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Abstract

In this paper we give a randomness efficient sam-
pler for matrix-valued functions. Specifically, we show
that a random walk on an expander approximates the re-
cent Chernoff-like bound for matrix-valued functions of
Ahlswede and Winter [1], in a manner which depends opti-
mally on the spectral gap. The proof uses perturbation the-
ory, and is a generalization of Gillman’s and Lezaud’s anal-
ysis of the Ajtai-Komlos-Szemeredi sampler for real-valued
functions [11, 21, 2].

Derandomizing our sampler gives a few applications,
yielding deterministic polynomial time algorithms for prob-
lems in which derandomizing independent sampling gives
only quasi-polynomial time deterministic algorithms. The
first (which was our original motivation) is to a polynomial-
time derandomization of the Alon-Roichman theorem [4, 20,
22]: given a group of size n, find O(log n) elements which
generate it as an expander. This implies a second appli-
cation - efficiently constructing a randomness-optimal ho-
momorphism tester, significantly improving the previous re-
sult of Shpilka and Wigderson [29]. The third is to a “non-
commutative” hypergraph covering problem - a natural ex-
tension of the set-cover problem which arises in quantum
information theory (e.g. [1, 16]), in which we effciently at-
tain the integrality gap when the fractional semi-definite re-
laxation cost is constant.

1. Introduction

1.1. Background

The Chernoff bound [8] and its variants are among the
most useful mathematical results, and in particular are ex-
tremely useful in theoretical computer science. Roughly
stated, it says that if we wish to estimate the mean of a
bounded real function on some domain V , the average of
the values at k independent samples deviates from the true
mean (by a small additive constant) only with error prob-

ability bounded by 2−Ω(k). Note that if every sample re-
quires r random bits, this sampling procedure requires a to-
tal of rk random bits to achieve error 2−Ω(k).

A remarkable construction and analysis of Ajtai, Komlos
and Szemeredi [2] suggested a way of achieving essentially
the same error using only r + O(k) bits. The idea is to
impose a good constant degree expander graph G on the
vertex set V , and select k (highly dependent) samples by
taking a random path of length k in this graph. The analysis
of this sampler due to Gillman [11], which is the first to
consider sampling any bounded real function (see also [18,
21]), shows that the error is bounded by 2−Ω(εk), where ε
is the spectral gap of the random walk on the expander G.
The fact that explicit families of constant degree expanders
with constant spectral gap are known [10, 24, 23, 27] show
that such a randomness-efficient sampler can be efficiently
implemented.

This sampler has become a paramount tool in theoreti-
cal computer science. Indeed, it has found a large number
of applications in such a variety of areas as deterministic
amplification [9, 17], security amplification in cryptogra-
phy [14], hardness of approximation [5, 3], extractor con-
struction (e.g. see surveys [26, 13, 28]), construction of
efficient error-correcting codes [30, 7], construction of ε-
biased spaces [25] and much more. In algorithmic applica-
tions, including some of the ones above, often both r and k
are O(log n) where n = |V | is the input size of the problem,
so derandomizing simply (i.e. enumerating all possible val-
ues of the random bits) the independent sampling requires
quasi-polynomial time, while the AKS-sampler can be de-
randomized in polynomial time.

Recently, a Chernoff-like bound was introduced by
Ahlswede and Winter [1] for matrix-valued random vari-
ables. Here we seek to estimate the average of a function
from V to d × d complex Hermitian1 matrices of bounded
norm. The [1] generalization of the Chernoff bound states
that the average of k independent points deviates signifi-
cantly in norm from the mean with probability bounded by

1For all practical purposes the reader can think of real symmetric ma-
trices.



d2−Ω(k).
Like the Chernoff bound, this generalization has quickly

found applications. Many of them are in quantum informa-
tion theory (and private quantum channels) [1, 16], where
such matrices arise naturally. A notably different one is
to a new proof [20, 22] of the Alon-Roichman theorem
[4], showing that for every finite group of size n, choos-
ing O(log n) random generators gives an expanding Cayley
graph with high probability.

1.2. Our results

In this paper we show that the AKS-sampler works as
well as independent sampling even for matrix valued func-
tions. If one samples k points on a walk of an expander of
spectral gap ε, the error probability is bounded by d2−Ω(εk),
“derandomizing” [1] in complete analogy to the way [2, 11]
derandomized Chernoff in the real (1-dimensional) case.

Let G = (V, E) be an expander graph with spectral gap
ε. Define Yi (0 ≤ i ≤ k) to be the i’th vertex visited in a
random walk on G that starts from Y0 which is uniformly
distributed in V . Let W = (Y1, . . . , Yk) be the random
variable representing the sequence of vertices encountered
on a random walk.

Let f be any function on V taking values in d×d Hermi-
tian matrices such that the matrix norm ‖f(v)‖ ≤ 1 for all
v ∈ V , and let E[f ] be the mean value of f uniformly over
all vertices. Define f(W ) =

∑k
i=1 f(Yi) to be the value of

the random walk.
Our main theorem states the following.2

Theorem 1.1. For every 1 ≥ γ > 0 and every k ≥ 4
γ we

have

Pr[ ‖ 1
k f(W )− E[f ]‖ > γ] ≤ d2−Ω(γ2εk)

The dependence on d is linear, just as in the independent
case of [1].

Note that for ε = 1 (i.e. a complete graph) this bound
is just independent sampling and thus the Chernoff bound
of [1] (we state this in Theorem 2.15). For d = 1 it is
just the 1-dimensional AKS sampler of [11, 2, 21, 18]. For
ε = d = 1 it is just the classical Chernoff bound. Thus
our work essentially generalizes all of these (up to constant
factors in the exponent).

Our proof uses perturbation theory, generalizing the
proofs of [11, 21]. We also have a simpler analysis using
basic linear algebra of a slightly weaker bound3 where the

2One may ask why the main theorem is interesting, as we could use a
union bound to independently bound the entries of the matrices. However
this loses a factor of d in the bound of the eigenvalues, which is insufficient
for our purposes. Other naive approaches are similarly insufficient in our
setting.

3When using an expander for sampling, ε is a constant and this bound
simply has a different constant in the exponent.

dependence on ε in the exponent is close to cubic instead
of linear. Unfortunately we omit the proof here for space
concerns.

A simple extension of the theorem above gives rise to
a randomness-efficient sampler for weighted averages of
matrix-valued functions, which is useful for some of our
applications.

1.3. Applications

Our main application is a complete derandomization of
the Alon-Roichman theorem (which was our motivation to
begin with). [4] showed that given any group H if we
choose S ⊆ H of size O(log |H |) at random then with
high probability the induced Cayley graph is a good ex-
pander. We note that derandomizing independent sampling
gave only a quasi-polynomial algorithm, and that the best
previous polynomial time algorithm [29] could only pro-
duce |H |Ω(1) expanding generators. Our algorithm finds
O(log |H |) expanding generators deterministically in poly-
nomial time.

Theorem 1.2. Fix β < 1. Given an arbitrary finite group
H (specified by its multiplication table), one can find in
time |H |O(1) a symmetric generating multi-set S of size
O( 1

β2 log |H |) such that λ2(X(H ; S)) < β.

This will immediately imply the following optimal solu-
tion to a problem of [29] (see also [15]), significantly im-
proving their results. More details appear in Section 4.2.

Corollary 1.3. Given an arbitrary group H , one can con-
struct in time |H |O(1) a homomorphism tester for functions
on H which uses only log |H |+log log |H |+O(1) random
bits.

We also derandomize a natural problem arising in [1]
concerning quantum hypergraphs. Unfortunately for lack
of space we omit this application in the proceedings.

1.4. Organization of the paper

The remainder of the paper is organized as follows. In
Section 2 we define the background material needed to
prove our main theorem. In Section 3 we prove the main
technical result, Theorem 1.1. In Section 4 we derive some
applications of this sampler.

2. Preliminaries

2.1. Expander graphs

Given a connected undirected d-regular graph G =
(V, E) on n vertices, we define its normalized adjacency



matrix A, Aij = eij/d where eij is the number of edges
between vertices i and j (we allow self-loops and multiple
edges). It is easy to see that A is real and symmetric, hence
Hermitian.

It is well-known that the set of eigenvalues (called the
spectrum) of A is of the form 1 = λ1 > λ2 ≥ . . . ≥
λn. The spectrum of G is the spectrum of A. Note
that 1 is an eigenvalue of multiplicity 1. We will fre-
quently refer to the unit eigenvector of eigenvalue 1 as
u = [1/

√
n, . . . , 1/

√
n]T ,4 where T denotes the matrix

transpose of a matrix (or vector). The spectral gap of A
is defined as 1 − λ2. A family of graphs {Gi}i≥1 is said
to be an expander family if the spectral gap of each Gi is
strictly greater than some fixed ε > 0. Recall that explicit
such families with constant degree exist: we can construct
arbitrarily large graphs with fixed degree such that given
a node in the graph we can compute its neighbors in time
poly log in the size of the graph. An explicit example is the
following.

Theorem 2.1 ([23, 24]). Fix any prime p such that p ≡ 1
(mod 4). Then for all primes q such that q ≡ 1 (mod 4),
one can efficiently construct a graph of size q+1 and degree
p + 1 with second-largest eigenvalue at most 2

√
p/(p + 1).

Cayley graphs are graphs defined on groups:

Definition 2.2. Let H be a finite group and let T be a multi-
set with elements in H . Let S = T tT−1 denote the multi-
set containing all elements T and their inverses with appro-
priate multiplicity. Then we can define the Cayley graph
X(H ; S) = (V, E) where V = H and {h, hs} ∈ E for all
h ∈ H, s ∈ S, again with appropriate multiplicities.

We will also use matrix tensor products, which give us a
simple language to work with block matrices. Recall that if
A is a n×m matrix and B is a p× q matrix, then A ⊗ B,
the matrix tensor product, is the np×mq matrix given by

(A⊗B)(i,k),(j,`) = Ai,j · Bk,`

The following facts about the matrix tensor product are
well-known:

2.2. Perturbation Theory

The proof of Lemma 3.4, the heart of our proof of the
main theorem, relies on many facts from perturbation the-
ory. We state some of the results that we will require. We
use [6] (see also [19]) as our guide. We will not state the
theorems in full generality for simplicity’s sake.

An analytic perturbation (of a matrix A0) is a matrix-
valued power series A(t) =

∑∞
i=0 tiAi in the variable t

with matrix coefficients (Ai)i≥0. Note that A(0) = A0.
4This is the uniform distribution on V , normalized to have ‖u‖ = 1.

We will only be concerned here with the case that A0 is
Hermitian and all coefficients Ai have norm at most 1.

Perturbation theory studies various matrix parameters of
A(t) (such as eigenvalues, eigenspaces etc.) as a function of
t. More specifically, we’d like them to be convergent power
series in t for some radius around t = 0, and perturbation
theory tells us how these power series behave, as well as the
dependence of the convergence radius on the coefficients of
the perturbation A(t).

Then [6] states that an eigenvalue λ of A0 of multi-
plicity m may split into as many as m distinct eigenval-
ues λ(1)(t), . . . , λ(m)(t) upon perturbation [6, Ch. 3.2],
where the λ(i)(t) are continuous at t = 0 and furthermore
λ = λ(i)(0) for all 1 ≤ i ≤ m.

The “stability” of the perturbation of λ primarily de-
pends on the separation of λ from the other eigenvalues of
A0. (again, we assume that all Ai have norm≤ 1, otherwise
this stability depends on these norms as well). The radius
of convergence also depends on this separation, which we
define below.

Definition 2.3. We call

ε = min
λ′∈Spec(A0), λ′ 6=λ

|λ− λ′|

the separation of λ from the other eigenvalues of A0.5

We will work with the projection onto the eigenspace of
all the eigenvalues splitting from λ.

Theorem 2.4 ([6, pp. 116-117, p. 326]). Consider a per-
turbation A(t). Let λ be an eigenvalue of multiplicity m
of the unperturbed operator A(0) = A0. Consider the
space Λ(t) spanned by the eigenvectors of the eigenval-
ues λ(1)(t), . . . , λ(m)(t) splitting from λ. Λ(t) is a space
of dimension m. For each t there is an operator P (t) that
projects onto Λ(t), and for all t ≤ ε/3 the function P (t) is
analytic in t: there exist matrices Pi (themselves not neces-
sarily projections) such that

P (t) =

∞
∑

i=0

tiPi (2.1)

projects onto Λ(t). Here, P (0) = P0 is the projection onto
the eigenspace of eigenvalue λ of A0.

We will also need a few additional facts from perturba-
tion theory.

Lemma 2.5 ([6, p. 115]). Let ε be the separation of λ from
the other eigenvalues of A0. Suppose additionally that
‖Ai‖ ≤ 1

2i−1 for all i ≥ 1. Then for all t ≤ ε/3, the

5Notice that the spectral gap of a graph is exactly the separation of the
eigenvalue 1 of the normalized adjacency matrix of the graph from the
other eigenvalues.



eigenvalues of A(t) in the range [λ− ε/2, λ + ε/2] all split
from λ (i.e. they do not split from some other eigenvalue of
A0).

Proof. Lemma 3 of [6, p. 115] tells us that we only need to
verify that

∞
∑

i=1

ti‖Ai‖ < ε/2

for all t ≤ ε/3. This is easily done by calculation using the
fact that ‖Ai‖ ≤ 1/2i−1 for all i ≥ 1.

Definition 2.6 ([6, pp. 74-75]). The reduced resolvent S0

of a matrix A0 with respect to the eigenvalue λ is the
pseudo-inverse of λI − A0. That is, its restriction on the
eigenspace of the eigenvalue λ of A0 is 0 and its restriction
on the orthogonal complement is (λI −A0)

−1.

Lemma 2.7. ‖S0‖ = 1
ε where ε is the separation of λ from

the other eigenvalues of A0.

Proof. Let the eigenvalues of A0 be λ1 ≥ λ2 ≥ . . . ≥ λn.
Since S0 is the pseudo-inverse of λI −A0, the eigenvalues
of S0 are 0 and 1

λi−λ for all λi 6= λ. It is easy to see that S0

is Hermitian, so it follows that ‖S0‖ equals its eigenvalue
largest in absolute value, which is exactly 1

ε .

The definition of the reduced resolvent is applied in the
following identity.

Theorem 2.8 ([6, p. 156]). If A(t), P (t) are defined as
above, then

(A(t) − I)P (t) =

∞
∑

i=1

tiZ(i) (2.2)

where

Z(i) = −
i
∑

k=1

∑

µ1+...+µk=i

σ1+...+σk+1=k−1

µj≥1,σj≥0

S
(σ1)
0 Aµ1

S
(σ2)
0 . . . Aµk

S
(σk+1)
0

The S
(σ)
0 is shorthand, where S

(0)
0 is the projection P (0) =

P0, and for σ ≥ 1 we define S
(σ)
0 = −(−S0)

σ , where S0 is
the reduced resolvent of A with respect to the eigenvalue λ.
This series is convergent for t ≤ ε/3.

Remark 2.9. For a full discussion of this expression see
[6]. The curious reader will note that in our statement there
is no constant term in the series

∑∞
i=1 tiZ(i). This is be-

cause A(t) is diagonalizable and so the constant term6 is
zero. He or she will also note that the summation in the def-
inition of Z(i) is over σj ≥ 0, which is different from the
statement in [6]. This also follows from the fact that A(t) is
diagonalizable.

6This is the eigennilpotent of A(t).

2.3. Probability theory of matrix-valued random
variables

We will write I to be the identity, or Id when the dimen-
sion d is not clear.

Theorem 1.1 is stated in terms of the matrix 2-norm,
which is defined for any d × d matrix A as ‖A‖ =
maxx∈Cd ‖Ax‖/‖x‖. If A is Hermitian then ‖A‖ =
|λmax|, where λmax is the eigenvalue of A with largest ab-
solute value.

To prove Theorem 1.1, we will work with a different
though related partial ordering of Hermitian matrices. A
Hermitian matrix is positive semi-definite (p.s.d.) if all its
eigenvalues (which are real) are non-negative. Note that
non-negative linear combinations of p.s.d. Hermitian matri-
ces are also p.s.d. Hermitian, i.e. Hermitian p.s.d. matrices
form a real cone. We define that A ≥ 0 if A is p.s.d., and
A ≥ B if A − B ≥ 0. The interval [A, B] is defined as
all Hermitian X such that A ≤ X ≤ B. Note one can
test whether A ≥ B in polynomial-time by finding all the
eigenvalues of A−B.

Remark 2.10. For intervals of the form [−αI, αI ], saying
A is in this interval is equivalent to saying ‖A‖ ≤ α. Note
that this means the probability bounded in Theorem 1.1 is
exactly the probability Pr[ 1

kf(W )− E[f ] 6∈ [−γI, γI ]]

[1] develops a theory of probability inequalities for
Hermitian matrices, including analogues of the traditional
Markov, Chebyshev, and Chernoff inequalities. We state
some of the theorems from [1] here without proof.

Lemma 2.11 (Markov’s inequality [1] ). Let Y be a
matrix-valued random variable taking value in the Hermi-
tian, p.s.d. matrices of dimension d. Let M = E[Y ] and let
A also be a Hermitian p.s.d. matrix. Then we have that

Pr[Y 6≤ A] ≤ Tr(MA−1)

We will apply Bernstein’s trick (taking the exponen-
tial generating function and then applying Markov) on this
lemma to get an exponential bound. This uses the matrix
exponential:

Definition 2.12. exp(A) = I + A + A2/2 + . . . =
∑∞

i=0 Ai/i!

This series is convergent for all A. Also, if X is Hermi-
tian then so is exp(X), and exp(X) ≥ 0 for any Hermi-
tian X . In general exp(A + B) is not necessarily equal to
exp(A) exp(B). However, the Golden-Thompson inequal-
ity gives a relationship between the traces of exp(A + B)
and exp(A) exp(B):

Theorem 2.13 ([12, 31]). For A, B Hermitian matrices we
have

Tr(exp(A + B)) ≤ Tr(exp(A) · exp(B))



We can use the definition of matrix exponential to apply
Bernstein’s trick to Lemma 2.11 and get the following.

Lemma 2.14 ([1]). If Y is a matrix-valued random vari-
able and B is a constant matrix, both taking value in the
Hermitian matrices of the same dimension, then for every
t > 0

Pr[Y 6≤ B] ≤ Tr(E[exp(t(Y −B))])

[1] uses this and Theorem 2.13 to get a Chernoff bound,
similar to Theorem 1.1 but with true independent samples.
We state only a special case of their bound.

Theorem 2.15 (Chernoff bound, [1]). Let Y1, . . . , Yk be
independent, identically distributed random variables tak-
ing value in the Hermitian matrix interval [−I, I ] with mean
0. Suppose 1 ≥ γ > 0. Then Pr[‖ 1

k

∑k
i=1 Yi‖ > γ] ≤

2de−γ2k/(2 ln 2).

The constant is better than what we are able to achieve in
Theorem 3.1 but qualitatively the bound achieves the same
effect.

3. Randomness-efficient sampling of matrix-
valued functions

In Section 3.1 we prove Theorem 1.1 and finally in Sec-
tion 3.2 we derive the randomness-efficient and derandom-
ized samplers.

3.1. Expander walks for Matrix-Valued Random
Variables

In this section we prove the main theorem. This will in-
volve applying perturbation theory akin to that of [11, 21]
to prove Lemma 3.4. Note in the d-dimensional case there
is an extra factor of d in both the independent sampling
Chernoff bound of Theorem 2.15 and in our expander walk
Chernoff bound Theorem 1.1. This is because by bounding
a d × d Hermitian matrix, we are in some sense bounding
d variables (the eigenvalues) simultaneously, and so the d
falls out of a union bound.

The d-dimensional case is delicate for several reasons.
First, because matrices do not necessarily commute, the
matrix exponential does not behave as the real exponen-
tial, which is why we need Theorem 2.13. Second, [11, 21]
study the perturbation of the largest eigenvalue of the nor-
malized adjacency matrix A of the graph, which has mul-
tiplicity 1. Although we also study a similar eigenvalue, it
will have multiplicity d instead of 1. Because of this, the
techniques of [11, 21] do not apply in the obvious way.

Recall the setting of the main theorem. We have a ran-
dom walk W = (Y1, . . . , Yk) on an expander G = (V, E),
where Yi is the i’th vertex visited in the walk. The spectral

gap of G is ε. For simplicity of notation in the proof we
will only prove Theorem 3.1 below. For any f such that
‖f(v)‖ ≤ 1 for all v, we can simply shift and scale f to
fit the hypotheses of Theorem 3.1, changing only constants
in the bound. Thus our Main Theorem 1.1 follows immedi-
ately from Theorem 3.1 and Remark 2.10.

Theorem 3.1. Let f : V → [−I, I ] and E[f(v)] = 0. Let
f(W ) =

∑k
i=1 f(Yi). Then for every 1 ≥ γ > 0 and every

k ≥ 4
γ , we have the two following bounds:

Pr[ 1
k f(W ) 6≤ γI ] ≤ de−γ2εk/60

Pr[ 1
kf(W ) 6≥ −γI ] ≤ de−γ2εk/60

Proof of Theorem 3.1. Note that the lower bound follows
immediately from the upper bound by replacing f with−f ,
thus we only prove the first inequality.

We reduce the problem of computing the probability
bound to bounding the largest eigenvalue of a perturbation
matrix. Then in the proof of the Main Lemma 3.4, we use
perturbation theory to bound the norm of this perturbed op-
erator, which in turn implies the theorem.

First apply Lemma 2.14 to the expression, then bring out
γI :

Pr[ 1
kf(W ) 6≤ γI ] ≤ TrE[exp(t(f(W ) − kγI))]

≤ e−γktTrE[exp(tf(W ))]

Applying Theorem 2.13 and the fact that trace and expecta-
tion commute, we can write that this is at most

≤ e−γkt
ETr

[

exp

(

t

(

k
∑

i=1

f(Yi)

))]

≤ e−γkt
ETr

[

k
∏

i=1

exp(tf(Yi))

]

≤ e−γktTrE

[

k
∏

i=1

exp(tf(Yi))

]

It is important to note here that the exp(tf(Yi)) do not com-
mute so the product notation means the product in the order
exp(tf(Yk)) exp(tf(Yk−1)) . . . exp(tf(Y1)).

Let A be the normalized adjacency matrix of G and let
Ã = Id ⊗ A. One can visualize this as A but where each
entry is Ai,jId instead of just Ai,j . Define, D̃t, which is
the dn× dn block diagonal matrix with d× d blocks where
the i’th diagonal block is exp(tf(i)). Define ũ to be the
dn×d matrix Id⊗u where u = [1/

√
n, . . . , 1/

√
n]T is the

unit uniform column vector. This is in some sense a “unit
eigenvector of the eigenvalue 1 of Ã”.

Claim 3.2. We have that E

[

∏k
i=1 exp(tf(Yi))

]

=

ũT (D̃tÃ)kũ



Proof of Claim 3.2. We may view the expectation on the
LHS to be taken over all walks on G. Let y = (y1, . . . , yk)
be a walk, yi the i’th vertex visited of the walk, py be the
probability of y, and f(y) the value of the walk. Then

E

[

k
∏

i=1

exp(tf(Yi))

]

=
∑

y

py

k
∏

i=1

exp(tf(yi))

We interpret the expression on the RHS as follows. We ini-
tialize the value of the walk to I , then take a random walk
starting from a random start vertex, and at each vertex yi

we encounter, we multiply the value of the walk on the left
by exp(tf(yi)). Thus a calculation yields that the RHS is
ũT (D̃tÃ)kũ.

Now note that Tr(ũT (D̃tÃ)kũ) =
∑d

i=1〈(ei ⊗
u), (D̃tÃ)k(ei ⊗ u)〉 ≤ d‖(D̃tÃ)k‖. The final inequality
follows from applying Cauchy-Schwarz, since ‖ei ⊗ u‖ =
1.

Thus we have

Pr[ 1
kf(W ) 6≤ γI ] ≤ de−γkt‖(D̃tÃ)k‖ (3.1)

The proof requires a bound on ‖(D̃tÃ)k‖.

Definition 3.3. Ã(t) = D̃t/2ÃD̃t/2

Note that Ã(0) = Ã and D̃tÃ is similar Ã(t) . We will
apply perturbation theory to Ã(t) to get the Main Lemma:

Lemma 3.4 (Main Lemma). ‖Ã(t)‖ ≤ 1 + (7.5/ε)t2 for
all t ≤ ε/15.

The intuition behind the Main Lemma is that Ã(t) is
close to Ã for small t. In particular, the spectral gap of Ã is
large so the largest eigenvalue of Ã(t) is close to the largest
eigenvalue 1 of Ã. Note interestingly that d, the dimension
of the blocks in the matrices we work with, does not appear
at all in the above lemma. Intuitively, this is because the
spectral behavior of Ã depends only on its spectral gap be-
tween 1 and λ2, not its size, even though 1 and λ2 are of
multiplicity d.

Before we prove the Main Lemma, we use it to derive
Theorem 3.1. We will fix t = γε/15 later. Thus, since
‖D̃t/2‖ ≤ et/2 and ‖D̃−t/2‖ ≤ et/2, we have

‖(D̃tÃ)k‖ = ‖D̃t/2(Ã(t))kD̃−t/2‖ ≤ et‖Ã(t)‖k

≤ et(1 + (7.5/ε)t2)k

which is at most et+(7.5k/ε)t2 by the fact that 1 + α ≤ eα

for all α ∈ R. So from Equation 3.1 we have

Pr[ 1
kf(W ) 6≤ γI ] ≤ de−γkt+(7.5k/ε)t2+t

We fix t = γε/15, which along with the fact that k ≥ 4
γ

gives us that

Pr[ 1
kf(W ) 6≤ γI ] ≤ de−γ2εk/60

Now we turn to the proof of the Main Lemma:

Proof of Lemma 3.4. Ã(t) = D̃t/2ÃD̃t/2 is an analytic
perturbation of the form Ã(t) =

∑∞
i=0 tiÃi where Ã(0) =

Ã0 = Id ⊗A, and where the other coefficients are given by
the following.

Claim 3.5.

Ãi =
1

i!

1

2i

i
∑

j=0

(

i

j

)

∆̃iÃ∆̃j

Here ∆̃ is the block diagonal matrix diag(f(i)). This
claim is easily derived by direct calculation using the Tay-
lor expansion of D̃t/2. Since Ã and ∆̃ are Hermitian it fol-
lows that Ã(t) is Hermitian for all t, so its eigenvalues are
real and the largest eigenvalue λ̃(t) = ‖Ã(t)‖. Furthermore
Theorem 2.4 applies to Ã(t) and its perturbed eigenvalue
λ̃(t), because Ã(0) = Ã is Hermitian and one can calculate
from Claim 3.5 that ‖Ãi‖ ≤ 1 for all i.

We want to find the largest eigenvalue of Ã(t). It is easy
to verify using Claim 3.5 that ‖Ãi‖ ≤ 1/2i−1 for all i ≥ 1.
In addition t ≤ ε/15, so we can apply Lemma 2.5, which
tells us that all the eigenvalues of Ã(t) in the range [1 −
ε/2, 1 + ε/2] split from 1. In particular, the trivial bound
‖Ã(t)‖ ≤ et tells us that ‖Ã(t)‖ < 1 + ε/2 for t ≤ ε/15,
and therefore the largest eigenvalue of Ã(t) splits from 1.

By Theorem 2.4 there is an analytic projection-valued
function P̃ (t) with matrix coefficients P̃i that projects onto
the eigenspace of all the eigenvalues splitting from the
eigenvalue 1 of Ã. Recall that P̃ (0) = P̃0 is the projection
onto the space spanned by the eigenvectors of the eigen-
value 1 of Ã.

We noted earlier that the eigenvalue 1 of Ã may split into
d distinct eigenvalues upon perturbation by D̃t because it is
of multiplicity d. Fortunately we are simply interested in
the largest one that splits from 1, which is still in the space
that P̃ (t) projects onto.

We thus have that ‖Ã(t)‖ = ‖Ã(t)P̃ (t)‖. We remark for
comparison here that the techniques of Gillman and Lezaud
[11, 21] fail at this point because the assumption that 1 is an
eigenvalue of multiplicity 1 is essential to their analyses.

Continuing onwards, we wish to bound λ̃(t) =
‖Ã(t)P̃ (t)‖. For intuition, consider that P̃ (t) is a projec-
tion onto eigenspaces of Ã(t), so we have that Ã(t)P̃ (t) =
P̃ (t)Ã(t)P̃ (t). By calculating the power series expansion
of P̃ (t)Ã(t)P̃ (t) one can see that the linear term is 0, and



the rest are O(t2) for small enough t. This is why one ex-
pects that λ̃(t) ≤ 1 + O(t2). However we use a different
approach to actually prove the lemma.

Formalizing this intuition, we wish to bound

λ̃(t) = ‖Ã(t)P̃ (t)‖ = ‖P̃ (t) + (Ã(t)− I)P̃ (t)‖
≤ 1 + ‖(Ã(t)− I)P̃ (t)‖

(3.2)

(Ã(t) − I)P̃ (t) is a power series, which is given by Theo-
rem 2.8. We will show shortly that the constant and linear
coefficients of this series are 0 and whose i’th coefficient
for i ≥ 2 has norm ≤ ( 5

ε )i−1. Therefore the norm of the
entire series is bounded as in the claim below:

Claim 3.6. ‖(Ã(t)−I)P̃ (t)‖ ≤ (7.5/ε)t2 for all t ≤ ε/15.

Since our choice of t = γε/15 in the proof of Theo-
rem 3.1 satisfies t ≤ ε/15, we can apply this claim to Equa-
tion 3.2 to finally get λ̃(t) ≤ 1 + (7.5/ε)t2.

Thus it only remains to prove Claim 3.6.

Proof of Claim 3.6. We apply Theorem 2.8 to our perturba-
tion Ã(t) =

∑∞
i=0 tiÃi. Equation 2.2 implies that

‖(Ã(t)− I)P̃ (t)‖ =

∥

∥

∥

∥

∥

∞
∑

i=1

tiZ̃(i)

∥

∥

∥

∥

∥

≤
∞
∑

i=1

ti‖Z̃(i)‖ (3.3)

where

Z̃(i) = −
i
∑

k=1

∑

µ1+...+µk=i

σ1+...+σk+1=k−1

µj≥1,σj≥0

S̃0
(σ1)

Ãµ1
S̃0

(σ2)
. . . Ãµk

S̃0
(σk+1)

(3.4)
where S̃0

(0)
= P̃0, S̃0

(σ)
= −(−S̃0)

σ for σ ≥ 1, and S̃0 is
the reduced resolvent of Ã for the eigenvalue 1.

We see that

Z̃(1) = P̃0
1

2
(∆̃Ã + Ã∆̃)P̃0 = P̃0∆̃P̃0

and we claim that this last expression is actually 0. For any
x̃ ∈ Cdn, we have

P̃0∆̃P̃0x̃ = P̃0∆̃(x⊗ u)

= P̃0

(

n
∑

i=1

f(i)x⊗ ei

)

=

(

1√
n

n
∑

i=1

f(i)x

)

⊗ u

= 0

We use two facts in the above. First, P̃0 is the projection
onto the space {x ⊗ u | x ∈ Cd}. That is, if we de-
compose x̃ =

∑n
i=1 xi ⊗ ei where the xi ∈ Cd, then

P̃0x̃ = 1√
n

∑n
i=1 xi ⊗ u. The other fact, used in the last

line, is that
∑

f(i) = nE[f ] = 0.
For i ≥ 2 we use Lemma 2.7 and the fact that the spectral

gap is the separation of 1 from the other eigenvalues to see
that ‖S̃0‖ = 1

ε . Also, it is evident that ‖P̃0‖ = 1 since it
is a projection, and we have already remarked that ‖Ãi‖ ≤
1. Thus each summand of Equation 3.4 has norm at most
(1/ε)i−1.

Notice that the number of terms in the summation in
Equation 3.4 is exactly

i
∑

k=1

(

i− 1

k − 1

)(

2k − 1

k

)

It is clear that
(

2k−1
k

)

= 1
2

(

2k
k

)

and by Stirling’s formula we
have

(

2k
k

)

≤ 4k/
√

kπ. Thus the number of terms is at most

1

2
+

1

2
√

π

i
∑

k=2

4k

√
k

(

i− 1

k − 1

)

≤ 1

2
+

2√
2π

i−1
∑

k=1

4k

(

i− 1

k

)

≤ 1

2
+

√

2

π
(5i−1 − 1)

We obtain the last inequality by recognizing a binomial ex-
pansion. Finally

1

2
+

√

2

π
(5i−1 − 1) ≤ 5i−1

for all i ≥ 2. Therefore ‖Z̃(i)‖ ≤ ( 5
ε )i−1 for all i ≥ 2.

Since Z̃(1) = 0 and ‖Z̃(i)‖ ≤ ( 5
ε )i−1 for i ≥ 2, we have

that the RHS of Equation 3.3 is at most

5

ε
t2
∞
∑

i=0

( 5t
ε )i

Thus for t ≤ ε
15 it is clear that this is at most (7.5/ε)t2.

3.2. A randomness-efficient sampler for matrix-
valued functions

Here we use Theorem 3.1 to derive a randomness-
efficient sampler for matrix-valued functions over arbitrary
distributions. We then derandomize this sampler to get de-
terministic samples in polynomial time.

Theorem 3.1 treats sampling a function f : [n] →
[−I, I ] uniformly, where [n] = {1, . . . , n}. That is, let
x

R← X denote sampling x from X uniformly, then The-
orem 3.1 allows us to (approximately) sample f(x) where
x

R← [n] using little randomness. Here we generalize this so
that the distribution on [n] is not necessarily uniform. In the
following, let Ep[f ] denote the expectation of f(Y ) where
Y is sampled from [n] according to the probability distribu-
tion p.



Proposition 3.7. Let p : [n] → [0, 1] be a probability dis-
tribution on [n]. For any 1 ≥ γ > 0 and every k ≥ 4

γ ,
we can construct a poly(n)-time computable sampler σ :
{0, 1}r → [n]k with r = log n + O(k) + O(log 1

γ ) such
that for all functions f : [n]→ [−Id, Id] with Ep[f ] = 0 we
have

Pr
w

R←{0,1}r

[∥

∥

∥

∥

∥

1
k

k
∑

i=1

f(σ(w)i)

∥

∥

∥

∥

∥

≤ γ

]

≥ 1− 2de−γ2k/70

(3.5)

Proof of Proposition 3.7. Our strategy is to construct in
time polynomial in n a constant-degree expander graph
G = (V, E) and a map ϕ : V → [n]. Our sampler σ will
map a walk on the expander of length k (which can clearly
be encoded using r = log |V |+ O(k) bits) to [n]k, namely
all the vertices it visits on the walk.

Recall we can construct Ramanujan graphs efficiently
from Theorem 2.1, so let us pick the degree such that the
spectral gap is at least 0.95. Choose such a graph of size
≥ 40n

γ . Call this graph G = (V, E).
We define the function ϕ : V → [n] such that for

each value y ∈ [n] we map any Jp(y) · |V |K vertices in
G to y, where the brackets J·K denote rounding either up
or down, so that in the end all the vertices V are mapped
to [n]. Thus G, ϕ give an altered distribution pG, which is
pG(y) = Pr

v
R←V

[ϕ(v) = y].

Claim 3.8. ‖EpG
[f ]‖ ≤ γ/40

We first use this claim to prove the proposition. Let
f ′(v) = 40

40+γ (f(v) − EpG
[f ]), then clearly f ′ : V →

[−I, I ] and EpG
[f ′] = 0. Take a random walk of length k

on G and let this sequence be called W . Then we have by
Theorem 3.1, Claim 3.8, and Remark 2.10 that

Pr[ 1
k f ◦ ϕ(W ) ∈ [−γI, γI ]] ≥

Pr

[

1
kf ′ ◦ ϕ(W ) ∈

[

−39γ

41
I,

39γ

41
I

]]

≥ 1− 2de−γ2k/70

where the inequality on the first line is obtained by adding
−EpG

[f ] and scaling by 40
40+γ to both sides of the event and

then applying Claim 3.8 and the fact that γ ≤ 1.
We can encode each walk by r = log |V | + O(k)

bits, which by our choice of |V | is exactly r = log n +
O(k) + O( 1

γ ). Thus σ is the map that for any walk w =

(v1, . . . , vk) outputs (ϕ(v1), . . . , ϕ(vk)). We can plug σ
into the above calculations to derive the bounds of Proposi-
tion 3.7.

Proof of Claim 3.8. The only thing remaining is to show

that the G = (V, E) we chose is large enough to satisfy

γ/40 ≥ ‖EpG
[f ]‖

=

∥

∥

∥

∥

∥

∥

∑

y∈[n]

(pG(y)− p(y))f(y)

∥

∥

∥

∥

∥

∥

where we use the fact that Ep[f(y)] = 0. Note that since
‖f(y)‖ ≤ 1 for all y, it suffices to show that

∑

y∈[n]

|pG(y)− p(y)| ≤ γ/40

Since pG(y) = Jp(y)|V |K/|V |, this is
∑

y∈[n]

∣

∣

∣

∣

Jp(y)|V |K− p(y)|V |
|V |

∣

∣

∣

∣

The numerator is at most 1, so after summing we get
‖EpG

[f ] − Ep[f ]‖ ≤ n/|V |, and thus it suffices to take
|V | ≥ 40n

γ .

An easy corollary of the proposition states that for short
enough walks we can completely derandomize the proce-
dure.

Corollary 3.9. Suppose we are in the setting of Proposi-
tion 3.7. Then there is a k = O(log d) and n · poly(d/γ)
algorithm (in fact an NC algorithm) to find a sample T =
(σ1, . . . , σk) such that ‖

∑k
i=1 f(σi)‖ ≤ kγ.

Proof. Take the smallest integer k > 70
γ2 (log d+log 2), then

we have that the RHS of Equation 3.5 is positive. Thus since
r = log n + O(log d) + O(log 1

γ ), by enumerating over all
w ∈ {0, 1}r in time 2r = n(d/γ)O(1) we can determin-
istically find w0 such that ‖

∑k
i=1 f(σ(w0)i)‖ ≤ kγ. Let

T = σ(w0).

Remark 3.10. We note that the f in Proposition 3.7 and
Corollary 3.9 is not identical to the one in Theorem 1.1.
This is unimportant as we may apply these results to any
bounded function f by shifting and scaling f ; this only
changes the resulting bounds by constant factors.

4. Applications

In Section 4.1 we apply Theorem 1.1 to prove Theo-
rem 1.2 and in Section 4.2 we apply this to affine homo-
morphism testing to get Corollary 1.3.

4.1. A Derandomization of the Alon-Roichman The-
orem

In this section we prove Theorem 1.2, which gives
a deterministic polynomial time algorithm for the Alon-
Roichman theorem. We first give a simple version of the



proof of the Alon-Roichman Theorem due to [20, 22] that
does not use representation theory. We note that better con-
stants in the final size of S may be achieved using the proof
based on representation theory given in [20, 22].

Theorem 4.1 ([4, 22, 20]). Fix β < 1 and q < 1.7 For an
arbitrary group H , by picking a random generating multi-
set T of size O( 1

β2 log |H |) and taking its symmetric closure

multi-set S = T t T−1 we have that the second-largest
eigenvalue of the Cayley graph λ2(X(H ; S)) satisfies

Pr[λ2(X(H ; S)) ≤ β] > q

Proof. Pick a generating multi-set set T uniformly at ran-
dom from H and take its symmetric closure S = T t T−1

(i.e. if a is in T i times and in T−1 j times then a is in
S i + j times). Define the homomorphism R such that for
each h ∈ H , R(h) is the |H | × |H | (real-valued) permuta-
tion matrix associated with the action of h on H . Define

f(h) =
1

2
((R(h)− J/n) + (R(h−1)− J/n))

where J is the matrix with 1 in all entries. It is easy to
observe that f(h) is symmetric (and thus Hermitian), and
E[f ] = 0. If we let P be the projection onto the space
orthogonal to u the uniform vector, then a calculation shows
that PR(h) = R(h) − J/n. Thus f(h) = 1

2 (PR(h) +
PR(h−1)), and looking at ‖f(h)‖ it is also clear that−I ≤
f(h) ≤ I .

Finally, a simple calculation shows that
1
|T |
∑

h∈T f(h) = PA where P is the projection men-
tioned above and A is the adjacency matrix of X(G; S).
Therefore we have λ2(X(H ; S)) = ‖ 1

|T |
∑

h∈T f(h)‖. So
we wish to bound

Pr[λ2(X(H ; S)) ≤ β] = Pr

[∥

∥

∥

∥

∥

1

|T |
∑

h∈T

f(h)

∥

∥

∥

∥

∥

≤ β

]

(4.1)
We can apply Theorem 2.15 to get that the RHS is ≥
1 − 2|H |e−β2k/(2 ln 2). Thus choosing the smallest integer
|T | > 2 ln 2

β2 (log |H |+ log 2
1−q ) shows that the RHS is > q.

Our derandomization, Theorem 1.2, follows easily from
Theorem 4.1 and Corollary 3.9

Proof of Theorem 1.2. We wish to apply Corollary 3.9. We
identify H with [|H |] and let p be the uniform distribution
over [|H |]. We apply Corollary 3.9 to get a sample T of
size O( 1

β2 log |H |) in time |H |2O(|T |) = |H |O(1) such that
‖ 1
|T |
∑

h∈T f(h)‖ ≤ β and hence λ2(X(H ; T t T−1)) ≤
β.

7Here we may take q = 1 − 1/poly(n), but constant suffices for our
purposes.

4.2. Improved Affine Homomorphism Testers

Theorem 1.2 answers a question about the derandomiza-
tion of homomorphism testers posed in [29]. In this section
we will use Theorem 1.2 to prove Corollary 1.3.

Recall that an affine homomorphism between two groups
H, H ′ is a map f : H → H ′ such that f−1(0)f is a ho-
momorphism. An (δ, η)-test for affine homomorphisms is
a tester that accepts any affine homomorphism surely and
rejects with probability 1 − δ any f : H → H ′ which
is η far from being an affine homomorphism. Here dis-
tance is measured by the normalized Hamming distance:
d(f, g) = Pr[f(x) 6= g(x)].

[29] showed how to efficiently construct a tester TH×S

where λ2(X(H ; S)) < λ: simply pick a random element
x

R← H and a random element of y
R← S and check to see

that f(0)f(x)−1f(xy) = f(y). It is clear this accepts f
surely if f is an affine homomorphism. [29] shows that if
12δ < 1 − λ then this rejects with probability 1− δ any f
that is 4δ

1−λ -far from being an affine homomorphism.

Theorem 4.2 ([29]). For all groups H, H ′ and S ⊆ H an
expanding generating set such that λ2(X(H ; S)) < λ, we
can construct a tester TH×S that surely accepts any affine
homomorphism f : H → H ′ and rejects with probability at
least 1− δ any f : H → H ′ which is 4δ/(1− λ) far from
being an affine homomorphism, given that 12δ

1−λ < 1. That

is, TH×S is a (δ, 4δ
1−λ )-test for affine homomorphisms.

In [29] the deterministic construction of S gave a set of
size |H |ε. The explicit construction given in [29] requires
that TH×S use (1+ε) log |H | random bits and asks whether
it is possible to improve this dependency on randomness.
Theorem 1.2 allows us indeed to improve this dependency
to the following.

Recall Corollary 1.3:

Corollary 1.3 (Restated). Given an arbitrary group H ,
one can construct in time |H |O(1) a homomorphism tester
for functions on H which uses only log |H |+ log log |H |+
O(1) random bits.

This follows easily from Theorem 1.2:

Proof of Corollary 1.3. Theorem 4.2 says we can construct
a homomorphism tester that only uses randomness to pick
an element of H and an element of an expanding gener-
ating set of H . Theorem 1.2 implies this only requires
log |H |+ log log |H |+ O(1) random bits since we can de-
terministically construct an expanding generating set of size
log |H | in polynomial time.

Note that Corollary 1.3 is essentially optimal for “Cay-
ley testers” of the above form, i.e. testers that pick one ele-
ment at random and a second from an expanding generating



set. This is because the tester requires that S be an expand-
ing generating set of H and there are groups (for example,
Zn

2 ) for which Ω(log |H |) generators are necessary for the
Cayley graph to expand. However, note that [15] prove the
existence of testers for homomorphisms H → H ′ where
|H ′| = O(1) that use only log |H | + O(1) bits of random-
ness. Finding explicit such constructions remains an inter-
esting open problem.
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