptotic subrank is replaced by elements in the
asymptotic spectrum of rectangular matrix multiplication.
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asymptotic inequalities in the restriction preorder. Namely, if the inequality

(MM2)⊗n ≤ (I2)⊗(cn+o(n))

holds (where I2 denotes the 2 × 2 × 2 unit tensor, cf. Example 2.21), then ω ≤ c, and arbitrary
matrix multiplication algorithms correspond precisely to inequalities of this form.53 In practice,
as mentioned before, matrix multiplication algorithms are obtained by reduction to intermediate
problems T . Namely, let T be any tensor. Then clearly, if

(MM2)⊗n ≤ T⊗(an+o(n)) ≤ (I2)⊗(abn+o(n)), (4.1)

then ω ≤ ab. Let ωT denote the smallest (infimum) value of ab for which (4.1) holds. That is, ωT is
the best upper bound on ω that can be obtained by using T as an intermediate tensor in the sense
of (4.1). We call ωT the T -exponent of matrix multiplication. In practice, upper bounds on ω are
obtained by upper bounding ωT for some T . The barrier we prove is a lower bound on ωT depending
on T .

Theorem 4.23 (Barrier theorem for matrix multiplication [CVZ19b]54). For any tensor T , the
best upper bound ωT on the matrix multiplication exponent ω that can be obtained using T as an
intermediate tensor, satisfies the inequality

2
log R̃(T )

log Q̃(T )
≤ ωT .

Proof. This proof uses Strassen’s duality theorem. Let φ ∈ X be a spectral point. We apply φ to
both sides of the first inequality in (4.1), take the nth root and let n go to infinity, to get

φ(MM2) ≤ φ(T )a.

Then by taking logarithms and by using the lower bound 2 ≤ log Q̃(MM2) ≤ log φ(MM2) that
follows from Theorem 4.22, we get

2

log φ(T )
≤ log φ(MM2)

log φ(T )
≤ a. (4.2)

Let ψ ∈ X be another spectral point. We apply ψ to both sides of the second inequality in (4.1),
take the nth root and let n go to infinity, to get

ψ(T ) ≤ 2b.

Then
logψ(T ) ≤ b. (4.3)

From combining (4.2) and (4.3) we conclude that

2

log φ(T )
logψ(T ) ≤ ab.

53In our notation we always choose o(n) so that cn+ o(n) is an integer.
54This barrier is similar to the barrier of Alman [Alm19].
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Maximizing the left-hand side over φ and ψ, we find

2 max
φ,ψ∈X

logψ(T )

log φ(T )
≤ ab.

Applying the duality theorem (Corollaries 3.30 and 3.31) to the left-hand side, we get

2
log R̃(T )

log Q̃(T )
≤ ab.

Since this inequality holds for any value of ab that satisfies (4.1), we may replace the right-hand
side by the T -exponent of matrix multiplication ωT . This proves the claim.

We now discuss the power and limitations of Theorem 4.23 as an approach to proving barrier
results for matrix multiplication. Theorem 4.23 directly implies that for a given intermediate
tensor T to be good for proving ω = 2, the slack between the asymptotic rank and asymptotic
subrank of T ,

slack(T ) :=
log R̃(T )

log Q̃(T )
,

must be equal to 1, or equivalently the asymptotic subrank and asymptotic rank of T must be
equal, Q̃(T ) = R̃(T ). In other words, if slack(T ) is strictly larger than 1, then we cannot prove ω = 2
via T . More precisely, to prove ω = 2 via intermediate tensors, we must at least have a sequence of
intermediate tensors with slack converging to 1.

How can we prove non-trivial lower bounds on the slack of an explicitly given tensor T ? Since we
do not have any non-trivial lower bounds on the asymptotic rank of any tensor, the only way to prove
non-trivial lower bounds on the slack is by upper bounding the asymptotic subrank. Fortunately,
we do know powerful methods to upper bound asymptotic subrank, namely the slice rank [Tao16],
support functionals [Str91] and quantum functionals [CVZ18]. Using these tools it can be shown
for many explicit tensors that the slack is provably strictly larger than 1. In particular, for the
Coppersmith–Winograd tensors CWq (q ∈ N) that have been used in all recent matrix multiplication
algorithms, the slack satisfies slack(CWq) ≥ 1.08 and so ωCWq ≥ 2.16.

General upper bounds are known on the possible values of the slack [CVZ19b]. These follow from
the fact that R̃(T ) ≤ n2ω/3 for any n×n×n tensor T ,55 and Q̃(T ) ≥ n2/3 for any balanced56 n×n×n
tensor T [Str88].57 In particular, for any balanced tensor T the slack is upper bounded by a constant
independent of the dimensions of the tensor, namely (remarkably) the matrix multiplication exponent:
1 ≤ slack(T ) ≤ ω. On the other hand, there are examples of (non-balanced) tensors T with Q̃(T ) = 2

and R̃(T ) = n, so that the slack is not upper bounded by any constant: slack(T ) = log(n) [CVZ19b].
55This is proven roughly as follows. Using a construction similar to the proof of the well-known inequality R(T ) ≤ n2

we can obtain the inequality T ≤ MMn2,1,1 and its permutations T ≤ MM1,n2,1 and T ≤ MM1,1,n2 , where MMa,b,c

denotes the rectangular matrix multiplication tensor. Multiplying these inequalities together gives T⊗3 ≤ MMn2,n2,n2 ,
from which the inequality R̃(T ) ≤ n2ω/3 follows.

56A tensor T ∈ V1 ⊗ V2 ⊗ V3 is called balanced if every flattening Vi → (Vj ⊗ Vk) of T (for i, j, k ∈ [3] all different)
has full rank and contains a full-rank 2-tensor in its image. In particular, over an algebraically closed field generic
tensors are balanced.

57Neither the asymptotic rank upper bound R̃(T ) ≤ n2ω/3 nor the asymptotic subrank lower bound Q̃(T ) ≥ n2/3

for balanced tensors are known to be tight. In particular, it is possible that R̃(T ) = n and Q̃(T ) = n for balanced T .
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There are several extensions and versions of the barrier theorem (Theorem 4.23), namely a
more precise version that takes into account how the Schönhage tau theorem is applied to obtain
a matrix multiplication algorithm [CVZ19b], a version that replaces the restriction preorder by
a “smaller” preorder that is relevant for the group-theoretic method (the monomial restriction
preorder) [CVZ19b], and a version for rectangular matrix multiplication [CGLZ20]. The latter is an
example of the usefulness of the asymptotic spectrum of rectangular matrix multiplication, as in
the statement of this theorem the slack is replaced by a different optimization over points in the
asymptotic spectrum of rectangular matrix multiplication.

We expect that barrier theorems of the above type can be interesting also for other problems
within the Strassen duality framework, whenever reductions via “intermediate objects” are involved,
for example in the setting of graphs (Example 2.20, cf. [PS19]).

4.6. Related duality theories and Positivstellensätze
Strassen’s duality fits in a large web of duality theories and theorems known as Positivstellensätze
(positive-locus theorems) in real algebraic geometry, which characterize positivity of polynomials on
various sets. Moreover, recently several variations on Strassen’s duality theory have been introduced
in multiple directions and communities, and with various applications. We give in this section a
brief overview of these old and new results.

Strassen’s original duality theory [Str86, Str87, Str88, Str91] applies to commutative semirings
with a Strassen preorder. Strassen uses a notion of good preorder that is slightly more general
than our notion of a Strassen preorder. Our definition of a Strassen preorder is simpler and suffices
for our main applications. Strassen developed his theory to understand the complexity of matrix
multiplication and therefore focuses on the semiring of tensors with the restriction preorder. A large
part of his treatment, however, is general, and thus serves as an invitation to apply his theory to
other domains. His proof uses the representation theorem of Becker and Schwartz [BS83] as a black
box. Our proof in Section 2 and Section 3 integrates the proof of Strassen with the proof of Becker
and Schwartz (as was also done in [Zui18]) and moreover makes the role of fractional rank and
fractional subrank explicit.

We may naturally compare Strassen’s duality theory to the many celebrated Positivstellensätze.
Generally, a Positivstellensatz gives necessary conditions (that are in some versions also sufficient
conditions) for a polynomial to be non-negative on a certain set. As mentioned, Strassen’s theorem can
be obtained from the Becker–Schwartz theorem, which is itself a Positivstellensatz. There are many
more variations of Positivstellensätze [Pó28, Kri64, Ste74, Put93, Sch91, Rez95, Jac01] that have
many interconnections [Mar08, Sch99]. A simple illustrative example is Pólya’s Positivstellensatz,
which Fritz [Fri21] shows can be obtained from a generalization of Strassen’s duality, and which is
as follows.

Theorem 4.24 (Pólya [Pó28]. See also Schweighofer [Sch99, Satz 3.6]). Let f, g ∈ R≥0[x1, . . . , xn]
be homogeneous polynomials of the same degree. The following two statements are equivalent:

(i) For all x ∈ Rn≥0 \ {0}, f(x) > g(x).

(ii) There exists an integer k ≥ 0 such that (
∑n
i=1 xi)

kf > (
∑n
i=1 xi)

kg coefficient-wise. (This
means that every coefficient of (

∑n
i=1 xi)

k(f − g) is strictly positive.)

The strong similarity between Pólya’s Positivstellensatz (Theorem 4.24) and Strassen’s duality
(Theorem 3.41) is hard to miss. Morally, Pólya’s coefficient-wise inequality in (ii) plays the role
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of Strassen’s asymptotic preorder P̃ . Pólya’s set Rn≥0 \ {0} in (i) plays the role of Strassen’s
asymptotic spectrum X . It is not hard to see that (ii) implies (i). In fact, Theorem 4.24 remains
true when Rn≥0 \ {0} is replaced by the compact subset of sum-one elements, making the analogy to
Strassen’s compact asymptotic spectrum even clearer.58 We think that a better understanding of
the connections between these Positivstellensätze and their proofs will be very fruitful.

Now we discuss newer work. Strassen’s duality theory for semirings has been extended by
Fritz [Fri21] and Vrana [Vra22] by relaxing the conditions that are required on the Strassen preorder,
specifically, the Archimedean property (boundedness condition) in our Definition 2.4. These
extensions have applications for example in quantum information theory [PVW22, BV21] and
extensions of Pólya’s theorem [Fri21].

In a different direction, Fritz [Fri17]59 introduced and developed a duality theory for commutative
semigroups60 with a “good” preorder. This theory is closely related to Strassen’s. A commutative
semigroup is a very basic structure that appears naturally in many settings. In particular, any
commutative semiring carries two commutative semigroups inside, namely one under the multipli-
cation operation and one under the addition operation. In particular, a duality theorem for the
Shannon capacity of graphs is proven in terms of multiplicative monotone functions. This precedes
the stronger duality for the Shannon capacity of graphs in terms of additive, multiplicative monotone
functions that was obtained in [Zui19] using Strassen’s duality. In [Fri17], connections are noted to
the utility theorem of von Neumann and Morgenstern [vNM07] in decision theory and economics,
and also to a theorem of Lieb and Yngvason [LY99] in the foundations of thermodynamics.

The applications of the various dualities that have appeared in the aforementioned works have
been of either combinatorial (graphs, hypergraphs) or linear algebraic nature (tensors, quantum
channels). Robere and Zuiddam [RZ22] introduced the Strassen duality paradigm into the field of
boolean function complexity. For this they developed a variation of Strassen’s duality that applies
to preordered semigroups with extra finiteness conditions. This duality relies on (and is essentially
equivalent to) linear programming duality. This leads in particular to a general duality theorem
for the amortized circuit complexity of boolean functions for a large collection of boolean circuit
models, and sheds new light on the work by Razborov [Raz92] on submodular complexity measures,
the work of Potechin [Pot17] on catalytic branching programs, and a general concept of catalysts in
circuit complexity which is closely related to the multiplicative and additive cancellation properties
of closed Strassen preorders as in our Lemma 3.7.

58Note however that, different from Strassen’s duality, Pólya’s theorem is properly a Positivstellensatz in the sense
that both (i) as (ii) have strict inequalities. The theorem can in fact be phrased using non-strict inequalities ≥ instead
of > as is done in [Fri21] (as to obtain a Nichtnegativstellensatz, a non-negative-locus theorem), but care has to be
taken in rephrasing (ii).

59This work was independent of Strassen’s work on semirings.
60The difference between a semiring and a semigroup is that the former has an addition and a multiplication

operation and the latter has just an addition operation.
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Part II

Connectivity and convexity of the
asymptotic spectrum
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In Part I we have seen how Strassen’s duality associates to any semiring R with a Strassen
preorder P a compact topological space X , which is called the asymptotic spectrum and whose
points are called spectral points. The main utility of X is that it gives a dual characterization of the
asymptotic preorder associated to P and (as a consequence) the asymptotic rank and asymptotic
subrank (Theorem 3.41).

The goal of Part II is to understand structural properties of the asymptotic spectrum X . For
example, given a collection of spectral points φ ∈ X , can we find more? Concretely, it is natural to ask
whether X has a “convex structure” or in other words whether there is a way of “interpolating” between
spectral points. Since an asymptotic spectrum X can be any (compact, Hausdorff) topological space
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(Theorem 4.19) the general answer is “no”. However, for specific semirings and preorders of interest
the answer is “yes”. Such “convex structures” will moreover have interesting implications as we will
discuss in Part III.

In order to investigate these convexity properties of asymptotic spectra (which are in principle
infinite-dimensional) we will study the finite-dimensional compact sets

X (a1, . . . , ak) := {(φ(a1), . . . , φ(ak)) : φ ∈ X} ⊆ [1,∞)k

of simultaneous evaluations of the spectral points at chosen semiring elements a1, . . . , ak ∈ R (as we
defined in Definition 3.21).61 The objective, broadly speaking, is to derive for the sets X (a1, . . . , ak)
sufficient and necessary conditions for several topological and geometric properties (connectedness,
log-convexity, log-star-convexity).

At a high level, the approach in Part II follows an intricate sequence of ideas of Strassen,
which we try to decouple and motivate in turn. As the starting point, we will discuss in Section 5
how log-convex sets X ⊆ [1,∞)k (that are compact) are characterized by monomial inequalities
p(x1, . . . , xk) ≤ q(x1, . . . , xk), where p, q ∈ N[x1, . . . , xk] are monomials. This connection between
convexity and monomial inequalities motivates the definition in Section 6 of the monomial partial
order on polynomials. This is an ingenious and subtle definition Strassen made, which in turn is
based on a type decomposition of powers of polynomials. This is a natural decomposition that is
finer than the usual monomial decomposition and which is suited to the asymptotics that high
powers generate. In Section 7 we will then see that connected sets (or rather log-convex ones) are
precisely those for which the monomial and pointwise partial order on polynomials agree. Finally,
in Section 8 we will develop tools, mainly the anchor method, to help establish inequalities in the
monomial partial order from the pointwise one. In Section 9 we will discuss implications of convexity
properties of asymptotic spectra and other related results about convexity in this context.

The anchor method, an important abstraction of Strassen’s original argument, provides a way
of proving that a compact set X ⊆ [1,∞)k is log-star-convex by finding a single point in X with
special properties, the anchor. While at first we will discuss this without reference to asymptotic
spectra, the full version of the anchor method provides a method to prove that a set of the
form X (a1, . . . ak) ⊆ [1,∞)k for a given semiring R, Strassen preorder P and semiring elements
a1, . . . , ak ∈ R, is log-star-convex, and explicitly utilizes the preorder P to do so. This is the only
place in Part II where we explicitly use Strassen duality.

Throughout our exposition, we will focus on (and provide full proofs only for) the one-dimensional
case X (a) ⊆ [1,∞) for a ∈ R, since in this case convexity and connectedness coincide, it requires
simpler notation, and at the same time already captures the proof ideas for the high-dimensional
case X (a1, . . . , ak) ⊆ [1,∞)k. A large part of the discussion will not be specific to the sets
X (a1, . . . , ak) ⊆ [1,∞)k but will rather apply to general compact sets X ⊆ [1,∞)k.

Summarizing, Part II reduces proofs of connectedness and convexity properties of the spectrum X
at hand to proving that it contains an anchor. Looking ahead, in Part III we will complete the
picture in two ways. First, we will show how to find anchors for spectra of specific semirings within
the semiring of tensors, in particular matrix multiplication (following Strassen) and a new setting of
tensor networks, thus obtaining a proof of these connectivity properties for them. Second, in Part III

61This is almost equivalent to studying the asymptotic spectra of finitely generated semirings (simply taking the
subsemiring of R generated by the ai), except that because of the way X (a1, . . . , ak) is “encoded”, X (a1, . . . , ak) does
depend on the choice of those generators. In other words, X (a1, . . . , ak) and X (b1, . . . , b`) may be different even if
the ai generate the same semiring as the bi.
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we will discuss the implications of convexity properties of sets X (a1, . . . , ak) in (the aforementioned
and other) applications of the theory of asymptotic spectra.

5. Convexity and monomial inequalities

The connection between convexity and monomial inequalities that we establish here will motivate
the definitions in Section 6, and the development of other tools towards proving connectivity in
Sections 7 and 8. This section may safely be skipped as we will make sure to recall the definitions
when they are used later.

Recall that Strassen’s duality associates to any semiring R with a Strassen preorder P a compact
topological space X , the asymptotic spectrum. We want to understand more about the structure
of X , which we can naturally do by studying, for any elements a1, . . . , ak ∈ R, the compact set
X (a1, . . . , ak) := {(φ(a1), . . . , φ(ak)) : φ ∈ X} ⊆ [1,∞)k, the asymptotic spectrum of a1, . . . , ak
(Definition 3.21). In this and following sections we take a step back, forget about semirings, preorders
and Strassen duality, and study any compact sets X ⊆ [1,∞)k.

We begin even simpler and let X ⊆ [1,∞) be any one-dimensional compact set. It is not
hard to see that X is naturally characterized by polynomial inequalities, as we will discuss in
detail in Section 5.1. Building on this, we will in Section 5.2 discuss how monomial inequalities
characterize when X is connected. Finally, in Section 5.3 we discuss the straightforward multivariate
generalization of this for compact sets X ⊆ [1,∞)k where in particular the monomial inequalities
characterize log-convex sets.62

5.1. Polynomial inequalities characterize closed sets
We introduce some general notation, which we will continue using in later sections. Let f and g be
functions [1,∞)→ R≥0. These functions will be given by polynomials in a moment. If for all s ∈ X
the inequality f(s) ≤ g(s) holds, then we write f ≤ g on X . We call the set of elements in [1,∞)
where the inequality f ≤ g holds the non-negative locus of the inequality, and we denote this set by

S(f ≤ g) := {s ∈ [1,∞) : f(s) ≤ g(s)}.

Let R≥0[x] be the set of polynomials in the variable x with non-negative real coefficients, which we
naturally view as functions [1,∞)→ R≥0.

We begin with a simple polynomial description of closed subsets of [1,∞). Note that a subset
of [1,∞) is closed if and only if it is a union of closed intervals with potentially one unbounded
interval [s,∞). In fact, we will characterize the closure of any subset X ⊆ [1,∞) using polynomials.
For any X ⊆ [1,∞) we directly find the inclusion

X ⊆
⋂
S(f ≤ g), (5.1)

where the intersection is over all polynomials f, g ∈ R≥0[x] such that f ≤ g on X . Of course each
set S(f ≤ g) is closed, and therefore the right-hand side of (5.1) is closed. Thus, clearly, if X is not
closed, then the inclusion in (5.1) is strict. This naturally leads us to the following characterization
of the closure X ⊆ [1,∞) of X (which we will use later on).

62Connectedness and log-convexity coincide in one dimension.

65



Lemma 5.1. Let X ⊆ [1,∞). Then the closure X of X is equal to the intersection of non-negative
loci

X =
⋂
S(f ≤ g),

ranging over all polynomials f, g ∈ R≥0[x] such that f ≤ g on X . Equivalently, the intersection may
be taken over only the polynomials f, g ∈ N[x] such that f ≤ g on X .

Proof. We first prove ⊆. Let s ∈ X . If f ≤ g on X , then also f(s) ≤ g(s) by continuity, and so
s ∈ S(f ≤ g). We now prove ⊇. Suppose that s 6∈ X . Then ε < (x−s)2 on X for small enough ε > 0,
since X is closed. Let f(x) = 2xs+ ε and g(x) = x2 + s2. Then f ≤ g on X and f(s) > g(s). This
proves that the closure of X is the intersection of S(f ≤ g) over all f, g,∈ R≥0[x] such that f ≤ g
on X . By ensuring that ε is rational and after an appropriate scaling of both f and g, we may
equivalently take the intersection over f, g ∈ N[x] such that f ≤ g on X .

It is customary in semi-algebraic geometry to study the non-negative locus S(0 ≤ h) for
polynomials h ∈ R[x] with potentially negative coefficients, which naturally corresponds to our
notion S(f ≤ g) by choosing f, g ∈ R≥0[x] such that h = g−f . Our notation S(f ≤ g) will facilitate
the discussion from Section 7 onwards.

To conclude, the subsets X ⊆ [1,∞) that are closed are precisely those that are characterized
by polynomial inequalities, and they are the intersection of the non-negative loci S(f ≤ g) over all
polynomials f, g ∈ N[x] such that f ≤ g on X .

5.2. Monomial inequalities characterize connected sets
Next we give a polynomial description of connected subsets X ⊆ [1,∞). In order to have a polynomial
description we must, by the previous subsection, assume that X is closed. We will also assume that X
is bounded for simplicity of notation and since that will be the case for our applications. In fact, we
will give a polynomial description of the convex hull of any closed and bounded subset X ⊆ [1,∞).
So let X ⊆ [1,∞) be closed and bounded. The convex hull of X is given by

conv(X ) = [min(X ),max(X )].

In terms of sets of the form S(f ≤ g), we see directly that

conv(X ) = S(min(X ) ≤ x) ∩ S(x ≤ max(X )).

With a simple argument we can strengthen this in such a way that the right-hand side ranges over
all monomial inequalities on X , as follows.

Lemma 5.2. Let X ⊆ [1,∞) be closed and bounded. Then the convex hull conv(X ) of X is equal
to the intersection of non-negative loci

conv(X ) =
⋂
S(cxi ≤ dxj),

ranging over the c, d ∈ R≥1 and i, j ∈ N such that cxi ≤ dxj on X . Equivalently, the intersection
may be taken over just the non-negative integers c, d ∈ N and i, j ∈ N such that cxi ≤ dxj on X .

66



Proof. The inclusion ⊇ follows directly from the aforementioned simple observation that

conv(X ) = S(min(X ) ≤ x) ∩ S(x ≤ max(X )).

We prove the other inclusion ⊆. Let s ∈ conv(X ). Then we have min(X ) ≤ s ≤ max(X ). Suppose
that cxi ≤ dxj on X . Either c/d ≤ xj−i on X with j − i ≥ 0, so c/d ≤ min(X )j−i and thus
c/d ≤ sj−i; or xi−j ≤ d/c with i− j ≥ 0, so max(X )i−j ≤ d/c and thus si−j ≤ d/c. In both cases
we have csi ≤ dsj , which proves the claim.

The same statement with the intersection ranging over polynomials with non-negative integer
coefficients c, d ∈ N holds by a rational approximation argument.

Remark 5.3. In fact, it is clear from the proof that in Lemma 5.2 it suffices to let the intersection
range over cxi ≤ dxj such that (i, j) = (1, 0) or (i, j) = (0, 1). Namely, from c/d ≤ sj−i it follows
(via taking |i− j|th roots) that (c/d)1/(j−i) ≤ s and from si−j ≤ d/c it follows that s ≤ (d/c)1/(i−j).
Thus we have an even stronger characterization of conv(X ) in terms of linear inequalities, namely:

conv(X ) =
⋂

c,d∈R≥1:
dx≤c on X

S(dx ≤ c) ∩
⋂

c,d∈R≥1:
c≤dx on X

S(c ≤ dx)

and similarly in terms of linear inequalities with non-negative integral coefficients:

conv(X ) =
⋂

c,d∈N:
dx≤c on X

S(dx ≤ c) ∩
⋂

c,d∈N:
c≤dx on X

S(c ≤ dx).

Remark 5.4. In this section we are looking at compact subsets X ⊆ [1,∞) for their own sake, but
let us in this remark briefly consider the special case of compact subsets X (a) ⊆ [1,∞) given by
the theory of asymptotic spectra. We know already that generally X (a) is not connected. Indeed,
X (a) can be any compact subset of [1,∞). Suppose that X (a) is connected. Then from the duality
theorem we know that X (a) is the closed interval with endpoints given by the asymptotic subrank
and the asymptotic rank of a,

X (a) = [Q̃P (a), R̃P (a)]. (5.2)

Now Lemma 5.2 says that X (a) is characterized by monomial inequalities. This means in particular
that the asymptotic spectrum can be completely understood by studying inequalities cai ≤P̃ da

j

for c, d ∈ N. Indeed, it is clear already from (5.2) that it even suffices to study inequalities of the
form an ≤P r and r ≤P an for r, n ∈ N since these characterize the asymptotic rank R̃P (a) and the
asymptotic subrank Q̃P (a).

5.3. Multivariate monomial inequalities characterize log-convex sets
In Section 5.2 we have seen that for compact sets X ⊆ [1,∞) the convex hull is characterized by
the monomial inequalities. Now we will give the natural high-dimensional extension (of which
we leave the proofs to the reader). Let R≥0[x1, . . . , xk] be the set of polynomials in the variables
x1, . . . , xk with non-negative real coefficients. Extending the previous definition, for polynomials
f, g ∈ R≥0[x1, . . . , xk] we call the set of elements in [1,∞)k where the inequality f ≤ g holds the
non-negative locus of the inequality, and we denote this set by

S(f ≤ g) := {s ∈ [1,∞)k : f(s1, . . . , sk) ≤ g(s1, . . . , sk)}.
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Lemma 5.5 (Polynomial inequalities characterize the closure). Let X ⊆ [1,∞)k. Then the closure is
given by X =

⋂
S(f ≤ g) where the intersection is ranging over all polynomials f, g ∈ R≥0[x1, . . . , xk]

such that f ≤ g on X . Equivalently, the intersection may be taken over only the polynomials
f, g ∈ N[x1, . . . , xk] such that f ≤ g on X .

For X ⊆ [1,∞)k we define logX := {(log s1, . . . , log sk) : s ∈ X}. For Y ⊆ [0,∞)k we define
2Y := {(2t1 , . . . , 2tk) : t ∈ Y}. We say X ⊆ [1,∞)k is log-convex if logX is convex. We define
logconv(X ) := 2conv(log(X )) to be the log-convex hull of X .

Lemma 5.6 (Monomial inequalities characterize the log-convex hull). Let X ⊆ [1,∞)k be compact.
Then

logconv(X ) =
⋂
S(f ≤ g)

where the intersection ranges over all monomials f, g ∈ R≥0[x1, . . . , xk] such that f ≤ g on X .
Equivalently, the intersection may be restricted to monomials in N[x1, . . . , xk], or even stronger,
monomials in N[x1, . . . , xk] such that precisely one is constant and one is linear.

Proof. We give the proof idea. Let Y = logX . Then conv(Y) is characterized the linear inequalities
on Y. Exponentiating these inequalities gives the claim. By rational approximation we get the
monomials to have non-negative integer coefficients.

This concludes this section, in which we introduced some basic notions and connections. The
take-away message is that polynomial inequalities provide a natural way to understand compact sets
X ⊆ [1,∞)k (and in particular, the asymptotic spectrum X (a1, . . . , ak) of a1, . . . , ak) and that there
is a close relation between monomial inequalities and log-convexity. These ideas are the starting
point for the remaining sections in Part II.

6. Type decomposition of polynomials and the monomial par-
tial order

In the previous section we have seen that an asymptotic spectrum X , or any closed subset X ⊆ [1,∞),
is connected if and only if it is characterized by the monomial inequalities on X . We are interested
in the problem of proving, given a semiring and a Strassen preorder, that the asymptotic spectrum
is connected. In this section we introduce a basic and general building block for this, which is
a type decomposition for powers of polynomials (Section 6.1). The main application of this type
decomposition is the definition of the monomial partial order (in Section 6.2), and its variants
(Sections 6.3 and 6.4).

At a high level, for any polynomial f the type decomposition that we will define is a natural
way to express the power fn as a sum

∑
p[f

n]p of polynomially in n many polynomials [fn]p (type
components).63 For any two polynomials f and g, the monomial partial order comes down to saying
that f is at most g (on a set X ) if for every n ∈ N and for every component [fn]p appearing in the
decomposition of fn there is a component [gn]q appearing in the decomposition of gn such that [fn]p
is at most [gn]q pointwise on X , up to a subexponential slack factor 2o(n). We may call the set X

63This is analogous to the standard (but powerful) idea in information theory of the method of types [CT12], in
which one takes n-samples from a probability distribution and collects samples into type classes according to the
frequencies of the symbols. Here an analogous thing happens with monomials of a polynomial raised to the nth power
(with appropriate weights added).
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on which f is at most g in the monomial partial order, the domain of this inequality. The main
theorem that we will prove is the important property of the monomial partial order that its domain
is connected (and log-convex in the multivariate case). Namely, if f is at most g in the monomial
partial order on X , then also f is at most g in the monomial partial order on the log-convex hull
of X . This property is the main reason for defining the monomial partial order.

To develop the above, it turns out to be mathematically convenient to consider an equivalent defi-
nition of the monomial partial order that is phrased in terms of the functions fp = limn→∞([fn]p)

1/n

which measure the rate of growth of type components. We introduce these functions together with
the type decomposition in Section 6.1. In Section 6.2 we give the definition of the monomial partial
order in terms of fp and prove the main theorem (Theorem 6.10). In Section 6.3 we prove that
this definition coincides with the aforementioned “finite” definition of the monomial partial order
that is directly in terms of [fn]p. All of this we will first discuss for univariate polynomials before
discussing the straightforward multivariate extension in Section 6.4.

6.1. Asymptotic behavior of polynomials and the type decomposition

In this section, let f =
∑d
i=0 fix

i ∈ N[x] be a univariate polynomial of degree d with non-negative
integer coefficients fi ∈ N.

Definition 6.1. Let p = (p0, . . . , pd) ∈ Rd+1 be a probability vector, which we think of as a
probability distribution over the d + 1 monomials of f , such that the monomial fixi is assigned
probability pi. Let H(p) := −

∑
i pi log pi denote the Shannon entropy of p. We denote by

supp(f) := {i ∈ {0, . . . , d} : fi 6= 0} the support of f . We define the function

fp(x) := 2H(p)
∏
i

fpii x
ipi

where the product is over i ∈ supp(f).

In the following, all summations and products involving the coefficients of polynomials will
be over the support of the polynomial at hand. We see that our function fp(x) is defined as the
p-weighted geometric mean of the monomials fixi multiplied by a scaling factor depending only
on p. The reason for the scaling will become clear soon. We will make frequent use of the logarithm
of fp(x),

log fp(x) = H(p) +
∑
i

(pi log fi + i pi log x).

Two things will be important for us. First, the function log fp(x) is concave in p, because the entropy
is concave, and because all the other terms depend linearly on p. Second, the function log fp is
linear in log x. That is, the function

log fp(2
y) = H(p) +

∑
i

(pi log fi + i piy)

(obtained by substituting y = log x) is linear in y ∈ [0,∞).
The reason for defining fp(x) is that the family of functions {fp(x)}p, parametrized by all

probability vectors p ∈ Rd+1, describes the asymptotic behavior of f , as we will explain next.
We denote by P(f) ⊆ Rd+1 the set of all probability vectors (p0, . . . , pd) of length d + 1. For

any n ∈ N we call a probability vector p = (p0, . . . , pd) an n-type if every coefficient pi is an integer
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multiple of 1/n. We denote by Pn(f) := {(p0, . . . , pd) ∈ P(f) : ∀i, n ·pi ∈ N} the subset of n-types.64
We may write the nth power of f as the sum

fn =
∑

p∈Pn(f)

(
n

pn

)∏
i

fpini xipin, (6.1)

where the product is over i ∈ supp(f), and where
(
n
pn

)
= n!/((p0n)! · · · (pdn)!) denotes a multinomial

coefficient. In other words, (6.1) is the result of taking the nth power of f and “not fully collecting
terms” (see also Remark 6.3 for a formalization of that idea).

Definition 6.2 (The type decomposition of fn into type components [fn]p). We call (6.1) the type
decomposition of fn. We denote the summands in (6.1) by [fn]p, that is,

[fn]p :=

(
n

pn

)∏
i

fpini xipin.

We call [fn]p the p-component of fn.

Note that [fn]p is a single monomial of degree
∑
i ipin. For a fixed j ∈ N there may be multiple

probability vectors p ∈ Pn(f) for which
∑
i ipin = j. Therefore, the type decomposition is finer than

the monomial decomposition fn =
∑
j(f

n)j x
j . (Indeed, much finer, as the monomial decomposition

has roughly nd terms, while the type decomposition has roughly nd terms.)

Remark 6.3. The type decomposition can be seen as a direct sum decomposition if we think of
the monomials of f as having different colors. More precisely, we rewrite f =

∑d
i=0 fix

i ∈ N[x] as a
linear form in variables x0, . . . , xd in such a way that each degree gets its own variable:

f =

d∑
i=0

fixi ∈ N[x0, x1, . . . , xd]1.

Then
fn =

∑
p∈Pn(f)

(
n

pn

)∏
i

fpini

∏
i

xpini

is a direct sum decomposition in the space N[
∏
i x

pin
i : p ∈ Pn(f)].

The function fp(x) that we defined in Definition 6.1 measures the asymptotic size of [fn]p when n
goes to infinity, in the following sense.

Lemma 6.4. For every p ∈ Pn(f) we have

fp(x)n−o(n) ≤ [fn]p(x) ≤ fp(x)n

uniformly in x ∈ R≥0. In particular, the function fp(x) is the limit

fp(x) = lim
k→∞

([fkn]p(x))
1
kn

uniformly in x ∈ R≥0. (Note that every n-type is also a kn-type, that is, for every k ∈ N the
inclusion Pn(f) ⊆ Pkn(f) holds. Therefore, [fkn]p(x) is defined for every p ∈ Pn(f) and k ∈ N.)

64Note that P(f) and Pn(f) depend only on the degree d of f . It will be useful, however, to be able to refer to
these sets without worrying about the degree of f , hence our notation.
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Proof. We consider the ratio

[fn]p
fp(x)n

=

(
n
pn

)∏
i f

pin
i xipin

2H(p)
∏
i f

pin
i xipin

=

(
n
pn

)
2H(p)n

.

The claim follows from the standard asymptotic relation [CT12, Theorem 11.1.3] between multinomial
coefficients and the Shannon entropy: 2H(p)n−o(n) ≤

(
n
pn

)
≤ 2H(p)n.

Lemma 6.5. For every p ∈ P(f) and every s ∈ R≥0 we have fp(s) ≤ f(s).

Proof. By the AM-GM inequality we have for any gi, s ∈ R≥0 and any probability vector p that∏
i

(gis
i)pi ≤

∑
i

pigis
i.

Restrict the product and sum above to those i with pi 6= 0. Let gi = p−1i fi. Then

fp(s) = 2H(p)
∏
i

(fis
i)pi =

∏
i

(p−1i fis
i)pi ≤

∑
i

fis
i = f(s).

This proves the claim.
Alternatively, the claim follows from Lemma 6.4. Indeed, we may assume that p is an n-type

for some n ∈ N, since fp(x) is continuous in p. Then for any k ∈ N and any s ∈ R≥0 we have
that [fkn]p(s) ≤ fkn(s). Taking the kn-th root and letting k go to infinity (Lemma 6.4) we find
that fp(s) ≤ f(s) for all p ∈ R≥0.

Crucially, the number of summands appearing in the type decomposition of fn grows polynomially
in n, as we make precise in the following lemma. This is where using asymptotics (in n) is powerful,
as its allowing of subexponential slack factors swallows polynomial factors easily (and this fact we
will be using immediately).

Lemma 6.6 (There are polynomially many n-types.). For any polynomial f of degree d, the number
of n-types p = (p0, . . . , pd) is upper bounded by |Pn(f)| ≤ (n+ 1)d+1 = poly(n).

Proposition 6.7. For every s ∈ R≥0 we have maxp∈P(f) fp(s) = f(s).

Proof. We fix the element s. We already know from Lemma 6.5 that maxp∈P(f) fp(s) ≤ f(s). It
remains to prove that f(s) ≤ maxp∈P(f) fp(s). There are only polynomially many n-types in P(f)
(Lemma 6.6) and so

fn(s) ≤ poly(n) max
q

[fn]q(s)

≤ poly(n) max
q

(fq(s))
n,

where the maximum is over q ∈ Pn(f). Thus for every n ∈ N

f(s) ≤ poly(n)
1
n max

q
fq(s)

where the maximum is still over q ∈ Pn(f). By letting n go to infinity we get

f(s) ≤ max
p

fp(s)

where the maximum is taken over all p ∈ P(f).
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6.2. The monomial partial order on polynomials
Now that we have types [fn]p (which are essentially distributions over monomials) and their
asymptotic growth fp (which we may think of as “generalized monomials”), we want to compare
polynomials according to their weightiest monomial (for each possible distribution on the coefficients).
We are motivated by Section 5 in which comparison between monomials characterized connectedness.
What we aim to do is to use asymptotics to move from polynomial inequalities to such “monomial
inequalities”, paying in adding quantifiers (which we will have to deal with later). To this end we
will define the monomial partial order (Definition 6.8), and we will then prove its main property
that the “domain” of such inequalities is connected (Theorem 6.10).

Definition 6.8 (Monomial partial order ≤M). For polynomials f, g ∈ N[x] and X ⊆ [1,∞) we say
that f is at most g monomially on X and we write

f ≤M g on X ,

if for every p ∈ P(f) there exists a q ∈ P(g) such that for all s ∈ X it holds that fp(s) ≤ gq(s).

Note that the monomial partial order is indeed transitive: if f ≤M g on X and g ≤M h on X ,
then f ≤M h on X .

We may call the set X so that f ≤M g on X holds, the domain of this specific inequality. We
stress the subtle behavior of the domain that from f ≤M g on X and f ≤M g on Y we cannot
conclude that f ≤M g on X ∪ Y. This is because of the order of the quantifiers ∃q and ∀s in
Definition 6.8.65

The monomial partial order is stronger than the pointwise partial order:

Lemma 6.9. If f ≤M g on X , then f ≤ g on X .

Proof. For every s ∈ X there is an element q ∈ P(g) such that

f(s) = max
p

fp(s) ≤ gq(s) ≤ g(s)

by Lemma 6.5 and Proposition 6.7.

In contrast to the pointwise partial order on polynomials, from which we cannot infer an
inequality on any point from inequalities on other points (except for limit points, cf. Section 5), the
monomial partial order allows this—any inequality at the extreme points of an interval interpolate
automatically to the whole interval:

Theorem 6.10 (Connectedness66 of the domain where f ≤M g holds). Let s ≤ t ∈ [1,∞) and let
f, g ∈ N[x]. If f ≤M g on {s, t}, then f ≤M g on [s, t].

Expanding the statement of Theorem 6.10, it says that if for any p ∈ P(f) there is a q ∈ P(g)
such that fp(s) ≤ gq(s) and fp(t) ≤ gq(t), then for any p ∈ P(f) there is a (the same) q ∈ P(g) such
that for all r ∈ [s, t] we have fp(r) ≤ gq(r).

65For this reason we do not define a locus S(f ≤M g) for the monomial partial order analogously to the definition
of the non-negative locus S(f ≤ g) of Section 5.1.

66It will be clear from the proof that the connectedness follows from log-convexity of the domain. While in the
current setting of univariate polynomials connectedness and log-convexity coincide, we will see in Section 6.4 that for
multivariate polynomials the analogous lemma gives log-convexity of the domain.
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Proof. In this proof for the first time the fact that the function log fp(2
y) is linear in y enters the

picture. By assumption, we have that for every p there is a q such that both fp(s) ≤ gq(s) and
fp(t) ≤ gq(t). The functions log fp(2

y) and log gq(2
y) are linear in y. Therefore, we have that the

interpolated inequality
fp(2

α log s+(1−α) log t) ≤ gq(2α log s+(1−α) log t)

holds for every α ∈ [0, 1]. Thus f ≤M g on [s, t].

6.3. The finite monomial partial order on polynomials
In the discussion of the monomial partial order f ≤M g it was convenient to work with general
probability vectors p ∈ P(f) and q ∈ P(g) as in Definition 6.8. In particular, we defined the
monomial partial order in terms of the functions fp. In our upcoming discussion of anchors and
application to matrix multiplication and tensor networks, however, it will at some point be more
convenient to work only with n-types p ∈ Pn(f) and q ∈ Pn(g) for n large enough. We will
explicitly define a finite monomial partial order ≤FM for this, in terms of the type components [fn]p.
Using Lemma 6.4 and the fact that n-types approximate general probability vectors we give a routine
proof that ≤M and ≤FM are equivalent.

Definition 6.11 (Finite monomial partial order ≤FM). For polynomials f, g ∈ N[x] and X ⊆ [1,∞)
we say that f is at most g finitely monomially on X , and we write

f ≤FM g on X ,

if for every ε > 0 and for large enough n we have that for every p ∈ Pn(f) there is a q ∈ Pn(g) such
that

[fn]p ≤ [gn]q · 2εn on X .

Lemma 6.12 (Equivalence of the monomial and finite monomial partial orders). For any poly-
nomials f, g ∈ N[x] and bounded subset X ⊆ [1,∞) we have f ≤M g on X if and only if f ≤FM g
on X .

Proof. Suppose that f ≤M g on X . Then for every p ∈ P(f) there is a q ∈ P(g) such that
fp(x) ≤ gq(x) on X . We may approximate probability vectors with n-types to get the following. For
every n ∈ N for every p ∈ Pn(f) there is a q ∈ Pn(g) such that

fp(x) ≤ gq(x) · 2o(1) on X .

We know (Lemma 6.4) that for every p ∈ Pn(f) and q ∈ Pn(g) we have

[fn]p(x) ≤ fp(x)n

and
gq(x)n−o(n) ≤ [gn]q(x).

Thus for every n ∈ N for every p ∈ Pn(f) there is a q ∈ Pn(g) such that

[fn]p(x) ≤ [gn]q(x)n+o(n) · 2o(n) on X .

From boundedness of X we have [gn]q(x)o(n) ≤ 2o(n) on X and thus we find that f ≤FM g on X .

73



For the other direction, suppose that f ≤FM g on X . This means that for every n ∈ N and for
every p ∈ Pn(f) there is a q ∈ Pn(g) such that

[fn]p(x) ≤ [gn]q(x) · 2o(n) on X .

We know (Lemma 6.4) that for every p ∈ Pn(f) and q ∈ Pn(g) we have

fp(x)n−o(n) ≤ [fn]p(x)

and
[gn]q(x) ≤ gq(x)n.

Thus for every n ∈ N for every p ∈ Pn(f) there is a q ∈ Pn(g) such that

fp(x)n ≤ gq(x)n+o(n) · 2o(n) on X .

After taking the nth root and letting n go to infinity gives the claim f ≤M g on X .

6.4. Multivariate type decomposition and (finite) monomial partial order
In Sections 6.1, 6.2 and 6.3 we introduced the type decomposition and (finite) monomial partial
order for univariate polynomials f ∈ N[x] and we discussed and proved their basic properties. The
next natural step is to extend these notions to multivariate polynomials f ∈ N[x1, . . . , xk].67

The multivariate setting is important for applications. For instance, while the univariate setting
suffices to study the asymptotic spectrum of square matrix multiplication,68 the multivariate setting
introduced in this section will allow us to study the asymptotic spectrum of rectangular matrix
multiplication and rectangular versions of Schönhage’s tau theorem.69 These applications we will
discuss in detail later (Section 9). We will also remark on a connection between the multivariate
type decomposition and tropical polynomials from tropical algebraic geometry.

The extension from univariate to multivariate polynomials is mostly straightforward. We state
the extended definitions and lemmas and will not give any proofs in this section as they are essentially
the same as the proofs for univariate polynomials. The most notable difference compared to the
univariate situation is that the connectedness property in Theorem 6.10 becomes a log-convexity
property in the multivariate extension (Theorem 6.19).70

In this multivariate setting we let f =
∑
I fIx

I ∈ N[x1, . . . , xk] be a polynomial in k variables xi
with non-negative integer coefficients fI ∈ N, where the sum runs over exponent vectors I ∈ Nk and
we use the monomial notation xI := xI11 · · ·x

Ik
k . Beginning with the basics we define the support,

types and n-types: Let supp(f) = {I : fI 6= 0}. Let P(f) be the set of probability vectors on
supp(f).71 For n ∈ N let Pn(f) := {p ∈ P(f) : ∀I, n · pI ∈ N} ⊆ P(f) be the subset of n-types.

67Strassen discusses the type decomposition and monomial partial order directly in the setting of multivariate
polynomials [Str88]. We have chosen to first pay close attention to the univariate setting in Sections 6.1, 6.2 and 6.3,
to get the main ideas clear, and only then discuss the multivariate setting in Section 6.4.

68Here intuitively we identify the variable x with the matrix multiplication tensor MM2.
69Here we take k = 3 and identify the variables x1, x2, x3 with the rectangular matrix multiplication tensors

MM2,1,1, MM1,2,1, MM1,1,2 respectively.
70Note that connectedness and log-convexity are the same in one dimension.
71We note that the definition of P(f) here is slightly different from the definition we gave in the univariate case,

where for simplicity we defined P(f) as all probability vectors of length d+ 1 (and had to deal with zero coefficients
separately in some proofs). Here the probability vectors are only supported on supp(f). The notions are essentially
the same in practice.
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Similarly as before, the number of n-types |Pn(f)| is upper bounded by a polynomial in n, which
will be crucial in many proofs involving the type decomposition. (The dependence on k and deg(f)
is exponential, but we think of these as fixed.)

The type decomposition that we defined for univariate polynomials (Definition 6.2) extends
naturally to multivariate polynomials. As for univariate polynomials, the type decomposition of
multivariate polynomials is obtained by taking the nth power of the polynomial f and “not collecting
terms”.

Definition 6.13 (Multivariate type decomposition). For n ∈ N we may write fn =
∑
p[fn]p where

the sum runs over n-types p ∈ Pn(f) and the summands are given by [fn]p :=
(
n
pn

)∏
I(fIx

I)pIn.
We call this the type decomposition of fn and we call [fn]p the type components.

Next, we naturally measure the asymptotic size of the type components with a function that is
very similar to the function that we defined in the univariate case, leading to the following definition
and (essentially defining) lemma.

Definition 6.14. For p ∈ P(f) let fp(x1, . . . , xk) := 2H(p)
∏
I(fIx

I)pI where the product runs over
the k-tuples I ∈ supp(f).

Lemma 6.15. fp measures the asymptotic size of [fn]p when n goes to infinity: for p ∈ Pn(f),

fp(x)n−o(n) ≤ [fn]p(x) ≤ fp(x)n

uniformly in x ∈ Rk≥0. In particular, uniformly on Rk≥0, fp = limk→∞([fkn]p)
1/kn.

We have the following basic properties of fp that are proven in a manner almost identical to
their univariate versions. These properties are used to prove the lemmas that follow.

Lemma 6.16 (Basic properties of fp).

(i) log fp(2
y1 , . . . , 2yk) is linear in (y1, . . . , yk) and concave in p.

(ii) For every (s1, . . . , sk) ∈ Rk≥0, maxp∈P(f) fp(s1, . . . , sk) = f(s1, . . . , sk).

(iii) In particular, for every p ∈ P(f), fp ≤ f on Rk≥0.

Now we straightforwardly extend the monomial partial order to multivariate polynomials using
the functions fp:

Definition 6.17 (Monomial partial order ≤M). For f, g ∈ N[x1, . . . , xk] and X ⊆ [1,∞)k we say
that f is at most g monomially on X and write

f ≤M g on X

if for every p ∈ P(f) there exists q ∈ P(g) such that fp ≤ gq on X .

The monomial partial order implies the pointwise partial order on polynomials:

Lemma 6.18. For f, g ∈ N[x1, . . . , xk], if f ≤M g on X , then f ≤ g on X .
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Now we state the main theorem of this section, on the domain where the monomial partial order
holds. Whereas in the univariate case we proved that this domain is connected, it is clear from
inspecting the proof that in the multivariate extension the statement becomes that this domain is
log-convex. Indeed, for subsets of [1,∞) (the univariate setting) the notions connected and log-convex
coincide, but for subsets of [1,∞)k with k > 1 (the multivariate setting) they do not.

For any vector v = (v1, . . . , vk) we let log v = (log v1, . . . , log vk) and 2v = (2v1 , . . . , 2vk). For
any set of vectors S we denote by 2S the set of vectors {2v : v ∈ S}.

Theorem 6.19 (Log-convexity of the domain where f ≤M g holds). Let s, t ∈ [1,∞)k and let
f, g ∈ N[x1, . . . , xk]. If f ≤M g on {s, t}, then f ≤M g on 2[log s,log t].

Finally, the notion of finite monomial partial order extends directly to multivariate polynomials,
and remains equivalent to the monomial partial order:

Definition 6.20 (Multivariate finite monomial partial order ≤FM). For f, g ∈ N[x1, . . . , xk] and
X ⊆ [1,∞)k we say that f is at most g finitely monomially on X , and write f ≤FM g on X , if for
every ε > 0 and for large enough n ∈ N we have that for every p ∈ Pn(f) there exists q ∈ Pn(g)
such that [fn]p ≤ [gn]q · 2εn on X .

Lemma 6.21 (Multivariate equivalence of the monomial and finite monomial partial orders). For
any polynomials f, g ∈ N[x1, . . . , xk] and bounded subset X ⊆ [1,∞)k we have f ≤M g on X if and
only if f ≤FM g on X .

We recall that f ≤M g on X implies f ≤ g on X , but not the other way around. In Section 7 we
will see precisely when the opposite implication is true for all f, g.

Remark 6.22 (Relation to Tropical Geometry). Some readers may have noticed a similarity between
Strassen’s type decomposition [fn]p and the notion of tropical polynomials from tropical geometry.
Tropical geometry is an important, growing subarea of real algebraic geometry, aiming to understand
(systems of) polynomial equations and inequalities by moving from the usual (+,×) ring to the
(max,+) semiring (the tropical semiring).72 Let us say a few words about this connection between
the areas (that have seemingly been developed independently). More precisely a tropical polynomial
is defined [MS15, Sec. 1.1] as a maximization of finitely many linear functions, of the form

max{a1 + i1,1x1 + · · ·+ i1,nxn, a2 + i2,1x1 + · · ·+ i2,nxn, . . .},

where the ak are real numbers and the ik,` are natural numbers. The type decomposition that we
introduced in this section (culminating in Lemma 6.16) naturally suggests a “tropical version” of
any polynomial f =

∑
I fIx

I ∈ N[x1, . . . , xk], namely

max
p∈Pn(f)

log [fn]p. (6.2)

The expression in (6.2) is indeed a tropical polynomial in the usual sense, in the logarithmic variables
log x1, . . . , log xk, namely a maximization of the affine forms

log[fn]p = log

(
n

pn

)
+
∑
I

pIn log fi +
∑
I

pIn
(∑

i

Ii log xi

)
72Or equivalently the (min,+) semiring.

76



over the finitely many n-types p ∈ Pn(f).
In an asymptotic sense, as we have seen before, the expression maxp∈Pn(f) log [fn]p equals fn,

namely maxp log [fn]p ≤ fn ≤ poly(n) maxp log [fn]p. This viewpoint we have formalized earlier by
defining the functions fp that provide the asymptotic growth of the type components [fn]p and for
which we have the relation

log f = max
p∈P(f)

log fp. (6.3)

The maximization in (6.3) is not quite a tropical polynomial in the usual sense, but we may think
of it as an “infinite, non-integral” tropical polynomial, since the maximization is over the infinitely
many elements p ∈ P(f) and log fp = H(p) +

∑
I pI log fi +

∑
I pI

∑
i Ii log xi has non-integral

coefficients pIIi appearing.

7. Convexity and the monomial partial order

We introduced in Section 6 the monomial partial order on univariate polynomials N[x] (Sections 6.1,
6.2 and 6.3). The monomial partial order has the important property that its domain is connected
(Theorem 6.10). This property we will put to use in this section to characterize connectedness of
sets X ⊆ [1,∞) by the equivalence of the monomial and pointwise partial orders. The two directions
of this characterization are proved separately in Sections 7.1 and 7.2. This uses several properties of
the functions fp(2y) we labored to define above (in particular linearity in y and convexity in p) and
connectedness of the domain of the monomial partial order.

After discussing univariate polynomials in Sections 7.1 and 7.2, we will turn to multivariate poly-
nomials N[x1, . . . , xk] in Section 7.3. The above connectedness characterization extends naturally to
this multivariate situation. For this we use the multivariate monomial partial order (Section 6.4) and
its main property that its domain is log-convex (Theorem 6.19). This partial order straightforwardly
leads to a characterization of log-convexity of sets X ⊆ [1,∞)k (i.e., convexity of logX ⊆ Rk≥0) in
terms of the monomial partial order.

7.1. Sufficient condition for connectedness
We begin with a sufficient condition for X ⊆ [1,∞) to be connected. To show that X is connected
it is sufficient to show that for every s, t ∈ X we have [s, t] ⊆ X . Recall that for f, g ∈ N[x],
S(f ≤ g) := {s ∈ [1,∞) : f(s) ≤ g(s)} denotes the locus of the inequality f ≤ g. The sufficient
condition we will prove relies on the following lemma (which is a simple combination of lemmas
from Section 6).

Lemma 7.1. Let s ≤ t ∈ [1,∞). Let f, g ∈ N[x]. If f ≤M g on {s, t}, then [s, t] ⊆ S(f ≤ g).

Proof. The domain of the monomial partial order is connected (Theorem 6.10) so from f ≤M g on
{s, t} it follows that f ≤M g on [s, t] by Theorem 6.10. The monomial partial order implies the
pointwise partial order (Lemma 6.9), so we get f ≤ g on [s, t]. This means [s, t] ⊆ S(f ≤ g).

Theorem 7.2 (Sufficient condition for connectedness of X ). Let X ⊆ [1,∞) be closed. If the partial
orders ≤ and ≤M coincide on all sets {s, t} ⊆ X , then X is connected.

Proof. Let s, t ∈ X . We will prove that [s, t] ∈ X . For any f, g ∈ N[x] for which f ≤ g on X , we have
f ≤M g on {s, t} by assumption, and thus [s, t] ⊆ S(f ≤ g) by Lemma 7.1. Thus [s, t] ⊆

⋂
S(f ≤ g),

77



where the intersection is over all f, g ∈ N[x] for which f ≤ g on X . This intersection equals X
(Lemma 5.1), which equals X by closedness. This means [s, t] ⊆ X .

Remark 7.3. The assumption in Theorem 7.2 that X is closed is needed, because without it we
could take X to be [s, t] minus a point and then obtain the contradiction that [s, t] ⊆ X . (This is
not surprising as polynomials describe closed sets, cf. Lemma 5.1.)

7.2. Necessary condition for connectedness
Now we prove that the sufficient condition for connectedness given in Theorem 7.2 is a necessary
condition. The fact that log fp(2

y) is concave in p and linear in y will play a crucial role here,
facilitating the use of the von Neumann minimax theorem for changing the order of ∃q and ∀s in
the definition of ≤M (Definition 6.8).

Proposition 7.4 (Von Neumann minimax theorem). Let C ⊆ Rn and D ⊆ Rm be compact and
convex sets. Let the function φ : C ×D → R : (v, w) 7→ φ(v, w) be continuous and concave in v, and
continuous and convex in w. Then

max
v

min
w
φ(v, w) = min

w
max
v

φ(v, w),

that is, the order of minimizing over w and maximizing over v does not matter.

Now we will prove the converse to Theorem 7.2.

Theorem 7.5 (Necessary condition for connectedness of X ). If X is connected, then ≤ and ≤M

coincide on all subsets [s, t] ⊆ X . That is, for every [s, t] ⊆ [1,∞) and every f, g ∈ N[x], if f ≤ g
on [s, t], then f ≤M g on [s, t].

Proof of Theorem 7.5. For every p ∈ P(f) for every r ∈ [s, t] we have by Lemma 6.5 and Proposi-
tion 6.7 that

fp(r) ≤ f(r) ≤ g(r) = max
q
gq(r)

where the maximization is over q ∈ P(g). In other words,

for every p ∈ P(f) for every r ∈ [s, t] there is a q ∈ P(g) such that fp(r) ≤ gq(r). (7.1)

We are not done with the proof because the choice of q depends not only on p but also on r ∈ [s, t].
Instead, to satisfy the definition of ≤M (Definition 6.8), we want to have one q depending on p
that works for all r ∈ [s, t]. To get there we will use the minimax theorem (Proposition 7.4). First,
fixing p, we rewrite (7.1) as

0 ≤ min
r

max
q

(log gq(r)− log fp(r)).

The function log gq(2
y) − log fp(2

y) is concave in q from the convex and compact set P(g), and
convex (in fact, linear) in y from the convex and compact set [log s, log t]. By the minimax theorem
(Proposition 7.4) we have

min
y

max
q

(log gq(2
y)− log fp(2

y)) = max
q

min
y

(log gq(2
y)− log fp(2

y)).

Thus, we have

for every p ∈ P(f) there is a q ∈ P(g) such that for every r ∈ [s, t] we have fp(r) ≤ gq(r).

We conclude that f ≤M g on [s, t].
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7.3. Multivariate sufficient and necessary condition for log-convexity
In Sections 7.1 and 7.2 we proved sufficient and necessary conditions for a set X ⊆ [1,∞) to be
connected in terms of the monomial partial order on polynomials. We will now discuss how these
conditions almost directly extend to a characterization for a subset X ⊆ [1,∞)k to be log-convex.
We leave the proof of the characterization to the reader as it is essentially the same as for the
univariate case, using the multivariate lemmas that we prepared in Section 6.4.

Theorem 7.6. Let X ⊆ [1,∞)k be closed. The following are equivalent:

• X is log-convex

• the partial orders ≤ and ≤M on polynomials in N[x1, . . . , xk] coincide on X .

In particular, to show that a closed set X ⊆ [1,∞)k is log-convex it suffices to show for every
two points s, t ∈ X that for every two polynomials f, g ∈ N[x1, . . . , xk] if f ≤ g on X , then f ≤M g
on X .

Looking ahead to Section 8, there is a third property besides connectedness and convexity, called
star-convexity, that is stronger than connectedness and weaker than convexity. Star-convexity will
be of interest in applications to matrix multiplication and tensor networks. We will see how to
use the methods of this section to prove star-convexity of logX for closed sets X ⊆ [1,∞)k and in
particular for asymptotic spectra X of semirings with a Strassen preorder.

8. Star-convexity and anchors

In Section 7 we characterized which closed sets X ⊆ [1,∞) are connected and more generally which
closed sets X ⊆ [1,∞)k are log-convex. In this section we focus on a property that is weaker than
log-convexity, called log-star-convexity. We define that a set A ⊆ Rk≥0 is star-convex with respect to
the element c ∈ A (called a center) if for every point a ∈ A the interval [a, c] if a ≤ c or the interval
[c, a] if c ≤ a is contained in A. We say that X ⊆ [1,∞)k is log-star-convex if logX is star-convex.
(In the one-dimensional case, log-star-convexity coincides with connectedness and log-convexity.)
We will introduce a method to prove that a closed set X ⊆ [1,∞)k is log-star-convex. This method
we call the anchor method. It says that if X contains a special point, called an anchor, then X is
log-star-convex.

The main goal of the anchor method (which we were led to by the previous sections) is to turn
an asymptotic inequality in the pointwise partial order into one in the monomial partial order,
magically allowing the exchange of quantifiers that are part of it. A central component of the anchor
method (that we will make precise) is that a “local” polynomial inequality (satisfied at one point
of X , the anchor) implies a related polynomial inequality which is global, over all of X . The hard
work in applying the anchor method is to find an anchor in X . (Indeed in Part III we will carry this
out for a family of asymptotic spectra.)

As in previous sections (Sections 6 and 7) we will discuss the anchor method for the one-
dimensional case X ⊆ [1,∞) in detail first (in which we can focus on connectivity) and then for
the high-dimensional case X ⊆ [1,∞)k, as the one-dimensional proofs are simpler and essentially
the same as the high-dimensional proofs (which we leave to the reader). As opposed to previous
sections we will in this section for the first time pay special attention to (and use the extra
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structure of) the closed sets X (a1, . . . , an) ⊆ [1,∞)k that are given by the theory of asymptotic
spectra (Definition 3.21).73

In Section 8.1 we introduce a preliminary one-dimensional version of the anchor method that
applies to any closed set X ⊆ [1,∞). This preliminary version does not make any reference to the
theory of asymptotic spectra yet. In Section 8.2 we introduce the stronger version of the anchor
method that applies to sets X (a) ⊆ [1,∞) for any semiring R, Strassen preorder P and semiring
element a ∈ R. In Section 8.3 we discuss the full multivariate version of the anchor method that
applies to any set X (a1, . . . , ak) ⊆ [1,∞)k for semiring elements a1, . . . , ak ∈ R (Definition 3.21).
This version generalizes the foregoing ones.

Our notion of an anchor abstracts the method that Strassen used to prove the central result
in [Str88] that the asymptotic spectrum of rectangular matrix multiplication is log-star-convex (and
that the asymptotic spectrum of square matrix multiplication is connected). In Part III we will
apply the anchor theorem to prove Strassen’s star-convexity and connectedness theorems for matrix
multiplication and to generalize these to the broader class of tensor networks.

8.1. Anchor method for connectedness
We begin with a one-dimensional version of the anchor method for closed sets X ⊆ [1,∞) (without
reference to asymptotic spectra). This method provides a condition for X to be connected (which
in the one-dimensional case coincides with log-star-convexity). We will build on the sufficient
condition for connectedness from Section 7.1. The main difference from Section 7.1 is that here we
will single out a special element s ∈ X (ultimately called anchor) and prove connectedness of X
via the element s (which in the higher-dimensional setting of Section 8.3 will naturally lead to
log-star -convexity with respect to s).

Let X ⊆ [1,∞) be closed and bounded. Throughout this section s ∈ X will be a fixed element.
We introduce three conditions for X being connected:

“s ∈ X is an anchor”
(Definitions 8.3 and 8.5)

=⇒ Condition B ⇐⇒ Condition A ⇐⇒ X is connected.

Note that some of the implications are equivalences. Most important for us will be the overall
implication that if there is an anchor s ∈ X , then X is connected. We begin with the most
straightforward condition, Condition A. This condition is a simple consequence of things we have
seen before, and in particular crucially relies on the convexity of the monomial partial order ≤M.
The only difference from before is that we are singling out one element s ∈ X as special.

Condition A. For the fixed element s ∈ X the following holds. For every t ∈ X , for every
f, g ∈ N[x], if f ≤ g on X , then f ≤M g on {s, t}.

Lemma 8.1. Condition A holds if and only if X is connected.

Proof. This lemma follows directly from the sufficient and necessary condition for connectedness,
Theorems 7.2 and 7.5. Let us also give a direct proof that Condition A implies that X is connected,
using the results of Section 6. Recall that ≤M is convex in the sense that if f ≤M g on {s, t},
then f ≤M g on [s, t] (Theorem 6.10) and thus f ≤ g on [s, t] (Lemma 6.9). Therefore, Condition A
implies that [s, t] ⊆ X for any t ∈ X . We conclude that X is connected.

73Recall that X (a1, . . . , ak) is defined as the set of k-tuples (φ(a1), . . . , φ(ak)) of evaluations going over all spectral
points φ in the asymptotic spectrum of the semiring R and Strassen preorder P , where the ai are elements of R.
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To discuss Condition B, we need some notation. We defined for any polynomial g of degree d
the type decomposition of gn into a sum of polynomials [gn]p where p runs over the set Pn(g) of
probability vectors on {0, 1, . . . , d} that are n-types (Definition 6.2). For any subset Q of Pn(g), we
use the notation

[gn]Q :=
∑
q∈Q

[gn]q.

Condition B. For the fixed element s ∈ X the following holds. For every f, g ∈ N[x], if f ≤ g
on X , then for every n ∈ N and every p ∈ Pn(f) there is a subset Q ⊆ Pn(g) such that the following
two statements are true:

(i) [fn]p ≤ 2o(n)[gn]Q on X

(ii) for every q ∈ Q we have [fn]p(s) ≤ 2o(n)[gn]q(s).

We stress that part (ii) of Condition B says ∀q ∈ Q rather than ∃q ∈ Q. This is crucial in the
proof of the following lemma. Recall (Lemma 6.12) that the monomial partial order ≤M is equivalent
to the finite monomial partial order ≤FM of Section 6.3, which is defined by: f ≤FM g on X if for
large enough n we have that for every p ∈ Pn(f) there is q ∈ Pn(g) such that [fn]p ≤ 2o(n)[gn]q
on X . We will be using this equivalence here.

Lemma 8.2. Condition B and Condition A are equivalent.

Proof. The implication from Condition A to Condition B follows by taking Q = {q} to be the
appropriate singleton. We now prove the important implication from Condition B to Condition A.
Suppose that f ≤ g on X . For any t ∈ X , we need to show that f ≤M g on {s, t}. Let p ∈ Pn(f).
From Condition B (i) it follows that, since Pn(g) has poly(n) size (Lemma 6.6) and thus Q ⊆ Pn(g)
has poly(n) size, there exists q ∈ Q such that

[fn]p(t) ≤ 2o(n)[gn]q(t).

Condition B (ii) implies that (for the same q)

[fn]p(s) ≤ 2o(n)[gn]q(s).

This proves f ≤FM g on {s, t} and thus f ≤M g on {s, t}, by the equivalence between the finite
monomial partial order and the monomial partial order (Section 6.3).

Now we introduce the notion of an anchor in X . We will call this definition “preliminary” as we
give a more general definition of anchors in Section 8.2 that references asymptotic spectra (of which
this can be seen as a special case for the right choice of semiring and preorder).

Anchors provide a method for realizing Condition B. The high-level idea is that given f ≤ g
on X and p ∈ Pn(f) to obtain Q, we may simply define Q to consist of all q ∈ Pn(g) so that
[fn]p(s) ≤ 2o(n)[gn]q(s) (where the o(n) function is well-chosen). Then (ii) is automatically satisfied
but rather than (i) we have

[fn]p ≤ fn ≤ gn = [gn]Q + [gn]Q on X

where Q is the complement of Q. Then to satisfy Condition B it remains to get rid of this extra
term [gn]Q on the right-hand side.
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This is where the anchor comes in. First, note that for any f ∈ N[x] every type component [fn]p
is of the form mxk for some m, k ∈ N (it is a monomial). In simple terms, the goal of an anchor is to,
given an inequality mxk ≤ h1(x) + h2(x) on X for polynomials h1, h2,∈ N[x], produce a simplified
inequality in which h1(x) does not appear, in exchange for a small slack: mxk ≤ 2o(k)h2(x) on X .
A simple (but very strong) condition that allows this74 is

h1(x) ≤ mxk−c on X for some c ≥ 1. (8.1)

An anchor s ∈ X is a special point that allows us to carry out the above simplification assuming (8.1)
only at s ∈ X . The way that the definition of an anchor will then connect to Condition B is that h2
will be the polynomial [gn]Q and h1 will be the polynomial [gn]Q.

Definition 8.3 (Anchor in X , preliminary). We say that s ∈ X is an anchor if there is a constant
c ∈ N such that for every k ∈ N, k ≥ c, every m ∈ N and every polynomials h1, h2 ∈ N[x], if

(i) mxk ≤ h1(x) + h2(x) on X

(ii) h1(s) ≤ msk−c,

then mxk ≤ 2o(k)h2(x) on X .75

An anchor s ∈ X is, by definition, a very special element in X . Namely, it allows us, given a
rather weak upper bound on the polynomial h1 at a single (anchor) point s in (ii), to eliminate h1
from the right-hand side of the inequality in (i) (with a small slack) for all points in X . This is the
power of an anchor, and also the source of difficulty proving that a point s is an anchor.

The crucial property of anchors is this:

Theorem 8.4 (Anchor theorem, preliminary). If X ⊆ [1,∞) contains an anchor, then X is
connected.

We will not give the proof of Theorem 8.4 (but the reader may try to prove as an exercise that
s ∈ X being an anchor implies Condition B). Instead, we prove a slightly more general version of
Theorem 8.4 in Section 8.2 in the context of asymptotic spectra.

8.2. Anchors imply connectedness of univariate spectra
Let R be a semiring with a Strassen preorder P and let a ∈ R. We will in this section introduce
the anchor method for showing that X = X (a) ⊆ [1,∞) is connected. This will generalize the
preliminary anchor definition and theorem (Definition 8.3 and Theorem 8.4).76 In Section 8.3 we
will further generalize the anchor method to a multivariate version.

Definition 8.5 (Anchor in X with respect to R and P ). Let a ∈ R be fixed. We say that
s ∈ X = X (a) is an anchor with respect to R and P if for all large enough k ∈ N (say k ≥ c), every
m ∈ N and every polynomials h1, h2 ∈ N[x], if

(a) mak ≤P h1(a) + h2(a)

74Assuming X is also bounded.
75Note that h1, h2 may depend on k, in particular their degrees may grow with k so that condition (b) cannot be

trivially satisfied by letting k grow.
76Since we may take R to be the semiring of polynomials N[x] with P the pointwise preorder on X .
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(b) h1(s) ≤ msk−c

then mak ≤P 2o(k)h2(a).77

Note how the pointwise inequalities on polynomials in the preliminary Definition 8.3 are now
replaced by inequalities in the preorder P in Definition 8.5.

Theorem 8.6 (Anchor theorem). If s ∈ X is an anchor with respect to R and P , then X is
connected.

The hard work in applying Theorem 8.6 is to find an anchor. In Section 12 we will prove that
there is an anchor in the asymptotic spectrum of matrix multiplication and tensor networks. This
proof will rely on a shifting theorem that we will prove in Section 11.

Proof. Let s ∈ X be an anchor with respect to R and P . We will prove that Condition B holds,
which implies that X is connected (Lemmas 8.1 and 8.2). Let f, g ∈ N[x] such that f ≤ g on X . Let
us fix p ∈ Pn(f). The rest of the proof has two parts:

• Construct a subset Q ⊆ Pn(g) in such a way that part (ii) of Condition B,

for every q ∈ Q, [fn]p(s) ≤ 2o(n)[gn]q(s),

is “trivially” true.

• Use the anchor to prove part (i) of Condition B:

[fn]p ≤ 2o(n)[gn]Q on X .

As a technical preparation, without loss of generality we have that deg(f) ≥ c and deg(g) ≥ c
where c is the parameter dictated by the anchor (Definition 8.5), since otherwise we may multiply
both f and g by xc. We will use this later.

We first deal with part (ii). The choice of Q is practically forced on us, given what we want to
achieve. Namely, we let

Q := {q ∈ Pn(g) : [fn]p(s) ≤ [gn]q(s) · (|Pn(g)| · sc · 2δ(n))},

where δ(n) is a function in o(n) that we determine in the proof of part (i). Thus Pn(g) splits into
the disjoint union Pn(g) = Q∪Q of Q and its complement Q in Pn(g). The factor |Pn(g)| · sc · 2δ(n)
grows subexponentially in n (Lemma 6.6). It does not play a role in the proof of (ii), but it will
make (i) work. By definition of Q, we have for any q ∈ Q that

[fn]p(s) ≤ 2o(n)[gn]q(s).

Thus we see that part (ii) of Condition B is satisfied.
Now part (i). Recall that X = X (a). From f ≤ g on X we have by Strassen duality (Theorem 3.41)

that there is a function δ(n) = o(n) such that (in the preorder P )

fn(a) ≤P 2δ(n)gn(a).

77In our application we will take c = 1.
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(Thus Strassen duality provides us the function δ(n) = o(n) that we promised to determine when we
defined Q above.) Thus letting h1 = 2δ(n)[gn]Q and h2 = 2δ(n)[gn]Q we have

[fn]p(a) ≤P fn(a) ≤P 2δ(n)gn(a) = h1(a) + h2(a).

In this inequality we need to “get rid of” h1(a) = 2δ(n)[gn]Q(a) on the right-hand side to get (i). In
order to make use of the anchor s to do this, we observe that by definition of the complement set Q
we have

[gn]Q(s) ≤ |Pn(g)| ·max
q∈Q

[gn]q(s) ≤ [fn]p(s) · s−c · 2−δ(n).

We thus have [fn]p(a) ≤P h1(a) + h2(a) in R and h1(s) ≤ [fn]p(s) · s−c. (Note that deg(f) ≥ c
implies that deg([fn]p) ≥ c). We are now precisely in the situation that we can use that s is an
anchor with respect to R and P (Definition 8.5). From this it follows that

[fn]p(a) ≤P 2o(n)h2(a) = 2o(n)[gn]Q(a).

In particular, using the easy direction of Strassen duality (Theorem 3.41),

[fn]p(x) ≤ 2o(n)[gn]Q(x) on X .

This gives (i) of Condition B. We conclude that Condition B holds.

8.3. Anchors imply log-star-convexity of multivariate spectra
In Section 8.2 we proved the one-dimensional anchor theorem (Theorem 8.6). Now we will discuss
its high-dimensional (or multivariate) version. Here for the first time we will be able to see the
notion of log-star-convexity properly in action (before, it coincided with connectedness), which is
defined as follows:

Definition 8.7 (Star-convexity). Any set A ⊆ Rk≥0 is called star-convex with respect to a ∈ A
(which is called a center) if for any b ∈ A it holds that the line segment [a, b] is contained in A. We
call the set X ⊆ [1,∞)k log-star-convex with respect to a ∈ X if the set logX is star-convex with
respect to log a.

A star-convex set need not be convex (Fig. 2). However:

Lemma 8.8. The set of all centers of A is convex

Proof. We leave this as an exercise to the reader.
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Figure 2: Example of a star-convex set (blue filled region) that is not convex. The subset of centers
(striped region) is always convex.

This high-dimensional version of the anchor theorem we will state directly in the language of
semirings and preorders. Let R be a semiring with a Strassen preorder P and let a1, . . . , ak ∈ R
be finitely many semiring elements. Recall that X (a1, . . . , ak) ⊆ [1,∞)k denotes the asymptotic
spectrum evaluated at a1, . . . , ak (Definition 3.21).

Definition 8.9 (Anchor in X with respect to R and P ). We call s ∈ X (a1, . . . , ak) an anchor with
respect to R and P if there are c ∈ Nk and ε(j) = o(j1 + · · ·+ jk) such that the following holds. For
all large enough ji ∈ N, every m ∈ N, and every polynomials h1, h2 ∈ N[x1, . . . , xk], if

(a) maj11 · · · a
jk
k ≤P h1(a1, . . . , ak) + h2(a1, . . . , ak)

(b) h1(s1, . . . , sk) ≤ msj1−c11 · · · sjk−ckk

then maj11 · · · a
jk
k ≤P 2ε(j)h2(a1, . . . , ak).

Theorem 8.10 (Multivariate anchor theorem). If s = (s1, . . . , sk) ∈ X (a1, . . . , ak) is an anchor,
then X (a1, . . . , ak) is log-star-convex with respect to s.

The proof of Theorem 8.10 is a natural extension of the univariate proof (Theorem 8.6) and we
leave it to the reader.

Looking ahead, in Part III we will apply the anchor method in the settings of matrix multiplication
and tensor networks to prove log-star-convexity of the relevant asymptotic spectra. Finding anchors
in these settings is non-trivial and requires the so-called shifting and compression theorems that we
prove in Part III.

9. Applications and extensions of connectedness

In Part II we have discussed several characterizations of connectedness of asymptotic spectra and
methods to prove connectedness, log-star-convexity and log-convexity. In this section we will
discuss applications these properties of asymptotic spectra, focussing on the task of upper bounding
the asymptotic rank (Sections 9.1 and 9.2). Then we will have a high-level discussion of type
decompositions in the context of convexity properties of asymptotic spectra (Section 9.3).

9.1. The power of connectedness and convexity in bounding rank
Polynomial inequalities in the semiring provide a central tool for upper bounding the asymptotic
rank (or lower bounding the asymptotic subrank). Indeed, Schönhage’s tau theorem is a perfect
example of this technique, and is behind almost all improvements on the matrix multiplication
exponent. In this section we will see that if the asymptotic spectrum is connected, this technique is
enhanced! Namely, one can obtain bounds from inequalities that in the general case would imply
none, and also extract much better bounds from polynomial inequalities than without them.

We use our usual notation: let R be a semiring, let P be a Strassen preorder on R and let a ∈ R
be a semiring element.78 Let X (a) ⊆ [1,∞) be the asymptotic spectrum X evaluated at the

78We may assume that R is generated by a.
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element a. Recall that P̃ is the asymptotic preorder associated to P , which is defined by a ≤P̃ b if
and only if an ≤P bn+o(n).

For example, R may be the semiring generated by the matrix multiplication tensor a = MM2 so
that the asymptotic rank R̃(a) = 2ω captures the matrix multiplication exponent ω (Example 2.22).
Everything we will do also applies (by changing the direction of all inequalities) to lower bounding
the asymptotic subrank Q̃(a), for example the Shannon capacity of graphs (Example 2.20), assuming
the semiring is gapped. For simplicity we will assume throughout this section that our semiring is
gapped, so that the asymptotic subrank is the minimum point in the asymptotic spectrum.

The starting point that we will take is Schönhage’s tau theorem for matrix multiplication, or
rather the generalized version (namely the version for arbitrary semirings with Strassen preorder)
that we discussed in Corollary 4.3 (where we proved it as an application of the “additivity if and
only if multiplicativity” theorem Theorem 4.1 that in turn followed from Strassen’s duality). This
tau theorem, slightly rephrased, provides a way to obtain an upper bound on the asymptotic rank
from an inequality in the asymptotic preorder P̃ in which a polynomial expression of a is upper
bounded by a natural number:

Theorem 9.1 (Tau theorem, Corollary 4.3). For any ni, r ∈ N,∑
i

ani ≤P̃ r ⇐⇒
∑
i

R̃(a)ni ≤ r.

A good way to think about Theorem 9.1, and to remember it, is to draw curves cutting out
the asymptotic spectrum X (a), as follows. Suppose79 that X (a) is the disjoint union of two closed
intervals. Suppose that

∑
i a
ni ≤P̃ r. Then

∑
i s
ni ≤ r for all s ∈ X (a). In other words, r −

∑
i x

ni

is non-negative on X (a). Note that r−
∑
i x

ni is non-increasing in x. Drawing the set X (a) ∈ [1,∞)
(in black) together with the curve r −

∑
i x

ni (in red), the situation must look like in Fig. 3:

Q̃(a) R̃(a)

Figure 3: Disconnected spectrum and non-negative monotone curve

The point of the proof of Theorem 9.1 is that, since the red curve is non-increasing, and is non-
negative on X (a), we must have that it crosses the x-axis to the right of the point R̃(a) ∈ X (a), and
thus R̃(a) is upper bounded by the single root of the red curve.

The power of the tau theorem (Theorem 9.1) is witnessed in practice by the fact that the fastest
matrix multiplication algorithms rely on it. The above proof ideas (in particular the usage of Strassen
duality) lead in a simple manner to a more general upper bound method. This method does not need
any assumptions on the asymptotic spectrum. However, in this generality we will have an implication
in one direction only rather than an equivalence. Namely, from any inequality p(a) ≤P̃ q(a) for
p, q ∈ N[x] we may derive an upper bound on the asymptotic rank R̃(a), in the following way. Recall
that S(p ≤ q) = {s ∈ [1,∞) : p(s) ≤ q(s)} denotes the locus of the inequality p ≤ q.

79This assumption is only for the purpose of illustration, as Theorem 9.1 holds regardless of what the asymptotic
spectrum looks like, and in particular regardless of whether the asymptotic spectrum is connected or not.
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Theorem 9.2. Let p, q ∈ N[x]. Then

p(a) ≤P̃ q(a) =⇒ R̃(a) ≤ maxS(p ≤ q).

Theorem 9.2 clearly specializes to Theorem 9.1 by taking p =
∑
i x

ni and q = r. Whereas
Theorem 9.1 gives an equivalence (i.e., is tight as a method for upper bounding asymptotic rank),
in the more general Theorem 9.2 the reverse implication is not always true. Examples can easily
be constructed in which p(R̃(a)) ≤ q(R̃(a)) and p(Q̃(a)) > q(Q̃(a)), which prevents the reverse
implication. These examples will necessarily come from p and q so that the function q(x) − p(x)
is not monotone. (On the other hand, there is a zone of choices for p and q that is more general
than Theorem 9.1 but where the converse R̃(a) ≤ maxS(p ≤ q) =⇒ p(a) ≤P̃ q(a) still holds, for
example when q(x)− p(x) has at most one root in [1,∞).)

Proof. If p(a) ≤P̃ q(a), then X (a) ⊆ S(p ≤ q) by definition (the opposite implication is also true by
Strassen duality). By Strassen duality, R̃(a) = maxX (a). Thus R̃(a) ≤ maxS(p ≤ q).

Theorem 9.2 does not use any special properties of the semiring and preorder. When we further
know that the asymptotic spectrum is connected (which we will prove is the case for tensor networks,
Theorem 12.23), we can do more. Let us first stick to the previous example and suppose that instead
of an inequality

∑
i a
ni ≤P̃ r we managed to prove an inequality

∑
i a
ni ≤P̃

∑
i a
mi for ni,mi ∈ N.

What upper bound on R̃(a) does such an inequality give? A priori, none, and it is easy to see this
in the illustration below. Again we draw X (a) (in black) and the curve

∑
i a
mi −

∑
i a
ni (in red).

As opposed to the previous illustration, this curve may not be monotone. We know that the curve
must be non-negative on X (a). However, since the curve is not monotone we can be in the unlucky
situation (unlucky because upper bounding the value of R̃(a) is our goal) in which the curve cuts
out two intervals, as in Fig. 4.

Q̃(a) R̃(a)

Figure 4: Disconnected spectrum and non-negative non-monotone curve

In this case indeed we do not learn any upper bound on R̃(a), because the locus S(p ≤ q) is
unbounded from above.

It is precisely when X (a) is connected that the above cannot happen and as a result we may
obtain an upper bound on R̃(a) from polynomial inequalities that are not monotone, as we will now
explain. Suppose that X (a) is connected and suppose that we know at least one element t ∈ X (a).
Suppose we prove an inequality

∑
i a
ni ≤P̃

∑
i a
mi for ni,mi ∈ N whose curve

∑
i x

mi −
∑
i x

ni

looks as in Fig. 5 (red):
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Q̃(a) R̃(a)t

Figure 5: Connected spectrum and non-negative non-monotone curve

We know that the red curve is non-negative on X . The non-negative locus of the red curve is a
disjoint union of connected components Yi. Since we know at least one element t ∈ X (a), we know
for which i we have X (a) ⊆ Yi. And thus for this i we have R̃(a) ≤ maxYi.

The above discussion leads naturally to the following method for upper bounding asymptotic
rank when the asymptotic spectrum is connected. The proof of this theorem will go along the same
lines as Theorem 9.2 making essential use of Strassen duality. The method will turn out to be tight
in a case corresponding to taking the point t of the above discussion to be Q̃(a).80 For t ∈ S(p ≤ q)
let S(p ≤ q)t denote the connected component of S(p ≤ q) that contains t.

Theorem 9.3. Suppose that X (a) is connected. Let p, q ∈ N[x] and let t ∈ X (a). Then

p(a) ≤P̃ q(a) =⇒ R̃(a) ≤ maxS(p ≤ q)t.

If Q̃(a) ∈ S(p ≤ q), then

p(a) ≤P̃ q(a) ⇐⇒ R̃(a) ≤ maxS(p ≤ q)Q̃(a).

Note how Theorem 9.3 has the potential to give better upper bounds on asymptotic rank
than Theorem 9.2 whenever the locus S(p ≤ q) has more than one connected component, as then
maxS(p ≤ q)t may be strictly smaller than maxS(p ≤ q).

Proof. If p(a) ≤P̃ q(a), then X (a) ⊆ S(p ≤ q)t by definition and using that X (a) is connected
and contains t. (The opposite implication is also true by Strassen duality.) By Strassen duality,
R̃(a) = maxX (a). Thus R̃(a) ≤ maxS(p ≤ q)t. This proves the first claim. To prove the reverse
implication in the second claim, we use that from the inequality R̃(a) ≤ maxS(p ≤ q)Q̃(a) it follows

that [Q̃(a), R̃(a)] ⊆ S(p ≤ q) which by Strassen duality gives the inequality p(a) ≤P̃ q(a).

The above approach of using polynomial inequalities and the connectedness of the asymptotic
spectrum of matrix multiplication may be the way to obtain better bounds on the matrix multipli-
cation exponent. So far, however, this approach has not been used, although the group-theoretic
approach for matrix multiplication [CU03, CKSU05, CU13] is in principle able to produce non-
monotone inequalities. Also the asymptotic spectrum of graphs is known to be connected [Vra21]
and the approach may thus be used to get better bounds on the Shannon capacity of graphs.

9.2. Multivariate bounds from convexity and star-convexity
In one dimension, different notions like connectivity, star-convexity and convexity all coincide. When
we move to higher dimension, they become successively stronger, and so do the consequences we

80If we happen to know it.
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can draw using them from given inequalities. We would like a multivariate analog of Fig. 5 and
Theorem 9.3, where we can use non-monotone inequalities to infer bounds on the asymptotic rank.
We will be able to do so for rectangular matrix multiplication.

We saw in Section 8 that the anchor method can produce only log-star-convexity (rather than
log-convexity), and in particular, connectedness. Strassen [Str88] proved log-star-convexity for the
spectrum of rectangular matrix multiplication

Xrect := X (MM2,1,1,MM1,2,1,MM1,1,2),

conjectured that it is actually log-convex, and proved if so how inequalities in that semiring provide
bounds on ω. We will show how log-star-convexity is in fact strong enough to provide bounds on ω,
albeit somewhat weaker. We thus prove a weaker form of his conjecture.

Throughout this section we use an important correspondence between Xrect and the spectrum of
square matrix multiplication Xsq := X (MM2,2,2), which follows from MM2 = MM2,2,2 = MM2,1,1 ⊗
MM1,2,1 ⊗MM1,1,2 and the following general correspondence. Let R be any semiring with Strassen
preorder. Assume that R is generated by a = (a1, . . . , ak). Let p = (p1, . . . , pm) be a polynomial
map with each pi having non-negative integer coefficients. Then b = p(a) = (b1, . . . , bm) generates
a subsemiring R′, and we have the projection of spectra X (b) = p(X (a)). So, in particular,
we have the projection from Xrect to Xsq given simply by the product of the three coordinates:
(u1, u2, u3) 7→ u1u2u3.81

We begin by recalling Schönhage’s tau theorem:

Theorem 9.4 (Theorem 4.12). Let ai, bi, ci, r ∈ N. Then∑
i

MMai,bi,ci ≤P̃ Ir =⇒
∑
i

(aibici)
ω/3 ≤ r

where Ir denotes the r × r × r diagonal tensor.82

Schönhage used Theorem 9.4 to obtain the upper bound ω ≤ 2.55 via the asymptotic inequality
R̃(MM4,1,3 ⊕MM1,8,1) ≤ 13. Later improved upper bounds have also made use of Theorem 9.4 or a
relaxation, called the Coppersmith–Winograd method, in which the left-hand side is replaced by a
certain non-direct sum of matrix multiplication tensors.

We now discuss Strassen’s result on the generalized tau theorem that can be proven assuming
log-convexity of the asymptotic spectrum of rectangular matrix multiplication. The main statement
that allows this is the following conditional point inclusion in the spectrum:

Lemma 9.5 ([Str88, page 135]). If Xrect is log-convex, then (ω/3, ω/3, ω/3) ∈ logXrect.

Proof. We have MM2 = MM2,2,2 = MM2,1,1 ⊗MM1,2,1 ⊗MM1,1,2 and so

max
s∈Xrect

s1s2s3 = R̃(MM2) = 2ω.

Let s = (s1, s2, s3) ∈ Xrect such that s1s2s3 = 2ω. The set Xrect is S3-invariant by symmetry of the
generators MM2,1,1, MM1,2,1, MM1,1,2. Thus also the cyclic permutations s′ = (s3, s1, s2) ∈ Xrect

81As we prove (in Part III) log-star-convexity not only for matrix multiplication but also for tensor networks, one
can see that we can make similar conclusions for the natural analog of ω in tensor networks on transitive graphs. We
will not pursue this here.

82We note for later comparison that a diagonal tensor is a direct sum of (degenerate) matrix multiplication tensors
via Ir =

⊕r
i=1 MM1.
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and s′′ = (s2, s3, s1) ∈ Xrect. Then, by the assumption of log-convexity of Xrect, we get that
(ss′s′′)1/3 ∈ Xrect and since (ss′s′′)1/3 = ((s1s2s3)1/3, (s1s2s3)1/3, (s1s2s3)1/3) = (2ω/3, 2ω/3, 2ω/3),
this finishes the proof of the claim.

Lemma 9.5 in turn implies the following generalized tau theorem for rectangular matrix multipli-
cation. This is a strong form of Schönhage’s tau theorem (Theorem 4.12) as the right-hand side is
not a constant but also a direct sum of matrix multiplication tensors, so we can get bounds on ω
from more general inequalities.

Theorem 9.6 (Strassen [Str88, page 108]). Let ai, bi, ci, a′i, b′i, c′i ∈ N. If Xrect is log-convex, then∑
i

MMai,bi,ci ≤P̃
∑
i

MMa′i,b
′
i,c
′
i

=⇒
∑
i

(aibici)
ω/3 ≤

∑
i

(a′ib
′
ic
′
i)
ω/3.

To prove Theorem 9.6 we need the following lemma.

Lemma 9.7. Let φ ∈ Xrect and a, b, c ∈ N. Then

φ(MMa,b,c) = φ(MM2,1,1)log aφ(MM1,2,1)log bφ(MM1,1,2)log c.

Proof. The proof follows the same simple approximation argument as the proof of the “square
version” of this lemma, Lemma 4.14, so we leave this to the reader.

Proof of Theorem 9.6. Lemma 9.5 says that there is an element φ ∈ Xrect such that

φ(MM2,1,1) = φ(MM1,2,1) = φ(MM1,1,2) = 2ω/3.

Applying this φ to both sides of the given inequality
∑
i MMai,bi,ci ≤P̃

∑
i MMa′i,b

′
i,c
′
i
and using

Lemma 9.7 gives the claim.

It is not known whether the assumption that Xrect is log-convex in Lemma 9.5 and Theorem 9.6
is true. Strassen conjectures that it is:

Conjecture 9.8 (Strassen [Str88, page 108]). Xrect is log-convex.

We will now discuss the role of log-star-convexity in this and a version of the tau theorem that it
implies. In Part II we have seen how anchors can be used to prove log-star-convexity of asymptotic
spectra. In the upcoming Part III the main goal will be to apply this method to the asymptotic
spectra of matrix multiplication and tensor networks to prove that they are log-star-convex:

Theorem 9.9 (Corollary 12.26). logXrect is star-convex with respect to the triangle

conv({(1, 1, 0), (1, 0, 1), (0, 1, 1)}).83

We can in turn use Theorem 9.9 to prove Strassen’s Theorem 9.6 unconditionally, but with an
adjusted exponent. The crucial step is the unconditional containment of the following point in the
asymptotic spectrum of rectangular matrix multiplication:

83Recall that the set of centers of a star-convex set is always convex (Lemma 8.8), so equivalently we could have said
that logXrect is star-convex with respect to the three points {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. However, we will explicitly
be using that the full triangle is contained in the set of centers in the proofs below.
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Lemma 9.10. ( 4−ω
7−2ω ,

4−ω
7−2ω ,

4−ω
7−2ω ) ∈ logXrect.

Proof. This proof will be very similar to the proof of Lemma 9.5, using the weaker log-star-
convexity rather than log-convexity. We have MM2 = MM2,2,2 = MM2,1,1 ⊗MM1,2,1 ⊗MM1,1,2

and so by Strassen duality we have maxz∈logXrect
z1 + z2 + z3 = ω. This means that there exists

z = (z1, z2, z3) ∈ logXrect such that z1 + z2 + z3 = ω. For any such z, by log-star-convexity of Xrect

and using the notation ∆z := conv({(1, 1, 0), (1, 0, 1), (0, 1, 1), z}), it follows that ∆z ⊆ logXrect.
We only know the existence of such a point z, but we may still compute a point of the form
(u, u, u) ∈ logXrect by evaluating

min
z:z1+z2+z3=ω

max{u : (u, u, u) ∈ ∆z},

where we take a minimum because we do not know what the true value of z is, so we need to assume
a worst-case z. We claim that the optimal value is u = 4−ω

7−2ω . In this optimization, by S3-symmetry
of Xrect and since logXrect is contained in the cube C with vertices {0, 1}3, we see that we may
without loss of generality take z to be the point (1, 1, ω − 2) or the point ((ω − 1)/2, (ω − 1)/2, 1),
which are respectively a vertex of the triangle given by the intersection of the plane z1 + z2 + z3 = ω
and the cube C, and a midpoint on an edge of this triangle.

To compute max{u : (u, u, u) ∈ ∆z} for z = (1, 1, ω − 2) we compute the intersection of the
line between (0, 0, 0) and (1, 1, 1) and the line between (1/2, 1/2, 1) and (1, 1, ω − 2), as drawn in
Figure 6.

(1, 0, 1)

(0, 1, 1)

(1, 1, 0)

(1, 1, 1)

(0, 0, 0)

(1, 1, ω − 2) = z

(u, u, u)

Figure 6: Using the star-convexity of logXrect to find a point of the form (u, u, u) in logXrect. The
red region is the set ∆z for z = (1, 1, ω − 2).

A straightforward computation gives the optimal value u = 4−ω
7−2ω .

To compute max{u : (u, u, u) ∈ ∆z} for the other candidate z = ((ω − 1)/2, (ω − 1)/2, 1) we
similarly compute the intersection of the line between (0, 0, 0) and (1, 1, 1) and the line between
((ω − 1)/2, (ω − 1)/2, 1) and (1, 1, 0). This computation gives the optimal value u = 2

5−ω .
Comparing 4−ω

7−2ω and 2
5−ω we see that on the feasible domain 2 ≤ ω ≤ 3 the former is smaller.

Now from Lemma 9.10 we obtain Strassen’s Theorem 9.6, unconditionally, but with an adjusted
exponent, namely 4−ω

7−2ω instead of ω3 :
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Corollary 9.11. Let ai, bi, ci, a′i, b′i, c′i ∈ N. Then∑
i

MMai,bi,ci ≤P̃
∑
i

MMa′i,b
′
i,c
′
i

=⇒
∑
i

(aibici)
4−ω
7−2ω ≤

∑
i

(a′ib
′
ic
′
i)

4−ω
7−2ω .84

Proof. Lemma 9.10 says that there is an element φ ∈ Xrect such that

φ(MM2,1,1) = φ(MM1,2,1) = φ(MM1,1,2) = 2
4−ω
7−2ω .

Applying this φ to both sides of the given inequality
∑
i MMai,bi,ci ≤P̃

∑
i MMa′i,b

′
i,c
′
i
and using

Lemma 9.7 gives the claim.

9.3. Type decompositions and convexity
In this subsection we will go on a diversion, and the reader can safely return to it after reading
Part III. Recall that a central component in establishing connectivity of certain spectra was a type
decomposition of polynomials that we developed in Section 6. There is a remarkable ubiquity of
such notions of type decompositions in the context of convexity results in the asymptotic spectra
literature of which we will now give a brief survey. These have in common that they “decompose” the
nth power of an object as a sum of polynomially many (in n) objects (or as an abstract collection of
polynomially many objects). One such type decomposition we have already discussed in detail in
Part II, and the polynomial growth of the number of components (Lemma 6.6) played a crucial role
in the proofs. We will see more kinds of type decompositions here, and how they help us better
understand the asymptotic spectrum and its possible convexity structure. We expect such type
decompositions to be the key to a general approach to convexity theorems within the theory of
asymptotic spectra.

Polynomials. We begin with the type decomposition for powers of polynomials that we have
discussed in Section 6, and on which the proof of convexity of the asymptotic spectrum of matrix
multiplication and tensor networks relies. We recall that for any polynomial f =

∑d
i=0 fixi ∈ N[x]

the type decomposition of fn is the sum ∑
p

[fn]p

where p goes over probability distributions on the d+ 1 monomials of f and the components of the
decomposition are the monomials [fn]p =

(
n
pn

)∏
i f

pin
i xipin, which naturally appear when expanding

the power fn without collecting terms of the same degree.
We may think of this type decomposition as a vanilla or domain-agnostic type decomposition.

Namely, it may be applied to any semiring generated by a single element by interpreting its elements
as polynomials in N[x]. This can be the subsemiring generated by a single tensor within the semiring
of tensors, or the subsemiring generated by a single graph within the semiring of graphs. More
generally, the multivariate version of the type decomposition for powers of polynomials can be
applied to any finitely generated semiring [Str88, Section 5]. An example of this is the semiring
generated by the matrix multiplication tensors MM2,1,1, MM1,2,1 and MM1,1,2, which is how the
convexity result for matrix multiplication is proven.

84Comparing 4−ω
7−2ω

to ω
3
, note that for 2 ≤ ω ≤ 3 we have 4−ω

7−2ω
≤ ω

3
with equality when ω = 2 (or when ω = 3).
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A distinctive feature of the type decomposition for powers of polynomials is that the compo-
nents [fn]p are again elements of the same univariate semiring N[x]. Interestingly, we will now see
that some specialized or domain-specific type decompositions, two important examples of which we
are going to discuss next, do not have this property.

Tensors. We will now discuss two domain-specific type decompositions for powers of tensors (in
the setting of Example 2.21). We refer to these as the classical decomposition and the quantum
decomposition.

Classical decomposition of tensors. The classical decomposition is the simplest of the two
and is defined for tensors over any ground field. This decomposition is based on a straightforward
partitioning of the standard basis of the tensor space. This approach falls under the method of
types from information theory [CT12, Chapter 11]. This decomposition plays a central role in the
construction of Strassen’s “support functionals” in [Str91]. We first describe the decomposition and
then the related convexity result regarding the support functionals.

The basic ingredient for the classical decomposition is a direct sum decomposition of the vector
space (Fd)⊗n induced by a set decomposition of the standard basis that respects a natural group
action. We define the type of an n-tuple s ∈ [d]n as the d-tuple w = (|{j : sj = i}|)i∈[d] that counts
the number of occurrences of the elements of [d] in s. For every type w we define [(Fd)⊗n]w to be
the subspace of (Fd)⊗n spanned by the elements es1 ⊗ · · · ⊗ esn for all s ∈ [d]n with type w. Then

(Fd)⊗n =
⊕
w

[(Fd)⊗n]w

where the sum is over the types w of all elements in [d]n (of which there are polynomially many
in n). Note that every component [(Fd)⊗n]w is invariant under permuting the n tensor factors of
(Fd)⊗n.

The classical decomposition of powers of tensors T⊗n ∈ (Fd1 ⊗ Fd2 ⊗ Fd3)⊗n is defined by
identifying (Fd1 ⊗ Fd2 ⊗ Fd3)⊗n with (Fd1)⊗n ⊗ (Fd2)⊗n ⊗ (Fd3)⊗n and then decomposing each
factor (Fdi)⊗n to obtain the decomposition

(Fd1)⊗n ⊗ (Fd2)⊗n ⊗ (Fd3)⊗n =
⊕
w

[(Fd1)⊗n ⊗ (Fd2)⊗n ⊗ (Fd3)⊗n]w

where the sum is over all triples w = (w1, w2, w3) with wi a type of an element in [di]
n and where

[(Fd1)⊗n ⊗ (Fd2)⊗n ⊗ (Fd3)⊗n]w = [(Fd1)⊗n]w1
⊗ [(Fd2)⊗n]w2

⊗ [(Fd3)⊗n]w3
.

For a tensor T ∈ Fd1 ⊗ Fd2 ⊗ Fd3 the classical decomposition of the nth power T⊗n, which is an
element of (Fd1)⊗n ⊗ (Fd2)⊗n ⊗ (Fd3)⊗n, is the decomposition

T⊗n =
∑
w

[T⊗n]w

where [T⊗n]w is the projection of T⊗n to the subspace [(Fd1)⊗n ⊗ (Fd2)⊗n ⊗ (Fd3)⊗n]w.
The classical decomposition plays an important role for a construction of Strassen’s support

functionals [Str91], which are points in the asymptotic spectrum of a certain subsemiring of all
tensors. This subsemiring is defined as follows. The support supp(T ) of a tensor T ∈ Fd1 ⊗Fd2 ⊗Fd3
is called oblique if the elements form an antichain with respect to the coordinate-wise order on
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[d1]× [d2]× [d3]. The tensors with oblique support form a semiring. The construction of Strassen’s
support functionals is based on an optimization of an entropy-like function over all normalized
types that appear in the classical decomposition of T⊗n, so that the support functionals measure
the size of the components that appear in the decomposition. The support functionals form a
family ζθ indexed by θ = (θ1, θ2, θ3) from the probability simplex Θ, a convex set. Thus the support
functionals provide a convexly indexed subset of the asymptotic spectrum of oblique tensors. We
do not know whether this gives the full spectrum or whether the spectrum itself is convex. The
support functional construction covers all known elements in the asymptotic spectrum of oblique
tensors. At the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) of the simplex Θ, the support functional ζθ is
equal to the respective flattening ranks, and for every tensor T the minimum minθ ζ

θ(T ) is equal to
the asymptotic slice rank of T . We refer to [Str91], [CVZ18], [Zui18], [CLZ23] for more details on
the support functionals, and in particular [CGLZ20] for an application to barriers for rectangular
matrix multiplication (cf. Section 4.5).

Quantum decomposition of tensors. We now discuss the quantum decomposition. This
decomposition is based on the fundamental Schur–Weyl duality of representation theory which is
also sometimes referred to as the quantum method of types [Har05]. Schur–Weyl duality plays a
central role in the construction of the quantum functionals in [CVZ18] and geometric complexity
theory [BI11]. The quantum decomposition applies only to tensors over the complex numbers.
Contrary to the classical decomposition discussed earlier, the quantum decomposition does not
correspond to a set decomposition of the standard basis of the tensor space, but rather makes use
of subspaces with a different kind of symmetry. We first describe the decomposition and then we
discuss two important convexity results related to this decomposition.

The basic ingredient for the quantum decomposition is a direct sum decomposition of the vector
space (Cd)⊗n that respects a natural group action. Namely, let the symmetric group Sn act
on (Cd)⊗n by permuting the n tensor factors (as before) and let the general linear group GLd act
on V by acting on each of the n tensor factors simultaneously. These actions commute and thus the
product group Sn ×GLd acts accordingly on (Cd)⊗n. It is a central result in representation theory,
called Schur–Weyl duality, that (Cd)⊗n decomposes into a direct sum of irreducible representations
as

(Cd)⊗n =
⊕
λ`dn

[(Cd)⊗n]λ

where the sum is over the partitions λ of n of at most d parts (of which there are polynomially
many in n), and such that every component [(Cd)⊗n]λ is an irreducible Sn ×GLd representation of
the form [(Cd)⊗n]λ = Vλ ⊗Wλ where Vλ is an irreducible Sn-representation of type λ and Wλ is an
irreducible GLd-representation of type λ.

We now describe the quantum decomposition of powers of tensors T⊗n ∈ (Cd1 ⊗ Cd2 ⊗ Cd3)⊗n

using the decomposition of (Cd)⊗n. The group Sn × (GLd1 × GLd2 × GLd3) acts on the space
(Cd1 ⊗ Cd2 ⊗ Cd3)⊗n similarly as above. We may identify (Cd1 ⊗ Cd2 ⊗ Cd3)⊗n with the tensor
product (Cd1)⊗n ⊗ (Cd2)⊗n ⊗ (Cd3)⊗n which decomposes as a sum of irreducible representations as

(Cd1)⊗n ⊗ (Cd2)⊗n ⊗ (Cd3)⊗n =
⊕
λ`3dn

[(Cd1)⊗n ⊗ (Cd2)⊗n ⊗ (Cd3)⊗n]λ

where the sum is over triples of triples λ = (λ1, λ2, λ3) with λi a partition of n into at most di
parts (of which there are polynomially many) and each component in turn can be written as
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[(Cd1)⊗n ⊗ (Cd2)⊗n ⊗ (Cd3)⊗n]λ = [(Cd1)⊗n]λ1 ⊗ [(Cd2)⊗n]λ2 ⊗ [(Cd3)⊗n]λ3 , where the [(Cdi)⊗n]λi

are the irreducible Sn ×GLdi representations as before.
Now let T ∈ Cd1⊗Cd2⊗Cd3 . The quantum decomposition of T⊗n ∈ (Cd1)⊗n⊗(Cd2)⊗n⊗(Cd3)⊗n

is the decomposition
T⊗n =

∑
λ`3dn

[T⊗n]λ

where [T⊗n]λ is the projection of T⊗n to the subspace [(Cd1)⊗n ⊗ (Cd2)⊗n ⊗ (Cd3)⊗n]λ.
The construction of a family of elements in the asymptotic spectrum of tensors by Christandl,

Vrana and Zuiddam [CVZ18] relies on the quantum decomposition. The construction of these
elements, called the quantum functionals, is based on an optimization of an entropy-like function
over the so-called moment polytope. The moment polytope is defined as the Euclidean closure
of the set of triples (λ1/n, λ2/n, λ3/n) over all λ `3d such that the component [T⊗n]λ in the
quantum decomposition of T⊗n is nonzero, and it is a central result that this set is indeed a
convex polytope [Nes84, Bri87, Fra02]. Similarly as for the support functionals and the classical
decomposition, the quantum functionals should be thought of as measuring the size of the components
appearing in the quantum decomposition of powers of a tensor, asymptotically. They form a family F θ
that is indexed by elements θ = (θ1, θ2, θ3) from the probability simplex Θ, a convex set. Thus the
quantum functionals provide a convexly indexed subset of the asymptotic spectrum of tensors. We
do not, however, know whether they give the whole spectrum of complex tensors or whether the
whole spectrum is a convex set. The quantum functional construction covers all known elements
in the asymptotic spectrum. At the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) of the simplex Θ, the
quantum functional F θ is equal to the respective flattening ranks, and for every tensor T the
minimum minθ F

θ(T ) is equal to the asymptotic slice rank of T . We refer to [CVZ18, Zui18, CLZ23]
for more details on the quantum functionals, and again [CGLZ20] for an application to barriers for
rectangular matrix multiplication (cf. Section 4.5)

Graphs. The convexity result of Vrana [Vra21] for graphs that we mentioned in the previous
section is also built on a kind of type decomposition for powers of graphs, in the spirit of the method
of types and the classical decomposition of tensors. Different from the previous cases, here the type
decomposition does not write a power of a graph as a sum (which is disjoint union in this semiring)
of graphs. Rather it associates to a power of a graph the collection of induced subgraphs for every
choice of a type class in the vertex set. This type decomposition leads to a convex parametrization
of the asymptotic spectrum of graphs.

Summarizing, we have touched on several examples of type decompositions — one domain-
agnostic type decomposition (for polynomials) and several domain-specific type decompositions (for
tensors and graphs) — and related convexity theorems. We believe it will be important in future work
to further develop the understanding of type decompositions: What kind of type decompositions are
good for proving convexity theorems? Which Strassen preorders allow for such type decompositions?
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Part III

Compression of tensors
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In Part I we have introduced the theory of asymptotic spectra, of which the main result is the
duality theorem between the asymptotic preorder and the asymptotic spectrum. In Part II we
have developed methods to prove structural properties of the asymptotic spectrum (connectedness,
log-convexity, log-star-convexity), in particular the anchor method. This theory was developed in
full generality, that is, for any semiring with a Strassen preorder.

In Part III we will specialize, and apply the anchor method to the asymptotic spectrum of matrix
multiplication and the more general asymptotic spectra of tensor networks. As a consequence we
find that all these spectra are log-star-convex, and in particular connected. While Strassen had
already proved this result for the asymptotic spectrum of matrix multiplication, we extend his result
to all asymptotic spectra of tensor networks.

A good intuitive way to think about what is happening in this part, is as an error correction
result. This result gives a conversion from an algorithm which solves a large subset of the instances
of a problem of a given size n, into an algorithm which solves the problem on all instances of a
slightly smaller size, say n/2. Here the problem at hand is computing the multilinear polynomial
associated with a tensor, and a “large subset” above turns out to be (due to our choice of anchors) a
high-dimensional linear subspace of tensors. Concretely, for matrix multiplication one can imagine
turning a faulty algorithm which multiplies n× n matrices with an additive error given by a bilinear
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map of low image dimension, into an algorithm which correctly multiplies all (n/2)× (n/2) matrices.
We will discuss this concrete instance in Section 10 first as it is an interesting application in itself
and indicates the ingredients that we will need for the general result on tensor networks.

This conversion is broken into two parts, each performing certain linear transformations on
linear subspaces of tensors. The first, which is the subject of Section 11, is developing basis-shifting
theorems for such spaces. These apply linear transformations to shift the location of spanning sets
of our linear space; this may be viewed as a special notion of self-reducibility for computing tensors
(equivalently, the multilinear polynomials they represent). For appropriately shifted subspaces we
then develop, in Section 12, compression theorems which shrink the size of the tensor so that the
given subspace becomes full-dimensional. This may be viewed as a form of downward-self-reducibility
or self-correction. The combination allows us to prove that certain flattening ranks (Definition 12.6)
of the tensors are anchors, from which we can deduce connectivity and log-star-convexity of spectra.

Elaborating on the above, we will thus implement the anchor method (Section 8) with the choice
of anchor being any flattening rank (Definition 12.6). Central in this is that from the inequality

T ≤ S + U

with S having small flattening rank, we will infer the inequality

T ′ ≤ U

with T ′ slightly smaller than T and of the same structure. In Section 10 we start with doing so for
matrix multiplication.

10. Warm-up: compression (and error correction) of matrix
multiplication

In this section we give a high-level intuitive description of the compression theorem for the special
case of matrix multiplication tensors. We will discuss the important point that this compression
theorem implies a surprising error correction result for matrix multiplication algorithms, which
we think is of independent interest. In our intuitive description we will make sure highlight the
important ingredients in the proof of the compression theorem, of which we will see generalizations
and proofs in Section 11 and Section 12.

Generally we may think of 3-tensors as bilinear maps. Indeed, matrix multiplication is most
naturally understood (and viewed pictorially) as a bilinear map, so that is the language we will use
in this section. Let T (A,B) = AB be the bilinear map Fn1×n2 × Fn2×n3 → Fn1×n3 that multiplies
the n1×n2 matrix A with the n2×n3 matrix B, so that T pictorially performs the following matrix
multiplication operation:

An1

n2

· Bn2

n3

= ABn1

n3

The restriction preorder on tensors carries over to bilinear maps as a natural notion of reduction:
for any two bilinear maps S : V1 × V2 → V3 and T : W1 ×W2 → W3 we have S ≤ T if S can be
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obtained from T by applying linear maps to the inputs and output of T , that is, if there are linear
maps φi so that S(A,B) = φ3(T (φ1(A), φ2(B))). Here we will be dealing with matrix multiplication
maps and so the spaces Vi and Wi will be matrix spaces.

The error correcting procedure that we will describe in this section achieves the following. Assume
that we are handed a “faulty” bilinear map U for computing n× n matrix multiplication: Rather
than computing T (the real matrix multiplication map), it computes U = T − S, where subtraction
is coordinatewise, and where S is an adversarial bilinear map of low (say < n2/4) image dimension
(i.e., flattening rank).85 Then (using linear operations on the inputs and outputs to U) we can use
it to correctly compute the bilinear map T ′ for (say) n/2× n/2 matrix multiplication.

Formally, as a starting point we assume that we can write the matrix multiplication map T as a
coordinatewise sum

T = S + U (10.1)

of two bilinear maps S and U that are also of the format Fn1×n2 × Fn2×n3 → Fn1×n3 .86 Further,
we assume that the image Im(S) = {S(A,B) : A ∈ Fn1×n2 , B ∈ Fn2×n3} of S has low dimension.87
We will prove that then T ′ ≤ U , where T ′ is a slightly smaller matrix multiplication tensor. For
example, if n1 = n2 = n3 = n then we may take T ′ to be the n/2×n/2 matrix multiplication tensor.

The proof has two separate parts, which will be (respectively) elaborated in Section 11 and
Section 12. The first, applies the same row operation L to the rows of A and AB, and R to the
columns of B and AB — these clearly do not affect T (this is called “the invariance property” in
Section 12.4). Its purpose is to strategically structure a basis for the (low-dimensional) space Im(S)
(this is called “basis shifting” in Section 11). The second part (“compression”, in Section 12) is
applying a restriction to T , which combines projections on the A-leg and B-leg of the tensor T ,
as well as a linear operation Q applied to the “AB-leg” of the tensor T (i.e., the output of T as a
bilinear map). These together create a slightly smaller matrix multiplication tensor T ′, on which
the contribution of S is 0. Combined, these two parts prove that T ′ ≤ U . We will discuss the two
parts further in the rest of this section.

In Section 11 and Section 12 these parts will be explained and proved in the general setting of
tensor networks, of which matrix multiplication is the simplest example.

Step 1: Invariance property and matrix subspace basis shifting. As mentioned before,
the matrix multiplication map T (A,B) = AB has the obvious invariance property that for any
invertible linear operations L : Fn1 → Fn1 and R : Fn3 → Fn3 we have

L−1T (LA,BR)R−1 = L−1LABRR−1 = AB.

(This invariance of the matrix multiplication map T under this action by L and R, sometimes
referred to as sandwiching action, we will later generalize to tensor networks as the invariance
property, Lemma 12.16)

In this first step, we use this invariance property for special L and R applied to both sides of the
equality T = S + U , to modify S and in particular restructure its image subspace Im(S). Note that
this image subspace Im(S) ⊆ Fn1×n3 is a subspace of matrices. A good way to view a subspace of
matrices (of dimension d) is as a single matrix with entries that are d-vectors. Using the assumption

85To appreciate the power of such an adversary, an example of such S is adding, to each of an arbitrary subset of
the output matrix of the algorithm (of size n2/4), arbitrary linear forms of all output entries.

86Technically the starting point will be that T ≤ S ⊕ U , which implies (10.1) by slightly changing S,U .
87This is the same as S (as a tensor) having low flattening rank on the n1 × n3 leg.
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of low dimension of the matrix subspace Im(S), say d = dim(Im(S)), we will be able to find (as
will be proved in Section 11) invertible matrices L ∈ Fn1×n1 and R ∈ Fn3×n3 such that the matrix
subspace L Im(S)R = Im(LSR) has the following special structure.88 (This is what we call a basis
shifting theorem in Section 11.) The special structure is that the m1 ×m3 top-left entries of the
new subspace L Im(S)R, thought of as d-vectors, are in the linear span of the other entries (for
parameters m1,m3 that depend on the actual dimension of the image of S):

Im(LSR) =

m1

m3

C
(10.2)

In the terminology we will formally introduce in Section 11, Im(LSR) is C-spanning where C is the
blue-shaded region in the picture. For example, to get a feeling for the numbers, if in T we have
that n1 = n2 = n3 = n, and the “low” dimension of Im(S) was (1/4)n2, then we will get from the
shifting theorem (Theorem 11.8) that we may take m1 = m3 = n/2.

We have thus applied L and R to the output of S to ensure the image subspace has special
structure. We now also apply their inverses to the inputs as follows so that we can apply the invariance
property of T . To this end we define the bilinear map S′ by S′(A,B) = LS(L−1A,BR−1)R. The
subspace Im(S′) equals the subspace Im(LSR) and is thus still C-spanning (as in (10.2)).

Applying the above maps L and R to both sides of our assumed starting equation S = T +U we
find the equation

LT (L−1A,BR−1)R = LS(L−1A,BR−1)R+ LU(L−1A,BR−1)R.

We already know that T has the invariance property that T (A,B) = LT (L−1A,BR−1)R. So,
defining the bilinear map U ′ by U ′(A,B) = LU(L−1A,BR−1)R we find

T = S′ + U ′.

We have thus transformed the starting equation T = S + U into a new equation T = S′ + U ′ so
that the image of S′ is C-spanning. In particular, what we will need from this in the next step is
that the C-spanning property implies that there is a linear map Q : Fn1×n3 → Fn1×n3 which adds
linear combinations of the entries in the blue region (as in (10.2)) to arbitrary entries in a way that
Q Im(S′) = 0 and the composed map QS′ is the zero map.89

Step 2: Projection property and compression. In the second step we use the fact (which we
will later generalize to tensor networks as the projection property, Lemma 12.13) that T becomes a
smaller matrix multiplication map T ′ when we restrict the input matrices appropriately. Namely, we
may set certain rows of A and columns of B to 0 so as to enforce the previously defined blue-shaded
region C (as in (10.2)) in the product AB to 0. Pictorially this looks as follows:

88Here LSR denotes the bilinear map obtained by multiplying the output of S, which is a matrix, from the left by
L and from the right by R.

89Notice that Q acts on one leg of the tensor, so a legitimate restriction operation.
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0

m1

n2

· 0n2

m3

=

0

m1

m3

And so the new bilinear map T ′( , ) = T
(

,
)
is indeed precisely a slightly smaller matrix

multiplication map Fm1×n2 × Fn2×m3 → Fm1×m3 (with the mi slightly smaller than the ni as will
be determined by the shifting theorem).

Now we use the linear map Q : Fn1×n3 → Fn1×n3 previously found in Step 1. It is clear that this
map Q acts as the identity on the matrix subspace

Im(T ′) =

0

m1

m3

as it will just be adding zeroes to the red region. Moreover, recall that we constructed Q so that the
composition QS′ equals zero. We thus find that

T ′( , ) = QT
(

,
)

= QS′
(

,
)

+QU ′
(

,
)

= QU ′
(

,
)
,

since QS′
(

,
)

= 0. It follows that

T ′ ≤ U ′ ≤ U,

which is what we wanted. This finishes the high-level description.
Repeating the “error correction” interpretation above, any erroneous bilinear algorithm U for

n× n matrix multiplication, in which errors are introduced by the addition of a low dimensional
bilinear map S, can be converted by linear operations to its inputs and outputs into a correct bilinear
n/2× n/2 matrix multiplication algorithm T ′.

11. Basis shifting of tensors of vectors

In this section we develop a method called basis shifting for tensors of vectors, extending a result of
Strassen [Str88] that powered his proof that the asymptotic spectrum of matrix multiplication is
log-convex. We will throughout shorten the term basis shifting to just shifting. Our proof of shifting
is simpler and provides a more precise analysis. Our extension will enable us to prove new convexity
results for the asymptotic spectrum of tensor networks.

A tensor of vectors is a collection V = (vi : i ∈ I) of vectors vi ∈ Fk that is indexed by a finite
set of the form I = [n1]× · · · × [n`]. Thus V is an `-dimensional array (or tensor) of vectors. The
group GLn1

× · · · ×GLn`
acts naturally on V by taking linear combinations of the vectors vi in a

way compatible with the structure of I (Definition 11.4). Let U = (ui : i ∈ I) ∈ (Fk)I be a new
family obtained from V by acting with an element of GLn1

× · · · × GLn`
. Shifting theorems say
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which subsets of U are a spanning set of span(U). If B ⊆ I and {ui : i ∈ B} is a spanning set of U ,
then we say that U is B-spanning. Our task is to make, via linear transformations taking V to U ,
the family U to be B-spanning for “as many”, and “as generally structured” sets B as possible.

The simplest shifting theorem, for when the dimension ` = 1, and the index set is I = [n], is
as follows. Let d := dim(span(V)). Suppose d ≤ b = (b + 1) − 1 ≤ n.90 Clearly there is a subset
B ⊆ I of cardinality b such that {vi : i ∈ B} is a spanning set of V and so V is B-spanning. Let
U = (ui : i ∈ I) be obtained from V by taking random linear combinations of the vi. Then with
high probability (which goes to 1 when the size of the field F grows) U is B-spanning for any subset
B ⊆ [n] of cardinality b (Lemma 11.6). The proof of this statement is a simple application of the
Schwartz–Zippel lemma [DL78, Sch80, Zip79] to matrix minors.

The next case, when the dimension ` = 2, and I = [n1]× [n2], is much more interesting. Strassen
proved, implicitly, the following shifting theorem for this case. Let d := dim(span(V)). Let bi ≤ ni
be integers such that d ≤ (b1 + 1)(b2 + 1)− 1. Let the family U = (ui : i ∈ I) be obtained from V by
taking random linear combination of the vi by acting with GLn1×GLn2 . Then, with high probability
(which goes to 1 when the size of the field F grows), for any set B = (B1 × [n2]) ∪ ([n1]×B2) ⊆ I
where Bi has cardinality bi, the family U is B-spanning (Theorem 11.8). Our proof of this theorem
relies on a conditional version of Lemma 11.6 which effectively reduces the problem to dimension 1
via a combinatorial argument. For sets B that have this structure, this theorem is optimal in the
sense that the bi cannot be chosen smaller.

As a consequence of the generality and simplicity of our proof, we can extend the shifting theorem
of Strassen to the general case I = [n1]× · · · × [n`]. Let d := dim(span(V)). Let bi ≤ ni be integers
such that d ≤ (b1 + 1) · · · (b` + 1)− 1. Let U = (ui : i ∈ I) be obtained from V by taking random
linear combination of the vi by acting with GLn1

× · · · ×GLn`
. Then, with high probability (which

goes to 1 when the size of the field F grows), for any set B = (B1 × [n2]× · · · × [n`]) ∪ ([n1]×B2 ×
· · · × [n`]) ∪ ([n1] × [n2] × · · · × B`) ⊆ I where Bi has cardinality bi, the family U is B-spanning
(Theorem 11.10). We prove Theorem 11.10 by proving a conditional version, by induction over `,
with a conditional version of Lemma 11.6 as the base case. For sets B that have this structure, this
theorem is optimal in the sense that the bi cannot be chosen smaller.

The organization of this section is as follows. We begin with setting up formal definitions around
tensors of vectors and conditional dimension in Section 11.1. After that we gradually build towards
the most general result in Section 11.4. We warn the reader that while the proofs get more elaborate
notationally in each subsection, the main idea stays the same. We will end with a discussion of
the shifting result in the language of subspaces of tensors and how it relates to other lines of work
regarding rank and dimension for linear subspaces of matrices and tensors in Section 11.5.

11.1. Conditional dimension and group action on tensors of vectors
We start by setting up some notation for this section. Let F be a field.

Definition 11.1 (Conditional dimension). Let V and W be subspaces of Fk. As usual, we denote
by dim(V ) the dimension of V . We define the conditional dimension of V given W as

dim(V |W ) := dim(V +W )− dim(W ).91

90It will soon become clear why we write b as (b+ 1)− 1.
91Our notation for conditional entropy resembles the standard notation used in information theory for conditional

entropy H(X|Y ), which has an analogous definition H(X|Y ) = H(X,Y )−H(Y ).
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The conditional dimension can be thought of as the dimension of a quotient vector space,

dim(V |W ) = dim((V +W )/W ).

Equivalently, via the general equality dim(V + W ) = dim(V ) + dim(W ) − dim(V ∩W ), we may
write the conditional dimension as

dim(V |W ) = dim(V )− dim(V ∩W ).

Let V and W be subsets of Fk that are not necessarily subspaces. We naturally define the
dimension of V as

dim(V) := dim(span(V)).

We define the conditional dimension of V given W as

dim(V|W) := dim(span(V)| span(W)).

Remark 11.2. The conditional dimension satisfies

0 ≤ dim(V |W ) ≤ dim(V ).

These inequalities are tight. Namely, we have dim(V |W ) = 0 if and only if V ⊆W . On the other
hand, we have dim(V |W ) = dim(V ) if and only if V ∩W = {0}.

Let I be a finite index set. Suppose that for each i ∈ I we are given a vector vi ∈ Fk. Let us
denote this tensor of vectors by V, that is,

V = (vi : i ∈ I).

The structure of the index set I will not play a role until we define a group action on tensors of
vectors.

Definition 11.3 (B-spanning tensor of vectors). Let V = (vi : i ∈ I) ⊆ (Fk)I . Let B ⊆ I be a
subset of the index set. We will use the notation B := I \B to denote the complement of B in I.
We define the family VB by

VB := (vi : i ∈ B).

We call VB the restriction of V to B. We thus have V = VB ∪ VB. We say that the family V is
B-spanning if

dim(V|VB) = 0.

In other words, V is B-spanning if dim(VB) = dim(V), or equivalently, if span(VB) = span(V).

Definition 11.4 (Group action on tensors of vectors). Let V = (vi : i ∈ I) be a tensor of vectors
that is indexed by I = [n1] × · · · × [n`], so that V has the structure of an `-dimensional array of
vectors v(i1,...,i`) ∈ Fk. Let Γ = GLn1

(F) × · · · × GLn`
(F) be the group of `-tuples of invertible

matrices of dimension ni × ni, respectively. We define the action of Γ on V in the same way that Γ
would act on an `-tensor of format n1 × · · · × n`. Namely, for M = (M1, . . . ,M`) ∈ Γ we define the
family

M · V ⊆ Fk
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by M · V = (u(i1,...,i`) : i ∈ I) where

u(i1,...,i`) =
∑

(j1,...,j`)∈I

v(j1,...,j`) (M1)i1,j1 · · · (M`)i`,j` .

For example, when I = [n] the action of Γ = GLn(F) on V = (v1, . . . , vn) simply takes linear
combinations of the vectors vi. Or, when I = [n1]× [n2] the action of Γ = GLn1

(F)×GLn2
(F) on

V = (v(i,j))(i,j)∈I takes linear combinations of the vectors v(i,j).

11.2. Shifting of one-dimensional tensors of vectors
The shifting theorem that we will discuss now is the simplest one and demonstrates the idea of
shifting. We will use it later to prove the other shifting theorems.

Let I = [n] and let V = (vi : i ∈ I) ∈ (Fk)I . As we discussed in Section 11.1, we think of V
as a one-dimensional array of vectors vi and the group Γ = GLn(F) acts on V by taking linear
combinations of the vectors vi. Namely, for every M ∈ Γ we defined M · V = (ui : i ∈ I) where
ui =

∑
j∈I vjMi,j .

We begin with a trivial fact and then give a more robust version of that fact which follows from
the Schwartz–Zippel lemma.

Fact 11.5. Let d = dim(V). Let b be an integer for which d ≤ b ≤ n. Then there exists a subset
B ⊆ [n] of cardinality |B| = b such that V is B-spanning.

For any subset S ⊆ F we let GLn(S) denote the subset of matrices in GLn(F) with coefficients
in S. We use this notation to give concrete bounds (using the Schwartz-Zippel lemma) on the
measures (ratio) of “good” matrices in the results that follow. In the following, S will always be a
finite subset. The field F is arbitrary.

Lemma 11.6. Let S ⊆ F be finite. Let d = dim(V). Let b be an integer for which d ≤ b ≤ n.

(i) Except for a measure at most d/|S| of all M ∈ GLn(S), the family M · V is [b]-spanning.

(ii) Except for a measure at most
(
n
b

)
d/|S| of all M ∈ GLn(S), for every subset B ⊆ [n] of

cardinality b, the family M · V is B-spanning.

Proof. (i) Let U = {u1, . . . , un} = M · V for any M ∈ GLn(F). The family U is not [b]-spanning if
and only if the span of u1, . . . , ub has dimension strictly less than d. The span of u1, . . . , ub has
dimension strictly less than d if and only if every d×d minor of the matrix with columns u1, . . . , ub is
zero. Every ui is a linear combination of the vj , namely ui =

∑
j vjMi,j . Therefore, there is a finite

collection of polynomials {fk} in the coefficients of M and of degree d (namely, the aforementioned
d× d minors) so that: for all k we have fk(M) = 0 if and only if U is not [b]-spanning. Since d ≤ b,
we know there exists an M ∈ GLn(F) such that U is [b]-spanning, and therefore at least one of the fk
is not the zero polynomial. For this nonzero polynomial g we have by Schwartz–Zippel that for the
coefficients Mi,j chosen randomly, independently and uniformly from the finite set S ⊆ F we have

Pr
M

[U is not [b]-spanning] = Pr
M

[∀k fk(M) = 0] ≤ Pr
M

[g(M) = 0] ≤ d

|S|
.

This proves the claim.
(ii) This claim follows from claim (i) by taking a union bound over all possible choices of B.
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We will need the following more refined (and more versatile) version of the above Lemma 11.6
that applies to conditional dimensions (Definition 11.1). To see how Lemma 11.6 relates to its
refinement, recall that Lemma 11.6 (i) says that, except for a measure at most dim(V)/|S| of all
elements M ∈ GLn(S), the family M · V is [b]-spanning. For U = M · V, saying U is [b]-spanning is
equivalent to saying that dim(U | U[b]) = 0. Rather than obtaining dim(U | U[b]) = 0 we will now be
aiming to get dim(U | W ∪ U[b]) = 0 for some arbitrary given tensor of vectors W.

Lemma 11.7. Let S ⊆ F be finite. Let W be an arbitrary tensor of vectors in Fk and let
d = dim(V|W) be the conditional dimension of V given W. Let b be any integer such that d ≤ b ≤ n.
(i) Except for a measure at most d/|S| of all M ∈ GLn(S), for the family U = M · V, we have

that dim(U|W ∪ U[b]) = 0.

(ii) Except for a measure at most
(
n
b

)
d/|S| of all M ∈ GLn(S), for the family U = M · V, for every

set B ⊆ [n] of cardinality b, we have that dim(U|W ∪ UB) = 0.

(iii) Let V1, . . . ,Vm be a collection of tensors Vj = (vji : i ∈ [n]) and define the conditional
dimensions d(j) = dim(Vj |W ∪ V1 ∪ · · · ∪ Vj−1). Let b(j) be integers for which d(j) ≤ b(j) ≤ n.
Except for a measure at most

∑m
j=1

(
n
b(j)

)
d(j)/|S| of all M ∈ GLn(S), for U j = M · Vj, for

every collection of sets Bj ⊆ [n] each of size b(j), we have that

dim(U1 ∪ · · · ∪ Um|W ∪ U1
B1 ∪ · · · ∪ UmBm) = 0.

Proof. (i) This claim can be obtained from Lemma 11.6 (i) by applying it to the quotient space
(V + W )/W . This claim can also be proven directly, similarly to the proof of Lemma 11.6 (i).
Namely, in the proof of Lemma 11.6 (i) we took U = {u1, . . . , un} = M · V for any M ∈ GLn(S).
We then considered the matrix with columns u1, . . . , ub and reasoned about the fraction of choices of
M for which this matrix has rank strictly less than d. For the proof of claim (i) rather than taking
this matrix we take the matrix with columns u1, . . . , ub, w1, . . . , wr where the wi are elements of
W so that v1, . . . , vn, w1, . . . , wr span span(V) + span(W). Then we consider the (d+ r)× (d+ r)
minors of this matrix corresponding to all the submatrices that contain d of the columns u1, . . . , ub
and all the columns w1, . . . , wr, and then proceed as in the proof of Lemma 11.6 (i) to finish the
proof, noting that these minors are of degree d in the coefficients of M .

(ii) This claim follows from claim (i) by a union bound over all possible choices of B.
(iii) The proof is by induction on m. The base case dim(U1|W ∪ U1

B1) = 0 follows from (ii). For
the induction step, we assume that

dim(U1 ∪ · · · ∪ Um−1 | W ∪ U1
B1 ∪ · · · ∪ Um−1Bm−1) = 0

holds for every collection of sets Bj (j = 1, . . . ,m− 1), for all M ∈ GLn(S) except for a measure at
most

∑m−1
j=1

(
n
b(j)

)
d(j)/|S|. This implies span(U1 ∪ · · · ∪ Um−1) = span(W ∪U1

B1 ∪ · · · ∪ Um−1Bm−1) and
therefore

dim(U1 ∪ · · · ∪ Um−1 ∪ Um | W ∪ U1
B1 ∪ · · · ∪ Um−1Bm−1 ∪ UmBm)

= dim(U1 ∪ · · · ∪ Um−1 ∪ Um | W ∪ U1 ∪ · · · ∪ Um−1 ∪ UmBm)

= dim(W ′ ∪ Um|W ∪W ′ ∪ UmBm)

= dim(Um|W ∪W ′ ∪ UmBm)

whereW ′ = U1∪· · ·∪Um−1. By (ii) we have that dim(Um|W ∪W ′∪UmBm) = 0 for all Bm except for
a measure at most

(
n

b(m)

)
d(m)/|S| of all M ∈ GLn(S). Using the union bound we get the claim.

104



11.3. Shifting of two-dimensional tensors of vectors
In the previous subsection we discussed shifting for one-dimensional tensors of vectors. We now
move up one dimension and prove a generalization of the shifting theorem for two-dimensional
tensors of vectors of Strassen. Let I = [n1]× [n2] and let V = (vi,j : (i, j) ∈ I) ∈ (Fk)I . We think
of V as a matrix of vectors vi,j . The group Γ = GLn1

(F) × GLn2
(F) acts on V by taking linear

combinations of the rows and columns of V viewed as a matrix, as defined in Section 11.1. Our goal
is to shift V to a set B which is the union of some rows and some columns by acting with Γ.

Theorem 11.8 (Strassen). Let S ⊆ F be finite. Let d = dim(V). Suppose that b1 ≤ n1 and b2 ≤ n2
are integers such that d ≤ (b1 + 1)(b2 + 1)− 1.

(i) For all but a measure at most d/|S| of all M1 ∈ GLn1
(S) and a measure at most d/|S| of all

M2 ∈ GLn2
(S) we have that U = (M1,M2) ·V is B-spanning for B = ([b1]× [n2])∪ ([n1]× [b2]).

(ii) For all but a measure at most
(
n1

b1

)
d/|S| of all M1 ∈ GLn1

(S) and a measure at most
(
n2

b2

)
d/|S|

of all M2 ∈ GLn2(S) we have that U = (M1,M2) · V is B-spanning for all B of the form
B = (B1 × [n2]) ∪ ([n1]×B2) with |B1| = b1 and |B2| = b2.

Proof. (i) Let U = (M1,M2) · V for any M1 ∈ GLn1
(S) and M2 ∈ GLn2

(S). Then U ∈ (Fk)[n1]×[n2]

is a matrix of vectors. We let U1, . . . ,Un2 ∈ (Fk)[n1] be the “columns” of U , so that each U i is a vector
of vectors. We define the conditional dimensions di = dim(U i | U1 ∪ · · · ∪ U i−1) for i = 1, . . . , n2.
The numbers di depend on the choice of M2 (and they do not depend on the choice of M1). We are
interested in the M2 that have the following property among all choices of M2: d1 is maximized,
and conditioned on d1 being maximized, d2 is maximized, etc. for the other di. For such M2 we
have that the di satisfy d1 ≥ d2 ≥ · · · ≥ dn2

. Considering di × di minors and using a union bound
as in the proof of Lemma 11.6 we find that all M2 ∈ GLn2

(S) satisfy the above property except for
a measure at most

∑n2

j=1 dj/ |S| = d/|S|.
Given any maximizing choice of M2, we have, except for a measure

∑n2

j=1 dj/|S| = d/|S| of all
matrices M1 ∈ GLn1

(S), for Bj = [dj ] × {j} that dim(U1 ∪ · · · ∪ U j |U1
B1 ∪ · · · ∪ U jBj ) = 0 by an

argument similar to the proof of Lemma 11.7 (iii). Suppose that ∪jBj is not contained in B. Then
db2+1 ≥ b1 + 1. It follows that d =

∑n2

i=1 di ≥
∑b2+1
i=1 di ≥ (b2 + 1)(b1 + 1). This contradicts our

assumption about the dimension d. We conclude that ∪jBj is contained in B. This implies that
U1
B1 ∪ · · · ∪ UjBj is a subset of UB , so U is B-spanning.
(ii) This claim follows from claim (i) by a union bound over all possible choices for B.

We will need the following more refined version of Theorem 11.8 that applies to conditional
dimensions.

Theorem 11.9 (Strassen). Let S ⊆ F be finite. Let W be an arbitrary tensor of vectors in Fk and
let d = dim(V|W) be the conditional dimension of V given W. Suppose that b1 ≤ n1 and b2 ≤ n2
are integers such that d ≤ (b1 + 1)(b2 + 1)− 1.

(i) For all but a measure at most d/|S| of all M1 ∈ GLn1(S) and a measure at most d/|S| of all
M2 ∈ GLn2

(S) we have that
dim(U | W ∪ UB) = 0

for U = (M1,M2) · V and for B = ([b1]× [n2]) ∪ ([n1]× [b2]).
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(ii) For all but a measure at most
(
n1

b1

)
d/|S| of all M1 ∈ GLn1(S) and a measure at most

(
n2

b2

)
d/|S|

of all M2 ∈ GLn2(S) we have that

dim(U | W ∪ UB) = 0

for U = (M1,M2) · V and all B of the form B = (B1 × [n2]) ∪ ([n1] × B2) with |B1| = b1
and |B2| = b2.

(iii) Let W be an arbitrary family of elements in Fk. Let V1, . . . ,Vm be a collection of tensors
of elements in Fk each indexed by I. Define the conditional dimensions d(j) = dim(Vj |
W∪V1∪· · ·∪Vj−1). Let b(j)1 ≤ n1 and b

(j)
2 ≤ n2 be integers such that d(j) ≤ (b

(j)
1 +1)(b

(j)
2 +1)−1.

Except for a measure at most
∑
j

( n1

b
(j)
1

)
d(j)/|S| of all M1 ∈ GLn1(S) and a measure at most∑

j

( n2

b
(j)
2

)
d(j)/|S| of all M2 ∈ GLn1

(S), for every collection of sets Bj as above, we have that

dim(U1 ∪ · · · ∪ Um | W ∪ U1
B1 ∪ · · · ∪ UmBm) = 0,

where U j = (M1,M2) · Vj.

Proof. (i) The proof of this claim is the same as the proof of claim (i) of Theorem 11.8 except that
all dimensions are taken conditional given W.

(ii) This claim follows from claim (i) by a union bound over all possible choices of B.
(iii) The argument is the same as in the proof of Lemma 11.7 (iii).

11.4. Shifting of high-dimensional tensors of vectors
We now extend the shifting results that we proved in the previous subsections to arrays of any
dimension ` ∈ N. Let I = [n1] × · · · × [n`] and let V = (vi1,...,i` : (i1, . . . , i`) ∈ I) ∈ (Fk)I . We
think of V as an `-dimensional array of vectors. In this setting we are allowed to apply to V linear
transformations from Γ = GLn1

(F)× · · · ×GLn`
(F) as defined in Section 11.1. The goal is to shift V

to a set B where B is a union of slices of I by acting with Γ.

Theorem 11.10. Let S ⊆ F be finite. Let d = dim(V). Suppose that b1 ≤ n1, . . . , b` ≤ n` are
integers such that d ≤ (b1 + 1) · · · (b` + 1)− 1.

(i) For all but a measure at most d/|S| of all Mi ∈ GLni
(S) for each i = 1, . . . , ` we have that

U = (M1, . . . ,M`) · V is B-spanning for

B = ([b1]× [n2]× · · · × [n`]) ∪ ([n1]× [b2]× · · · × [n`]) ∪ · · · ∪ ([n1]× [n2]× · · · × [b`]).

(ii) For all but a measure at most
(
ni

bi

)
d/|S| of all Mi ∈ GLn1(S) for each i = 1, . . . , ` we have

that U = (M1, . . . ,M`) · V is B-spanning for every B of the form

B = (B1 × [n2]× · · · × [n`]) ∪ ([n1]×B2 × · · · × [n`]) ∪ · · · ∪ ([n1]× [n2]× · · · ×B`)

with |Bi| = bi.

Theorem 11.10 follows directly from the following more general theorem that applies to conditional
dimensions.
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Theorem 11.11. Let S ⊆ F be finite.

(i) Let W be an arbitrary tensor of vectors in Fk and let d = dim(V|W). Suppose that b1 ≤
n1, . . . , b` ≤ n` are integers such that d ≤ (b1 + 1) · · · (b` + 1) − 1. For all but a measure at
most d/|S| of all Mi ∈ GLni(S) for each i = 1, . . . , ` we have that dim(U | W ∪ UB) = 0 for
U = (M1, . . . ,M`) · V and for

B = ([b1]× [n2]× · · · × [n`]) ∪ ([n1]× [b2]× · · · × [n`]) ∪ · · · ∪ ([n1]× [n2]× · · · × [b`]).

(ii) In the same setting as in (i) the following is true. For all but a measure at most
(
ni

bi

)
d/|S| of all

Mi ∈ GLn1
(S) for each i = 1, . . . , ` we have that dim(U | W∪UB) = 0 for U = (M1, . . . ,M`)·V

and all B of the form

B = (B1 × [n2]× · · · × [n`]) ∪ ([n1]×B2 × · · · × [n`]) ∪ · · · ∪ ([n1]× [n2]× · · · ×B`)

with |Bi| = bi.

(iii) Let V1, . . . ,Vm be a collection of tensors of vectors in Fk each indexed by I. Define the
conditional dimensions d(j) = dim(Vj | W ∪ V1 ∪ · · · ∪ Vj−1) for j = 1, . . . ,m. Let b(j)i ≤ ni

for i = 1, . . . , ` and j = 1, . . . ,m be integers such that d(j) ≤ (b
(j)
1 + 1) · · · (b(j)` + 1)− 1. Except

for a measure at most
( n
b
(j)
i

)
d(j)/|S| of all Mi ∈ GLni(S) for each i = 1, . . . , ` for

Bj = ([b
(j)
1 ]× [n2]× · · · × [n`]) ∪ ([n1]× [b

(j)
2 ]× · · · × [n`]) ∪ · · · ∪ ([n1]× [n2]× · · · × [b

(j)
` ])

we have that dim(U1 ∪ · · · ∪ Um | W ∪ U1
B1 ∪ · · · ∪ UmBm) = 0, where U j = (M1, . . . ,M`) · Vj.

(iv) Let V1, . . . ,Vm be a collection of tensors of vectors in Fk each indexed by I. Define the
conditional dimensions d(j) = dim(Vj | W ∪ V1 ∪ · · · ∪ Vj−1) for j = 1, . . . ,m. Let b(j)i ≤ ni

for i = 1, . . . , ` and j = 1, . . . ,m be integers such that d(j) ≤ (b
(j)
1 + 1) · · · (b(j)` + 1)− 1. Except

for a measure at most
∑
j

( n
b
(j)
i

)
d(j)/|S| of all Mi ∈ GLni(S) for each i = 1, . . . , ` for every

collection of sets Bj as above, we have that dim(U1 ∪ · · · ∪ Um | W ∪ U1
B1 ∪ · · · ∪ UmBm) = 0,

where U j = (M1, . . . ,M`) · Vj.

Proof. We prove the three claims by induction on `.
(i) Let U = (M1, . . . ,M`) · V for any Mi ∈ GLni(S). Let U1, . . . ,Un` be the slices of U along

the last index. Let di = dim(U i | W ∪ U1 ∪ · · · ∪ U i−1) for i = 1, . . . , n`. There is a choice of
M` ∈ GLn`

(S) so that, among all choices of M` ∈ GLn`
(S), the value of d1 is maximized, and

conditionally the value of d2 is maximized, etc. These values of d1 ≥ d2 ≥ · · · ≥ dn`
are attained for

all M` ∈ GLn`
(S) except for a measure at most

∑n`

j=1 dj/ |S| = d/|S|.
Fix any maximizing choice of M`. Suppose that db`+1 ≥ (b1 + 1) · · · (b`−1 + 1). Then d =∑n`

i=1 di ≥
∑b`+1
i=1 di ≥ (b` + 1)(b`−1 + 1) · · · (b1 + 1). This contradicts our assumption about the

dimension d. We conclude that dn`
≤ · · · ≤ db`+1 ≤ (b1 + 1) · · · (b`−1 + 1) − 1. By induction

on ` we have that, except for a measure
∑n2

j=1 dj/|S| = d/|S| of all matrices Mi ∈ GLn1(S), for
Bj = [b1] × · · · × [b`−1] × {j} for j ≥ b` + 1 that dim(U1 ∪ · · · ∪ U j |W ∪ U1

B1 ∪ · · · ∪ U jBj ) = 0 by
Claim (iii). Note that ∪jBj is contained in B.

(ii) This claim follows from claim (i) by a union bound over all possible choices for B.
(iii) The proof is the same as the proof of Lemma 11.7 (iii) and Theorem 11.9 (iii), using

Claim (ii).
(iv) Follows from (iii) by taking a union bound over all possible choices of Bj .
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11.5. Discussion
We have reproved the shifting theorem of Strassen, we have extended it to the high-dimensional
case (` > 2), and we have for finite fields provided precise bounds on the measure of good linear
transformations. We end this section by restating the shifting theorem in terms of subspaces of
tensors, and comparing the shifting theorem to other work on subspaces of matrices and tensors and
in particular the notion of completely entangled subspaces in quantum information theory.

Shifting of subspaces of tensors. We will reformulate the shifting theorem in the language of
subspaces of tensors. We must first point out the (straightforward) correspondence between tensors
of vectors and subspaces of tensors. Let V = (vi : i ∈ I) ∈ (Fk)I be a tensor of vectors indexed by
I = [n1]×· · ·× [n`]. Thinking of the vectors vi as the rows in an I×k matrix, we let u1, . . . , uk ∈ FI
be the columns of this matrix. We think of the ui as elements of the tensor space Fn1 ⊗ · · · ⊗ Fn` ,
and we let V = span{u1, . . . , uk} ⊆ Fn1 ⊗ · · · ⊗ Fn` . Under this translation from tensors of vectors
to tensor subspaces, the prototypical shifting theorem Theorem 11.10 (ii) says:

Theorem 11.12 (Theorem 11.10 (ii)). Let V ⊆ Fn1 ⊗ · · · ⊗ Fn` be a d-dimensional subspace.
Suppose that 0 ≤ bi ≤ ni for i = 1, . . . , ` are integers such that d ≤ (b1 + 1) · · · (b` + 1)− 1. Then
there exist subspaces Wi ⊆ Fni of dimension ni − bi, such that V ∩ (W1 ⊗ · · · ⊗W`) = 0.

In this formulation it is particularly easy to see that Theorem 11.12 (and thus all foregoing
formulations) is optimal, in the following sense. Let 0 ≤ bi < ni for i = 1, . . . , ` be integers. Let
V = V1 ⊗ · · · ⊗ V` ⊆ Fn1×···×n` be the subspace defined by letting Vi ⊆ Fni be any subspace of
dimension bi + 1 for i = 1, . . . , `. Then dim(V ) = (b1 + 1) · · · (b` + 1), and so the assumption of
Theorem 11.12 is violated by one. Let Wi ⊆ Fni for i = 1, . . . , ` be any subspace of dimension
ni − bi. Then Vi ∩Wi 6= 0 since dim(Vi) + dim(Wi) > ni. Therefore, V ∩ (W1 ⊗ · · · ⊗W`) 6= 0. This
means that the assumption d ≤ (b1 + 1) · · · (b` + 1)− 1 in Theorem 11.12 cannot be relaxed.

Dimension bounds guaranteeing low rank. Our shifting theorems complement a long line of
work on matrix and tensor subspaces. These results can be phrased as bounds on the dimension of
a subspace that guarantee the existence of a nonzero element of low rank. In order to relate this to
our results, we restate our Theorem 11.12 for the special case bi = ni − 1 for all i ∈ [`]:

Theorem 11.13 (Theorem 11.12, special case). Let V ⊆ Fn1⊗· · ·⊗Fn` be a d-dimensional subspace.
If d < n1 · · ·n`, then there are subspaces Wi ⊆ Fni with dimWi = 1 such that V ∩(W1⊗· · ·⊗W`) = 0.
Moreover, this is clearly optimal: if dimV = n1 · · ·n`, then V = Fn1 ⊗ · · · ⊗ Fn` and thus for all
subspaces Wi ⊆ Fni with dimWi = 1 we have V ∩ (W1 ⊗ · · · ⊗W`) 6= 0.

We compare Theorem 11.13 to a result of Parthasarathy [Par04] and Wallach [Wal02, Section 4].
We define a completely entangled subspace V ⊆ Fn1 ⊗ · · · ⊗ Fn` to be any subspace V such that
for every nonzero v ∈ V there are no elements wi ∈ Fni such that v = w1 ⊗ · · · ⊗ w`.92 In other
words, a completely entangled subspace contains no elements of rank one. Equivalently, phrased
contrapositively, V is not a completely entangled subspace if and only if there are subspacesWi ⊆ Fni

with dimWi = 1 such that V ∩ (W1 ⊗ · · · ⊗W`) 6= 0. Parthasarathy and Wallach independently
proved the following tight upper bound on the dimension of completely entangled subspaces over
the complex numbers, which we phrase contrapositively:

92Parthasarathy and Wallach only work over the field F = C of complex numbers, which is the relevant field for
quantum information theory. However, the definition of a completely entangled subspace makes sense over any field.
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Theorem 11.14 (Parthasarathy [Par04] and Wallach [Wal02]). Let V ⊆ Cn1 ⊗ · · · ⊗ Cn` be a
d-dimensional subspace. If d > n1 · · ·n` −

∑
i(ni − 1)− 1, then there are subspaces Wi ⊆ Cni with

dimWi = 1 such that V ∩ (W1 ⊗ · · · ⊗W`) 6= 0. Moreover, this is optimal: there is a subspace V
with dimV = n1 · · ·n` −

∑
i(ni − 1) − 1 such that for all subspaces Wi ⊆ Cni with dimWi = 1 it

holds that V ∩ (W1 ⊗ · · · ⊗W`) = 0.

Comparing Theorem 11.13 to Theorem 11.14, note how the first characterizes when we can find
one-dimensional subspaces Wi such that V ∩ (W1 ⊗ · · · ⊗W`) = 0, while the second characterizes
when we can find one-dimensional subspaces Wi such that V ∩ (W1⊗· · ·⊗W`) 6= 0. The assumption
d < n1 · · ·n` in Theorem 11.13 and the assumption d > n1 · · ·n` −

∑
i(ni − 1)− 1 in Theorem 11.14

may overlap. In that case there are subspacesWi with dimWi = 1 such that V ∩(W1⊗· · ·⊗W`) = 0,
while, there are (other) subspaces W ′i with dimW ′i = 1 such that V ∩ (W ′1 ⊗ · · · ⊗W ′`) 6= 0.

For ` = 2 (subspaces of matrices), an extension of Theorem 11.14 was obtained by Cubitt,
Montanaro and Winter [CMW08], who proved a tight upper bound on the dimension of any complex
matrix subspace in which all nonzero elements have rank at least a given number r. (Theorem 11.14
covers the special case r = 1.) They show:

Theorem 11.15 (Cubitt, Montanaro and Winter [CMW08]). Let V ⊆ Cn1⊗Cn2 be a d-dimensional
subspace. If d > (n1−r+1)(n2−r+1), then V contains a nonzero element of rank strictly less than r;
in other words, there are subspaces Wi ⊆ Cni with dimWi = r − 1 such that V ∩ (W1 ⊗W2) 6= 0.
Moreover this is optimal: there is a subspace V with dim(V ) = (n1 − r+ 1)(n2 − r+ 1) such that all
nonzero elements in V have rank at least r; that is, for all subspaces Wi ⊆ Cni with dimWi = r − 1
it holds that V ∩ (W1 ⊗W2) = 0.

Dimension bounds guaranteeing high rank. Rather than guaranteeing the existence of a
nonzero element of low rank, Dieudonné [Die49] and Flanders [Fla62] gave a dimension bound
guaranteeing the existence of an element of high rank. Meshulam [Mes85] extended this to arbitrary
fields:

Theorem 11.16 (Meshulam [Mes85], extending Flanders [Fla62]). Let V ⊆ Fn1 ⊗ Fn2 be a d-
dimensional subspace. If d > rmaxi ni, then V contains an element of rank strictly larger than r.
Moreover, this is optimal: there is a subspace V with dim(V ) = rmaxi ni such that all elements
in V have rank at most r.

The optimality of the dimension bound in Theorem 11.16 is directly verified by considering
subspaces V of the form Fn1 ⊗ Fr and Fr ⊗ Fn2 .

Briët [Bri21] extended Meshulam’s theorem to subspaces of tensors V ⊆ Fn1 ⊗ · · · ⊗ Fn` (for
prime fields F = Fp) by proving that if the dimension of V is large enough, then V contains a large
subspace all of whose nonzero elements have large analytic rank.93 Analytic rank, an extension of
matrix rank to tensors (with coefficients in Fp), was introduced by Gowers and Wolf [GW11], further
developed by Lovett [Lov19] and extended to fields of all characteristics by Kopparty, Moshkovitz
and Zuiddam [KMZ20], where it was used to prove exact optimality of Strassen’s border subrank
construction for matrix multiplication tensors [Str87].

93Therefore, by the result of Cohen and Moshkovitz [CM21], these tensors also have high partition rank, a notion
introduced by Naslund [Nas20] that is closely related to the slice rank of Tao [Tao16]
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Further directions. We have provided only a limited survey of all the results in this area. For a
much broader overview, especially for matrix subspaces, we refer to [Mes18]. The last word on the
types of dimension bounds that we have discussed here, and their applications, has clearly not been
said. In particular, we are confident that the shifting theorem of Strassen and our extension will
find applications. We will develop one such application in the next section.

12. Compression (and error correction) of tensor networks

The study of tensor networks is a vast and active area of research in both mathematics and physics.
Thus, there is no way we can do justice to it, and we will content ourselves here with providing a
self-contained description of the definitions we need to describe our results, referring to the literature
(e.g., the survey [Orú14]) for a thorough introduction. On a high level, tensor networks are a way
to compactly represent large tensors as being composed of smaller, simpler ones, which sit on the
vertices of a graph. These efficient representations are desirable for algorithmic as well as analytical
study of quantum many-body systems.

The matrix multiplication tensors are a special case of tensor networks. Namely, they have
a natural representation as a tensor network with three vertices connected by three edges in a
triangle, and we will be interested in a class of tensors that are a natural generalization of the matrix
multiplication tensors from the perspective of tensor networks. We will apply the compression
theorem for tensors of vectors of Section 11 to this class of tensors to obtain a compression theorem
of tensor networks, which roughly says the following:

For every tensor network T , if there is a restriction T ≤ S ⊕U for two tensors S
and U94 such that S has “low rank”, then there is a tensor network T ′ with
the same graph structure as T , and only slightly smaller “dimension”, such
that T ′ ≤ U .

(12.1)

Statement (12.1), or rather its natural extension to direct sums of tensor networks, leads to a proof
that the flattening ranks (defined as the matrix ranks of flattenings of the tensor, Definition 12.6)
are anchors (as defined in Section 8) in the asymptotic spectra of tensor networks. This will imply
the main theorem of this section, which says that the asymptotic spectra of tensor networks are
log-star-convex with respect to the flattening ranks.

This section is organized as follows. In Sections 12.1 and 12.2 we introduce our basic notation
around tensor networks. In Sections 12.3 and 12.4 we prove the projection property and invariance
property of tensor networks, which are crucial in the later proofs. In Section 12.5 we state precisely
and prove the compression theorem of tensor networks described in (12.1). In Section 12.6 we
consider the direct sum version of this and see how this gives that the flattening ranks are anchors
in the sense of Section 8. Finally, in Section 12.7 we deduce using the anchors the main theorem for
the asymptotic spectra of tensor networks, namely that they are log-star-convex with respect to the
flattening ranks.

94Or equivalently, a restriction T ≤ S + U for tensors S,U that live in the same space as T .
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12.1. Tensor networks
The kind of tensor network that we consider is specified by a graph G = (V,E) and a vector of
integer weights n ∈ NE on the edges E.95 In this way every graph will define an infinite family of
tensors TG,n parametrized by the edge weights n.

Definition 12.1 (Tensor network). Let G = (V,E) be a graph and let n = (ne)e ∈ NE be a vector
of integer weights on the edges E. For every vertex v ∈ V we let E(v) ⊆ E denote the set of edges
touching vertex v, that is, E(v) := {e ∈ E : e = {v,w} for some w ∈ V}. We denote the standard
basis elements of the vector space Fne by fj for j ∈ [ne]. For every vertex v ∈ V we define the vector
space Wv = ⊗e∈E(v)Fne . We define the index set I =

∏
e∈E[ne]. We define the tensor network on the

graph G with weight vector n as

TG,n :=
∑
i∈I

⊗
v∈V

(
⊗e∈E(v) fie

)
∈
⊗
v∈V

Wv.

The tensor TG,n defined in Definition 12.1 has both a “fine structure” as an element of the space⊗
v∈V

⊗
e∈E(v) Fne (i.e., as a (

∑
v∈V |E(v)|)-tensor) and a “coarse structure” as an element of the

space
⊗
Wv (i.e., as a |V|-tensor), depending on how we group the tensor legs. We will use both

points of view.
As mentioned before, we think of every graph G as defining a family of tensor networks TG,n

parametrized by edge weights n. And so when we prove an inequality of the type mentioned in (12.1),
the tensor network T ′ is defined on the same graph as T , only with slightly smaller weights. We
now give a few examples to illustrate this point, and the utility and simplicity of this description of
tensors.

Example 12.2 (One edge). The simplest tensor network, the tensor network on the graph with a
single edge K2

with weight n, is:
TK2,n =

∑
i∈[n]

fi ⊗ fi ∈ Fn ⊗ Fn.

As an n×n matrix, TK2,n is simply the identity matrix. Thought of as a linear map Fn → Fn, TK2,n

is the identity map. Thought of as a bilinear map Fn×Fn → F, TK2,n is the standard inner product.

Example 12.3 (Multiple edges between two nodes). The tensor network on the graph with multiple
edges between two nodes

...

with weight (ne)e, is:

TG,(ne)e =
∑

i∈
∏

e∈E[ne]

(⊗e∈Efie)⊗ (⊗e∈Efie) ∈
(
⊗e∈EFne

)
⊗
(
⊗e∈EFne

)
.

95To the reader who is familiar with tensor networks, we note that we will only consider tensor networks in which
the tensors to be contracted are symbolic tensors, that is, tensors of variables. In that way, for us, every tensor
network on k nodes represents a k-tensor. In the language of quantum information theory, our kind of tensor networks
represent quantum systems in which k parties are sharing maximally entangled bipartite quantum states (EPR pairs)
according to a certain graph structure. They have sometimes been called graph tensors [CVZ19a].
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We see that this tensor network is essentially equivalent to the tensor network on one edge with
weight

∏
e∈E ne.

Example 12.4 (Matrix multiplication). We have on the cycle graph C3

with weight (n1, n2, n3) the tensor network

TC3,(n1,n2,n3) =
∑

i=(i1,i2,i3)∈
∏

e[ne]

(fi1 ⊗ fi2)⊗ (fi2 ⊗ fi3)⊗ (fi3 ⊗ fi1)

∈ (Fn1 ⊗ Fn2)⊗ (Fn2 ⊗ Fn3)⊗ (Fn3 ⊗ Fn1).

This tensor network equals the matrix multiplication tensor. Thought of as a bilinear map (Fn1 ⊗
Fn3)× (Fn2 ⊗ Fn3)→ Fn1 ⊗ Fn3 , it is the map that multiplies an n1 × n2 matrix A with an n2 × n3
matrix B resulting in an n1 × n3 matrix C.96 Thought of as a trilinear map (Fn1 ⊗ Fn3) ×
(Fn2 ⊗ Fn3) ⊗ Fn3 ⊗ Fn1 → F, the tensor network is the trace of the product of three matrices:
tr(ABC) =

∑n1

i1=1

∑n2

i2=1

∑n3

i3=1Ai1,i2Bi2,i3Ci3,i1 .
Note — we will use this observation later — how any tensor network on G = (V,E) can be

built as the tensor product of copies of the simplest tensor network TK2,ne with one copy for every
edge e ∈ E. For example, for the tensor network on C3 we have, under the natural reordering, the
equality∑

i∈
∏

e[ne]

(fi1 ⊗ fi2)⊗ (fi2 ⊗ fi3)⊗ (fi3 ⊗ fi1)

=
(∑
i∈[n1]

fi1 ⊗ 1⊗ fi1
)
⊗
(∑
i∈[n2]

fi2 ⊗ fi2 ⊗ 1
)
⊗
(∑
i∈[n3]

1⊗ fi3 ⊗ fi3
)
.

This simple observation will allow us to derive several properties of TG,n from TK2,n later.

Example 12.5 (Higher-order networks). We have on the complete graph K4

with weight (n, n, n, n) the tensor network:

TK4,(n,...,n) =
∑
i∈[n]6

(fi1 ⊗ fi2 ⊗ fi3)⊗ (fi1 ⊗ fi2 ⊗ fi4)⊗ (fi2 ⊗ fi4 ⊗ fi5)⊗ (fi3 ⊗ fi5 ⊗ fi6)

∈ (Fn ⊗ Fn ⊗ Fn)⊗4.

Again we can think of this tensor in several ways. One is as a trilinear map (Fn ⊗ Fn ⊗ Fn)×3 →
Fn ⊗ Fn ⊗ Fn that generalizes matrix multiplication to a product of three 3-tensors. Another is as a
multilinear map (Fn ⊗ Fn ⊗ Fn)×4 → F given by

∑
Ai1,i2,i3Bi1,i2,i4Ci2,i4,i5Di3,i5,i6 where we sum

over i ∈ [n]6, which generalizes the trace of the product of three matrices.
96up to a computationally irrelevant matrix transpose
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Finally, one may of course take other graphs, and in particular graphs for which the vertices
have different degrees. For example, we have on the graph

G =

with weight (n, n, n) the tensor network:

TG,(n,n,n) =
∑
i∈[n]3

(fi1 ⊗ fi2 ⊗ fi3)⊗ fi1 ⊗ fi2 ⊗ fi3 ∈ (Fn ⊗ Fn ⊗ Fn)⊗ Fn ⊗ Fn ⊗ Fn.

12.2. Tensors of vectors associated to a tensor network

Recall that for every graph G = (V,E) and edge weights n ∈ NE, the tensor network TG,n lives in the
vector space

⊗
v∈VWv where Wv = ⊗e∈E(v)Fne . In order to carry over the compression theorem of

the previous section to tensors T ∈
⊗

v∈VWv, we will associate to T a tensor of vectors and apply
the compression theorem to that tensor of vectors.

Our definition of the tensor of vectors associated to a tensor is very straightforward and is based
on the basic notion of a flattening. First we give the definition of this general notion of a flattening
of a tensor T ∈ V1 ⊗ · · · ⊗ Vk and the closely related notion of flattening ranks.

Definition 12.6 (Flattening and flattening ranks). Let T ∈ V1 ⊗ · · · ⊗ Vk be a tensor. For any
subset S ⊆ [n] that is not empty and not [n], we may group together the spaces Vi to obtain the
space (

⊗
j∈S Vj)⊗ (

⊗
j 6∈S Vj) of tensors of order two. Under this grouping operation

V1 ⊗ · · · ⊗ Vk →
(⊗
j∈S

Vj
)
⊗
(⊗
j 6∈S

Vj
)
,

the tensor T becomes a tensor of order two, which we call the
⊗

j∈S Vj versus
⊗

j 6∈S Vj flattening
or flattening with respect to S or S-flattening. An important and useful parameter of a tensor in this
context is defined by identifying the flattened tensor with a matrix and taking its matrix rank. This
parameter is called the flattening rank of T with respect to the

⊗
j∈S Vj versus

⊗
j 6∈S Vj flattening

or S-flattening rank.

Lemma 12.7. The flattening ranks are in the asymptotic spectrum of tensors.

Proof. This follows immediately from the fact that matrix rank is in the asymptotic spectrum of
matrices and the fact that the grouping operation commutes with direct sum and tensor product.

Definition 12.8 (Tensor of vectors relative to w). Let w ∈ V be a distinguished vertex. For any
tensor T ∈

⊗
v∈VWv, not necessarily a tensor network, we group the spaces Wv together to obtain

the space Ww ⊗ (
⊗

v∈V\wWv) of tensors of order two, and accordingly write T in its flattened form

T =
∑
i∈I

(
⊗e∈E(w)fie

)
⊗ Ti ∈ Ww ⊗

(⊗
v∈V\w

Wv

)
for tensors Ti ∈

⊗
v∈V\wWv where the sum goes over i ∈ I =

∏
e∈E(w)[ne]. We define the tensor of

vectors Vw(T ) indexed by I as
Vw(T ) := (Ti : i ∈ I).

We call Vw(T ) the tensor of vectors associated to T relative to w.
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Example 12.9. The simplest tensor network, on the graph K2, has the associated tensor of vectors

V1(TK2,n) = (fi : i ∈ [n]).

The tensor network on the cycle graph C3 has the associated tensor of vectors

V1(TC3,(n1,n2,n3)) =
(∑
i3∈[n3]

(fi2 ⊗ fi3)⊗ (fi3 ⊗ fi1) : (i1, i2) ∈ [n1]× [n2]
)
.

Every tensor T is uniquely determined by the associated tensor of vectors Vw(T ). We finish by
pointing out how the basic notions of flattening rank and restriction of tensors carry over to the
associated tensor of vectors in the following important remark.

Remark 12.10 (Flattening rank and restriction for tensors of vectors). Recall that we have
defined the dimension of a tensor of vectors as the dimension of its span, and so for every tensor
T ∈

⊗
v∈VWv we have dimVw(T ) = dim spanVw(T ). Since the rank of a matrix is equal to the

dimension of its image, this dimension dimVw(T ) is equal to the flattening rank of T with respect
to the Ww versus

⊗
v∈V\wWv flattening, that is, the w-flattening rank (Definition 12.6). Next

we discuss restriction. We first recall the general definition. Let Vj ,Wj be vector spaces and let
T ∈ V1 ⊗ · · · ⊗ Vk and S ∈W1 ⊗ · · · ⊗Wk be tensors. We say that T restricts to S and write T ≥ S
if there are linear maps Lj : Vj →Wj such that (L1 ⊗ · · · ⊗ Lk)T = S. Then, for T, S ∈

⊗
v∈VWv

we have T ≥ S if and only if there are linear maps Lv : Wv →Wv such that Vw(S) is in the linear
span of ((

⊗
v∈V\w Lv)Ti : i ∈ I) = Vw((idw ⊗

⊗
v∈V\w Lv)T ).

12.3. Projection property of tensor networks
Tensor networks have two important properties (for our purposes), namely the projection property
(Lemma 12.13) and the invariance property (Lemma 12.16). In this section we discuss the projection
property.

The idea of the projection property is that for any tensor network TG,n we can reduce the
weights ne by applying a projection P to the tensor network that has a very simple form. Namely,
this projection P can be chosen in such a way that it has a product form P =

⊗
v∈V Pv and given

any distinguished vertex w we can choose P so that Pw is the identity map.
We will see that the projection property is trivial for a tensor network on one edge, and from

this the projection property for an arbitrary tensor network will follow almost directly.

Lemma 12.11 (Projection property for one edge). Let m,n ∈ N such that m ≤ n. Let P : Fn → Fm
be the restriction to the first m coordinates, that is, P is the linear map defined by Pfi = fi for i ≤ m
and Pfi = 0 for i > m, where f1, . . . , fn is the standard basis of Fn. Then

(id⊗ P )
(∑
i∈[n]

fi ⊗ fi
)

= (P ⊗ id)
(∑
i∈[n]

fi ⊗ fi
)

= (P ⊗ P )
(∑
i∈[n]

fi ⊗ fi
)

=
∑
i∈[m]

fi ⊗ fi.

That is,
(id⊗ P )TK2,n = (P ⊗ id)TK2,n = (P ⊗ P )TK2,n = TK2,m.

Proof. This is immediate.
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Note how in Lemma 12.11 the projection P may be applied either to the first tensor leg, the
second tensor leg, or both tensor legs in order to obtain TK2,m from TK2,n. We will use this freedom
when we apply Lemma 12.11 to multiple edges in a tensor network to make sure that to one specific
tensor leg (corresponding to a distinguished vertex w in the underlying graph) only identity maps
are applied.

We will now see how from the projection property for one edge the projection property for an
arbitrary tensor network follows, by applying the former to every edge of the graph. Recall that any
tensor network on G = (V,E) can be built as the tensor product of copies of TK2,ne with one copy
for every edge e ∈ E.

Example 12.12. For example, the tensor network TC3,(n1,n2,n3) on the cycle graph C3 is the tensor
product of three “copies” of TK2,ne where each copy is extended to a 3-tensor by tensoring with 1, in
the following way∑

i∈
∏

e[ne]

(fi1 ⊗ fi2)⊗ (fi2 ⊗ fi3)⊗ (fi3 ⊗ fi1)

=
(∑
i∈[n1]

fi1 ⊗ 1⊗ fi1
)
⊗
(∑
i∈[n2]

fi2 ⊗ fi2 ⊗ 1
)
⊗
(∑
i∈[n3]

1⊗ fi3 ⊗ fi3
)
.

We now want to apply projections to reduce the dimensions ne. For any me ≤ ne let Pe : Fne → Fme

be the linear map that restricts every vector to the first me coordinates. From Lemma 12.11 we
know how to use the projections Pe to reduce dimensions:

(id⊗ id⊗ P1)
(∑
i∈[n1]

fi1 ⊗ 1⊗ fi1
)

=
∑
i∈[m1]

fi1 ⊗ 1⊗ fi1

(id⊗ P2 ⊗ id)
(∑
i∈[n2]

fi2 ⊗ fi2 ⊗ 1
)

=
∑
i∈[m2]

fi2 ⊗ fi2 ⊗ 1

(id⊗ P3 ⊗ P3)
(∑
i∈[n3]

1⊗ fi3 ⊗ fi3
)

=
∑
i∈[m3]

1⊗ fi3 ⊗ fi3 .

Recall that Lemma 12.11 left us some choice of where to apply the projections Pi and where the
identities, and note how we used this freedom so that to the first tensor leg we only apply identities.
Tensoring these projections together we find that

((id⊗ id)⊗ (P2 ⊗ P3)⊗ (P3 ⊗ P1))TC3,n = TC3,m.

Indeed to the first tensor leg we only apply the identity map.

The construction of the projection in Example 12.12 immediately generalizes to any tensor
network:

Lemma 12.13 (Projection property). Let G = (V,E) be a graph and let w ∈ V be a distinguished
vertex. Let n = (ne)e,m = (me)e ∈ NE be two weightings of the edges such that me ≤ ne for every
e ∈ E. For every e ∈ E let Pe : Fne → Fme be the restriction to the first me coordinates. For
every v ∈ V let Pv : Wv →Wv be defined as the product Pv = ⊗e∈E(v)Pe. Let idw denote the identity
map on Ww. Then

(idw ⊗
⊗

v∈V\w

Pv)TG,n = TG,m.
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Proof. The claim follows from observing that the tensor network TG,n is the tensor product of tensor
networks of the form ∑

i∈[ne]

fi ⊗ fi ⊗ 1⊗ · · · ⊗ 1 ∈ Fne ⊗ Fne ⊗ F⊗ · · · ⊗ F,

one for every edge e ∈ E, and applying Lemma 12.11 to each edge in a way that to the tensor leg
corresponding to w we only apply the identity map.

12.4. Invariance property of tensor networks
The second important property is that tensor networks are invariant under a natural group action.
This action is changing basis on the two sides of the same edge. Again, this property is trivial for a
tensor network on a single edges, and from this the property for an arbitrary tensor network follows
almost immediately. For h ∈ GLn let hT denote the transpose.

Lemma 12.14 (Invariance property for one edge). For any g ∈ GLn we have in Fn⊗Fn the equality

(g ⊗ (g−1)T)
∑
i∈[n]

fi ⊗ fi =
∑
i∈[n]

fi ⊗ fi.

Proof. More generally, let g, h ∈ GLn and let gi, hi denote their column vectors. Then∑
i∈[n]

gfi ⊗ hfi =
∑
i∈[n]

gi ⊗ hi =
∑
j,k∈[n]

(ghT)j,k fj ⊗ fk.

Setting h = (g−1)T we have (ghT)j,k = δi=j , which proves the claim.

The invariance property for one edge directly extends to tensor networks TG,n for arbitrary
graphs G, by applying the invariance property for one edge to all (or some) of the edges of G.

Example 12.15. For example, for the tensor network on the cycle graph C3 we have the invariance

(g1 ⊗ g2)⊗ ((g−12 )T ⊗ id)⊗ (id⊗ (g−11 )T)TC3,n = TC3,n

for g1 ∈ GLn1 and g2 ∈ GLn2 , since∑
i∈

∏
e[ne]

(g1fi1 ⊗ g2fi2)⊗ ((g−12 )Tfi2 ⊗ fi3)⊗ (fi3 ⊗ (g−11 )Tfi1)

=
(∑
i∈[n1]

g1fi1 ⊗ 1⊗ (g−11 )Tfi1

)
⊗
(∑
i∈[n2]

g2fi2 ⊗ (g−12 )Tfi2 ⊗ 1
)
⊗
(∑
i∈[n3]

1⊗ fi3 ⊗ fi3
)

and we apply Lemma 12.14 to every copy of TK2,ne . More generally, following the same principle,
we have the invariance property that for every g1 ∈ GLn1

, g2 ∈ GLn2
and g3 ∈ GLn3

it holds that
(g1 ⊗ g2)⊗ ((g−12 )T ⊗ g3)⊗ ((g−13 )T ⊗ (g−11 )T)TC3,n = TC3,n. This action of GLn1

×GLn2
×GLn3

on
TC3,n is sometimes called the sandwiching action, and the invariance precisely corresponds to the fact
that the trace of the product of three matrices satisfies tr(ABC) = tr((g1Ag2)(g−12 Bg3)(g−13 Cg−11 ))
(under a standard translation between tensors and multilinear maps).
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Following the above idea, we set up the action on arbitrary tensors in
⊗

v∈VWv. Define the
group Γ =

∏
e∈E(w) GLne . Let T ∈

⊗
v∈VWv and g = (ge)e∈E(w) ∈ Γ. We let g act on T by letting,

for every edge e = {w, v}, ge act on Ww as ge and on Wv as (g−1e )T. That is, g · T =
(⊗

v∈V τv(g)
)
T

where, for every vertex v ∈ V, we set

τv(g) :=


g if v = w

(g−1e )T if v 6= w and e = {w, v} ∈ E

id if v 6= w and {w, v} 6∈ E.

Lemma 12.16 (Invariance property). Under the above action, for every g ∈ Γ, we have

g · TG,n = TG,n.

Proof. The claim follows from the fact that the tensor network TG,n is the tensor product of tensor
networks of the form ∑

i∈[ne]

fi ⊗ fi ⊗ 1⊗ · · · ⊗ 1 ∈ Fne ⊗ Fne ⊗ F⊗ · · · ⊗ F,

one for every edge e ∈ E, and applying Lemma 12.14 to each.

12.5. Compression theorem for tensor networks
We will now state and prove the general compression theorem for tensor networks (and returning to
the tensor notation). Recall that for a tensor T ∈

⊗
v∈VWv the dimension dim(Vw(T )) is precisely

equal to the w-flattening rank of the tensor T (Remark 12.10). Via this connection we will prove
that the flattening ranks are anchors (Theorems 12.21 and 12.22).

Theorem 12.17 (Compression theorem for tensor networks). Let F be sufficiently large. Given a
graph G = (V,E), if TG,n ≤ S⊕U for two tensors S and U , and dim(Vw(S)) <

∏
e∈E(w)(ne−me + 1)

for a weighting m ∈ NE, then TG,m ≤ U .

We prove Theorem 12.17 using one of the compression theorems for tensors of vectors of Section 11,
which we now recall:

Theorem 12.18 (Theorem 11.10 (ii)). Let d = dim(V). Suppose that b1 ≤ n1, . . . , b` ≤ n` are
integers such that d ≤ (b1 + 1) · · · (b` + 1) − 1. For all but a measure at most

(
ni

bi

)
d/|F| of all

Mi ∈ GLn1
(F) for each i = 1, . . . , ` we have that U = (M1, . . . ,M`) · V is B-spanning for every B

of the form

B = (B1 × [n2]× · · · × [n`]) ∪ ([n1]×B2 × · · · × [n`]) ∪ · · · ∪ ([n1]× [n2]× · · · ×B`)

with |Bi| = bi.

As an intermediate step before proving Theorem 12.17 we apply Theorem 11.10 (i) to the tensor
of vectors V = Vw(S) associated to a tensor S ∈

⊗
v∈VWv. As before we let G = (V,E) be a graph,

we let n ∈ NE be weights, we define the space Wv = ⊗e∈E(v)Fne , we let w ∈ V be a fixed distinguished
vertex, and we define the group Γ =

∏
e∈E(w) GLne and the index set I =

∏
e∈E(w)[ne].
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Corollary 12.19. Let F be sufficiently large. Let S ∈
⊗

v∈VWv. If me ≤ ne for all e ∈ E such that

dim(Vw(S)) <
∏

e∈E(w)

(ne −me + 1),

then there is an element g ∈ Γ such that Vw(g · S) is B-spanning for B = I \
∏

e∈E(w)[me].

Proof. We apply Theorem 12.18 to the tensor of vectors Vw(S), with be = ne−me and Be = [ne]\[me].
Note that the action of Γ on Ww is precisely the action as used in the compression theorem, while
the action of Γ on

⊗
v∈V\wWv does not affect the property of being B-spanning.

Proof of Theorem 12.17. Without loss of generality we may assume that TG,n = S + U where S
and U are tensors that live in the same space as TG,n and where + denotes coordinate-wise addition.
(Namely, suppose TG,n ≤ S ⊕ U , then there are linear maps Lv such that TG,n =

(⊗
v Lv

)
(S ⊕ U).

Then we simply replace S by
(⊗

v Lv

)
S and U by

(⊗
v Lv

)
U .) We will show that after suitable

linear transformations applied to both sides, the contribution of S to the (smaller) TG,m is zero,
proving the theorem.

Recall that Γ acts invariantly on TG,n (invariance lemma, Lemma 12.16). Thus, after acting
with Γ on both sides of the equation TG,n = S + U , we may assume that Vw(S) is B-spanning for
B = I \

∏
e∈E(w)[me] (compression of tensor of vectors, Corollary 12.19). Recall (restriction lemma,

Lemma 12.13) that for the linear projection P = (idw ⊗
⊗

v∈V\w Pv) we have

PTG,n = TG,m.

Thus
TG,m = PTG,n = PS + PU.

We then have

[Vw(PS) + Vw(PU)]B = Vw(TG,m)

[Vw(PS) + Vw(PU)]B = 0.

Since Vw(S) is B-spanning, and P acts only on
⊗

v∈V\wWv, the family Vw(PS) is B-spanning. This
means that Vw(PS)B is in the span of Vw(PS)B . This implies that there is a way of adding linear
combinations of the vectors in Vw(PS)B to the vectors in Vw(PS)B to make the latter all zero. That
is, there exists a matrix of the form

Q =
(B B

B I ∗
)

such that QVw(PS) is all zero. Since [Vw(PS) + Vw(PU)]B is all zero, we have that Q acts as the
identity on Vw(PS) + Vw(PU), that is, Q(Vw(PS) + Vw(PU)) = Vw(PS) + Vw(PU). We thus find
that

Vw(TG,m) = [Vw(PS) + Vw(PU)]B = [QVw(PS) +QVw(PU)]B = [QVw(PU)]B .

We conclude that TG,m ≤ U .
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12.6. Compression theorem for direct sums of tensor networks
There is a straightforward extension of Theorem 12.17 to a compression theorem for direct sums
of tensor networks. Via this compression theorem we will see (as for single tensor networks) that
the flattening ranks are anchors in the asymptotic spectra of graph tensors. In Section 12.7 we will
discuss the convexity theorems that follow from this and our anchor theorem of Section 8.

The compression theorem for direct sums of tensor networks has a similar form as Theorem 12.17.
Namely, for any collection of p tensor networks T (1), . . . , T (p) on some fixed graph, if there is a
restriction to the direct sum

⊕p
i=1 T

(i) ≤ S ⊕ U for two tensors S and U such that S is “small
enough”, then there are tensor networks T ′(i) “close to” T (i) such that

⊕p
i=1 T

′(i) ≤ U . The precise
theorem is:

Theorem 12.20 (Compression theorem for direct sums of tensor networks). Let F be sufficiently
large. Let G = (V,E) be a graph, let n(i) ∈ NE for i ∈ [p], and let w ∈ V. Suppose that

p⊕
i=1

TG,n(i) ≤ S ⊕ U

and

dim(Vw(S)) ≤
p∑
i=1

∏
e∈E(w)

n(i)e

(
= dimVw

(⊕p
i=1 TG,n(i)

) )
.

Then there are integers 0 ≤ q(i) ≤
∏

e∈E(w) n
(i)
e for i ∈ [p] that sum to dim(Vw(S)), such that the

following holds:
For any m(i) ∈ NE such that for every i ∈ [p] and e ∈ E it holds that m(i)

e ≤ n(i)e , and such that
for every i ∈ [p] it holds that q(i) <

∏
e∈E(w)(n

(i)
e −m(i)

e + 1), we have

p⊕
i=1

TG,m(i) ≤ U.

Proof. The proof of Theorem 12.20 follows along the exact same lines as the proof of Theorem 12.17
above, with the projection property and the invariance property extending directly, except that we
replace the compression theorem Theorem 11.10 (i) with its more general version Theorem 11.11 (iv)
where we let Vi = Vw(TG,n(i)).

We now point out the important consequence of Theorem 12.20 that the flattening ranks are
anchors in the asymptotic spectra of tensor networks. We will first state and prove this in the
univariate sense (Definition 8.5) and then state this (without proof) in the multivariate sense
(Definition 8.9). Let G = (V,E).

Theorem 12.21. Let F be sufficiently large. If ((TG,2)⊗k)⊕p ≤ S ⊕ U for some tensors S and U ,
and

dim(Vw(S)) ≤ dimVw((TG,2)⊗(k−1))⊕p = p (2|E(w)|)k−1,

then
(
(TG,2)⊗(k−1)

)⊕dp/2e ≤ U .
Theorem 12.21 implies that the flattening rank T 7→ dimVw(T ) is an anchor in the asymptotic

spectrum X (TG,2) (Definition 8.5).
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Proof. The proof is an application of Theorem 12.20. We will use a simple averaging argument to
show that for half of the p copies of (TG,2)⊗k we have a good bound on the (relevant) contribution
of S. To these we apply the compression of Theorem 12.20 (hence the exponent dp/2e in the
conclusion of the theorem).

Let 0 ≤ q(i) ≤ (2|E(w)|)k for i ∈ [p] be the integers which sum to dimVw(S) obtained from
Theorem 12.20 applied to TG,n(i) = TG,2k for i ∈ [p]. The assumption

dimVw(S) ≤ p (2|E(w)|)k−1

implies that for the dp/2e (or more) smallest values of q(i) over all i ∈ [p] we have q(i) ≤ (2|E(w)|)k−1.
Let J ⊆ [p] be the set of those i ∈ [p]. Then |J | = dp/2e. For every i ∈ J we have

q(i) ≤ (2|E(w)|)k−1 < (2k−1 + 1)|E(w)| =
∏

e∈E(w)

(2k − 2k−1 + 1).

We set m(i)
e = 2k−1 for all i ∈ J and m(i)

e = 0 for all i ∈ [p] \ J . Then for all i ∈ [p] we have that
q(i) <

∏
e∈E(w)(n

(i)
e −m(i)

e + 1). From Theorem 12.20 we obtain the claim.

Via a similar proof that also applies Theorem 12.20 (which we leave to the reader), we obtain
that the flattening rank is an anchor in the multivariate sense (Definition 8.9). To state this we
use the notation δe ∈ NE for the unit vector that satisfies (δe)e = 1 and (δe)f = 0 for f 6= e. Then
TG,2 =

⊗
e∈E TG,2δe .

Theorem 12.22. Let F be sufficiently large. If (
⊗

e T
⊗ke
G,2δe

)⊕p ≤ S ⊕ U and

dimVw(S) ≤ dimVw
((⊗

e

T⊗keG,2δe

)⊕p)
,

then (
⊗

e T
⊗(ke−1)
G,2δe

)⊕dp/2e ≤ U .

Theorem 12.22 means precisely that T 7→ dimw(T ), which equals the w-flattening rank of T , is
an anchor in the asymptotic spectrum X ((TG,2δe)e∈E) ⊆ [1,∞)E (Definition 8.9).

12.7. Log-star-convexity of asymptotic spectra of tensor networks
We finish this section by applying our anchor theorem of Section 8 to the anchors that we have
found in Section 12.6. As before we first consider the one-dimensional version of the statement and
then the more precise high-dimensional version.

The one-dimensional statement is the following connectedness theorem for the asymptotic
spectrum X (TG,2) of the tensor network TG,2.

Theorem 12.23 (Connectedness). Let G be a graph. Then X (TG,2) ⊆ [1,∞) is connected.

In particular, for every graph G the asymptotic spectrum X (TG,2) of TG,2 is the closed interval
from asymptotic subrank to asymptotic rank, [Q̃(TG,2), R̃(TG,2)].

Proof. We know from Theorem 12.21 and Lemma 12.7 that, for any vertex w ∈ V of the graph G the
flattening rank T 7→ dim(Vw(T )) is an anchor in the asymptotic spectrum X (TG,2) (Definition 8.5).
Applying the anchor theorem (Theorem 8.6) proves the claim.
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Similarly, the multivariate anchor of Theorem 12.22 gives the following log-star-convexity theorem
for the asymptotic spectrum X ((TG,2δe)e∈E) of the tensors TG,2δe for e ∈ E (which in fact implies
Theorem 12.23). Recall that δe is the vector in NE that has value 1 at index e and value 0 elsewhere.

Theorem 12.24 (Log-star-convexity). Let G = (V,E) be a graph. For e ∈ E let Te = TG,2δe . Then

X ((Te)e∈E) ⊆ [1,∞)E

is log-star-convex with respect to the w-flattening rank for every w ∈ V.

The matrix multiplication tensors MMn are instances of tensor networks, namely the square
matrix multiplication tensors satisfy MMn = TC3,n and the rectangular matrix multiplication tensors
satisfy MMn1,n2,n3

= TC3,(n1,n2,n3). In this way we obtain the following special cases of the above
theorems, which are among the main results of Strassen [Str88].

Corollary 12.25 (Connectedness for matrix multiplication, Strassen [Str88]). The asymptotic
spectrum of matrix multiplication X (MM2) is connected.

Corollary 12.26 (Log-star-convexity for matrix multiplication, Strassen [Str88]). The asymptotic
spectrum of rectangular matrix multiplication Xrect = X (MM2,1,1,MM1,2,1,MM1,1,2) is log-star-
convex with respect to the points (2, 2, 0), (2, 0, 2), (0, 2, 2).

(Again, Corollary 12.26 implies Corollary 12.25.)
Recall (Lemma 8.8) that by star-convexity the set of centers in logXrect is convex, so it follows

from Corollary 12.26 that logXrect is star-convex with respect to the (filled) triangle with vertices
(1, 1, 0), (1, 0, 1), (0, 1, 1).

Since the smallest point in X (MM2) is the asymptotic subrank Q̃(MM2) and the value of
Q̃(MM2) is known to be equal to the flattening rank in this case (which is 4) (Theorem 4.22), we
have by Corollary 12.25 that X (MM2) = [4, 2ω], where ω is the matrix multiplication exponent. In
Section 9 we have already discussed the consequences of this connectedness theorem (in the form of
a generalized Schönhage tau theorem).

13. Open problems and directions

In this section we list a number of (some interrelated) research directions and open problems which
naturally arise given the material in this paper. Many of them were discussed in earlier sections in
some detail, and so we will be rather brief here.

Tensors and matrix multiplication. Determining the exponent ω of matrix multiplication was
the main driving force for developing the theory exposited here, and remains a great mystery today
as well. Inventing new ways of finding better upper bounds, lower bounds, and barrier results is the
most obvious direction to pursue.

It is a tantalizing possibility that ω = 2, giving (almost) linear time complexity for solving
essentially all linear algebra problems. In fact, a far more striking possibility is that the asymptotic
rank of every tensor is as small as it can be. More precisely, that for every tensor in (Fn)⊗d, the
asymptotic rank is at most n (observe that for matrix multiplication tensors this very general bound
implies ω = 2). This would sharply contrast the fact that the (non-asymptotic) rank is typically
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around nd−1 [Str83], but there are no known methods to rule out this possibility. We consider this
a major challenge. (See also [BCS97, Problem 15.5].) Related to this, little is known about the
precise behavior of rank under powering. (See e.g., [CJZ18, CLGV20, CHL20].)

In fact, another surprising connection between asymptotic rank and ω is known, which is in
the opposite direction: a general upper bound on the asymptotic rank of any tensor in terms of ω
(making in a sense matrix multiplication “universal” for this problem, at least for d = 3). Namely,
restricting ourselves to n×n×n tensors, we have for every T the upper bound R̃(T ) ≤ n2ω/3 ≤ n1.6
[Str88, Prop. 3.6] (see also [CVZ21, Prop. 2.12]). (This is in contrast to the situation for tensor rank,
where we know by a dimension counting argument that for almost every T we have R(T ) ≥ Ω(n2).)
We state the following bold conjecture: for every T it holds that R̃(T ) = O(n).

Strassen’s duality and Positivstellensätze. As discussed in Section 4.6, Strassen’s duality
theorem may be viewed as a generalization of classical duality theorems in real algebraic geometry,
in particular variants of Positivstellensätze. Both Strassen’s and the Positivstellensatz characterize
unsatisfiable systems of polynomial inequalities, but the nature of the characterization seems very
different. While several works explore this connection as we discussed, we feel there is more to
understand, especially whether Strassen’s theorem has new applications in real algebraic geometry
and optimization.

Types. Section 6 and Section 9.3 discuss in some detail notions of “type decompositions” of
the summands in a multinomial sum arising from taking a large power of elements in preordered
semirings. In Section 6 such a decomposition is developed for polynomials, as part of establishing
connectedness of asymptotic spectra, and in Section 9.3 we mention different decompositions in
other semirings, for this purpose but also other applications and constructions. We feel that there
is room for a general theory of types, which will rely on representation theory. Simply, many
preordered semirings have natural symmetries, namely a group action which renders elements of
the semiring isomorphic, and several of the type decompositions mentioned are dictated by the
irreducible representation of G × Sn where G is the acting group, Sn is the symmetric group,
and n is the large power taken. It seems like a systematic study of these may yield a nice theory,
generalizing type decomposition in information theory, which may lead to better understanding and
unification of existing results and perhaps lead to others.

Anchors. In Section 8 we introduced the notion of an anchor (a special point in the asymptotic
spectrum), and the anchor method for proving connectivity (and even log-star-convexity) of the
spectrum. Proving the existence of anchors, which is the hardest part of implementing this method,
seem to require certain basis shifting and compression arguments which we develop (respectively) in
Sections 11 and 12. We don’t know if there are different ways to prove the existence of anchors.
While we were able to generalize Strassen’s work, and use anchors to prove connectivity of spectra
of many more tensors beyond matrix multiplication, we have no idea how general this method is,
and to which other semirings it might apply. The semiring of graphs is an interesting case in point,
for which connectivity and even log-convexity of the spectrum was proved (by Vrana [Vra21]) using
a different method, but we feel it can yield to the anchor method as well. It would be interesting to
prove or disprove that if the spectrum is log-convex, all its elements are anchors.
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Basis shifting. In Section 11 we prove, via elementary though somewhat subtle linear algebra
arguments, several theorems of the following nature. Given a set (actually, a group) of allowed
linear transformations on a tensor of vectors, we can make certain subsets linearly independent. In
these theorems the allowed transformations are given by the symmetries of tensors. This raises the
following general question. Let V = {vi : i ∈ I} be a tensor of vectors spanning a d-dimensional
subspace over a field F. Let G be a subgroup of GL(I,F). Characterize the d-subsets of I which can
be made linearly independent by applying linear transformations from G to the vectors in V.

Compression. In Section 12 we establish “compression” theorems for multilinear functions asso-
ciated with certain tensors. At a high level, these theorems have the following general structure,
providing a certain kind of “downward self-reducibility”, or “average-case to worst-case reduction”.
Many of the terms below are left vague on purpose.

Consider a (uniform) family of functions f = {fn : Σn → Σ}, on some domain Σ (these can be
Boolean functions, or polynomials over some field, or anything else). Assume that for every n we
have an algorithm (or circuit) computing fn on some large, structured subset of Σn. Compression
above means that we can convert such an algorithm into another, with a similar complexity, which
computes fn′ on the full domain Σn

′
, for n′ not much smaller than n.

For low degree polynomials over large finite fields, average-case to worst-case reductions [Lip89,
BF90] provide such compression for sufficiently large subsets, without any loss (namely n′ = n).
Strassen’s theorem, generalized in Section 12, provides such a compression for matrix multiplication
f(A,B) = AB, when A (say) is taken from any subspace of matrices with high enough dimension,
and (say) n′ = n/2.

It is natural to wonder for what other general situations one can prove such efficient compression
results. The model of computation and resource bound can vary. An interesting case in point (dear
to the first author) is the following. Before Reingold’s celebrated SL = L result, the following slightly
weaker result was proved by [GW02]: there is a logspace algorithm which correctly solves undirected
graph connectivity, for all but at most exp(nε) of the n-vertex graphs. A compression result of the
type above would establish SL = L immediately.

Asymptotic spectra. Perhaps the most general research direction, which encompasses many of
the ones above, is the understanding of the structure of asymptotic spectra of preordered semirings,
and applying that understanding to obtain bounds on asymptotic parameters of interest. Numerous
examples of such settings are given in Section 2, with many concrete open problems in each. One
favorite concrete one is establishing the Shannon capacity of the 7-cycle C7, which has been open
for almost half a century, since Lovász’ famous resolution of the Shannon capacity of the 5-cycle C5.

Real algebraic geometry. The type decomposition for polynomials of Section 6 gives rise to a
“tropical version” of polynomials as we discussed in Remark 6.22. We wonder (speculatively) whether
there are further connections and relevance of these ideas to real algebraic geometry, for instance to
understanding semi-algebraic sets and inequalities in general. In this context we mention the work
of Grigoriev and Podolskii on the theory of systems of tropical inequalities [GP18]. Razborov’s flag
algebra [Raz07] and the theory of graph densities is another asymptotic theory which has recently
started using Tropical Geometric methods (Blekherman, Raymond, Singh and Thomas [BRST20]),
and relationships with Strassen’s theory can be sought.
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