TRADE-OFFS BETWEEN DEPTH AND WIDTH IN PARALLEL COMPUTATION*

UZI VISHKIN† AND AVI WIGDERSON‡

Abstract. A new technique for proving lower bounds for parallel computation is introduced. This technique enables us to obtain, for the first time, nontrivial tight lower bounds for shared-memory models of parallel computation that allow several processors to have simultaneous access to the same memory location. Specifically, we use a concurrent-read concurrent-write model of parallel computation. It has \(p \) processors, each has access to a common memory of size \(m \) (also called \textit{communication width or width in short}) The input to the problem is located in an additional read-only portion of the common memory.

For a wide variety of problems (including parity, majority and summation) we show that the time complexity \(T(n) \) and the communication width \(m \) are related by the trade-off curve \(mT^2 = \Omega(n) \), (where \(n \) is the size of the input), \textit{regardless} of the number of processors. Moreover, for every point on this curve with \(m = O(n/\log^2 n) \) we give a matching upper bound with the \textit{optimal} number of processors.

We extend our technique to prove \(mT^2 = \Omega(n) \) trade-off for a class of "simpler" functions (including Boolean OR) on a weaker model that forbids simultaneous write access. We also state and give a proof of a new result by Beame [B-83] that achieves a tight lower bound for the OR in this model, namely \(mT^2 = \Omega(n) \). These results improve the lower bound of Cook and Dwork [CD-82] when communication is limited.

Keywords. Synchronous parallelism, parallel time complexity, communication width, trade-offs between complexity measures, lower bounds

1. Introduction. Consider the following informal problem: there are a large number of people (or processing units), each knows \(n \) numbers \(a_1, a_2, \ldots, a_n \). They all wish to compute the sum of these numbers. If they cannot communicate, there is no way to avoid sequential (\(\Omega(n) \) time) summation by each person separately. On the other hand, it is shown in the paper that with only one communication channel (one cell of shared memory) this time can be reduced to \(O(\sqrt{n}) \). With \(n \) (resp. \(2^n \)) shared memory cells the time can be reduced further to \(O(\log n) \) (resp. \(O(1) \)). This exemplifies that a communication facility is essential for any utilization of parallelism, and that its size directly affects the performance of the algorithm.

The size of the common memory facility is given by a parallel algorithm will be determined by two principal factors.

(a) Input availability. The size of the input, in the case that the input is placed in the common memory, or the need to transfer input data in the case that the input is initially distributed among the local memories.

(b) Cooperation between processors. The transmission of intermediate results between processors, utilized to obtain fast processing time.

Here we propose to concentrate on point (b). For this reason we put the input in a “read only” common memory.

In this paper we will concentrate on parallel RAMs (PRAMs), in particular, the Concurrent-Read Concurrent-Write PRAM (CRCW PRAM) and the Concurrent-

* Received by the editors May 17, 1983, and in revised form November 15, 1983. This paper is based on \textit{Trade-offs between depth and width in parallel computation} by U. Vishkin and A. Wigderson, appearing in the 24th Annual Symposium on Foundations of Computer Science, November 7–9, 1983, Tucson, AZ, pp. 146–153. © 1983 IEEE.
† Department of Computer Science, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. This research was conducted while this author was at Courant Institute, New York University, New York, New York.
‡ Computer Science Division, University of California, Berkeley, California 94720. This research was conducted while this author was in the Electrical Engineering and Computer Science Departments, Princeton University, Princeton, New Jersey.

303
Read Exclusive-Write PRAM (CREW PRAM). Both models are precisely defined in §2. In the above models processors communicate via a shared memory. Therefore the size of the communication facility of the machine, here called communication width (or width in short) is simply the number of shared memory cells. We consider the width \(m \) a resource, together with the size \(p \) (the number of processors) and the depth \(T \) (the running time), and we seek trade-offs between the three.

One of the subtleties in proving lower bounds for these models, is that information may be communicated by the fact that no processor writes into a common memory cell. We introduce a novel technique to deal with this difficulty.

For a large class of functions, which includes Parity and Majority, we prove \(T = \Omega((n/m)^{1/2}) \) on the CRCW PRAM, where \(n \) is the size of the input. This lower bound is tight for all values of width \(m = O(n/\log^2 n) \). This is the first time nontrivial tight lower bounds are achieved for a model that allows concurrent write access. The only known lower bound on the CRCW PRAM model is given in Stockmeyer and Vishkin [SV-82]. They show, using a result of Furst, Saxe, and Sipser [FSS-81], that it is impossible to compute parity in this model in constant time using a polynomial number of processors. There is, however, a large gap between this lower bound and the best upper bound known for a polynomial number of processors, which is \(O(\log n/\log \log n) \). (See [CSV-82].)

For another class of functions, which includes the functions AND and OR, we prove a lower bound of \(T = \Omega((n/m)^{1/3}) \) on the CRCW PRAM. This lower bound extends the \(\Omega(\log n) \) of Cook and Dwork for small values of \(m \), and further discerns the power of CRCW PRAM from the CREW PRAM. At this point we state, and give a proof, of a new result by Beame that achieves a tight lower bound for computing the OR in this model. For a different class of functions (that include OR) he proves \(T = \Omega((n/m)^{1/2}) \).

Both our lower bounds hold regardless of the number of processors, while the upper bounds are achieved with the smallest possible number of processors.

Our study of values of \(m \) which are smaller than input size requires us to add a read only input tape to the model, as is done in the study of space bounded Turing machines. The interest in those values is not solely theoretical—it is well founded in practice. For example the "Ethernet" can be considered as a PRAM with only one shared memory cell. Also, the papers Gottlieb et al. [GGKMR-82], Kuck [K-77] and Vishkin [V-82] imply that minimizing the size of shared memory (that can be accessed in parallel) may amount to hardware feasibility of the parallel machine.

The paper is organized as follows: precise definitions and the lower bounds are given in §2. Section 3 contains the upper bounds and §4 concludes the paper and suggests further research directions. To improve the readability of §2, some of the proofs were deferred to the appendix.

2. Lower bounds. In the first subsection we give precise definitions of the models of computation when the communication width \(m = 1 \), and of the types of functions we are interested in. Subsections 2.2 and 2.3 contain the lower bound proofs for the concurrent-write and exclusive-write models respectively when \(m = 1 \). In the last subsection we show how to extend the lower bounds for arbitrary communication width.

2.1. Definitions.

DEFINITION 2.1. A CRCW PRAM (1) consists of a set \(\Pi = \{p_1, p_2, \ldots \} \) of processors, a number \(n \) of inputs, \(n \) read-only input cells \(X(1), X(2), \ldots, X(n) \), one common memory cell \(C \), an alphabet \(\Sigma \) and an execution time \(T \).
Read Exclusive-Write PRAM (CREW PRAM). Both models are precisely defined in § 2. In the above models processors communicate via a shared memory. Therefore the size of the communication facility of the machine, here called communication width (or width in short) is simply the number of shared memory cells. We consider the width m as a resource, together with the size p (the number of processors) and the depth T (the running time), and we seek trade-offs between the three.

One of the subtleties in proving lower bounds for these models, is that information may be communicated by the fact that no processor writes into a common memory cell. We introduce a novel technique to deal with this difficulty.

For a large class of functions, which includes Parity and Majority, we prove $T = \Omega((n/m)^{1/2})$ on the CRCW PRAM, where n is the size of the input. This lower bound is tight for all values of width $m = O(n/\log^2 n)$. This is the first time nontrivial tight lower bounds are achieved for a model that allows concurrent write access. The only known lower bound on the CRCW PRAM model is given in Stockmeyer and Vishkin [SV-82]. They show, using a result of Furst, Saxe, and Sipser [FSS-81], that it is impossible to compute parity in this model in constant time using a polynomial number of processors. There is, however, a large gap between this lower bound and the best upper bound known for a polynomial number of processors, which is $O(\log n/\log \log n)$. (See [CSV-82]).

For another class of functions, which includes the functions AND and OR, we prove a lower bound of $T = \Omega((n/m)^{1/3})$ on the CREW PRAM. This lower bound extends the $\Omega(n/m)$ bound of Cook and Dwork for small values of m, and further discards the power of CRCW PRAM from the CREW PRAM. At this point we state, and give a proof, of a new result by Beame that achieves a tight lower bound for computing the OR in this model. For a different class of functions (that include OR) he proves $T = \Omega((n/m)^{1/3})$.

Both our lower bounds hold regardless of the number of processors, while the upper bounds are achieved with the smallest possible number of processors.

Our study of values of m which are smaller than input size requires us to add a read only input tape to the model, as is done in the study of space bounded Turing machines. The interest in those values is not solely theoretical—it is well founded in practice. For example the “Ethernet” can be considered as a PRAM with only one shared memory cell. Also, the papers Gottlieb et al. [GGKMRS-82], Kuck [K-77] and Vishkin [V-82] imply that minimizing the size of shared memory (that can be accessed in parallel) may amount to hardware feasibility of the parallel machine.

The paper is organized as follows: precise definitions and the lower bounds are given in § 2. Section 3 contains the upper bounds and § 4 concludes the paper and suggests further research directions. To improve the readability of § 2, some of the proofs were deferred to the appendix.

2. Lower bounds. In the first subsection we give precise definitions of the models of computation when the communication width m = 1, and of the types of functions we are interested in. Subsections 2.2 and 2.3 contain the lower bound proofs for the concurrent-write and exclusive-write models respectively when $m = 1$. In the last subsection we show how to extend the lower bounds for arbitrary communication width.

2.1. Definitions.

Definition 2.1. A CRCW PRAM (1) consists of a set $\Pi = \{p_1, p_2, \ldots\}$ of processors, a number n of inputs, n read-only input cells $X(1), X(2), \ldots, X(n)$, one common memory cell C, an alphabet Σ and an execution time T.
22. Lower Bounds for CRCW PRAM (1).

Theorem 2.1 Let M be a CRCW PRAM (1) that computes a k-sensitive function. Let f be a function in time T. Then $T = O(n^k)$.

Proof. Parity-Maj. sum and max are k-sensitive everywhere.

2. Consider the behavior of the algorithm in the case where the information is transferred in the order $X(1), X(2), \ldots, X(n)$.

Let us informally discuss the difficulties we are facing in trying to prove this theorem. Theorem 2.1 does not address the case where the information is transferred in the order $X(n), X(n-1), \ldots, X(1)$. We will return to this case later.

Example. Consider the functions Parity, Majority: OR: $0 < 1$.

Each processor has a set of states Q, and the transitions are given by the function $Q 	imes Q 	imes I 	imes Q 	imes Q$.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.

Theorem 2.1 holds for the CRCW PRAM (1) with $S_n = 2^n$.

For each processor p, $Q_p = \{0, 1\}$, the next input cell to be read.
model does not allow simultaneous write access to the same memory cell. (Indeed, their lower bound does not hold for the CRCW PRAM.) As our model allows simultaneous write access, we had to choose an approach which is different from theirs.

The information that is transferred in Case 2 seems even more slippery. We know what was written into C, and in addition we know that no processor with serial number smaller than j tried to write. (Note that as Σ may be infinite, the writer can encode its serial number in the symbol it writes.) This case is much simpler in the exclusive write model, since there, if someone writes, there can be no other processor that tries to write!

At this point we need some notation. Let I denote the (nonempty) set of all possible inputs (the domain). Fix a time period t and let $\beta = s^i s^{i-1} \cdots s^0$ be the string of successive symbols in C in time periods $0, 1, \ldots, t-1$. β is called the history through time t. Denote by I_{e^β} the subset of inputs that have history β through time t.

Our analysis will be based on the observation that Cases 1 and 2 consist each of two subcases. Fix β, a history through time t.

Case 1a. There is no input in I_{e^β} for which some processor writes at time t.

Case 1b. There is an input in I_{e^β} for which some processor writes at time t.

Case 2a. There is no input in I_{e^β} for which some processor with smaller serial number than j writes at time t.

Case 2b. There is an input in I_{e^β} for which a processor with smaller serial number than j writes at time t.

It turns out that Cases 1a and 2a are simple to analyze. Intuitively, in Case 1a no new information is transferred as β itself contains the information that no one will write at time t. Similarly, in Case 2a, β contains the information that no processor with a smaller serial number than the writer could have written, so the only new piece of information is the new symbol in C, s^i.

Now, rather than confronting the elusive information that is transferred in Cases 1b and 2b, we avoid (or circumvent) it, and hence coin the name *circumvention* for this technique. Showing that we can restrict ourselves to the “easy to analyze” cases is the heart of our argument.

Let $I\{(i_1, y_1), \ldots, (i_n, y_n)\} = \{x \in I | x_j = y_j, 1 \leq j \leq l\}$ denote the set of all inputs (n-tuples) whose projection on the l-tuple (i_1, i_2, \ldots, i_n) is (y_1, y_2, \ldots, y_l).

Remark. We switch here from qualifying inputs by their history (“range” qualification) to qualifying them by their values at given coordinates (domain qualification). This yields a simpler and more intuitive proof than our original one which used range qualification. However, we believe that range qualification is more powerful, and that it may be used to prove lower bounds when domain qualification fails.

The following iterative definition will generate an “easy to analyze” set of inputs, i.e. inputs for which Cases 1b and 2b never occur. For every t, D^t will contain pairs of “fixed” input positions and their values, and $E^t = I(D^t)$.

Let $E^0 = I$ and $D^0 = \emptyset$. Consider time period t and define E^t, D^t according to the following:

Case 1. There is no processor p_i and no input $x \in E^{t-1}$ such that p_i writes on x at time t. Then $E^t = E^{t-1}$, $D^t = D^{t-1}$.

Case 2. There is a processor p_i and an input $x \in E^{t-1}$ s.t. p_i writes on x at time t. Let p_l and $y \in E^{t-1}$ be so that p_l writes on y at time t, and l is the smallest serial number of any processor that writes at time t on any input in E^{t-1}. Let i_1, i_2, \ldots, i_n and y_1, y_2, \ldots, y_n be the sets of input cells and their contents (respectively) that were read by p_l up to time t.

It is easy to see that
1. $|D^t| \leq |D^{t-1}| + t$,
2. $E^t = I(D^t)$, $D^t = D^{t-1}$,
3. $E^t \neq \emptyset$.

In particular we have

LEMMA 2.1. $E^t \neq \emptyset$.

Remark. The definiteness of E^t will be used to prove lower bounds.

LEMMA 2.2. Let M be defined as above for M^t.

A rigorous proof of $M^t \neq \emptyset$ will be inductively on t, that any processor in M^t have exactly the same content f in time T. Suppose that $M^{t-1} \neq \emptyset$; then there must be inputs x and y such that $E^t \neq \emptyset$.

Therefore $T(T+1)/2 \geq k_y$.

2.3. Lower bounds for CRCW PRAM.

As mentioned earlier, in the previous subsection our lower bounds for CRCW PRAM (1). Indeed, the following follows. In the first step, the second step, a processor p_i, whose value it read was 1.

It is clear why this algorithm that if the domain consists of 1, then a “1,” a write conflict cannot happen. For this reason we will refer to $I = \Sigma^N$. The main result in this.

THEOREM 2.2. Let N be a function g in time T.

COROLLARY 2.2. If g 1.

In a earlier version of this theorem, 2.2 can be improved to T. In fact, he proved the following.

THEOREM 2.3. (Beam) $g: \{0, 1\}^n \rightarrow \{0, 1\}$ in time T.

then $T = \Omega(n \log r)$. It immediately follows

COROLLARY 2.3 (Beam).

The proof of Theorem 2.3 (Beam) while we focus on the sensitivity of a different parameter, namely is of independent interest, as
read by p_i up to time t. (Clearly $u \leq t$.) Then
\[E' \leftarrow E^{t-1} \cap \Pi((i_1, y_1), \ldots, (i_n, y_n)), \]
\[D' \leftarrow D^{t-1} \cup ((i_1, y_1), \ldots, (i_n, y_n)). \]

It is easy to see that for every $0 \leq t \leq T$
1. $|D'| \leq |D^{t-1}| + t, |D'| = 0$ and hence $|D'| \leq (t + 1)/2$.
2. $E' = \Pi(D'), D' \subseteq D', E' \subseteq E^{t-1}$.
3. $E' \neq \emptyset$.

In particular we have:

Lemma 2.1. $E^T \neq \emptyset$ and $|D^T| \leq (T + 1)/2$.

Remark. The definition above generates a set E^T of "easy to analyze" inputs, regardless of the function being computed. Therefore we believe that this technique can be used to prove lower bounds for the computation of other functions in this model.

Lemma 2.2. Let M be a CRCW PRAM (1) computing a function f, and let E^T be defined as above for M. Then for every $x, y \in E^T, f(x) = f(y)$.

A rigorous proof of this lemma is given in the appendix. The idea is to show inductively on t, that any processor which writes at time t on some input in E^T, will have exactly the same computation through time t on every input in E^T.

Proof of Theorem 2.1. Recall that M computes a k-sensitive everywhere function f in time T. Suppose that $T(T + 1)/2 < k$. Then $|D^T| > k$, and so by Definition 2.3, there must be inputs x and y in E^T s.t. $f(x) \neq f(y)$. This contradicts Lemma 2.2. Therefore $T(T + 1)/2 \geq k$, so $T = \Omega(\sqrt{k})$. \(\qed\)

2.3. Lower bounds for the CREW PRAM (1)

Consider the OR function of n bits. As mentioned earlier, the OR is just 1-sensitive everywhere, so the results in the previous subsection imply only a constant time lower bound for it on the CRCW PRAM (1). Indeed, there is a two step algorithm for the OR on this model as follows. In the first step, the common memory cell C is initialized with "0." In the second step, a processor p_i reads the ith input position and writes a "1" into C if the value it read was "1."

It is clear why this algorithm is not valid for a CREW PRAM. Note, however, that if the domain consists only of inputs which have at most one position containing a "1," a write conflict cannot occur, and the algorithm is valid for the CREW PRAM. For this reason we will restrict ourselves here to functions with a full domain (i.e. $I = \{0, 1\}^n$). The main result in this subsection is the following theorem.

Theorem 2.2. Let N be a CREW PRAM (1) that computes a k-sensitive somewhere function g in time T. Then $T = \Omega(k^{1/3})$.

Corollary 2.2. If g is the OR function on n bits, then $T = \Omega(n^{1/3})$.

In a later version of this paper, we conjectured that the lower bound of Corollary 2.2 can be improved to $T = \Omega(\sqrt{n})$. This was recently proved by Beame [B-83]. In fact, he proved the following stronger theorem.

Theorem 2.3. (Beame). Let N be a CREW PRAM (1) that computes a function $g: [0, 1]^n \rightarrow [0, 1]$ in time T. If there exists an input $e \in I$ s.t. $|x \in I: g(x) = g(e)| \leq |I|/r$, then $T = \Omega(\sqrt{n}/r)$.

It immediately follows that:

Corollary 2.3. (Beame). If g is the OR function on n bits, then $T = \Omega(\sqrt{n})$.

The proof of Theorem 2.3 has the same structure as that of Theorem 2.2. However, while we focus on the sensitivity of inputs in the lower bound argument, Beame focuses on a different parameter, namely the number of inputs with the same image. His proof is of independent interest, and we include it in the appendix.
We return to the proof of Theorem 2.2. The idea is to use the framework of the previous subsection, namely to construct a set of inputs \(E^T \), and show that for the computed function to be constant on \(E^T \), \(T \) must be large. This task was relatively easy for everywhere sensitive functions, since we did not have to worry about the contents of \(E^T \), as every input is sensitive. To use the sensitivity of inputs in a somewhere sensitive function in a similar argument we must make sure that \(E^T \) contains at least one sensitive input. This motivates the following inductive definition of the sets \(D^i, E^i \) as follows:

Case 1. There is no processor \(p_i \) and no input \(x \in E^{i-1} \) such that \(p_i \) writes on \(x \) at time \(t \). Then

\[
E^i \leftarrow E^{i-1}, \quad D^i \leftarrow D^{i-1}.
\]

Case 2. There is a (unique) processor \(p_i \) that writes on \(e \in E^{i-1} \) at time \(t \). Let \(i_1, i_2, \ldots, i_u \) and \(e_1, e_2, \ldots, e_u \) be the sets of input cells and their contents (respectively) that were read by \(p_i \) up to time \(t \). (Clearly \(u \leq t \).) Then

\[
D^i \leftarrow D^{i-1} \cup \{(i_1, e_1), \ldots, (i_u, e_u)\},
\]

\[
E^i \leftarrow E^{i-1} \cap \{(i_1, e_1), \ldots, (i_u, e_u)\}.
\]

Case 3. There exists \(x \in E^{i-1}, x \neq e \) s.t. some \(p_i \) writes on \(x \) at time \(t \), but no processor writes on \(e \) at time \(t \). Let \(R^i_0 \) be a set of positions s.t. if \(y \in E^{i-1} \) and \(y \neq e_i \) for all \(i \in R^i_0 \), then no processor writes on \(y \) at time \(t \). In this case we fix the positions \(R^i_0 \) with values of \(e \):

\[
D^i \leftarrow D^{i-1} \cup \{(i, e_i) | i \in R^i_0\},
\]

\[
E^i \leftarrow E^{i-1} \cap \{(i, e_i) | i \in R^i_0\}.
\]

It is easy to see inductively that \(e \in E^i \) for all \(t \), and so \(e \in E^i \). Our main problem is to obtain an upper bound on \(|R^i_0| \).

Lemma 2.3. For every \(t, |R^i_0| \leq t(t+1)/2 \). This lemma is the heart of the lower bound. Since the proof is long, it is deferred to the appendix.

Lemma 2.4. For every \(t, |D^i| \leq t(t+1)(t+2)/6 \) and \(e \in E^i \).

Proof. By simple induction on \(t \).

Lemma 2.5. For every \(x, y \in E^i \), \(g(x) = g(y) \).

Proof. Exactly the same as the proof of Lemma 2.2.

Proof of Theorem 2.2. Recall that \(N \) computes a \(k \)-sensitive somewhere function \(g \) in time \(T \). Suppose \(T(t+1)(t+2)/6 < k \). Then by Lemma 2.4 \(|D^T| > k \). Since \(e \in E^T \), by Definition 2.3 there must be a \(y \in E^T \) s.t. \(g(y) \neq g(e) \), which contradicts Lemma 2.5.

2.4. Arbitrary communication width. What happens when the communication width is larger than \(1 \)? The CRCW PRAM \((m)\) is defined similarly to the CREW PRAM \((1)\), only now there are \(m \) common memory cells \(C(1), C(2), \ldots, C(m) \) to which the processors have concurrent read/write access. In a similar fashion the CREW PRAM \((m)\) can be defined. Our results are summarized in the following theorem.

Theorem 2.4. Let \(M \) be a CRCW PRAM \((m)\) that computes a \(k \)-sensitive everywhere function \(f: \{1(\leq \Sigma) \} \rightarrow \Sigma \) in time \(T \). Then \(T = \Omega(\sqrt{k/m}) \). In particular, if \(f \in \{\text{Parity, Majority, Sum, Max}\}, T = \Omega(\sqrt{n/m}) \). Let \(N \) be a CREW PRAM \((m)\) that computes a \(k \)-sensitive somewhere function \(g \in \{\text{AND, OR}\} \), \(T = \Omega(\sqrt{k/m}) \).

The only difficulty in extending the definition of the "easy to compute" sets to which the following holds, is that they are written into. However, if \(g \) is written into \(C(1) \), no one can see it.

We overcome this condition by having different cells as follows: there is only cell \(C(i) \) may be written into, not to the contents of cells \(1 \rightarrow i-1 \) at time \(t \). Conceptual slicing. Indeed, this allows the processors to proceed as if the result we are able to define. In this fashion to the previous result we have thus defined PRAM \((m)\) respectively.

Lemma 2.6. In the CREW PRAM \((m)\), \(T = \Omega(\sqrt{n/m}) \).

Lemma 2.7. In the CREW PRAM \((m)\), \(T = \Omega(\sqrt{n/m}) \).

We conclude this subsection by mentioning that the ideas outlined (Theorem 2.3) for arbitrary communication width.

Theorem 2.5. Let \(N \) be a \(\{0, 1\} \) in time \(T \). If there exists \(\Omega(\sqrt{(\log r)/m}) \).

(2) Two other concurrency mechanisms in the literature \((SV-81)\), \((SV-82)\), they resolve write conflicts without additional synchronization. We do not know in advance the location should write the word. We do not know in advance which section by mentioning that these results are not from this paper.

3. Upper bounds. All the PRAM, namely the Exclusive-Write PRAM, are similar to the CREW PRAM. They share memory cells for \(m \) processors, and the shared memory cell is for the write operations. They will be given to us and it is easy to see that they hold for both.

Consider first the ER PRAM, where \(p \) is initially stored in the read-only memory \(p_r \), and \(C \) is the common memory cell.

Clearly, only \(p = O(\sqrt{k}) \) is computed in \(O(\sqrt{n}) \) time.

computes a k-sensitive somewhere function $g: \Sigma^n \rightarrow \Sigma$. Then $T = \Omega((k/m)^{1/3})$. In particular, if $g \in \{\text{AND}, \text{OR}\}$, $T = \Omega((n/m)^{1/3})$.

The only difficulty in extending our technique to prove Theorem 2.4 is in the definition of the “easy to analyze” cases. For example, one can construct a machine for which the following happens: There are inputs for which both $C(1)$ and $C(2)$ are written into. However, if we choose an input for which the smallest numbered processor writes into $C(1)$, no one will write into $C(2)$ and vice versa.

We overcome this difficulty by conceptually serializing the write access into different classes. Each time unit t is sliced into m slices, so that in the ith slice only cell $C(i)$ may be written into. Then, at the ith slice of time period t we can refer not only to the contents of all cells at previous time periods, but also to the contents of cells 1 to $i-1$ at time period t. (Note that the machine is not affected by this conceptual slicing. Indeed, it shows that our results hold even in a stronger model that allows the processors to access all memory cells at each time unit.) As a result we are able to define sets E^1 and D^1, $0 \leq t \leq T; 1 \leq i \leq m$, inductively in a similar fashion to the previous subsections for the CRW (m) and the CREW (m) respectively. The only refinement is that instead of defining $E^i \setminus E^{i-1}$, we define $E^i \setminus E^{i-1}$ when $i > 1$, and E^i from E^{i-1}.

The analysis of the previous subsections carries through in a straightforward manner w.r.t the final sets, E^{Tn} and D^{Tn}. This includes the proof of the following two lemmas and the conclusion of the theorem from them.

Lemma 2.6. In the CREW PRAM (m), $|D^{Tn}| \leq m(T + 1)(T + 2)/2$.

Lemma 2.7. In the CREW PRAM (m), for every $x, y \in E^{Tn}$, $f(x) = f(y)$.

We conclude this section with two observations:

1. The ideas outlined above can be used to extend also Borme's theorem (Theorem 2.3) for arbitrary communication width, as follows.

Theorem 2.5. Let N be a CREW PRAM (m) that computes a function $g: \{0, 1\}^n \rightarrow \{0, 1\}$ in time T. If there exists an input $e \in E$ s.t. $|x \in I: g(x) = g(e)| \leq |I|/r$, then $T = \Omega((\log r)/m)$. In particular, if g is the OR function, then $T = \Omega(\sqrt{n}/m)$.

2. Two other concurrent-write models of parallel computation that appeared in the literature ([SV-81], [ShV-82]). They differ from our CREW PRAM in the way they resolve write conflicts. In the first all processors that access the same memory location should write the same value. In the second there is no such restriction, but we do not know in advance which processor succeeds in writing. We conclude this section by mentioning that these two models are weaker than ours, and therefore our results for the CREW PRAM hold for them as well.

3. Upper bounds. All upper bounds can be achieved in the weakest version of a PRAM, namely the Exclusive-Read Exclusive-Write PRAM (EREW PRAM). It is similar to the CREW PRAM, only that in this model any simultaneous access of a shared memory cell is forbidden. The algorithms are simple and will be described informally. They will be given only for the problem of summing n numbers. It is easy to see that they hold for computing any associative function.

Consider first the EREWPRAM (1) model. The n numbers a_1, a_2, \ldots, a_n are initially stored in the read-only input tape. Let L be a local memory cell of processor p, and C is the common memory cell. The algorithm is described in Fig. 1.

Clearly, only $p = O(\sqrt{n})$ processors are active in this algorithm, and the sum is computed in $O(\sqrt{n})$ time. Since sequential time for summation is $\Omega(n)$, a
straightforward lower bound of \(O(n/p) \) exists for any parallel machine with \(p \) processors. Hence the number of processors is optimal up to a constant factor.

Consider now the same problem for the CRCW PRAM \((m)\), where \(m = O(n/\log^2 n) \). We show how to achieve \(O(\sqrt{n}/m) \) time with \(O(\sqrt{nm}) \) processors. The algorithm has two phases:

1. **Partition**: The \(n \) inputs into \(m \) subsets of size roughly \(n/m \) each. Assign to each subset \(\sqrt{n}/m \) processors and one common memory cell. For each subset the sum is computed in the respective memory cell using the algorithm above in time \(O(\sqrt{n}/m) \).

2. **Sum up**: The \(m \) values in the common memory using \(m(\leq \sqrt{nm}) \) processors in \(O(\log m) \) time in the obvious way.

As before, the number of processors used is optimal up to a constant factor. This upper bound establishes that our lower bound for Parity on the CRCW PRAM \((m)\) and Beame’s lower bound for the OR on the CREW PRAM \((m)\) are tight.

We conclude by mentioning what is known when the communication width is larger than the input size. If the input values are taken from a finite domain, the sum can be computed in constant time using exponential width and number of processors. If those two resources are bounded by a polynomial in \(n \), the best upper bound known is \(O(\log n/\log \log n) \) [CSV-82].

4. Conclusions and open problems

Using communication-based arguments to prove lower bounds in computer science is an old idea. The fast-crossing-sequences technique in Turing machines essentially measures communication between work-tape cells. This technique was extended to measure communication between two halves of a VLSI circuit [Y-81], [LS-81], [PS-82] and obtain Time-Area trade-offs.

We consider this paper to be a first step towards understanding the central role played by communication in efficient parallel computation. The view of communication as a resource in parallel machines gives rise to many questions. We mention a few below.

1. **Our lower bound for the OR on the CREW PRAM**, combined with that of Cook and Dwork, covers the whole range of \(m \). On the other hand, the lower bound for the parity functions on the CRCW PRAM \((m)\) becomes trivial when \(m \geq n \). The case where \(m \) is only bounded by a polynomial in \(n \) is of particular interest, since a lower bound on the time here will give a lower bound on the depth of polynomial size parity circuits.

Appendix

Lemma 2.2. For every pair \((x, y)\),

- \(q_i(x) \) and \(s_i(x) \) are the input \(y \),
- \(R_i(x) = (\rho_i(x), \sigma_i(x)) \),
- \(w(x) \) is the index of the processor at time \(t > 0 \),
- \(W_i(x) = U_{j=1}^{m} R_j(x) \) and \(W(x) = \{ w(x) \} \) time \(t \).

Let \(x \) and \(y \) be either \(1 \) or \(0 \), and prove by induction on \(t \) for every \(j \in W(x), q_i(x) \).

1. **Case 1.** \(s_i(x) = s^{j-1}(x), w_i(x) = w^{j-1}(x) \) and \(\sigma_j(x) = \sigma_i(q_j(x)) \).

2. **Case 2.** \(s_j(x) \neq s^{j-1}(x) \), for all \(s \).

Then there exists a set \(R \subseteq \{ 1, 2, \ldots, n \} \) such that \(t(t+1)/2 \) input
(2) Consider parallel RAMs in which processors are allowed to be probabilistic or nondeterministic. In the deterministic version of the CRCW PRAM (1) which we studied here, both the Parity and the Max functions have an $\Omega(\sqrt{n})$ lower bound on the time. If we allow nondeterminism, the maximum of n numbers can be computed in constant time. However, we conjecture that the lower bound still holds for Parity even in the nondeterministic model.

(3) Study Time–Width–Processors trade-offs for other functions.

Appendix.

Lemma 2.2. For every $x, y \in E^T, f(x) = f(y)$.

Proof of Lemma 2.2. We use the following notation. For an input $x \in I$,

- $q(x)$ and $s'(x)$ are respectively the state of p and the contents of C in time t for the input x.
- $R_i(x) = \{q_i(s'(x))|0 \leq r < t\}$ is the set of input cells read by p_i through time t. Set $R_i(x) = \emptyset$.
- $w'(x)$ is the index of the processor that writes at time t on input x. If there is no such processor at time t for x, $w'(x) = 0$.
- $W'(x) = \cup_j R'_j(x)$ where $j = w'(x)$, is the set of input cells read by all writers through time t.
- $FW'(x) = \{w'(x)|t \leq r < T; w'(x) \neq 0\}$ is the set of future writers from time period t on.

Let x and y be elements in E^T. It is sufficient to show that $s^T(x) = s^T(y)$. We prove by induction on t, that $w'(x) = w'(y)$, $W'(x) = W'(y)$, $s'(x) = s'(y)$, and that for every $j \in FW'(x)$, $q_j(x) = q_j(y)$ and $R_j'(x) = R_j'(y)$.

By induction hypothesis $i(x) = i(y)$ and hence $R_i(x) = R_i(y)$. Since $j \in FW'(x)$, $R_j(x) \subseteq W'(x)$ which using $x, y \in E^T$ implies that $x_{it} = y_{it}$. From this and the induction hypothesis we get $q_j(x) = q_j(y)$. Then $s'(x) = s'(y)$ and $s'(y) = s'(y)$. There are two cases to consider now.

Case 1. $s'(x) = s'(y)$. By the construction of E' and induction, $s'(x) = s'(y) = s^{-1}(x) = w'(x) = w'(y) = 0$ and $W'(x) = W'(y) = W'(x) = W'(y)$.

Case 2. $s'(x) \neq s'(y)$. Let $j = w'(x)$. Again by construction of E', there can be no $l < j$ s.t. $\sigma_l(x) = s^{-1}(y)$, and since $\sigma_l(x) = \sigma_l(y)$ we have $w'(y) = j = w'(x)$, $s'(y) = s'(x)$, and $W'(y) = W'(x)$.

Lemma 2.3. For every $t, |S_0| \leq (t + 1)/2$.

Proof of Lemma 2.3. Denote by Z^* the set of nonnegative integers, and i, j, k, l denote only positive integers. Also, for a subset $S \subseteq \{1, 2, \ldots, n\}$ and inputs $x, y \in I$,

- $x = y (\text{mod } S) \quad \text{means } x_i = y_i \quad \text{for all } i \in S$.
- $x_i (\text{mod } S) \quad \text{means } x_i = y_i \quad \text{for all } i \in S$.

Claim. Given an integer i, a set $S \subseteq \{1, 2, \ldots, n\}$, a function $h: I(S) \to Z^*$, and sets $S_i \subseteq \{1, 2, \ldots, n\}$ for every positive $j \in h(I(S))$ that satisfy

1. $S_i \subseteq S = \emptyset$ for all i.
2. $|S_i| \leq t$ for all i.
3. $h(i) = 0$.
4. $h(x) = j$ and $y = x (\text{mod } S_0)$ implies $h(y) = j$.
5. $h(x) = j, h(y) = k$ and $j \neq k$ implies that there exists an $i \in S_i \cap S_k$ s.t. $x_i \neq y_i$.

Then there exists a set $R \subseteq \{1, 2, \ldots, n\}$ s.t. $|R| \leq (t + 1)/2$ and $h(I(S \cup R)) = 0$.

Connection between the claim and the lemma. Recall that we wanted to prove the existence of $t(1/2)$ input positions s.t. fixing them with values of e will ensure that
no one writes at time t in Case 3. Let R'_0 be defined as in the proof of Lemma 2.2. Then let S be the set of fixed input positions through time t, $(S = D^{-1}, I, I(S) = E^{-1}, S_j = R'_0 - S$ for all j, and let the function $h: I(S) \rightarrow Z^*$ be defined by $h(x) = j$ if p_j is the (unique) processor that writes on x at time t, and $h(x) = 0$ if no one writes on x at time t. Let us verify that properties (1)–(5) hold.

(1) By the definition of S_j.
(2) $|S| = |R'_0 - S| \leq |R'_0| = t$.
(3) We deal here only with case 3, in which no processor writes on e.
(4) Since $x, y \in I(S)$ and $x = y \mod S_j$, $x = y \mod R'_0$. With an almost identical proof to that of Lemma 2.2 we can prove that $q'_j(x) = q'_j(y)$, i.e. p_j will arrive at the same state at time t for both inputs x and y. In particular, p_j will write on x if and only if it will write on y at time t.
(5) Suppose not. Then define an input z by $z_i = x_i$ if $i \in S_j, z_i = y_i$ if $i \in S_k - S_j$, and $z_i = e_i$ for the remaining values of i. Clearly $z \in I(S) = E^{-1}$. Therefore both p_j and p_k write at time t on z, contradicting the definition of the CREW PRAM.

Now we can take $R_0 = R'_0$, which completes the proof of the lemma. □

Proof of Claim. The proof is by induction on t.

$t = 0$. In this case $h(I(S)) = \{0\}$. Otherwise, for some $x \in I(S)$ there exists $j > 0$ s.t. $h(x) = j$, then (4) also holds, contradiction to (3).

$t > 0$. If $h(I(S)) = \{0\}$ we are done. Assume that for some $x \in I(S)$, $h(x) = j > 0$. Set $S' = S \cup S_j$, and h' be the restriction of h to $I(S')$, and $S_j = S_j \cap S$ for all $j \in h'(I(S'))$. Then we have the following:

(1) $S' \cap S_j = \emptyset$ for all j. Clear.
(2) $|S'| \leq t - 1$ for all $j \in h'(I(S'))$. Since $l, j \in h(I(S))$, by (5) $S_j \cap S_l \neq \emptyset$, and therefore $|S'| = |S_j - S_l| = |S_j| - 1 \leq t - 1$.
(3) $e \in I(S')$ and $h'(e) = 0$. Clear.
(4) $h'(x) = j, y = x \mod S_j'$ implies $h'(y) = j$. Since $x, y \in I(S')$, $y = x \mod S_j$ and therefore $y = x \mod S_j$. Hence $h'(x) = h(x) = h(y) = h'(y)$.
(5) $h'(x) = j, h'(y) = k, j \neq k$ implies that there is an $i \in S_j \cap S_k$ s.t. $x_i \neq y_i$. Since $h(x) = j, h(y) = k$ there must be such an i in $S_j \cap S_k$. However, since $x = y \mod S_i$ i must belong to $S_j \cap S_k$.

By the induction hypothesis, there exists a set R' s.t. $|R'| \leq (t - 1)/2$ and $h'(I(S' \cup R')) = 0$. Set $R = R' \cup S_j$. Then clearly $|R| \leq (t + 1)/2$ and $h(I(S \cup R)) = h(I(S' \cup R')) = h'(I(S' \cup R')) = 0$. □

Theorem 2.3. Let N be a CREW PRAM (1) that computes a function g in time T such that $\exists e \in I(I = \{0, 1\}^* \cup \{x \mid g(x) \in [1, r]\}$) for which $|x \in I|g(x) = g(e)|$ s.t. $T' = \Omega(\log_2 r)$. Then $T' = \Omega(\log_2 r)$.

Set $E^0 = I$ and $F^0 = I - E^0 = \emptyset$. Consider time period t. For any $j \leq t$ let P'_j be the set of input positions read by processor p_j up to time t and define E^t and its complement F^t as follows:

Case 1. There is no processor p_j and no input $x \in E^{-1}$ such that p_j writes on x at time t. Then $E^t = E^{-1}$, $F^t = F^{-1}$.

Case 2. No processor writes on e at time t but there is an $x \in E^{-1}$ such that some p_j writes on x at time t. For every input $x \in E^{-1}$ which causes a processor p_j to write at time t define $C_j = \{i, x_i \mid i \in P'_j\}$.

Each C_j is specified by the values in at most t input cells since $|P'_j| \leq t$. It is clear that $x \in E^{-1}$ which causes a write at time t is in some C_j. Also any $y \in E^{-1} \cap C_j$ will cause a write at time t since processor p_j at time t will not be able to distinguish y from x. Thus if we eliminate the elements of these "cubes" from E^{-1} no writes will occur at time t.

Lemma 2.8. For any input $3 \in \{0, 1\}^*$ an integer r.

Proof. By induction on t.

$t = 0$: $F' = \emptyset$ so the claim holds.

Assume the claim for t. (we use additive notation from now on)

$|C_j \cap F'| = |C_j \cap F^t| = |C_j| = |C_j'|$

If only sum over nonempty sets, which restrict the input only by some $s + t$ of them. Thus we may have:

$|C_j \cap F'| = |C_j \cap F^t| = \frac{p_j}{2^{s+t(r^t-1)/2}}$

This follows by the inductive hypothesis form of the middle terms.

Since all of the denominators $2^{s+t(r^t-1)/2}$ is not, the claim is proved. □

Lemma 2.9. $e \in E^t$ and
The "cubes" also satisfy an additional property. If \(C'_i \cap C'_j = \emptyset \) then their shared specifying positions must agree in value. Therefore, if \(C'_i \neq C'_j \) then \(C'_i \) and \(C'_j \) must be specified by different input cells and so correspond to different processors. It follows then that \(C'_i \cap C'_j \subseteq 1 - E^{t-1} = F^{t-1} \) otherwise there would be a simultaneous write which is not allowed.

Thus if we designate the distinct cubes as \(\{ C'_i \} \) then

\[
E^t \leftarrow E^{t-1} - \bigcup_i C'_i \quad \text{and} \quad F^t \leftarrow F^{t-1} - \bigcup_i C'_i \quad \text{where } \forall i \neq j, C'_i \cap C'_j \subseteq F^{t-1}.
\]

Case 3. There is a (unique) processor \(p_i \) that writes on \(e \in E^{t-1} \) at time \(t \). Then we require that the input agree with \(e \) in the positions of \(P'_i \). We may regard this as requiring that the input be in the cube which is the subset of the input specified by these \(|P'_i| \leq t \) values. Equally well this may be regarded as excluding from the input all values which are in the cubes specified by the other \(2^{n+1} - 1 \) possible settings of values in these positions. If we call these excluded cubes \(\{ C'_i \} \) as in Case 2, it is immediate that \(\forall i \neq j, C'_i \cap C'_j = \emptyset \subseteq F^{t-1} \). Then as in Case 2 we have

\[
E^t \leftarrow E^{t-1} - \bigcup_i C'_i \quad \text{and} \quad F^t \leftarrow F^{t-1} \cup \bigcup_i C'_i.
\]

Lemma 2.8. For any \(t \geq 0 \) and any "cube" \(C' \) which is specified by at most \(s \) cells of the input \(I \) an integer \(r \) such that \(|C' \cap F^t| = r |I| / (2^{s+1} r + 1) \).

Proof. By induction on \(t \)

\[
t = 0: F^t = \emptyset \text{ so the claim is true with } r = 0.
\]

Assume the claim for \(t - 1: F^{t-1} = \sum (C'_i \cap F^{t-1}) \text{ since } \forall i \neq j, C'_i \cap C'_j \subseteq F^{t-1} \) (we use additive notation for disjoint union). Therefore

\[
|C' \cap F^t| = \left| C' \cap (F^{t-1} + \sum_i (C'_i \cap F^{t-1})) \right|
\]

\[
= \left| C' \cap F^{t-1} \right| + \sum_i \left| (C'_i \cap C') - F^{t-1} \right|
\]

\[
= \left| C' \cap F^{t-1} \right| + \sum_i \left| (C'_i \cap C') \cap F^{t-1} \right|
\]

If we sum over nonempty intersections then \(C' \cap C'_i \) is a subset of the input which restricts the input only by specifying input positions and which is specified by at most \(t + 1 \) of them. Thus we may designate \(C_i^{t+1} = C_i' \cap C'_i \). Therefore

\[
|C' \cap F^t| = |C' \cap F^{t-1}| + \sum_i \left| C_i^{t+1} \right|
\]

\[
= |C' \cap F^{t-1}| + \sum_i \left(\frac{r_i |I|}{2^{s+1} r_i + 1} - \frac{r_i |I|}{2^{s+1} r_i (t+1)/2} \right) \text{ where } p, q, r, i \text{ are integers.}
\]

This follows by the inductive hypothesis for the first and last terms and because of the form of the middle terms.

Since all of the denominators divide \(2^{s+1} r_i (t+1)/2 \) the claim holds for \(t \) and the lemma is proved.

Lemma 2.9. \(e \in E^t \) and \(\forall x \in E^t, g(x) = g(e) \).
Proof of Theorem 2.3. If we apply Lemma 2.8 with $s = 0$ then $C^t = I$ and we see that $|E^T|$ is an integral multiple of $|I|/2^{T(T+1)/2}$. Since $E^T = I - F^T$ it follows that $|E^T|$ is also a multiple of this number. Now $e \in E^T$ so we have $|E^T| > 0$ and thus $|E^T| \geq |I|/2^{T(T+1)/2}$. By our assumption on g and by Lemma 2.9 we need $|E^T| \geq |I|r$. Therefore $2^{T(T+1)/2} \geq r$ and so $T = \Omega(\sqrt{\log_2 r})$.

Acknowledgments. We are indebted to a careful referee who found a serious mistake in our original Lemma 2.3, which claimed a stronger result. We thank Paul Beame for letting us include his results here. We also wish to thank Al Borodin and Dick Lipton for helpful comments on an early version of this manuscript.

REFERENCES

ON THE MOVING ARM

JOHN HOPCROFT

Abstract. The mover's problem is to move one given position to another involving objects with movable 3-dimensional region. In this paper a robot arm with an arbitrary moving an arm confined within a finite time algorithm for moving the given point within the circle within 2 or 3-dimensional region.

Key words. robotics, manupulators, algorithm.

1. Introduction. With the problem of designing a robot arm subject to certain geometric constraints the problem of designing to determine the degree of freedom required for moving a mobile point while keeping X within either the circle or the plane. We have shown that the problem can be solved in polynomial time.

This paper investigates that interest. We begin in §§ 4 and 5.2 — that is, a sequence of rules for moving a mobile point while keeping X within a given region. Whether an arbitrary given point can be folded into a given region is at least NP-hard to decide. A rule with one end fixed can be moved to within a given 2-dimensional region.

In §§ 4-6 we consider the problem. We are able to give the following.

* Received by the editors August 19, 1983; accepted May 11, 1984. The research was supported in part by the Office of Naval Research under grant MCR-81-01220, and a NSF Fellowship.
† Computer Science Department.
‡ School of Computer Science.
§ School of Computer Science.