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ON COMPUTATIONS -
WITH INTEGER DIVISION

by Bettina Jusr ('), Friedhelm MEeYER AUF DER HEDE (3)
and Avi WiGperson (3)

Absirucl. — We consider computation trees (CT's) with operations Sc<{ +, -, *, DIV, DIV.},
where DIV denotes integer division and DIV, integer division by constants. We characterize ¢
Jamilies of lunguages LN that can be recognized over { +, —, DIV_} and { 4, —, %, DIV},
*esp. and show that they are identical. Furthermaore we prove lower bounds for CT's with operations
1+, — DIV, } for languages LN which only contain short arithmetic progressions. We cannot
apply the classical component counting argumems as for operation S ={+, —, », .[. } because
of the DIV -operation. Such bounds are even no longer true. Instead we apply results from the
Geomery of Numbers about arithmetic progressions on integer points in high-dimensional convex
sa15 for our lower bounds.

) Bsume. ~ On considére des arbres étiquetés par un ensemble S dopérations S contenu dans
«* =, #, DIV, DIV, } ou DIV représente la division des entiers et DIV, la division des ensiers
f_’"{ une constante. On caractérise les familles de langages L de N qui peuvent étre recommues dé
aide de {4+, ~, DIV,} et { +, =, #, DIV} respectivement et on montre que ces deux classes
font ‘1tnf«ques. De plus on donne des bornes inférieures pour les arbres étiquetés par { +, —, DIV, }
"“"" f’ langages L de N qui ne contiennent que des progressions arithmétiques courtes. On ne
’(':“ pius appliquer les arguments classigues de comptage comme pour les ensembles d opérations
bomns dans {+, —, ,.].} & cause de Topération DIV, A la place, on utilise pour établir les
Point inférieures des arguments de géométrie des nombres sur les progressions arithmétiques de
§ & coordonnées entidres dans des espaces convexes de grande dimension.

. DNTRODUCTION

mi?el Most common operations on integers supported by classical program-
§ ‘anguages are +, —, *, DIV, where DIV denotes integer division. In

this . . )
o Paper we examine what can be computed with these operations and how
iClently it can be done.
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For this purpose we consider computation trees (CT's) in which operationg

from some set S={ +, —, *, DIV, DIV_} can be applicd to inputs, arbiteary |

rational constants, and previously computed values to compute functions

£ (%) of the input xeN. DIV, denotes inhegt division by constants. Further.
more one can execute branchings according to “f (x)>0". There is a variety-
of papers dealing with operation sets Sc{ +, —, %, ./. }, (1,4, 6 9] The
lower bounds achicved there apply methods from Algebraic Geometry to -
bound the number of connected components a language L —R" recognized:
by such a CT of depth T can have. This is known as the component counting
lower bound. In [2] and [6] results are also carfied over to languages LN,

The arguments from Algebraic Geometry work there because only “nice

functions, namely rational functions, can be computed over

{+, =, = .[.}

One can easily apply the above results to get a characterization of the‘
families of languages L=N that can be recognized by CT’s over {+, ~}

and { +, —, *}, resp.:
Both families are the same, namely all L= N where L or N-L is finite.

If we now add the DIV-operation, things become much more difficult. For

example, we now can recognizc languages LcN where L and N\L ar
infinite, e.g. arithmetic progressions {a+Ad, AeN} for some d, aeN. Thi

d-((x—a)DIV,d)=x—a.

Note that we can express the above even without multiplication because §
is a constant. :

In section III, after having introduced the computation models in section IL
we present a characterization of those languages L< N that can be recognized
over { +, —, DIV,} and { +, —, *, DIV}, resp..

It turns out that the two families of languages are identical. They consist o
all languages of the type BU{a+Ad, de A, AeN} withaeN, 4, BeN, A4, §
finite.

We call them AP-languages, AP stands for arithmetic progression.

A much more general model of CT’s is considered in [2]. Here the applic
tion of arbitrary analytic functions and DIV are allowed operations. Om
still gets results on what cannot be computed. One example is the solvabilif
of linear diophantine equations. Upper bounds for approximate solutions fo

this problem can be found in (5], lower bounds dependent on the binait

input size in [9].
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In section IV we prove lower bounds for CT’s over { +, —, DIV,}, the
weakest model that can recognize AP-languages. For operations
{+, —, %, ./.}, it is shown in [1, 9] that a lower bound of Q(log(g)) holds
for recognizing L N, if L consists of g intervals {4, i+1, .. ., j}. Such easy
characterizations of “hard” languages are no longer true if also DIV, or DIV
is allowed.

We show the following lower bound:

If LcN has n elements and does not comtain any arithmetic progression of
length k+1, then each CT over {+, — DIV,} for L needs
Q(log (n)/log log (n)) steps, if k <log (n), and Q (log (n)/log (k)) steps else.

We give scveral examples. The lower bound is true e. g for
{2,i=1, ..., n}, because this language does not contain any arithmetic
progression of length 3.

To prove the lower bound we apply methods from the Geometry of
Numbers, based on results from [7, 8].

We show (lemma 3):

If a convex set in R* contains Q (n®®- k") integer points, then at least k+1
of them are on one straight line.

We conjecture that the above result is even true if the number of integer
points is Q(k)?®, This would yield asymptotically optimal lower bounds,
e.g. Q(log(n)) for recognizing {2', i=1, ..., n} over { +, —, DIV, }.

It looks like a very complicated task to prove any lower bound for an AP-
language-on CTs over { +, —, *, DIV}, because the structure of functions
that can be computed with these operations seems to be very difficult.

. THE COMPUTATION MODELS

A Computation Tree with operation set
fr:e{ +. —, %, DIV, DIV, }(§-CT) for n‘inputs X5, ..., %, €N is a rooted
. with degree:s from {0, 1, 2}. Nodes with degree 0, the leaves, are cither

€epting or rejecting. Nodes » with degree 1 are labelled with a function
5arN - Q.g,=f,f, with in °€S, f,, f, either rational constants, or input
; 1ables or functions previously computed on the path to v. Nodes v with
€8ree 2 are labelled with predicates “p(x,, .. ., X,)>0" for some function
Z I::t;‘?“ﬂy computed on the path to v. An input (x,, ..., x,)eN" follows
lefe F:il thg tree defined by the outcomes of the predicates (True = “go
» false = “go right™) and is accepted, if its path arrives at an accepting
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leaf. Thus an S-CT recognizes a language L= N" The complexity of an §.
CT is its depth.

For technical reasons, in order to prove theorem 1, we need a somewhat
artificial type of computation trees.

A modulo-Branching Tree (MBT) is a { +, —, * }-CT for one input xeN
which contains additional branchings of arbitrary, finite degree. If the inpuy
x arrives at a node with degree B, then x follows the i'th branch
ie{0, ..., p—1}, iff x mod B=i.

Again an input x follows one path in the tree and is accepted if it arrives
at an accepting leaf. The complexity of the tree is its depth.

L COMPUTABILITY WITH { +, —, DIV,}-CT’s AND { +, —, *, DIV}-CT's

In this section we show that the families of languages L<N that can be |
recognized by { +, —, DIV,}-CT’s and { +, —, *, DIV }-CT’s, resp,, are
identical, namely the AP-languages. (AP stands for arithmetic progression.)

DermarionN: Let aeN, A, BN, A, B finite.

L(a, A, B):=BU{d+Xa, AeN, deA}.

Such languages L (a, A, B) are called AP-languages.
Now we are ready to state the main resuit of this section.

TueoreM 1: Let Lo N. Then the following four statements are equivalent.
(1) L is an AP-language.

(ii) L can be recognized by an MBT.

(iii) L can be recognized by a { +, —, DIV, }-CT.

(iv) L can be recognized by a { +, —, *, DIV }-CT.

In particular, the families of languages LN, that can be recognized by
{+, —, DIV,}-CT’s and {+, —, *, DIV}-CT's are identical, namely tht
AP-languages.

Proof: We show (i)=>(1ii)=(iv)=>(ii)=>(3).

The main part is the proof of (iv)=(n).

Informarique théorique et Applications/Theoretical Informatics and Applications
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(1)=(ii):

Let L=L(a, A, B) be an AP-language. 4 { +, —, DIV, }-CT T for L works
as follows:
~ — T first checks whether xe B by binary search. If yes, we are ready.

~ Otherwise:

T checks for each de 4, whether xe{d+Xa, AeN}. This can be done by
the test “a-((x—d)DIV.a)=x—d". Note that a is a constant, therefore
a- ((x—d) DIV_a) can be computed without multiplication. [J

())==(iv) is trivial

(i) =(i):

Consider an MBT T recognizing some language L = N. Let v be an accept-
ing leaf » of T, where an input set ¢ (v) arrives. The binary branchings on

the path to v add restrictions of the form “p(x)>0" or “p(x)S0”, where.

p is a polynomial in x. (Other functions cannot be computed with the
operations 4, —, *.) Thus c(v) is either finite or c(v) can be represented as
B,UI, Here B, is a finite set containing all elements of ¢(v) belonging to
bounded connected components of sets {x, p(x)>(<)0}, coming from binary
branchings. I, is of the form I,={x|x>p, xmod3;=i, for j=1,...,r},
where the r high degree branchings on the path to v have degrees §,, . . ., §,, at
the jth such branching, the i;’s branch is chosen by the path, and B, =max B,.

It is well known that I, can be expressed as one arithmetic progression,
I,={d,+)a, LeN} for suitable d,, a,. Let ¥ be the sct of those accepting
leaves where infinitely many inputs arrive.

Then I= \ I, is the union of finitely many arithmetic progressions.
veV

Again it is a well known fact from combinatorics that I can be represented
3 BU{d+Xa, de A} for some aeN and finite sets B’ and A.

Let now B” be the finite set of inputs arriving at those accepting leaves

where only finitely many inputs arrive, B”':= U B,, B:=B\UB"\UB"". Then
veV

we have that L=L(a, 4, B). Thus L is an AP-language. []

(V)= (ii):

This is the main part of the proof.
toLet T be a{ +, —, *, DIV}-CT recognizing LcN. We shall show how
w;;plaoe DIV-operations by high degree branchings such that the resulting

recognizes a languages L’ which is identical to L for sufficiently large
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x. For small x we again can simply add a binary search procedure in orde,-
to get an MBT for L.

The key observation which yields the desired result is formulated in th,
next lemma.

Lemma 1: Let p, q:N—Q be polynomials with rational coefficien;.
degree (p) Z degree (g). )

Then there are P, zeN, such that for each ic{0, ..., B=1} there is o
polynomial r;: N — Q with rational coefficients such that p (x) DIV q(x)=r,(x)
for all x=z with x mod B=1i.

Before we prove this lemma, we finish the proof of “(iv)=-(ii)”.

Let v be a first node on a path in T where a DIV-operation is executed
Then a function p (x) DIV g(x) for two previously computed polynomials p
g with rational coefficients is computed. If degree (p) <degree(q) then we "
replace p(x) DIV g(x) by the constant 0. This is correct for sufficiently large
x. Assume now that degree (p) = degree (g).

Let B, z be chosen as in the lemma. Then we replace v by a degree-p.
branching. At the i-th branch, i€{0, ..., f—1}, we attach a computation
over { +, —, *} for the polynomial r; from the lemma. Below we place of
copy of the subtree below v from T and replace cach use of p(x)DIVg(x)’
as an operand in this subtree by r; (x). By the lemma the resulting computation
tree recognizes a language L' N with L'N{xeN, x2z}=LN{xeN, x>z} }

By the same procedure we replace step by step all DIV-instructions, and
finally we come up with an MBT recognizing a language L” with-
L"N{xeN, xgz'}=LN{xeN, x2z'} for some sufficiently large z’. Finally, -
in order to recognize L, we first test whether x>z, If yes we use the abow -
MBT, otherwise we apply a binary search procedure in order to recogniz
the finite language LN{xeN, x<z’'}. O :

In order to finish the proof we have to present a:

Proof of lemma 1: By clementary algebra we know that there are polynoms |
als r, s:N = Q with rational coefficients, degree(s) < degree (q), such that
p=r-g+s. Choose B&N such that there is a polynomial 7: N — Q with integer
coefficients and r=1/Br. Then we have:

(| a] denotes the largest integer smaller or equal to a.)

R
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Because degree (s) <degree(g), lim s(x)/q(x)=0.

X o

Therefore, for sufficiently large x, p(x) DIVg(x)=r(x) DIVB. Now let
ie{0, ..., p—1} be fixed, and x mod B=1i, i.e. x=AP+i for some heN.

Let 7(x)= Y. a;x/, a;eZ.

j=o
If we consider i as a constant, we can write 7 (x)=r (BA +i) as a polynomial
in A which has the form

r(x)=Y b,y  with b,eZ (b,maydependoni).

i=0

This yields:

r)= 3 b;(ABY=bo+B-g (M) withg(W)= Y b;p/ " WeZ
j=1

j=0

Thus we obtain, for sufficiently large x with x mod B=i:
P(x)DIVg(x)=r(x) DIV =b, DIVB+g(\)
=by DIV B+ g ((x—i)/B)=polynomial in x, which proves lemma 1. 0O

Bi. LOWER BOUNDS FOR { +, —, DIV, }-CT’s

TreorEM 2: Ler LN, $L=n. If L contains no arithmetic progression of
length k+1, then each {+, —, DIV,}-CT for L has complexity
Qlog(n)loglog(m)), if k Slog(n), and Q (log (n)/log (k) else.

Examples: ~ L,:={2'i=1,...,n} has n clements and no arithmetic
Progression of length 3.

Therefore a lower bound Q(log(n)/loglog(n)) holds.

A more general example covers all relations between k and n.

= Ly = {4+ 1), i=0,...,1—1, j=1,...,k} has n=1-k clements
4nd no arithmetic progression of length k+1. Therefore the lower bound
f(log (n)flog (k) holds.

? {'oof of theorem 2: Consider a{ +, —, DIV, }-CT T with depth D reco-
lg“mng a finite language L <N, which contains no arithmetic progression of
ngth k+1, $L=n. Let v be a leaf of T, v,,...,v,=n be the path to v,
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d=<D. Let f,;:N — Q denote the function computed at v;, and ¢ (v) the set of
inputs arriving at v.
The following lemma presents a characterization of ¢ (v).

Lemma 2: There is a convex polytope P in R**? such that the following
holds:

(i) xecw)=>3c,, ..., c)eZi:(x, ¢y, ..., C)EP.

(ii) For each xec(v) there is exactly one (¢, ...,c)€2* wirh
(x, €45 ..., c)eP.

Proof: We replace, from top to bottom, each DIV -operation by a new
variable ¢;, We need at most d new variables. Whenever the result of a DIV -
operation is used as an operand, we use the associated new variable instead,
Thereby, at each node v, a function g;(x, ¢,, ..., ¢;) is computed. The g’s
are lincar, because only operations +, — are used for their computations.
Let J={1, ..., d} be the set of indices i such that, at v, DIV, is applied.
Then we define the restrictions:

(*) brag()a(x, ¢y ..., c)<(>)b,(c;+1)

where a;(x, c,, ..., cg) DIV b, is computed at v, ie L The choice of (£, <)
or (2, >) depends on whether b; is positive or negative.

We now add the appropriate restrictions

(»x) 8i(x ¢y ..., )>(5)0 for all branching nodes v;

to the system of inequalities from (*), where >, < is delined according to
the branch chosen.

One casily verifies that the solution set P of the system of linear inequalities
from (*) and (x*) fulfills (i) and (ii). P is a (convex) polytope. [J] _

Let P, be the polytope associated with the path to v. Note that lemma 2
implies that $P,NZ*** =#c(v). We now shall see that #P,N\Z*** is small, if
¢ (v) does not contain a long arithmetic progression. For this purpose let us
call the integer points on a line segment in a convex set P a progression in
P.

LEMMA 3: Let B denote the set of integer points in a convex subset of R". If
B does not contain a progression of length (k + 1), then $B< k™. n°®.

Before we prove lemma 3 we finish the proof of the theorem. Let v be an
accepting leaf. As the recognized language does not contain an arithmetic
progression of length k+1, c(v) does not, too. Therefore, B,:=P,NZ**'

Informatique théorique et Applications/Theoretical Informatics and Applicatiops -
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‘" contains no progression of length k+1. By lemma 3 and the above, we get
' Bc(v)=4B,Sk**1.4°™. As T has at most 2° accepting leafs, L has at most
s 20.po®@.jP*1 elements, which yields n=3#L £2°- DO kP*+1 Solving this
inequality proves theorem 2.
For peR", r>0 let B(p, r) denote the n-dimensional ball with center p
' and radivs r, i.e. B, 1):={xeR", ||x—p[[Sr}, where ||.. || denotes the
Euclidean metric.

Furthermore, for a basis b;, ..., b, of R%, S(b;, ..., b,):=) b;Z is the

i=1
lattice with basis b,, .. ., b,
We need the following two lemmas. The first is shown in (8], the second
n[7].
LEmMA 4 [8): Let S be a lattice in R", peR", r>0. If B(p, )(\L =, then

} there is a hyperplane H in R" and a vector deR" such that S \U (H+d-3)
' : ‘el

and B(p, r) is contained in the convex hull of (H+d-)) and (H+d(’)_~+n3’2‘-— 1)
Jor some A€ 2. We say for short: B(p, r) is covered by n*/ hyperplanes relative
to §.

Lemma 5 [7): Let P be a convex polytope in R*. Then there is a nonsingular,
linear mapping 1: R* = R”, a pet(P), and radii r, R>0, such that:

() Rfrg2n¥?;

(i) B(p, net(P)<B(p, R).

Proof of Lemma 3: Let f(n, k) denote the maximum number of integer
Potats a convex set in R* without progression of length k + 1 can contain.

Clearly, £ (1, k)=k.

Let n>1. Let P be the convex hull of B, then P is a convex polytope.

Apply lemma 5 to find 1, p, 7, R such that (i) and (ii) hold. Let § denote the

: laf‘{“ S(t(ey), ..., 1(e,) where the ¢’s are the unit vectors in R". We
' distinguish between two cases.

Case 1. B(p, nNS=g

e Then, b_y lemma 4, B(p, r) can be covered by n** hyperplanes. Thus, by

ﬁflrna 3 (i), B(p, R) can be covered by R/r.n%2<2n3=:d hyperplanes rela-

lh: to §. As., by lemma 5 (ii), t(P)<B(p, R) holds, ©(P) is also covered by

N M. As 1 is nonsingular and linear, the backimages H,, ..., H, of these
YPerplanes contain PMZ"=B.
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As B does not contain any progression of length k+1, BNH, does not,
too. Therefore we obtain: $B<2n°. f(n—1, k). ,

(Note the H,\Z" can be locked upon as an (n~ 1)-dimensional lattice.)

Case 2: B(p, ’NS#

Now consider the lattice §:=k"S.

Then #(SNB(p, N)S1.

To see this assume that x an y, x%y, are contained in SNB(p, r).

Then the line segment [x, y] in R" would contain k+ 1 points ag, . . ., 4, €S,
Thus =+~ (B(p, r)), and therefore P, would contain the progression }
1" ap), . . -, T~ *(a,) of length k+1, a contradiction.

For simplicity, we assume w.lL.o.g that SNB(p, )={k-t(e,)}. This can
be achieved by a linear translation of P that does not change the structure
of its integer points. Now consider the lattice S:=2k-S=2-§ Now, -
B(p, ’)NS=, because k.t(e,¢S. The argumentation from case 1 now |
guarantees that t(P) can be covered by 2n® hyperplanes relative to §. As
171 (8)=(2k Z)", we can conclude that P can be covered by 2a° hyperplanes
relative to the lattice (2k Z)". Thus P can be covered by ¢=2k-2n> hyper-

planes H,, ..., H, relative to Z*, i.e, Bc U H; The argumentation from

b 1=1

' case 1 now shows that§B<e. f(n—1, K)=4kn®* f(n-1, k). !

' The two cases above now imply that f (n, k)S4kn®-f (n—1, k).
Thus f (n, k) <k". n°® which proves lemma 3.

ACKNOWLEDGMENTS

We would like 10 thank Martin Dictafelbinger for valuable discussions about lemma 3.

REFERENCES

1. M. Ben Or, Lower bounds for Algebraic Computation Trees, Proc. 15th
ACMSTOC, 1983, pp. 80-86. .

2. L. Bazay, B. Just and F. Mever aur DER HEDE, On the Limits of Computations with
the Floor Functions, Information and Computarion, 78 (2), 1988, pp. 99-107.

3. . W. S. Cassers, An Introduction to the Geometry of Nwunbers, Springer, Berlin,
1959; second printing, 1971.

4. D. Doskiv and R. LirroN, A Lower Bound of 1/2n? on Linear Search Programs
Jor the Knapsack Problem, J..C.S.S., Vol. 16, 1975, pp. 417-421.

Informatique théqfique et Applications/Theoretical Informatics and A pplications




0,

ns

AUG-8l-20¢2  15:23 HUTGERS 1LS/1L9M

ON COMPUTATIONS WITH INTEGER DIVISION 111

5. J. Hastap, B. JusT, J. LaGaRriAs and C. P. Scunorr, Polynomial Time Algorithms
for Finding Integer Relations Among Real Numbers, Proc. STACS, 1986, pp. 105-
118,

©* .6 P. Kiemw and F. Msvsr avr pEr Heme, A Lower Bound for the Knapsack Problem

on Random Access Machines, Act. Inf., Vol. 19, 1983, pp. 385-395.

7. H. W. Lenstra Jr, Integer Programming with a Fixed Number of Variables, Report
81-03, Mathematisch Instituut, Amsterdam, 1983.

8 J. C. Lacarias, H. W. Lenstra Jr. and C. P. ScuNorr, Karkine-Zolotareff Bases
and Successive Minima of a Latice and its Reciprocal Lattice, preprint 1986.

9. F. MEYER AUF DER HEDE, Lower Bounds for Solving Linear Diophantine equations
on Random Access Machines, JACM., Vol. 32 (4), 1985, pp. 929-937.

' vol 23, n* 1, ]989

Y32 44D 4RI

F.1271°¢

Fi 538 Lot n

ey




