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ABSTRACT
We assume that for some fixed large enough integer d, the sym-
metric group Sd can be generated as an expander using d1/30 gen-
erators. Under this assumption, we explicitly construct an infinite
family of groups Gn, and explicit sets of generators Yn ⊂ Gn,
such that all generating sets have bounded size (at most d1/7), and
the associated Cayley graphs are all expanders.

The groups Gn above are very simple, and completely different
from previous known examples of expanding groups. Indeed, Gn

is (essentially) all symmetries of the d-regular tree of depth n.
The proof is completely elementary, using only simple combina-

torics and linear algebra. The recursive structure of the groups Gn

(iterated wreath products of the alternating group Ad) allows for an
inductive proof of expansion, using the group theoretic analogue
[4] of the zig-zag graph product of [37]. The explicit construction
of the generating sets Yn uses an efficient algorithm for solving cer-
tain equations over these groups, which relies on the work of [32]
on the commutator width of perfect groups.

We stress that our assumption above on weak expansion in the
symmetric group is an open problem. We conjecture that it holds
for all d. We discuss known results related to its likelihood in the
paper.
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1. INTRODUCTION

1.1 Expander Graphs
Expanders are graphs which are sparse but nevertheless highly

connected. Expanders graphs have been used to solve many funda-
mental problems in computer science, on topics including network
design (e.g. [35, 36, 1]), complexity theory ([44, 39, 43]), deran-
domization ([31, 16, 17]), coding theory ([40, 41]), and cryptog-
raphy ([14]). Expander graphs have also found some applications
in various areas of pure mathematics, such as topology, measure
theory, game theory and group theory (e.g. [19, 23, 15, 24]).

Standard probabilistic arguments ([34]) show that almost every
constant-degree (≥ 3) graph is an expander. However, most ap-
plications demand explicit constructions. Here we take the most
stringent definition of explicitness of an infinite family of graphs,
requiring that a deterministic polynomial time algorithm can com-
pute the neighbors of any given vertex, from the vertex name and
the index of the graph in the family. This challenge of explicit con-
struction led to an exciting and extensive body of research.

Most of this work was guided by the algebraic characterization
of expanders, developed in [42, 5, 2]. They showed the intimate
relation of (appropriate quantitative versions of) the combinatorial
(isoperimetric) notion of expansion above, to the spectral gap in
the adjacency matrix (or, almost equivalently, the Laplacian) of the
graph. This relationship is tight enough for almost all applications
(but there are some exceptions, e.g. see [45, 9]).

Using this connection, an infinite family of regular graphs is de-
fined to be an expander family if for all of them the second largest
eigenvalue of the normalized adjacency (i.e. random walk) matrix
is bounded above by the same constant that is smaller than 1.

This algebraic definition of expanders by eigenvalues naturally
led researchers to consider algebraic constructions, where this eigen-
value can be estimated. The celebrated sequence of papers [27,
13, 5, 3, 18, 25, 28, 30] provided such highly explicit families of
constant-degree expanders. All of these constructions are based on
groups, and their analysis often appeals to deep results in mathe-
matics.

The algebraic mould was broken recently by [37], where a sim-
ple, combinatorial construction of constant-degree expander graphs
was presented. The construction is iterative, generating the next
graph in the family from two previous ones via a novel graph prod-
uct, the zig-zag product. This product was proved (using simple
linear algebra) to simultaneously keep the degree small, and retain
expansion. Thus the iteration process need only be provided with
an initial, fixed size expander “seed” graph , from which all others
are generated. The required parameters of the seed graph are easily
shown to hold for a random graph (which would suffice for explic-
itness, as it is of constant size), but it can also be easily constructed



explicitly.
Our main result in this paper is a similar iterative construction

of expanding Cayley graphs (which we turn to define next) from
one initial “seed” Cayley graph. The major difference is that in
our case, the existence of such a seed Cayley graph is still an open
question.

Our construction may be seen as another step in exploring this
fundamental notion of expansion, and its relations to yet unex-
plored mathematical structures. It also further explores the power
of the zig-zag product in constructing even stronger expanders. It
was already shown [9] that it can yield expansion beyond the eigen-
value bound, and is shown here to yield Cayley expanders.

1.2 Expanding Cayley graphs
For a finite group H and a (symmetric) set of elements T in

it, the Cayley graph C(H;T ) has the elements of H as vertices,
and edges connect a pair of vertices g, h if their “ratio” gh−1 is
in T . We remark that while most applications do not require the
expanders to be “Cayley”, the recent paper [8] seems to essen-
tially require Cayley expanders to achieve nearly linear-sized lo-
cally testable codes (LTCs) and probabilistically checkable proof
(PCPs).

Many of the algebraic expander constructions mentioned above
are Cayley graphs. In all of these, the groups in question are linear
matrix groups over finite fields, and their expansion follows from
celebrated results in mathematics, including Kazhdan’s work on
Property T [20], Selberg’s 3/16 theorem [38], and the resolution
of the Ramanujan conjecture of Eichler, Deligne and Iguza (start-
ing in [12]). It should be noted that for some of the other algebraic
constructions elementary proof of expansion exist, using only a dis-
crete Fourier transform [18].

For other natural families of groups the question was considered
both by mathematicians and computer scientists. For example, for
Abelian groups it is easy to see that any set of expanding genera-
tors has to be at least logarithmic in the size of the group. Thus
they cannot provide expanding Cayley graphs of constant degree (a
more general result appears in [21]). Lubotzky and Weiss general-
ized this negative result for all solvable groups of bounded derived
length [26].

An interesting open problem, highly relevant to this work, is
whether the symmetric group (of all permutations) has a constant
number of expanding generators. Much work has been devoted to
analyzing the expansion of this group under a variety of generating
sets in the context of card shuffling (e.g. see [10, 22]). However
in all these papers the generating sets are huge, and do not pro-
vide a clue to the status of this problem. The best upper bound
known, which applies to every finite group, is logarithmic in the
group size [6]. For the symmetric group on d letters Sd this bound
gives O(d log d) expanding generators. We conjecture that d1/30

generators suffice, and this conjecture will provide the seed Cayley
graph to our iterative construction.

The possibility that the zig-zag product and iterative construction
may be used for Cayley expanders was first revealed in [4]. They
discovered (roughly speaking) that the well known semi-direct prod-
uct on groups may be viewed as a special case of the zig-zag prod-
uct of graphs. More precisely, the zig-zag product of two Cayley
graphs, with certain important restrictions on the structure of their
generating sets, is a Cayley graph of the semi-direct product of the
associated groups. Thus one can generate larger Cayley expanders
of small degree from smaller ones. This observation was used to
show that expansion is not a group property – in some groups cer-
tain constant size sets will expand, while others will not.

However, unlike the case of unstructured graphs, the restrictions

on generators alluded to above for applying the zig-zag product on
Cayley graphs, make iterations a highly nontrivial (and illuminat-
ing) task. In [29] such a construction was given, which falls short
of the task at hand on two counts. First, the generating sets (and
hence the degrees) of the groups in the family are not of constant
size, but rather grow slowly (roughly like log∗ of the group size).
Second, these generating sets are shown to exist via a probabilistic
argument, hence the resulting family is not explicit. Still, this con-
struction makes no assumptions, as the seed Cayley expander for
the iteration is easily seen to exist.

In this paper we fix both problems. Assuming we have the seed
Cayley graph from the conjecture above for some fixed (large) d,
we give a sequence of groups Gn, and explicit generating sets Yn

for each Gn, such that the Cayley graphs C(Gn, Yn) are expand-
ing. Moreover, |Yn| ≤ k = d1/7 for all n.

1.3 Our construction
Our groups are completely different from groups previously used

in this area. Indeed, they are very natural combinatorial objects. Let
T (d, n) denote the d-regular tree of depth n. The group of sym-
metries of this tree allows permuting the children of every internal
node arbitrarily. Thus every element of this group may be described
by a mapping of the internal nodes to the symmetric group Sd, de-
scribing how to permute the children of every such node. Group
product of two such elements is simply performing the first set of
permutations at every node, and then the next set. Our groups Gn

are subgroups of all symmetries, allowing only even permutations
at every internal node of T (d, n). This natural restriction avoids a
huge Abelian quotient that would have rendered expansion (with a
constant number of generators) impossible.

There is a very natural inductive definition of the groups Gn. G1

is the alternating group Ad of all even permutations on d elements
(and is essentially the “seed group” of our construction). Gn+1

can be obtained from d copies of Gn, and one copy of Ad acting
on them simply by permuting the copies. Formally, this is called a
wreath product, denoted Gn+1 = Gn o Ad, and is a special case
of a semidirect product, giving equivalently Gn+1 = (Gn)d

o Ad.
Our assumption gives a small expanding set of generators for Ad,
and by induction we have such a set for Gn.

How does induction proceed? Naturally, we’d like to use the
zig-zag theorem for the semi-direct product [4, 37]. The technical
requirement alluded to above is simply that we find an expanding
generating set for (Gn)d, which need not be small, but must be
an orbit under the action of Ad. A natural candidate for such an
orbit is all (even) permutations of the balanced d-vector (one which
has every one of the k elements of Yn occurring the same number
of times). It is the largest possible orbit, and the projection of a
random element of the orbit to any small subset of the coordinates
is (almost) a random independent element of Yn in each coordinate.

We now turn to study the second eigenvalue of the Cayley graph
of (Gn)d under these generators. The associated linear operator
acts on the space of real functions on (Gn)d. Luckily, this space of
functions is simple to describe - it is the d-fold tensor product of the
same space for Gn. What is not so lucky is the dependence between
the coordinates of a balanced vector. Indeed, had Gn been Abelian,
this orbit would not even be generating (i.e. the graph would not
be connected). We have to use our special group structure here. A
key fact (proved by Nikolov [32]) is that every element in Gn is a
commutator. We construct a new generating set Ỹn by adding to
Yn, for each of its elements, the constituents of its representation
as a commutator. We use Nikolov’s proof to actually give a poly-
nomial time algorithm for finding this representation. We now take
the orbit of all balanced vectors over Ỹn to be our actual generating



set for (Gn)d.
How can this revision take care of the dependencies? A simpler

setting, to which we reduce our analysis, is the following Cayley
graph. The group is simply (Gn)2, namely only two copies of Gn.
The generators are all pairs (g, g−1) for all g ∈ Ỹn. Thus, there is
complete correlation between the two coordinates. The key point
is that, using the special structure of Ỹn, with positive probability a
short word in one of the two components will vanish, while in the
second it will give an original generator of Yn, thereby decoupling
the dependence of the two components. So, quite surprisingly, this
Cayley graph on two copies is expanding despite the complete cor-
relation (it is a nontrivial exercise to even establish connectivity
of this graph – note that it would not be connected had Gn been
Abelian, or if we took instead the pairs (g, g) for any group Gn).
This construction (which we feel is of independent interest) is quite
special and mysterious, and naturally the description above hides
many essential details. Still, it is the heart of the matter.

1.4 On our assumption
How realistic is our conjecture that the alternating group1 Ad

(with d large enough) has d1/30 expanding generators? As men-
tioned, the best upper bound is O(d log d), which is logarithmic in
the group size – a result that holds for every group. What makes
Ad special, and indeed leads people to speculate that it even has a
constant number of expanding generators independent of d, are the
following two results that seem to be in the “right direction”. The
first is a theorem of Dixon [11], that with probability 1− o(1), two
random permutations generate Ad. The second is a result of Babai
et al [7] that Ad has seven generators which yield a Cayley graph
of logarithmic diameter. Incidentally, both results hold for every
non-Abelian finite simple group [?].

In another related work, Lubotzky and Pak [24] show that if
the automorphism group of the free group Fk on k generators has
Kazhdan property (T ) then for infinitely many d the group Ad has
an expanding generating set of size O(k2), independent of d.

1.5 Organization of the paper
[Eyal’s Note: Fix this section]
In section 2 we define expander graphs and Cayley graphs, and

show some useful results. In section 3 we define the sequence of
groups we use. In section 4 we describe the expanding generating
sets, and prove the main theorem 4 - that they are indeed expanding
- by induction. The proof is based on a main lemma (theorem 5).
The lemma gives expanding an generating set for the group Gd

given an expanding generating set for G (under certain conditions
on G). Finally, In section 6 we present an algorithmic version of
Nikolov’s theorem, that every element in out family of groups has
a commutator representation that can be found efficiently.

2. PRELIMINARIES

2.1 Graphs, eigenvalues and adjacency matri-
ces

All graphs discussed in this paper are undirected, regular graphs.
We allow multiple edges and self loops, so graphs are best under-
stood as symmetric nonnegative integer matrices with a fixed row-
sum, called the degree. For a graph X , we let V (X) denote its set
of vertices and E(X) its (multiset of) edges.

Let X be a k-regular graph, and M = MX its normalized adja-
cency matrix (divide the adjacency matrix by the degree k to make

1Everything in this discussion holds equivalently for the symmetric
group Sd up to constants.

it stochastic). We denote by λ(X) the second largest (in absolute
value) eigenvalue of M . The spectral gap of the graph is 1−λ(X).

Let W be the vector space of real functions on the set V (X),
with its standard L2 inner product. MX defines a linear operator
on W : For f ∈ W , the value of the function MX(f) ∈ W on a
vertex x is the average value of f on all the neighbors of x (counted
with multiplicities).

Let W|| be the one-dimensional subspace consisting of the con-
stant functions, and let W⊥ be the orthogonal complement. Since
the constant functions are eigenvectors of M corresponding to the
(largest) eigenvalue 1, then

λ(X) = max
w∈W⊥,‖w‖=1

‖Mw‖

where ‖w‖ is the L2 norm of w.

DEFINITION 2.1. An infinite family of graphs Xn is called an
expander family if λ(Xn) ≤ µ for some µ < 1 independent of n.
The family is said to be explicitly described, if there is a polyno-
mial time algorithm which, on input n and the name of a vertex v
in Gn (in binary), outputs the neighbors of v in Gn.

We will use the following two simple results, which describe
how taking the tensor power of a graph, and taking the power of a
graph, affect the 2nd eigenvalue λ:

CLAIM 2.2. Let X = (V, E) be a graph, and let MX be the
normalized adjacency matrix. Let MY = (MX)⊗d, and define Y
to be the graph (on the vertex set V d) with normalized adjacency
matrix MY . Then λ(Y ) = λ(X).

OBSERVATION 2.3. Let X = (V, E) be a graph, MX the nor-
malized adjacency matrix and MY = (MX)t. Let Y be the graph
(on vertex set V ) with normalized adjacency matrix MY . Then
λ(Y ) = λ(X)t.

We will use the following convexity result later: If the spectral
gap (1 − λ(Y )) of a graph Y is not too small, and Y is a large
subgraph of X (on the same vertex set) then the spectral gap of X
is also not too small.

CLAIM 2.4. Let Y = (V, E1) ⊂ X = (V, E2) (i.e. E1 ⊂ E2)
be s and t regular graphs respectively on the same vertex set V .
Then

1 − λ(X) ≥
s

t
(1 − λ(Y ))

2.2 Groups and the wreath product

2.2.1 Cayley graphs
Let G be a finite group. We will represent groups multiplica-

tively, and 1 will denote the identity of the group. Let Y be a multi-
subset of G. We will always use symmetric sets Y , namely the
number of occurrences of x and x−1 in Y is the same for every
x ∈ G. |Y | will denote the size of the multiset (counting multiplic-
ities).

The Cayley graph C(G, Y ) has vertex set G, and for every vertex
g ∈ G and x ∈ Y there is an edge (g, gx). The graph C(G, Y )
is undirected (as Y is symmetric) and is |Y |-regular. For x ∈ G
let Px be the permutation matrix corresponding to g → gx in G.
The normalized adjacency matrix of C(G, Y ) is

P
x∈Y Px/|Y |.

We will also use the notation Ex∈Y [Px] to denote this average of
operators.

Let W = W (G) be the vector space of functions G → R as in
the previous section. We will be interested in the expansion prop-
erties of Cayley graphs on the group Gd, the Cartesian product of
d copies of G. Note that W (Gd) = W⊗d.



OBSERVATION 2.5. Let W||, W⊥ be the constant functions on
G and the orthogonal complement as before. Let b̄ = (b1, . . . , bd)
be a length-d vector where each bi is in {||,⊥}, and let Wb̄ be
the vector space ⊗d

i=1Wbi
. The orthogonal decomposition W =

W|| + W⊥ induces an orthogonal decomposition

W⊗d =
X

b̄∈{||,⊥}d

Wb̄

to 2d subspaces, by using the distributive law for tensor products.
For any g ∈ Gd the operator Pg preserves the decomposition.

COROLLARY 2.6. Consider the Cayley graph C(Gd, Y ). The
normalized adjacency operator Ex∈Y [Px] preserves the above de-
composition, so

λ(Gd, Y ) = max
b̄6=||d

max
w∈W

b̄

‖Ex∈Y [Px(w)]‖/‖w‖

That is, it suffices to upper bound ‖Ex∈Y [Px(w)]‖ for vectors w
that are purely in one of these 2d − 1 subspaces.

Observation 2.3 translates nicely to the Cayley graph world

OBSERVATION 2.7. Let G be a group, Y ⊂ G. Define Z to be
the set of all words of length k in Y . Then λ(G,Z) = λ(G, Y )k.

We end with an observation which simplifies the proof of explic-
itness for families of Cayley graphs.

OBSERVATION 2.8. A family of Cayley graphs C(Gn, Yn) is
explicit if there are polynomial time algorithms in log |Gn| for

• performing group multiplication in Gn

• computing the set Yn

2.2.2 Wreath products and the zigzag product
Let A and B be finite groups. Assume that B ⊂ Sd, that is,

it acts by permutations on the set {1, . . . , d}. Define the wreath
product A o B of A and B to be the group whose elements are
vectors (a1, . . . , ad, σ), where ai ∈ A for all i, and σ ∈ B. The
group multiplication rule is

(a1, . . . , ad, σ) · (ã1, . . . , ãd, τ ) = (aτ(1)ã1, . . . , aτ(d)ãd, στ )

One can check that this defines a group structure on A o B. The
wreath product is a special case of a more general construction - the
semi-direct product of Ad and B, where Ad is the Cartesian product
of d copies of A. The groups Ad, B are naturally embedded in
A o B, and we will sometimes refer to elements of Ad and B as
elements of A o B.

Let α ⊂ Ad, β ⊂ B be sets of generators. Suppose α has a
special structure: it is a B-orbit. This means that for some arbi-
trary ā ∈ α, the set α consists of all vectors obtained from ā by
permuting its coordinates by some permutation σ ∈ B. We now
define a set γ in A o B by γ = {xāy|x, y ∈ β}. One can check
that γ generates A o B. The following theorem from [4], following
the zigzag theorem of [37], shows that there if α, β are sufficiently
good expanding generators then so is γ.

THEOREM 1. [4] If α is a B-orbit then λ(AoB, γ) ≤ λ(A, α)+
λ(B, β).

Note that |γ| = |β|2 depends only on the size of β, while α could
be large (it could be as large as |B|). Also, it is easy to compute γ
given α and β, as multiplications in A o B can be computed effi-
ciently.

2.2.3 The commutator property
Let A be a group. For g, h ∈ A define the commutator [g, h] to

be ghg−1h−1. A has the commutator property if for every element
of a ∈ A there is a solution in the variables x, y to the equation
a = [x, y] 2. Nikolov [32] proves

THEOREM 2. [32] Let A be a group, and B ⊂ Sd a group of
permutations. If A, B have the commutator property then so does
A o B.

We shall need an algorithmic version of this theorem. For a group
A, a commutator representation algorithm gives, for an input a ∈
A, some pair x, y ∈ A such that a = [x, y].

THEOREM 3. Let A, B be as in theorem 2. Suppose we are
given commutator representaion algorithms for the groups A, B.
Then we obtain such an algorithm for A o B. This algorithm calls
the algorithm on B one time, and the algorithm on A at most d
times, and uses at most O(d) extra multiplication operations on
A, B.

Since multiplication operations in Gn take time polynomial in log |Gn|
we deduce that

COROLLARY 2.9. The group Gn has a commutator represen-
tation algorithm that runs in time polynomial in log |Gn|.

We prove the theorem and corollary in section 6.

3. OVERVIEW OF THE CONSTRUCTION
In section 3.1 we will define our sequence of groups Gn. In

section 4 we will show how to find generating subsets Yn ⊂ Gn

that give λ(Gn, Yn) < 1/1000 with bounded size |Y1|
4. This will

be based on the assumption that there exists a small enough Y1 ⊂
Ad in the alternating group such that λ(Ad, Y1) < 1/1000.

3.1 The family of groups

DEFINITION 3.1. The groups in our construction are defined
by G1 = Ad and, inductively, Gn+1 = Gn o Ad.

Another way to view the group Gn is as a subgroup of the full group
of symmetries of the d-regular, depth n tree. Each element in the
group of symmetries is uniqely defined by writing a permutation on
each internal node of the tree, indicating how the children of this
vertex are permuted. In the subgroup Gn all these permutations
should be even. The representaion of an element of Gn as a list
of even permutations is polynomial in log |Gn|. Multiplying two
elements and inverting an element can be done in time which is
polynomial in the size of this representation

The following important corollary of theorem 3 shows that for
our groups Gn there is an efficient algorithm to solve, for any g ∈
Gn, the equation g = [x, y] in the variables x, y.

LEMMA 3.2. If d ≥ 5 then the groups Gn have the commutator
property of section 2.2.3. Moreover, the commutator representation
of an element can be found in time polynomial in log |Gn|.

PROOF. G1 = Ad, and by [33] it has the commutator property.
The result follows by induction using theorem 3.

2Note that this is a stronger property than just the commutator sub-
group [A, A] being equal to A.



4. MAIN THEOREM

THEOREM 4. Suppose that for some d there exists a set of gen-
erators Y1 ⊂ Ad such that λ(Ad, Y1) < 1/1000 and |Y1| ≤

d1/28/1040 . Then there exist sets Yn ⊂ Gn such that λ(Gn, Yn) <

1/1000 and |Yn| ≤ d1/7/1040 . Furthermore, Yn can be computed
in time polynomial in log |Gn|.

The graphs C(Gn, Yn) are the required sequence of Cayley graphs.
The sets Yn can be computed efficiently, and we saw in section 3.1
that group operations in Gn can also be computed efficiently, so by
observation 2.8 this is an explicit family of Cayley graphs.

We will construct the expanding generators Yn ⊂ Gn induc-
tively. The basis of the induction is the (unproved) assumption in
the theorem about G1 = Ad.

Let G = Gn. We are given Y ⊂ G such that λ(G,Y ) <

1/1000 and |Y | ≤ d1/7/1040 . We want to find a set Y ′ ⊂ G o Ad

such that λ(G oAd, Y ′) < 1/1000 and |Y ′| ≤ d1/7/1040 . We will
use theorem 1. The theorem requires an expanding generating set
for Ad (which we already have), and an expanding generating set
T ⊂ Gd which is exactly one Ad-orbit 3. Given any element of
such T , theorem 1 produces (explicitly) an expanding generating
set for G o Ad = Gn+1.

Can we find an expanding, one-orbit generating set for Gd? Here
is a simple attempt that fails. Take T = Y d. The set Y d is expand-
ing, as λ(Gd, Y d) = λ(G, Y ) by claim 2.2. Unfortunately, Y d is
far from being one orbit - it contains many vectors that are (pair-
wise) not equal up to permutation. Another natural set to consider
in Gd is the set of balanced vectors:

DEFINITION 4.1. Let G be a group, and Y ⊂ G. For d > |Y |,
define Y (d) to be the vectors in Y d in which every u ∈ Y appears
exactly bd/|Y |c times, and the rest of the elements are 1 ∈ G.
We call these vectors balanced vectors. Every two elements in the
set Y (d) are equal up to a permutation of the coordinates. Since
d > |Y | we may assume that the permutation is even. In other
words, the set Y (d) is one Ad-orbit.

The set Y (d) looks promising, but is it expanding? Not always. If
G is Abelian Y (d) does not even generate Gd, since every element
in Y (d) has product of coordinates equal to 1 (Y is symmetric, and
every element of Y appears the same number of times in Y (d)).
The groups Gn are far from being Abelian. Indeed, every element
of Gn has a representation as a commutator. It turns out that this
property, along with the existence of a small generating set Y for
G (assumed by induction) enables us to find a good generating set
for Gd. We will enlarge Y somewhat to a set X ⊃ Y , and see that
X(d) is expanding for Gd.

DEFINITION 4.2. Let G be a group, and let Y ⊂ G. Suppose
every element y ∈ Y can be written as a commutator in G, namely
y = aybya−1

y b−1
y for some ay, by ∈ G. Define

Y ∗ =
[

y∈Y

{ay, by, a−1
y , b−1

y , a−1
y b−1

y , byay} ∪ {1}

Y ∗ is symmetric, and |Y ∗| ≤ 7|Y |.

THEOREM 5. Let G be a group. Suppose that every element of
Y is a commutator in G. Let c, k ∈ N be constants (to be chosen
later). Define c ·Y ⊂ G to be the multi-subset where every element

3Recall that this means that every two elements of T should be
equal up to an even permutation of the coordinates. From now on
we shall write “one orbit”, omitting the Ad

of Y appears c times. Define X := (c·Y )∪Y ∗, and λ = λ(G,Y ).
If d ≥ k2 · |X|7 then

λ(Gd, X(d)) < 0.01 + max
n

(λ + 7/c), e−k(1−λ)c/106
o

where X(d) is the set of balanced vectors.

The proof is given in section 5. To get a feeling for the constants,
note that the larger k, c are, the better inequality we get in the theo-
rem. k is large when X is small. c is large when X is much larger
that Y , so k gets smaller when c gets larger. Nevertheless, it is not
difficult to make both of them large enough for our purposes.

Theorem 5 is the required result for the inductive step - it remains
to show that we can choose c, k properly such that λ(Gd, X(d) is
small enough for theorem 1.

We proceed with the induction step. We are given a set Yn ⊂
Gn of size at most |Y1|

4 such that λ(Gn, Yn) < 1/1000. Ap-
ply theorem 5 (with c = 103, k = 105). Then the conditions
of theorem 5 hold, and we obtain a set X(d) ⊂ Gd such that
λ(G, X(d)) < 1/50 (just substitute our k, c in the theorem to see
this). Apply theorem 1 to obtain a subset P ⊂ Gn+1 of size |Y1|

2,
and λ(Gn+1, P ) < 1/1000 + 1/50. Define Yn+1 to be the set
of all words of length 2 in P . This is a set of size |Y1|

4 and (by
observation 2.7) λ(Gn+1, Yn+1) < (1/1000+1/50)2 < 1/1000.
This completes the induction step.

5. PROOF OF THEOREM 5
The theorem appears in section 4. Let G, Y, X, λ be as de-

fined in theorem 5. We will use the notation W = W (G) and
W (Gd), Wb̄ defined in section 2.2.1. We need to prove that for ev-
ery w ∈ W (Gd)⊥ such that ‖w‖ = 1, at least one of the following
upper bounds holds

‖Ex∈X(d)(Pxw)‖ ≤ 0.01 + λ +
7

c
(1)

‖Ex∈X(d)(Pxw)‖ ≤ 0.01 + e−kc(1−λ)/106

(2)

We saw in section 2.2.1 that it is enough to prove this for w ∈ Wb̄

when b̄ 6= {||}d. Since X(d) is invariant under permutation of
the coordinates it is enough to prove the inequality for every w ∈

W⊗r
⊥ ⊗ W

⊗(d−r)
|| where 1 ≤ r ≤ d (this is Wb̄ for bi =⊥ for

1 ≤ i ≤ r and bi = || for r < i ≤ d).
We split the proof to small and large r cases. For small r we will

prove inequality (1), and for large r we will prove inequality (2).
Small r case: When r ≤ 0.1

p
d/|X|, the first r coordinates

of a random element in X(d) are very closely a random element
in Xr . As Px(w) only depends on the first r coordinates of x, it
is enough to bound ‖Ex∈Xr(Pxw)‖ for w ∈ W⊗r

⊥ . By claim 2.2
‖Ex∈Xr (Pxw)‖ ≤ λ(G, X)r . The worst case is when r = 1. As
Y ⊂ X we can use claim 2.4 to give an upper bound to λ(G, X),
and we obtain inequality (1). This part is relatively easy, and we
will not give a more detailed proof. Notice however that the argu-
ment for small r works for any group G, not only for our special
sequence of groups, and from the generating set X we only used
the Y part - not the Y ∗ part.

Large r case: When r is large the result is no longer true for any
group 4 - we will need the Y ∗ part of the generating set X (recall
that it is only defined when every element of G is a commutator).
We will start with the analysis of a different graph - the Cayley
graph C(G × G, {(y, y−1)|y ∈ Y ∗}). We give a lower bound

4For any abelian group there exists an f ∈ W⊗d such that
Py(f) = f for all y ∈ Y (d)



of (1 − λ(G, Y ))/21|Y ∗|2 on the spectral gap of this graph in
section 5.1. Afterwards, in section 5.2, we will show a reduction
giving an upper bound on ‖Ex∈X(d) [Px(w)]‖ using this graph on
G×G. The reduction is again true for every group G, not only our
groups.

Notice that the spectral gap bound we get in the G × G case
is rather weak - much smaller than the spectral gap of the original
graph C(G, Y ). When r is large enough we are able to apply the
G × G result many times in parallel, amplifying the weaker upper
bound in G × G. We will obtain the upper bound (2).

5.1 Expansion of G × G with correlated gener-
ators

DEFINITION 5.1. Let G be a group. and let Y ⊂ G be a subset
of G. Define

eY = {(y, y−1)|y ∈ Y }

THEOREM 6. Suppose λ(G, Y ) < 1 − ε for some ε, and that
every element of Y is a commutator in G. Then

λ(G × G, fY ∗) ≤ 1 −
ε

21|Y ∗|2

We find theorem 6 to be quite surprising. In the set fY ∗ there
is complete correlation between the two coordinates, and it would
seem that this correlation would prevent the graph from being an
expander. For example, if G is Abelian and Y generates G then eY
does not even generate G×G, but only the subgroup {(g, g−1)|g ∈
G}. Also, for any group G the set {(y, y)|y ∈ Y } only generates
the subgroup {(g, g)|g ∈ G}. In both cases the correlation in the
generating set prevents the graph from being an expander. We man-
age to decouple this correlation in the case of the special generating
set Y ∗, whose existence relies on the commutator property of G -
that every element g ∈ G can be represented as g = xyx−1y−1.

PROOF. The key observation is that we can represent the ele-
ment (y, 1) for any y ∈ Y as a word of length 3 in fY ∗. We prove
this in the following observation.

OBSERVATION 5.2. Let Z be the set of words of length 3 in the
set fY ∗. then

C(G × G, {(Y, 1) ∪ (1, Y )}) ⊂ C(G × G, Z)

PROOF. Recall that for every y ∈ Y the set Y ∗ contains the
elements ay, by, a−1

y b−1
y where y = aybya−1

y b−1
y . Observe that

(ay, a−1
y ) · (by, b−1

y ) · ((a−1
y b−1

y ), (a−1
y b−1

y )−1) = (y, 1)

This gives the required representation of (y, 1). We can obtain
(1, y) similarly.

It is easy to see that if C(G, Y ) has spectral gap ε then the graph
C(G × G, {(Y, 1) ∪ (1, Y )}) has spectral gap ε/2. We now have
the decoupling we were looking for - the correlated generating set
Z contains the uncorrelated one (Y, 1) ∪ (1, Y ). More precisely,
apply claim 2.4 to observation 5.2, and deduce that

OBSERVATION 5.3. C(G × G, Z) has spectral gap at least
ε/7|Y ∗|2

Recall that Z consists of all words of length 3 in the fY ∗. By ob-
servation 2.7, the spectral gap of C(G × G, fY ∗) is at most 3 times
smaller than the spectral gap of C(G × G, Z), and the theorem is
proved.

5.2 Reduction to G × G

We upper bound the average ‖[Ex∈X(d) (Pxw)]‖ in terms of λ(G×

G, fY ∗) from section 5.1.
For x ∈ Xd write x = (x1, x2, x̄) where x1, x1 ∈ G and x̄ ∈

Gd−2. By the triangle inequality

CLAIM 5.4. For every w ∈ W⊗d

‖Ex∈X(d)Px(w)‖ ≤ Ex∈X(d)(‖(Px1,x2,x̄ + Px2,x1,x̄)(w)/2‖)

Since the value of ‖(Px1,x2,x̄ + Px2,x1,x̄)(w)/2‖ only depends on
the first two coordinates of x we group together all x with equal
x1, x2, replacing x̄ by 1d−2, a (d − 2)-length vector of 1’s. It is
therfore enough to bound

Ex∈X(d)(‖(Px1,x2,1(d−2) + Px2,x1,1(d−2) )(w)/2‖)

The number of times each pair x1, x2 appears in the average above
is proportional to the number of extensions of x1, x2 to a vector
(x1, x2, x̄) ∈ X(d). As d is much larger than 2, the number of
such extensions is nearly equal for every pair x1, x2, and we get
(the 0.01 below pays for the fact that the number of extensions is
only nearly equal)

CLAIM 5.5. If d ≥ 100|X| then for every w ∈ W⊗d

Ex∈X(d)(‖(Px1,x2,x̄ + Px2,x1,x̄)(w)/2‖)

≤ Ey∈X2‖(Py1,y2,1(d−2) + Py2,y1,1(d−2) )(w)/2‖ + 0.01

The following lemma bounds the RHS of claim 5.5

LEMMA 5.6. If λ(G, Y ) < 1 − ε and r ≥ 2 then for every
w ∈ W r

⊥ ⊗ W⊗(d−r)

Ey∈X2‖(Py1,y2,1(d−2) + Py2,y1,1(d−2) )(w)/2‖

≤ (1 −
cε

2 · 104|X|3
)‖w‖ := ∆‖w‖

We prove the lemma in section 5.2.1
Lemma 5.6 gives some upper bound ∆‖w‖ on ‖Ex∈X(d)Px(w)‖,

but ∆ is too close to 1. The problem originates from claim 5.4,
where we partitioned the set X(d) into pairs based on the value of
the first 2 coordinates, and then considered the norm of each pair.
This partition turns out to be too coarse. We will use a finer parti-
tion of X(d) by looking at the first t pairs of coordinates, for some
properly chosen t ≤ r. This will improve the spectral gap to ∆t.

We now define this finer partition precisely. Let Ht < Sd be the
subgroup (of size 2t) generated by the transpositions (2k − 1, 2k)
for 1 ≤ k ≤ t, and group together the elements {σ(x)|σ ∈ Ht}.
When t = 1 we get the grouping into pairs discussed above. The
argument leading to claim 5.5 shows

CLAIM 5.7. If 2t ≤ 0.1
p

d/|X| then for every w ∈ W⊗d

‖Ex∈X(d)Px(w)‖ ≤ Ey∈X2t‖Eσ∈Ht
(Pσ(y,1(d−2t)(w))‖ + 0.01

The case t = 1 is claim 5.5. However, the weak upper bound ∆ we
had for t = 1 amplifies to ∆t.

CLAIM 5.8. Suppose that for every w ∈ W⊗2
⊥ ⊗ W⊗d−2

Ey∈X2‖
1

2
(Py1,y2,1(d−2) + Py2,y1,1(d−2) )(w)‖ ≤ ∆‖w‖

Then for every w ∈ W⊗2t
⊥ ⊗ W⊗d−2t

Ey∈X2t‖Eσ∈Ht
Pσ(y,1(d−2t))(w)‖ ≤ ∆t‖w‖



PROOF. The proof is by induction on t. The case t = 1 is the
assumption of the claim. For general t

Ey∈X2t‖Eσ∈Ht
Pσ(y,1(d−2t))(w)‖

= Ez∈X2,y∈X2(t−1)

‖ Eσ∈Ht−1Pσ(12,y,1(d−2t))[(Pz1,z2,1(d−2) + Pz2,z1,1(d−2) )(w)]‖

≤ ∆t−1
Ez∈X2‖(Pz1,z2,1(d−2) + Pz2,z1,1(d−2) )(w)‖ ≤ ∆t‖w‖

Note that in the second line above σ ∈ Ht−1 acts on the vector y -
not on the first 2t−2 coordinates. The first inequality follows from
the induction hypothesis for Ht−1 The second inequality follows
from the induction hypothesis for H1

We can now complete the proof using λ(G, Y ) < 1 − ε. Pick
an integer t satisfying 0.05

p
d/|X| ≤ 2t ≤ 0.1

p
d/|X|. Then by

the claims in this section

‖Ex∈X(d)Px(w)‖ ≤ 0.01 + (1 −
cε

2 · 104|X|3
)t

≤ 0.01 + exp
` −ctε

2 · 104|X|3
´
≤ 0.01 + exp

`−kcε

106

´

We plugged in 2t ≥ 0.05
p

d/|X| ≥ 0.05k|X|3 . This concludes
the proof of theorem 5 for large r.

5.2.1 Proof of lemma 5.6
Let τ (G × G, {(y, y−1)|y ∈ Y ∗}) be the spectral gap. From

theorem 6 we have for every u ∈ W⊥ ⊗ W

‖Ey∈Y ∗

ˆ
Py,y−1(u)

˜
‖ ≤ (1 − τ )‖u‖ (3)

In lemma 5.6 we want to upper bound

Ey∈X2‖(Py1,y2,1(d−2) + Py2,y1,1(d−2) )(w)/2‖ (4)

for every w ∈ W⊗r
⊥ ⊗ W d−r.

We will start with the case d = 2. We will bound (4) in terms of
the LHS of (3). In order to do that, we will have to deal with the
fact that the norm in (3) appears outside the expectaion, while in (4)
it appears inside the expectation (see claim 5.9). Also, the average
in (4) is over y ∈ X2, while in (3) the average is over y ∈ Y ∗. (see
claim 5.11). After completing the proof in the case d = 2, we turn
to prove the lemma for general d (claim 5.12).

CLAIM 5.9. For every u ∈ W⊥ ⊗ W

Ey∈Y ∗‖
1

2
(Py,y−1 + I)(u)‖ ≤ (1 − τ/4)‖u‖

PROOF. Recall that λ(G × G, fY ∗) is the maximal value of
‖Ey∈Y ∗Py,y−1(u)‖/‖u‖ for u ∈ W⊥⊗W . In the claim we have a
similar expression, but the norm is inside the expectation. It is per-
haps surprising at first glance that moving the norm inside the ex-
pectation does not change the final value by much, but it is not hard
to see: By (3) for every w the average of the vectors Py,y−1(u) has
“small” norm. Therefore, it must be that some of the Py,y−1(u) are
far away from u, which implies that (Py,y−1 + I)(u) has “small”
norm for many y, and this proves the claim. The claim below (not
proved) makes this argument precise.

CLAIM 5.10. If for some vectors w0, w1, . . . , wL, all with norm
1,

(1/L) · ‖
LX

i=1

wi‖ ≤ 1 − ε

then

(1/L) ·

LX

i=1

‖w0 + wi‖/2 ≤ 1 − ε/4

This ends the proof of claim 5.9.

CLAIM 5.11. For every u ∈ W⊥ ⊗ W

Ey∈X2‖
1

2
(Py1,y2 + Py2,y1)(u)‖ ≤ (1 −

τ

8c|X|
)‖u‖

PROOF. By applying the unitary operator P1,y to the y-th sum-
mand in claim 5.9 we obtain

Ey∈Y ∗‖
1

2
(Py,1 + P1,y)(u)‖ ≤ (1 − τ/4)‖u‖

Consider Ey∈X2‖ 1
2
(Py1,y2 + Py2,y1)(u)‖. Let p be the probabil-

ity that for a random y ∈ X2 we have y1 ∈ Y ∗ and y2 = 1. Then
p ≥ (1/2c) · 1/|X| (as X = c · Y ∪ Y ∗ and Y ∗ is larger than Y ).
Using a convexity argument similar to claim 2.4 we see that

Ey∈X2‖
1

2
(Py1,y2 + Py2,y1)(u)‖

≤ p · Ey∈Y ∗‖
1

2
(Py,1 + P1,y)(u) + (1 − p) · ‖u‖

≤ p · (1 − τ/4)‖u‖ + (1 − p)‖u‖

≤ (1 − pτ )‖u‖ ≤ (1 −
τ

8c|X|
)‖u‖

which proves claim 5.11

We have shown that for every u ∈ W⊥ ⊗ W

Ey∈X2‖
1

2
(Py1,y2 + Py2,y1)(u)‖ ≤ (1 −

τ

8c|X|
)‖u‖

= (1 −
ε

21 · 8|Y ∗|2 · |X|
)‖u‖ ≤ (1 −

cε

2 · 104|X|3
)‖u‖

The last step follows from Y ∗ ≤ 10|X|/c (which is true since
X = cY ∪ Y ∗ and Y ∗ ≤ 10|Y |).

We have almost completed proving the lemma. We have the right
upper bound, but for u ∈ W⊗2 instead of in W⊗d.

CLAIM 5.12. If there is a λ > 0 such that for every u ∈ W⊗2
⊥

Ey∈X2‖[
1

2
(Py1,y2 + Py2,y1)(u)]‖ ≤ λ‖u‖

then for every w ∈ W⊗r
⊥ ⊗ W⊗(d−r)

Ey∈X2‖[
1

2
(Py1,y2,1(d−2) + Py2,y1,1(d−2) )(w)]‖ ≤ λ‖w‖

PROOF. Write w ∈ W⊗r
⊥ ⊗W⊗(d−r) as w =

P
ui ⊗ vi where

ui ∈ W⊗2
⊥ and vi ∈ W⊗(d−2), such that the vi are orthogonal and

‖vi‖ = 1. We have

Ey‖[
1

2
(Py1,y2,1(d−2) + Py2,y1,1(d−2) )(w)]‖2

= Ey

X

i

‖[
1

2
(Py1,y2 + Py2,y1)(ui)]‖

2 ≤ λ2‖w‖2

And the result follows since E(X)2 ≤ E(X2) for any random
variable X .



6. PROOF OF THEOREM 3
The theorem appears in section 2.2.3.

REMARK 6.1. This section contains equations in groups. Con-
stants in the equations will be written in Greek letters. Variables
will be written in small Latin letters.

Let C = A o B, where A is any group and B ⊂ Sd. Given
an element γ ∈ C we look for a “commutator representation al-
gorithm” that solves the equation γ = [c1, c2] := c1c2c1

−1c2
−1.

By assumption we have such an algorithm for A and B. The proof
below extends Nikolov’s proof in [32].

Any element γ ∈ A o B has a unique representation c = β · α
with β ∈ B, α ∈ Ad, so it is enough to solve, for every pair
(β ∈ B, α ∈ Ad), the equation βα = [b1x, b2y] Now

[b1x, b2y] = [b1, b2] · x
[b1,b2]yb2b−1

1 b−1
2 x−b−1

2 y−1

where xb = bxb−1. In our case xb is simply a permutation of the
coordinates of x by b ∈ B ⊂ Sd.

We obtain a pair of equations

β = [b1, b2]

α = x[b1,b1]yb−1
2 b1b2x−b2y−1

By assumption there is an algorithm that solves β = [b1, b2]. Fix
some solution b1 = β1, b2 = β2. It remains to solve

α = x−[β1,β2]y−β
−1
2 β1β2xb2y

Since xβ is a permutation (depending on β) of the coordinates of
x, the following lemma solves a more general system of equations.

LEMMA 6.2. For any four permutations σ1, σ2, σ3, σ4 ∈ Sd

and any α = α1, . . . , αd ∈ Ad, the following system of d equa-
tions, one for each 1 ≤ i ≤ d:

αi = xσ1(i)yσ2(i)x
−1
σ3(i)y

−1
σ4(i)

has a solution algorithm that calls the commutator representation
algorithm on A at most d times, and does at most O(d) operations
in the group A.

The rest of this section is dedicated to the proof of this lemma.

DEFINITION 6.3. We shall refer to the αi as constants and to
the xi, yi, x

−1
i , y−1

i as literals

There are d constants and 4d literals i our system. An important
fact is that each literal appears exactly once in the system.

Let as solve first in the case that all four σi are the identity per-
mutation. The system in this case is:

α1 = [x1, y1]

α2 = [x2, y2]

· · ·

αd = [xd, yd]

In this case the equations are independent (no variable appears in
more than one equation). Each equation asks for a commutator rep-
resentation for αi ∈ A. We solve the system of equations by calling
the commutator representation algorithm for A for each equation
separately.

The solution for general σi is by reduction to a system similar
to the one we obtained for the σi = 1 case. As long as there are
variables that appear in more than one equation, we will remove
equations by “Gaussian elimination”, until we obtain a system of

independent equations. We will then translate each equation to a
commutator representation equation like the ones above.

As mentioned, each literal appears exactly once in the system.
If xi, x

−1
i do not both appear in the same equation, then we can

eliminate xi, x
−1
i from the system by substitution (paying O(1)

multiplications in A). This reduces the number of equations in the
system by 1. Repeat the substitution operation until it is no longer
possible. Notice that the property that each literal appears exactly
once is preserved along the way.

CLAIM 6.4. The substitution process ends with L ≤ d equa-
tions

vl = Wl ∀l ∈ {1, . . . , L}

where vl is a constant, Wl is some word in literals and constants.
The equations are now independent - every literal appears in the
same equation as its inverse, ot they both do not appear in the sys-
tem.

We will now reduce this system to L commutator representation
problems in the group A. The following lemma finds a “hidden
commutator” in each of the words Wl:

LEMMA 6.5. [32] In every Wl there exist g, h ∈ {1, 2, . . . , d}
depending on l, such that

Wl = Z1xgZ2yhZ3x
−1
g Z4y

−1
h Z5

where the Zi are words in literals and constants from the word Wl

(they do not contain x±1
g , x±1

h since each literal appears at most
once in the system of equations).

The proof is in [32]. Given that such a hidden commutator exists,
it is easy to find one in time polynomial in d by looking at all the
literals appearing in Wl (there are at most 2d of those). Substitute
every variable appearing in the Zi by 1. This does not affect any
other equation - the equations are independent at this point. We
obtain a new equation

vl = W̃l = ζ1xgζ2yhζ3x
−1
g ζ4y

−1
h ζ5

This is now an equation in two variables xg, xh - all the other words
are constants. This is almost a “commutator representation” equa-
tion. Indeed, if the five ζi are all equal 1, we obtain the equation

vl = [xg, yh]

which is solved by calling the commutator algorithm on A. For
general ζi we transform the “hidden” commutator to a “real” com-
mutator by changing variables. Define x̃g = ζ3xgζ4 and ζh =
yhζ−1

2 ζ−1
3 . Observe that

vl = ζ1ζ4[x̃g, ỹh]ζ3ζ2ζ5

Rewrite this equation as

(ζ1ζ4)
−1vl(ζ3ζ2ζ5)

−1 = [x̃g, ỹh]

The LHS is some constant element in A, and the equation requests
a representation of this element as a commutator. We can find a
solution by calling the commutator representation algorithm on A.
The solution is in the variables x̃g, ỹh, but this is easily translated
to a solution in our original variables xg, yh.

How many operations did we use? We called the commutator
representation algorithm in A At most d times (one call for each
final equation vl = Wl). We called the commutator representation
algorithm on B one time. We used O(1) multiplications in B, and
O(d) multiplications in A (there were O(1) per either removing an
equation or solving a final equation).



We can now deduce corollary 2.9. Define m(n) to be the cost
(in bit operations) of multiplication in Gn, and define c(n) to be
the cost of computing the commutator representation of an element
in Gn. As m(n + 1) < (d + 1)m(n) and m(1) = O(d2) we
deduce that m(n) < (d + 1)n+2 · O(1). From the discussion
above we see that c(n + 1) < (d + 1)c(n) + m(n) · O(d) <
(d + 1)c(n) + dn+3 · O(1). This implies that c(n) < d4n · O(1)
for large enough d. It remains to verify that c(n) is polynomial in
log |Gn|. Denote s(n) = log |Gn|. Clearly s(n+1) > d ·s(n), as
Gn+1 consists of all the vectors of length d+1 whose first element
is in Ad and the rest are in Gn. Therefore s(n) > dn and the
corollary follows.
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