
Near-Optimal conversion of Hardness into Pseudo-Randomness

Russell Impagliazzo
Computer Science and Engineering

UC, San Diego
9500 Gilman Drive

La Jolla, CA 92093-0114
russell@cs.ucsd.edu

Ronen Shaltiel
Department of Computer Science

Hebrew University
Jerusalem, Israel

ronens@cs.huji.ac.il

Avi Wigderson
Department of Computer Science

Hebrew University
Jerusalem, Israel

avi@cs.huji.ac.il

February 11, 2003

Abstract

Various efforts ([?, ?, ?]) have been made in recent years to derandomize probabilistic
algorithms using the complexity theoretic assumption that there exists a problem in E =
dtime(2O(n)), that requires circuits of size s(n), (for some function s). These results are based
on the NW-generator [?]. For the strong lower bound s(n) = 2εn, [?], and later [?] get the
optimal derandomization, P = BPP . However, for weaker lower bound functions s(n), these
constructions fall far short of the natural conjecture for optimal derandomization, namely that
bptime(t) ⊆ dtime(2O(s−1(t))). The gap in these constructions is due to an inherent limitation
on efficiency in NW-style pseudo-random generators.

In this paper we are able to get derandomization in almost optimal time using any lower
bound s(n). We do this by using the NW-generator in a new, more sophisticated way. We view
any failure of the generator as a reduction from the given “hard” function to its restrictions
on smaller input sizes. Thus, either the original construction works (almost) optimally, or
one of the restricted functions is (almost) as hard as the original. Any such restriction can
then be plugged into the NW-generator recursively. This process generates many “candidate”
generators - all are (almost) optimal, and at least one is guaranteed to be “good”. Then, to
perform the approximation of the acceptance probability of the given circuit (which is the key
to derandomization), we use ideas from [?]: we run a tournament between the “candidate”
generators which yields an accurate estimate.

Following Trevisan, we explore information theoretic analogs of our new construction. Tre-
visan [?] (and then [?]) used the NW-generator to construct efficient extractors. However, the
inherent limitation of the NW-generator mentioned above makes the extra randomness required
by that extractor suboptimal (for certain parameters). Applying our construction, we show how
to use a weak random souce with optimal amount of extra randomness, for the (simpler than
extraction) task of estimating the probability of any event (which is given by an oracle).

0

1 Introduction

This paper addresses the question of hardness versus randomness trade-offs. Such results show
that probabilistic algorithms can be efficiently simulated deterministically under some complexity
theoretic assumptions. A number of such results are known under a “worst-case circuit complexity
assumption”:

The s-worst-case circuit complexity assumption: There exists a function f = {fn} which is
computable in time 2O(n), yet for all n, circuits of size s(n) cannot compute fn.

The conclusion we are after is of the following type: “Any probabilistic algorithm that runs in
time t, can be simulated deterministically in time T (t)”. Such results were previously proven by
[?, ?, ?], and our contribution is a construction that gives a better tradeoff between the simulation
quality T and the assumption strength s(n).

Result Comparison:
All results assume the s-worst-case complexity hardness assumption.

Reference Conclusion for arbitrary s Conclusion for s(n) = 2nε

[?] bptime(t) ⊆ dtime(2O((s−1(t))2 log t)) bptime(t) ⊆ dtime(2O(log
2
ε +1 t))

[?] bptime(t) ⊆ dtime(2O(
(s−1(t))4

log3 t
))a bptime(t) ⊆ dtime(2O(log

4
ε−3 t))

[?] bptime(t) ⊆ dtime(2O(
(s−1(t))2

log t
)) bptime(t) ⊆ dtime(2O(log

2
ε−1 t))

this paper bptime(t) ⊆ dtime(2O(s−1(tO(log log t))))b bptime(t) ⊆ dtime(2O(log
1
ε t·log log log t))

optimalc bptime(t) ⊆ dtime(2O(s−1(t))) bptime(t) ⊆ dtime(2O(log
1
ε t))

aImpagliazzo and Wigderson state their result only for s(n) = 2Ω(n), and their result puts BPP in P ,
for such a lower bound.

bOur result is a bit better, but we cannot state it in this notation.
cThe best we can hope for with current techniques.

1.1 Background

Following [?], the task of derandomizing probabilistic algorithms reduces to the problem of deter-
ministically approximating the fraction of the inputs which a given circuit accepts. We call such
machines approximators, and our task becomes constructing efficient (in terms of running time) ap-
proximators. Previous results constructed efficient approximators by constructing pseudo-random
generators.1 Indeed, with a pseudo-random generator in hand, one can easily construct an efficient
approximator. Simply run the generator over all possible seeds to construct a small discrepancy
set,2 and then run the circuit over all the inputs in the discrepancy set. It is clear from this dis-
cussion that the main cost of this process comes from constructing the discrepancy set which is of
size exponential in the generator’s seed size.3

1Informally, a pseudo-random generator is a machine that transforms a short seed of truly random bits into a long
string of bits that “appear” random to small circuits.

2Informally, A discrepancy set is a small set such that no small circuit can distinguish between an element chosen
uniformly from the set and a truly uniform element.

3Another observation is that no harm is done in allowing such generators to run in time exponential in the seed
length.

1

Yao [?] used the Blum-Micali generator, on a cryptographic assumption much stronger than the
corresponding worst-case circuit complexity assumption to give the first non-trivial generator for
derandomization. Nisan and Wigderson [?] weakened Yao’s assumption to the following distribu-
tional circuit complexity assumption, which is still seemingly stronger than the worst-case circuit
compexity assumptions above:

The v-distributional complexity hardness assumption: There exists a function h = {hn}
which is computable in time 2O(n), yet for all n, every circuit of size v(n) computes fn correctly on
at most 1/2 + 1/v(n) fraction of the inputs.

Previous results using worst-case assumptions ([?, ?, ?]) focused on “hardness amplification”,
that is showing the v-distributional complexity hardness assumption follows from the s-worst case
hardness assumption. Recently, [?] came up with an almost optimal hardness amplification scheme.
Informally speaking, they show that given a function f : {0, 1}n → {0, 1} that cannot be computed
by circuits of size s, one can construct a function h : {0, 1}O(n) → {0, 1} for which every circuit
of size sΩ(1) computes g correctly on at most 1/2 + 1/sΩ(1) fraction of the inputs. With h in
hand they activate the NW-generator, and build an efficient approximator, especially when s(n)
is exponential. However, there are some inherrent limits to the NW-generator that make these
derandomizations sub-optimal for functions s(n) which are not exponential.

1.2 Our result

The main point of the previous section is that having pushed the hardness amplification phase to
the limit, the remaining inefficiency is caused by the NW-generator. When assuming the s-worst
case hardness assumption, one may hope to get a generator

G : {0, 1}O(n) → {0, 1}s(n)Ω(1)

that fools circuits of size s(n)Ω(1). However, the best result using the NW-generator takes larger
seed

NW : {0, 1}O(n2

log s(n)
) → {0, 1}s(n)Ω(1)

For the same task. Recall that the parameter that dominates the time of the derandomization
is the seed size.

In this paper we are able to minimize the seed size to the optimal m = O(n). However, we do
lose something. The first loss is that we are only able to “fool” circuits of size t = s(n)Ω(1

log log n
)

rather than s(n)Ω(1).4 The second loss is that rather than constructing a discrepancy set, we
construct 2O(n) sets where at least one of them is a discrepancy set. We don’t know how to find the
“right” discrepancy set in the huge collection of sets. However, we will show that this collection is
still useful to construct an approximator.

To explain the inherent inefficiency in the NW construction, and how we overcome it, we briefly
describe it.
The NW-generator: As mentioned before, to use the NW-generator one needs a hard function
h. Using the optimal hardness amplification of [?], we may assume that this function is s(n)Ω(1)-
distributional complexity hard. The NW-generator constructs a “design”, that is t sets S1, .., St

of size n in {1, ..,m}, where the size of the intersection of any two sets is at most k. It is very
4This means that in order to derandomize a probabilistic algorithm that runs in time t, we need n ≥ (s−1(tlog log n))

rather than n ≥ s−1(tO(1)).

2

important observation that is not hard to prove that this requirement forces m = Ω(n2/k). The
NW-generator is a function NWh : {0, 1}m → {0, 1}t. The i’th bit in the output of NWh is simply
h(x|Si), where x|Si stands for the n bits of x such that their indices are in Si. The main lemma of
[?] says that if the generator “fails” then h is easy. More precisely, the statement is that if the set
{NWh(x)|x ∈ {0, 1}m} is not a discrepancy set for circuits of size t, then there exists a circuit of
size roughly t2k which computes h. So the size of the circuit which the generator fools is t = s/2k.
We want t = sΩ(1), we choose k = Θ(log s). As mentioned before small intersection size forces large
seed, and one ends up with m = Ω(n2/ log s).

On one hand we must have k small, because a factor of 2k is lost when getting t from s. On
the other, small k forces large m since m = Ωn2/k. One may hope to build designs with smaller
intersection by allowing a more general concept of designs, which still accommodates the NW
main lemma. This possibility is ruled out in [?]. The only option left is to reduce the factor 2k

lost in the circuit complexity, allowing one to pick k = ω(log t), and hence decreasing the value
of m = Θ(n2/k). This is basically the approach we use here, which leads to some interesting
complications.
The new idea: One possible view of the proof of the NW-lemma is that the NW-generator
specifies family of 2O(n) functions over k bits, (which are restrictions of h to k bits). Such that if
the set {NWh(x)|x ∈ {0, 1}m} is not a discrepency set for circuits of size t, then one of the specified
functions requires circuit size s/poly(t). The former proof used the fact that any function over k
bits can be computed by a circuit of size 2k, they chose t = s/2k, and concluded that the set above
is indeed a discrepancy set for circuits of size t. We replace that argument by considering two cases:

1. All the functions specified by the NW-generator have “small” (size s/poly(t)) circuits. In such
a case we know that the NW set is a discrepancy set for circuits of size t, and we don’t lose
the 2k factor.

2. At least one of the specified functions cannot be computed by a circuit of size s/poly(t). In
this case it may be that the NW set is not a discrepancy set. However, we have at hand a
function on much fewer bits (k instead of n) than the original hard function, that is almost
as hard. From the point of view of hardness to input size ratio, this function is harder than
the one we started with. We can “plug” it to the NW-generator and enjoy the better lower
bound. This approach can be used recursively until we end up with parameters that the
former proof can handle.

The construction: We don’t know which of the two cases happened, and even worse, in case 2, we
don’t know which of the 2O(n) specified functions is the hard function. Thus, we try all possibilities.
we construct sets (that are candidates to be discrepancy sets) from the initial function and all it’s
specified functions. We continue this recursively until we are sure that one of the functions we
consider is “hard” but all specified functions are “easy”. This can be shown to happen after at
most log log n levels, and at this point we have 2O(n) candidates. This process involves some loss.
At each level we lose a poly(t) factor from s, and so we end up choosing t = s

Θ(1
log log n

).
Our final move is approximating a given circuit having 2O(n) candidates where at least one of

them is a discrepancy set. To do this we use an idea from [?]. We construct a matrix with entries
for each pair of sets. For each such pair we run C on all possible xors of elements from the two
sets, and compute the fraction of inputs accepted by C. Note that it if one of the two sets is a
discrepancy set then the set of the xors is also a discrepancy set. This means that in the row of
the discrepancy set, all entries are good approximations of the “correct” value, and hence lie in a
small interval. For each of the other rows, the entry in the column of the discrepancy set is close

3

to the “correct” value. This means that any row in which all entries lie in a small interval contains
entries which are good approximations of the fraction of inputs accepted by C. Using the above
process we complete the proof.
An information theoretic analog a la Trevisan: Recently, Trevisan [?] used the NW-generator
to construct an extractor. An ε-extractor of t bits from r bits using m bits is an efficiently com-
putable function Ext : {0, 1}l × {0, 1}m → {0, 1}t, such that for all distributions D on {0, 1}l

having min-entropy5 r, the distribution obtained by sampling f according to D and x uniformly
from {0, 1}m and computing Ext(f, x) is at most ε statistical distance from the uniform distribution
on t bits. Trevisan’s extractor works by treating f as a function over n = log l bits, “amplifying” its
hardness, and applying NWf (x). If an event T distinguishes between the output of the extractor
and a uniform distribution, then it must do so for many f ’s. For every f such that NWf (·) is
“caught” by T , there is a small circuit C which uses T gates6 , and computes f , (This is the main
lemma of the NW-generator). This bounds the number of f ’s such that NWf (·) is caught by T , and
the proof is done by realizing that high min-entropy says that there are a lot of f ’s. We focus our
attention to constructing extractors with minimal m. Trevisan’s construction suffers from the same
inefficiency of the NW-generator which we treat here. Namely, the size of the constructed circuit
(t2k) must be small compared to the min-entropy r. As explained in the previous paragraphs, the
need to decrease k is met by increasing m, and one ends up with m = O(log2 l

log r). We may hope that
using our technique we could do with the optimal m = O(log l) for any r. This is indeed the case.
However we don’t get an extractor since our construction is not a generator. Instead, we get the in-
formation theoretic analog of an approximator. This is a deterministic machine that approximates
the probability of any given event T : {0, 1}t → {0, 1} (which the machine accesses as an oracle),
using one sample from a distribution D with min entropy r. The machine runs in time lO(1), and
t = r

O(1
log log log l

). To see the connection to extractors, note that with an extractor in hand one can
perform this task by going over all strings in {0, 1}m, and using the set {Ext(f, x)|x ∈ {0, 1}m} to
approximate the given event T .

2 Definitions and History

2.1 Hard functions

We start by defining “hardness” in both worst-case complexity and distributional complexity set-
tings.

Definition 1 For a function f : {0, 1}n → {0, 1}, we define:

1. S(f) = min{size(C)| circuits C that compute f correctly on every input}

2. SUCs(f) = max{Prx∈R{0,1}n(C(x) = f(x))| circuits C of size s}

3. ADVs(f) = 2SUCs(f)− 1

When invoking The NW-generator against circuits of size t(n), one needs a function h = {hn},
with ADVt(n)(hn) ≤ 1

t(n) . Much work has been done on building such a function from a worst-case
circuit lower bound, (see for example [?, ?, ?]). In this paper we use the current result by [?], which
we state in our notation.

5The min-entropy of a distribution D is − log(minxD(x)).
6Note that T is simply a function T : {0, 1}t → {0, 1}, and so we can think about it as a gate.

4

Theorem 1 [?] For every function f : {0, 1}n → {0, 1}, and ε, there exists a function h :
{0, 1}4n → {0, 1}, such that, for v = S(f)(ε

n)O(1)

1. h can be computed in time 2O(n), given an oracle to f .

2. ADVv(h) ≤ ε

2.2 Generators, Discrepancy sets and Approximators

In this section we define pseudo-random generators, and machines we call approximators. It is
convenient to define both using the notion of discrepancy sets.

Definition 2 For a circuit C on t bits define: µ(C) = Prw∈R{0,1}t(C(w) = 1)

Definition 3 A (t, ε)-discrepancy set, is a multi-set D ⊆ {0, 1}t, such that for all circuits C of
size t:

|Prw∈RD(C(w) = 1)− µ(C)| ≤ ε

In the above definition, we did not specify a parameter for the input size of the circuit. As far as
we are concerned a circuit of size t may take t bits as input. We proceed and define pseudo-random
generators. For the purpose of derandomizing probabilistic algorithms, generators may be allowed
to run in time exponential in their input.

Definition 4 A ε-Generator G is a family of functions7 Gt : {0, 1}m(t) → {0, 1}t, such that:

1. For all t, the set D = {Gr(x)|x ∈ {0, 1}m(t)} is a (r, ε)-discrepancy set.

2. G is computable in time 2O(m), (exponential in the size of the input).

The existence of “good” generators implies a non-trivial deterministic simulation of probabilistic
algorithms. However, the proof works by building the following device (which appears implicitly
since [?] and is also used implicitly in other efforts to derandomize BPP such as [?]).

Definition 5 A ε-approximator is a deterministic machine that takes as input a circuit C and
outputs an approximation to µ(C), that is, a number q such that |µ(C)− q| ≤ ε

The following two implications are standard:

Lemma 1 ([?])

1. If there exists a (m, ε)-generator then there exists a ε-approximator that (on a circuit of size
t) runs in time 2O(m(t))tO(1).

2. If there exists a 1/10-approximator that runs in time p(t) on circuits of size t, then bptime(t) ⊆
dtime(p(t2)).

Proof: (sketch)
Having a generator, one can run the given circuit on all possible outputs of the generator. This
is indeed an efficient approximator. Having an approximator, and given a probabilistic algorithm
M(x, y), (where x is the input, and y is the random string), simply construct the circuit Cx(y) =
M(x, y), and approximate it’s success probability. •

As seen from lemma ??, the task of derandomizing probabilistic algorithms, reduces to con-
structing efficient generators. Where efficiency means small as possible seed size.

7In the next sections we will have m be a function of n (the input size of the hard function), rather than a function
of t

5

2.3 The NW-generator

In this section we present the NW-generator, it’s best known consequences for derandomization,
and explain it’s inherent inefficiency when used with a sub-exponential lower bound.

Theorem 2 (Construction of nearly disjoint sets [?]) There exists an algorithm that given numbers

n, m, t, such that t = 2O(n2

m
), constructs a (n, m)-design, that is: sets S1, .., St, such that:

1. For all 1 ≤ i ≤ t, Si ⊆ [m], and |Si| = n.

2. For all 1 ≤ i < j ≤ t, |Si ∩ Sj | ≤ k = cn2

m , for some constant c.

3. The running time of the algorithm is exponential in m.

Definition 6 (The NW-generator [?]) Given some function h = {hn}, and n, m, the NW-generator
works by building an (n, m)-design, S1, .., St. It takes as input m bits, and outputs t bits.

NWn,m
h (x) = (h(x|S1), .., h(x|St))

The thing to do now, is prove that if one “plugs” a hard enough h into the NW-generator, it fools
circuits of some size.

Lemma 2 [?] Fix n, m, t, v, ε. Let S1, .., St be the (n, m)-design promised by theorem ??, and let
k = cn2

m , be the promised bound on the intersection size. Let h : {0, 1}n → {0, 1}, be a function
such that ADVv(h) ≤ ε2k+1

v . The set:

D = {NWn,m
h (x)| x ∈ {0, 1}m}

is a (t, ε)-discrepancy set, with t = min(2O(n2

m
), v

2k+1).

The drawback in lemma ??, is that t = O(v
2k), and a factor of 2k is lost when getting t from v.

To cope with this k must be decreased, (particularly k must satisfy 2k < v). Since k is roughly n2

m ,
m must be increased to roughly n2

log v , resulting in a generator that takes a large seed for weak lower
bounds v, and an non-efficient approximator. (Recall that the running time of an approximator is
exponential in the generator’s seed size).

Using theorems ??,?? and lemma ?? with the parameters described above [?] prove the following
theorem.

Theorem 3 ([?]) If there exists a function f = {fn} that is computable in time 2O(n) and for all n,

S(fn) ≥ s(n), then there exists a s−Ω(1)-generator, G : {0, 1}O(n2

log s
) → {0, 1}t, which fools circuits

of size t, for t = sΩ(1).

We may still expect to have an optimal generator, that is G : {0, 1}O(n) → {0, 1}sΩ(1)
which

fools circuits of size sΩ(1). This cannot be achieved by improving the design, as the next lemma
shows that the current construction of designs is optimal.

Lemma 3 If S1, .., St ⊆ [m], and for all 1 ≤ i ≤ t, |Si| = n, and for all 1 ≤ i < j ≤ t, |S1∩Sj | ≤ k,
and t ≥ n

2k , then m ≥ n2

4k

6

Proof: It is enough to prove the lemma for t = n
2k . Using the first two terms in the inclusion-

exclusion formula we get that:

m ≥ | ∪1≤i≤t Si| ≥
∑

1≤i≤t

|Si| −
∑

1≤i<j≤t

|Si ∩ Sj |

Which is the required bound, for our choice of parameters. •
[?] prove an information theoretic generalization of the inclusion exclusion bound. This rules

out the possibility of obtaining better parameters by “relaxing” the notion of a design to a weaker
one for which lemma ?? can be proven.

3 The new approximator

The main result of this paper is a construction of an approximator that “corresponds” to an almost
optimal generator:

Theorem 4 If f = {fn} is a function computable in time 2O(n), such that for all n, S(fn) ≥ s(n),
then there exists a ε-approximator, such that on circuits of size s(n)O(1

log log n
) runs in time 2O(n),

with ε = s
−Ω(1

log log n
).

A particularly interesting case is s(n) = 2nε
, for which we obtain:

bptime(t) ⊆ dtime(2O((log t)
1
ε log log log t)

For more general functions s(n), the above equation does not seem to have a nice closed-form so-
lution. However, since the derandomization takes time 2n, we can pick n = min{t, s−1(tO(log log t))}.
Then since n ≤ t, tlog log t > tlog log n. This gives:

Theorem 5 Let f = {fn} be a function computable in time 2O(n), such that for all n, S(fn) ≥ s(n),
then bptime(t) ⊆ dtime(2s−1(tO(log log t))).

This approximator should be compared to the one of [?], which is constructed by applying

theorem ?? and lemma ?? in sequence. [?]’s approximator runs in time 2O(n2

log s
) on circuits of size

sΩ(1).

3.1 A new lemma

In this paper we replace lemma ??, by a new lemma, saying that: “either we can build a discrepancy
set for a large t, or we have at our disposal a hard function on smaller input”. We could plug this
function into the NW-generator, and since it’s input size n is decreased, we will be able to build
designs with smaller k.

Definition 7 Given a function h : {0, 1}n → {0, 1}, two sets S1, S2 ⊆ [m], where: |S1| = |S2| = n,
k = |S1 ∩ S2|, and α ∈ {0, 1}n−k, we define a function bS1,S2,α

h : {0, 1}k → {0, 1}, in the following
way:

bS1,S2,α
h (z) = h(z;α)

We think of S1, as the n input bits to h. z is placed in the bits which correspond to S1 ∩ S2, and α
is used to “fill” the remaining n− k bits. Note that the definition is not symmetric in S1, S2.

7

Lemma 4 Fix n, m, v, t, ε, such that t < min(2v, 2O(n2

m
)). Let S1, .., St be the (n, m)-design promised

by theorem ??, and let k = cn2

m . Let h : {0, 1}n → {0, 1}, be a function such that ADVv(h) ≤ ε
t .

Consider the set:
D = {NWn,m

h (x)| x ∈ {0, 1}m}

If D is not a (t, ε)-discrepancy set then there exist some 1 ≤ i, j ≤ t, and a fixing α ∈ {0, 1}n−k,
such that: S(bSi,Sj ,α

h) ≥ v
2t).

Remark 1 It is worthwhile to notice that lemma ?? indeed follows from lemma ??. Simply take
t = v

2k+1 . This matches the assumption about h. None of the restricted functions can require
circuit complexity v

2t ≥ 2k, since they are functions over k bits. So it must be the case that D is a
(t, ε)-discrepancy set.

The proof of lemma ?? appears in appendix ??.

3.2 The construction

In this section, we start presenting the new approximator. The first step will be building a
machine that takes a circuit size as input, and constructs a collection of small sets, where at
least one of them is a “good” discrepancy set. In the next section we deal with the problem
of approximating the fraction of the inputs accepted by a given circuit with such a collection.

To build the generator we need a function f = {fn}, such that:

1. f is computable in time 2O(n).

2. For all n, S(fn) ≥ s(n). (One can replace the “For all n” by “For infinitely many n”, to get
a weaker result).

Parameters for the construction:
m - the seed length.
t - the length of the “pseudo-random” string,

(which is also the size of the circuit we want to fool).
ε - a bound on the error of the generator.
n - an input length on which fn is hard.
s - the lower bound known on fn,

(that is a number such that: S(fn) ≥ s).

The construction works by recursively calling the procedure construct(l, n, s, g), (where l, n, s
are integers and g is a function from {0, 1}n to {0, 1}, represented as a truth table). The first call
is to construct(1, n, s, fn)

construct(l, n, s, g)

1. Use theorem ?? to create a function h : {0, 1}4n → {0, 1}, such that if S(g) = s, then
ADVv(h) ≤ ε

t . (This can be achieved with v = s(ε
tn)O(1)).

2. Use theorem ?? to create a (4n, m)− design, S1, .., St.

3. Let k = c (4n)2

m be the bound on the intersection size.

8

4. Output D = {NW 4n,m
h (x)|x ∈ {0, 1}m}.

5. If v
2k+1 ≥ t, return.

6. For all i 6= j ∈ [t], and for all α ∈ {0, 1}n−k, Call construct(l + 1, k, v
2t , b

Si,Sj ,α
h)

Note that for each instantiation of construct, l is the level of the instantiation in the recursion
tree. The values of n, s, v, k depend only on l, and so we call them nl, sl, vl, kl respectively.

Theorem 6 Under the following assumptions:

1. S(fn) ≥ s.

2. f is computable in time 2O(n).

3. t = s
1

2 log log n > n.

4. ε = t−O(1).

5. m = 2cn.

The process described runs in time 2O(n), and at least one of the sets D generated during runtime
is a (t, ε)-discrepancy set.

The proof of theorem ?? appears in appendix ??.

4 A tournament of generators

In the previous section we constructed a collection of 2O(n) sets, where one of them is a (t, ε)-
discrepancy set. To complete the construction of the approximator, we need to be able to approx-
imate the success probability of a given circuit, using such a collection. We achieve this using an
idea from [?]. (See also [?]).

Theorem 7 There exists an algorithm for the following computational problem:
Input:

• A circuit C of size t.

• A collection of multi-sets D1, .., Dl, such that for 1 ≤ i ≤ l, Di ⊆ {0, 1}t, and |Di| ≤ M .
Moreover, at least one of the D’s is a (t, ε)-discrepancy set.

Output: A number α, such that |α− µ(C)| ≤ 2ε
The algorithm solves the problem. and runs in time polynomial in t, l,M .

The proof of theorem ?? appears in appendix ??. By applying theorems ??,?? in sequence we
get the approximator, and prove theorem ??.

5 An information theoretic analog a-la Trevisan

Recently, Trevisan [?] used the NW-generator to construct an extractor. Trevisan’s suffers from the
same inefficiency of the NW-generator. In this section we use our technique to build an information
theoretic analog of an approximator.

9

Definition 8 An ε-extractor is a function Ext : {0, 1}l×{0, 1}m → {0, 1}t, which can be computed
in polynomial time, such that for all distributions Source on {0, 1}l having min-entropy8 r. The
distribution obtained by applying Ext(f, x), where f is sampled from Source and x is sampled
uniformly from {0, 1}m is ε-close9 to the uniform distribution on t bits.

Definition 9 Given an event T ⊆ {0, 1}t (We will think about such an event as a function T :
{0, 1}t → {0, 1}), define: µ(T) = Prw∈R{0,1}t(T (w) = 1)

One possible use to an extractor is to approximate µ(T) for a given event T ⊆ {0, 1}t.

Definition 10 A (ε, δ)-approximator is a deterministic machine App, such that for any event
T ⊆ {0, 1}t, and distribution Source with min-entropy r ≥ t,

Prf∈Source

[
|AppT (f)− µ(T)| > ε

]
< δ

In words, the approximator takes one sample from a distribution with min-entropy r, and uses it
to approximate the probability of any event T . App uses T as an oracle.

The important parameter is the running time of the approximator. We stress that any call to
the oracle T takes one time unit. The following lemma (which is an analog of lemma ??) shows
that this device is the analog of an approximator for our setting.

Lemma 5 If there exists a ε-extractor (for some parameters l,m, t, r), then for all δ < ε there
exists a (ε−δ

1−δ , δ)-approximator that runs in time lO(1)2m.

Proof: With an extractor in hand, construct the set D = {Ext(f, x)|x ∈ {0, 1}m}, check weather
y ∈ T , for all y ∈ D, and output the proportion of y’s that are in T . The distribution induced by
the extractor approximates µ(T) with error at most ε. Therefore, the fraction of the f ’s such that
Ext(f, ·) gives an approximation with error greater than ε−δ

1−δ is bounded by δ. •

Our interest is constructing extractors with minimal m. We cannot construct an extractor using
our technique, Instead, we construct efficient (in terms of running time) approximators.

Theorem 8 For any l, r and δ there exists an (ε, δ)-approximator, with t = (r + log δ)Ω(1
log log log l

),
which runs in time lO(1), and ε = (r + log δ)−Ω(1

log log log l
).

¿From the point of view of extractors, this corresponds to an extractor with m = O(log l), which
is optimal. One use of an approximator is to simulate a probabilistic algorithm given a distribution
with some min-entropy. For simplicity, we phrase the next theorem only for constant error.

Theorem 9 Given a distribution Source on {0, 1}l with min-entropy r, and a probabilistic al-
gorithm A that runs in time q, and uses r

O(1
log log log l

) random bits, there exists a deterministic
algorithm that runs in time lO(1)q, and given one sample from Source and an input x outputs
A(x), with arbitrary constant error.

This is somewhat better (for some choices of parameters) from the approximator constructed

using lemma ?? from Trevisan’s extractor. As this approximator runs in time 2
log2 l
log r q. The proof

of theorem ?? is very similar to that of theorem ?? and appears in appendix ??.

Acknowledgements
We thank Oded Goldreich for a conversation that started us working on this paper.

8The min-entropy of a distribution D is − log(minxD(x)).
9The distance between two distributions D1, D2 on X is defined to be maxA⊆X |D1(A)−D2(A)|.

10

A Proofs

A.1 Proof of the main lemma

Proof: (Of lemma ??)
If D is not a (t, ε)-discrepancy set, then there exists a circuit A of size t such that:

|Prw∈RD(A(w) = 1)− µ(A)| > ε

By using a standard “hybrid argument” as in [?], we get that there exists a circuit C of size t,
and 1 ≤ j ≤ t, such that C predicts the j’th bit of the generator’s output from the previous j − 1
of the bits, namely:

Prw∈RD(C(w1, .., wj−1) = wj) >
1
2

+
ε

t

Choosing a random w in D, amounts to choosing a random x in {0, 1}m, and applying NWn,m
h .

This means that wj is nothing but h(x|Sj). We get that:

Prx∈R{0,1}m(C(NWn,m
h (x)|1..j−1) = h(x|Sj)) >

1
2

+
ε

t

There exists a fixing β ∈ {0, 1}m−n to the bits outside of Sj , such that:

Pry∈R{0,1}n(C(NWn,m
h (y;β)|1..j−1) = h(y)) >

1
2

+
ε

t
(1)

For i < j, if we set αi = β|Si\Sj
, we get:

NWn,m
h (y;β)|i = h((y;β)|Si) = b

Si,Sj ,αi

h ((y;β)|Si∩Sj)

Therefore, if it is the case that all the b
Si,Sj ,α
h ’s had low circuit complexity, then there are size v

2t
circuits which compute NWn,m

h (y;β)|i for all i < j. Combining these with C, and using (??), we
get a circuit D of size t + t · v

2t ≤ v, such that:

Pry∈R{0,1}n(D(y) = h(y)) >
1
2

+
ε

t

Which is a contradiction. •

A.2 Proof of theorem ??

The theorem will follow from a sequence of claims.

Claim 1 Using the conditions in theorem ??, It is easy to get the following equations.

• vl = sl

tO(1) .

• sl = s
tO(l) .

• nl = O(n

22l−1)

Claim 2 The process described can be performed in time 2O(n).

11

Proof: We have already fixed m = O(n). The work done in each instantiation of construct can
be done in time 2O(m) = 2O(n). We will bound the size of the recursion tree. The degree of the
recursion tree at level l is bounded by t22nl . Having fixed t = s

1
2 log log n , we note that in all levels

but the last one t2 ≤ 2O(nl). Otherwise,

vl

t
> t2 > 2nl > 2kl+1

and the process should stop. Using the fact that for all l, nl+1 ≤ nl
2 , we can bound the degree of

the recursion tree at level l by 2O(nl) = 2O(n

2l). This means that the total number of instantiations
is bounded by ∏

l

2O(n

2l) = 2n
∑

l
1

2l = 2O(n)

•

Claim 3 The depth of the recursion tree is bounded by O(log log n).

Proof: We simply have to estimate l such that vl

2kl
≥ t

Using our former equations this translates to:

s

s
O(l

2 log log n
)2

n

22
l
≥ s

1
2 log log n

Which is satisfied by taking l = Θ(log log n). •

Claim 4 Suppose that all the sets D produced up to level l− 1, are not (t, ε)-discrepancy sets, then
there exists a g in level l such that S(g) ≥ sl.

Proof: The proof uses induction on l. The claim is certainly true for l = 1. For l > 1, We know
that in levels 1 up to l there is no (t, ε)-discrepancy set. Using the induction hypothesis for levels
1 up to l − 1, we know that there is some function gl−1, in level l − 1 such that S(gl−1 ≥ sl−1.
This means that in the same instantiation of construct, the function hl−1 had ADVvl−1

(hl−1) ≤ ε
t .

Using lemma ??, we get that if the D produced at the current instantiation of construct is not
a (t, ε)-discrepancy set, then there exists a restriction b = b

Si,Sj ,α
hl−1

, (for some choice of i, j, α), such
that:

S(b) ≥ vl−1

2t
= sl

•
Proof: (Of theorem ??) We have already bounded the running time in claim ??. Let d be the
depth of the recursion tree. ¿From claim ?? we get that if non of the D’s in levels 1 up to d is a
(t, ε)-discrepancy set then one of the g’s in the last level has S(g) ≥ sH . And so, ADVvt(h) ≤ ε

t .
At the last level we can afford the price of using lemma ??. Using it we get that D is a (vd

2k+1 , ε)-
discrepancy set. Using the fact that at level d, vd

2k+1 ≥ t, we get that D is a (t, ε)-discrepancy set.
•

12

A.3 Proof of theorem ??

Proof: For y ∈ {0, 1}t, define Cy(w) = C(w ⊕ y). Note that for all y ∈ {0, 1}t, Cy is of roughly
the same size as C. For 1 ≤ i ≤ l, define:

αi(y) = Prw∈RDi(C(w ⊕ y) = 1)

For i, j ∈ [l] define:

αij = Ey∈RDj (αi(y))

Let k be an index such that Dk is a (t, ε)-discrepancy set. For all y ∈ {0, 1}t, µ(C) = µ(Cy), and
|αk(y)− µ(Cy)| ≤ ε. ¿From this we have that for all 1 ≤ j ≤ l:

|αkj − µ(C)| ≤ ε

Note that for all i, j ∈ [l], αij = αji. This is because both amount to taking all pairs a1, a2 from
Di, Dj and running C(a1 ⊕ a2). The algorithm computes αij for all i, j ∈ [l]. and picks a row r
such that all the numbers in I = {αrj |j ∈ [l]} lie on an interval of length 2ε. It then returns α, the
middle of the interval of I. Such an r exists, because k has that property. For all i, we have that
|αik − µ(C)| ≤ ε, and therefore all the numbers in I, are at a distance of 3ε from µ(C). ¿From this
we have that |α− µ(C)| ≤ 2ε. •

A.4 Proof of theorem ??

The following section is devoted to proving theorem ?? The construction and proof are almost
identical to the previous sections. Given f which is sampled from Source, we think about it as a
function f : {0, 1}n → {0, 1}, where n = log l. We fix:

• m = 2cn.

• s =
√

r + log δ

• t = s
1

2 log log n .

The actual approximation is done by calling construct(1,n,s,f). We end up with some 2O(n) =
lO(1) sets. We will then use similar arguments to the previous sections to approximate T . We will
require some new notation.

Definition 11 For functions f : {0, 1}n → {0, 1}, T : {0, 1}t → B we define:

1. ST (f) = min{size(C)| circuits C that use T -gates and compute f correctly on every input}

2. SUCs,T (f) = max{Prx∈R{0,1}n(C(x) = f(x))| circuits C of size s that use T -gates}

3. ADVs,T (f) = 2SUCs,T (f)− 1

By T -gates, we mean that the circuit can compute the function T at the cost of one gate.

Definition 12 Given a function T : {0, 1}t → {0, 1}, a (T, ε)-discrepancy set, is a multi-set D ⊆
{0, 1}t, such that for all y ∈ {0, 1}t,

|Prw∈RD(T (w ⊕ y) = 1)− µ(T)| ≤ ε

13

The motivation for this definition is given by the fact that when proving theorem ??, that
enabled us to approximate a given circuit T using a collection of sets where one of them is a
discrepancy set, we actually used only that one of the sets is a (T, ε)-discrepancy set. This is
because we only used the sets D to approximate specific circuits of the form Ty(w) = T (w ⊕ y).

Theorem 10 (Analog of theorem ??)
There exists an algorithm for the following computational problem:
Input:

• A function T : {0, 1}t → {0, 1}, which the algorithm may use as an oracle.

• A collection of multi-sets D1, .., Dl, such that for 1 ≤ i ≤ l, Di ⊆ {0, 1}t, and |Di| ≤ M .
Moreover, at least one of the D’s is a (T, ε)-discrepancy set.

Output: A number α, such that |α− µ(T)| ≤ 2ε
The algorithm solves the problem. and runs in time polynomial in l, M .

Using this notation we can rephrase theorem ??.

Theorem 11 (Analog of theorem ??)
For every function f : {0, 1}n → {0, 1}, and ε, there exists a function h : {0, 1}4n → {0, 1}, such
that:

1. h can be computed in time 2O(n), given an oracle to f .

2. ADVv,T (h) ≤ ε

3. v = ST (f)(ε
n)O(1)

This theorem is essentially identical to theorem ??. The proof works by assuming that the
conclusion of the theorem is false. It then constructs a circuit that shows that the assumption is
false. ¿From our point of view any copies of T that were in the first circuit are used just the same
in the second circuit. The same idea is used to prove the analog of lemma ??.

Lemma 6 (Analog of lemma ??)

Fix T : {0, 1}t → {0, 1}. Let n, m, v, t, ε, such that t < min(2v, 2O(n2

m
)). Let S1, .., St be the (n, m)-

design promised by theorem ??, and let k = cn2

m . Let h : {0, 1}n → {0, 1}, be a function such that
ADVv,T (h) ≤ ε

t . Consider the set:

D = {NWn,m
h (x)| x ∈ {0, 1}m}

If D is not a (T, ε)-discrepancy set then there exist some 1 ≤ i, j ≤ t, and a fixing α ∈ {0, 1}n−k,
such that: ST (bSi,Sj ,α

h) ≥ v
2t).

Suppose D is not a (T, ε)-discrepancy set. then there exists some y ∈ {0, 1}t such that T (· ⊕ y)
is not fooled by D. but this circuit has size O(t) when viewed as a circuit with T -gates. The proof
of lemma ?? constructs a circuit for h using this circuit, and can proceed unchanged from this
point. We are now ready to prove theorem ??.

Proof: (Of theorem ??) Consider the function f selected from the distribution Source. We claim
that with probability 1− δ, ST (f) ≥ s. This is because the number of circuits of size s is bounded

14

by 2s2). and the fact that Source has min-entropy r, says that any set of size 2s2
has probability at

most 2s2
2−r < δ. Assuming that an f such that ST (f) ≥ s was selected from the source, we can use

lemma ?? recursively, as in theorem ?? to conclude that one of the sets D constructed by the process
is a (T, ε)-discrepancy set of size 2O(n), with element size t = s

Ω(1
log log n

) = (r + log δ)Ω(1
log log log l

).
Using theorem ?? we can approximate the probability of T . •

15

