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Abstract The k-round two-party com-
munication complexity was studied in the
deterministic model by [14] and [4] and
in the probabilistic model by [20] and [6].
We present new lower bounds that give (1)
randomization is more powerful than de-
terminism in k-round protocols, and (2) an
explicit function which exhibits an expo-
nential gap between its k and (k−1)-round
randomized complexity.

We also study the three party communi-
cation model, and exhibit an exponential
gap in 3-round protocols that differ in the
starting player.

Finally, we show new connections of
these questions to circuit complexity, that
motivate further work in this direction.
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1 Introduction

1.1 The Two-Party Model

Papadimitriou and Sipser [14] initiated the

study of how Yao’s model 1 [19] of com-

munication complexity is affected by lim-

iting the two players to only k rounds of

messages. They considered the following

natural problem gk: each of the players A

and B is given a list of n pointers (each of

log n bits), each pointing to a pointer in

the list of the other. Their task is to fol-

low these pointers, starting at some fixed

v0 ∈ A , and find the kth pointer. This can

easily be done in k rounds and complexity

O(k log n): A starts and the players alter-
1In fact, they and [4] considered the stronger

”arbitrary partition” model, but known simula-
tion results of [4, 6, 9, 10] allow us to use Yao’s
standard ”fixed partition” model without loss of
generality
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nately send the value of the next pointer.

It is not clear how to use less than n log n

bits if only (k − 1) rounds are allowed or

in fact with k-rounds but player B starts.

Indeed, [14] conjectured that the complex-

ity is exponentially higher (for fixed k),

namely that there is a strict hierarchy, and

proved it for the case k = 2 . The gen-

eral case was resolved by Duris, Galil, and

Schnitger [4] who gave an Ω(n/k2) lower

bound on the (k − 1) round complexity of

gk .

It is not difficult to see that allowing

randomness gk can be solved with high

probability in (k − 1) rounds using only

O((n/k) logn)) communication bits. An-

other log n factor in the complexity can

make this a Las Vegas (errorless) algo-

rithm. This raises the question: what is

the relative power of randomness over de-

terminism in k-round protocols? Without

limiting the number of rounds [12] showed

a quadratic gap between Las Vegas and

Determinism, and allowing error, the gap

can be exponential.

We use simple information theoretic and

probabilistic arguments to strengthen the

lower bound of [4] in two ways. First we

improve their (k − 1)-round determinis-

tic lower bound on gk to Ω(n) (regard-

less of k), thus showing that randomness

can be cheaper by a factor of k/ log2 n for

k-round protocols. This result also pro-

vides the largest gap known for k > log n

in the deterministic model - the previous

one was obtained in [4] via counting ar-

guments. The fact that the simulation on

[10] is constructive, gives the same gap in

the arbitrary partition model for an ex-

plicit function, resolving an open question

of [4].

Second, we prove that the probabilis-

tic upper bound above is not very far

from optimal – we give an Ω(n/k2) lower

bound, establishing an exponential gap in

the probabilistic setting between k and

(k − 1)-round protocols for an explicitly

given function. The existance of such

functions (with somewhat larger gap) was

proved by Halstenberg and Reischuk [6],

via complicated counting arguments. The

only previous exponential gap for an ex-



plicit function was shown for k = 2 by

Yao [20]. We stress the simplicity of our

proof technique, in contrast to that of [6].

We have recently learned that similar tech-

niques were used by Smirnov [16] to ob-

tain an Ω(n/(k(log n)k)) lower bound on

gk, which is much weaker than our bound,

but gives the exponential gap.

Finally, we use the communication com-

plexity characterization of circuit depth

of [8] to establishe gk as a “complete”

problem for monotone depth-k Boolean

circuits. (This result was independently

discovered by Yanakakis [18]). Thus a sim-

ple deterministic reduction enables to de-

rive the monotone constant-depth hierar-

chy of [7] from the constant-round hier-

archy of [4]. (The reverse direction was

proven in [7]). We speculate that our new

probabilistic lower bound may serve to ex-

tend the monotone circuit hierarchy result

to depth above log n , via probabilistic re-

ductions (as was done in [15]).

1.2 The Multi-Party Model

Chandra, Furst and Lipton [2] devised

the multi-party communication complex-

ity model. Here t players P1, P2, . . . , Pt

are trying to compute a Boolean function

g(x1, x2, . . . , xt), where xi ∈ {0, 1}ni . (Un-

til now all work in this model considered

equal length inputs, i.e. ni = n for all

i). The twist is that every player Pi sees

all values xj for j 6= i . This model turns

out to capture diverse computational mod-

els. [2] used it to prove that majority re-

quires superlinear length constant width

branching programs. Babai, Nisan and

Szegedy [1] gave Ω(n/2t) lower bounds for

explicit functions g , and used it for Turing

machine, branching program and fomrulae

lower bounds, as well as efficient pseudo-

random generator for small space. Re-

cently, Goldman and Hastad [5] used the

results in [1] to prove lower bounds on

constant-depth threshold circuits.

We consider only the 3-player model,

and within it allow three rounds of com-

munciation: one per player. We exhibit

a function u whose complexity is Ω(
√
n) if

P3 is the first to speak, but O(log n) other-

wise. The proof uses properties of univer-

sal hash functions developed in [13, 11].



It is interesting that u acts on different

size arguments; u : {0, 1}n × {0, 1}n ×

{0, 1}logn → {0, 1} so n1 = n2 = n ,

but n3 = log n . The following connec-

tion to circuit complexity makes such func-

tions important. We show that improv-

ing our lower bound to Ω(n) for some ex-

plicit function g of this form gives the

following size-depth trade-off: the func-

tion f : {0, 1}2n → {0, 1}n defined by

f(x1, x2)x3 = g(x1, x2, x3) cannot be com-

puted by Boolean circuits of size O(n) and

depth O(log n) simultaneously. This re-

sult is obtained via Valiant’s [17] method

of depth-reduction in circuits.

2 The Two-Party Model

The four subsections of this section give

the definitions, results, technical lemmas

and some proofs, respectively in the two-

party communication complexity model.

2.1 Definitions

Let g : XA × XB → {0, 1} be a function.

The players A,B receive respectively in-

puts xA ∈ XA , xB ∈ XB . A k-round pro-

tocol specifies for each input a sequence

of k messages, m1,m2, . . . ,mk sent alter-

nately between the players such that at

the end both know g(xA, xB) . The cost

of a k-round protocol is
k∑
i=1
|mi| (where

|mi| is the binary length of mi), maxi-

mized over all inputs (xA, xB) . Denote

by CA,k(g) (resp. CB,k(g)) the cost of

the best protocol in which player A (resp.

B) sends the first message, and Ck(g) =

min{CA,k(g) , CB,k(g)} .

Let T : XA ×XB → {0, 1} be the func-

tion computed by the two players follow-

ing a protocol T . We introduce random-

ization by allowing T to be a random vari-

able distributed over deterministic proto-

cols. The cost is simply the expectation

of the associated random variable. We say

that randomized protocol makes ε-error if

Pr[T (xA, xB) 6= g(xA, xB)] ≤ ε for ev-

ery input (xA, xB) ∈ XA × XB . Denote

by Ckε (g) the cost of the best k-round ε-

error protocol for g, and similarly define

CA,kε , CB,kε . The case ε = 0 (e.g. Ck0 (g))

denotes Las Vegas (errorless) protocols.

Finally, if we leave T a deterministic



protocol, and choose the input uniformly

at random, we can define the ε-error distri-

butional complexity Dk
ε (g) to be the cost

of the best k-round protocol for which

Pr[T (xA, xB) 6= g(xA, xB)] ≤ ε, under this

distribution. The following lemmas are

useful.

Lemma 1 [20] For every g , ε > 0

Dk
2ε(g) ≤ 2Ckε (g) .

Lemma 2 For every 1
3 ≥ ε > ε′ > 0

Ckε′(g) = O(Ckε (g)) .

2.2 Results

Let VA , VB be two disjoint sets (of ver-

tices) with |VA| = |VB| = n and V =

VA∪VB . Let FA = {fA : VA → VB}, FB =

{fB : VB → VA} and f = (fA, fB) : V →

V defined by f(v) =
{
fA(v) v ∈ VA
fB(v) v ∈ VB

.

For each k ≥ 0 define f (k)(v) by f (0)(v) =

v , f (k+1)(v) = f(f (k)(v)) .

Let v0 ∈ VA . The functions we will be

interested in computing is gk : FA×FB →

V defined by gk(fA, fB) = f (k)(v0).

Remarks: In the following theorems note

that the number of input bits to each

player is n log n, and that they hold for

every value of k. We also note that one

can make gk a Boolean function by taking

(say) the parity of the output vertex. All

our upper and lower bounds apply to this

Boolean function as well.

Theorem 1 [14] CA,k(gk) = O(k log n) .

Theorem 2 CB,k(gk) = Ω(n) .

Theorem 3 CB,k1/3 (gk) = O((n/k) logn)

CB,k0 (gk) = O((n/k) log2 n).

Theorem 4 CB,k1/3 (gk) = Ω( n
k2 ).

In the remainder we show the “com-

pleteness” of gk for monotone depth k cir-

cuits. Let gk = gk,n to stress that each

player gets n vertices.

Definition: For a boolean function h

define Ld(h) to be the size of the mini-

mal monotone formula of depth d and un-

bounded fanin that computes h. Define

LSd(k, n) to be the maximum of Ld(h)

over all functions h that can be computed

by monotone circuits of unbounded fanin

depth k and total size n. Define LF d(k, n)

to be the maximum of Ld(h) over all func-

tions h that can be computed by a formula

of depth k and fanin n at each gate.



Theorem 5:

logLSd(k, n) ≤ Cd(gk,n) ≤ logLF d(k, n)

The left inequality was proven in [7],

and allowed them to deduce a lower bound

on gk from their circuit lower bound. The

right inequality was independently discov-

ered by Yanakakis [18]. It allows to recover

the tight hierarchy theorem of [7] from the

lower bound on gk.

Let hk be the complete function for

depth k-circuits, i.e. an alternating and-

or tree of depth k and fanin n1/k at each

gate.

Corollary [7]: Any monotone circuit of

depth k− 1 for hk requires size 2Ω(n1/k/k).

2.3 Probability, Measure and In-
formation Theory

Let Ω be a finite set (universe), X ⊆ Ω .

Denote by µ(X) the density of X in Ω,

µ(X) = |X|
|Ω| . Let P : X → [0, 1] a prob-

ability distribution on X, and x ∈ X a

random variable distributed according to

P . The probability of any event Y ⊆

X is denoted PrP [Y ], and the subscript

P is usually omitted. For y ∈ X, we

write Pr[{y}] = Py . Then the entropy

H(P ) = H(x) =
∑
y∈X

Py logPy . The in-

formation on X (relative to Ω), is I(x) =

log |Ω| −H(x) . If P is the uniform distri-

bution U on X , then H(x) = log |X|, and

I(x) = − logµ(X) .

The following lemmas will be useful to

us.

Lemma 3 For every P

PrP [{y : Py ≤ α}] ≤ α|X| .

Lemma 4 For every P and if x =

(x1, x2, . . . , xm), (so Ω = Ω1×Ω2×· · ·×Ωm

and xi distributed over Ωi), then I(x) ≥
m∑
i=1

I(xm) .

The next lemma (from [15]) shows that

if I(x) is very small, one can get good

bounds on the probability of any event un-

der P in terms of its probability under the

uniform distribution U .

Lemma 5 [15] For Y ⊆ X, let q =

PrU [Y ] . Assume ∆ =
√

4I(x)
q ≤ 1

10 . Then

|PrP [Y ] − q| ≤ q∆ .

Lemma 6 If X = Ω = {0, 1}, I(x) ≤ δ ≤
1
4 , then |P0 − 1

2 | , |P1 − 1
2 | ≤ 2

√
δ .



2.4 Proofs

Proof of Theorems 1 and 3.

CA,k(gk) ≤ k log n follows easily, since in

round t the right player knows f(vt−1) =

vt and can send these log n bits to the sec-

ond player.

The idea in beating the determinstic

Ω(n) lower bound when the wrong player

B starts is as follows: First B chooses a

random subset U ⊆ VB with |U | = 10n/k,

and sends to A {fB(u) : u ∈ U}. Now

it is A’s turn and they start sending each

other v1, v2, . . . as above, but lagging one

round “behind schedule”. However, with

probability ≥ 2/3, one of the vi’s will

be in U , which allows them to save two

rounds, and “finish on time”. This gives

CB,kε (gk) = O((k + n/k) logn). This al-

gorithm can be made Las-Vegas with an

extra factor of O(log n) in the complexity.

Proof of theorems 2,4

Let f = (fA, fB) ∈ FA × FB be the in-

put. Let T ′ be a deterministic k-round

protocol for gk in which B sends the first

message. Note that at any round t ≥ 1,

if it is B′s turn to speak, then vt−1 =

f (t−1)(v0) ∈ VA , and vice versa. It will

be convenient to replace T ′ by a protocol

T in which in any round t ≥ 1 , we replace

the message m by the message (m, vt−1).

By induction on t , this is always possible

for the player whose turn it is. In partic-

ular, it implies that ≥ log n bits are sent

per round. Thus if T ′ used C bits, T uses

≤ C + k log n bits. We will assume T uses
εn
2 bits, (ε will be chosen later), and obtain

a contradiction.

Every node z of the protocol tree T can

be labeled by the rectangle F zA × F zB of

inputs arriving at z . By the structure of

T , if z is at level t ≥ 1 (the root is at level

0), then v0, v1, . . . , vt−1 are determined in

F zA × F zB .

We shall assume the input is chosen uni-

formly at random from FA × FB , so in

fact we shall bound from below the distri-

butional comlexity. Thus the probability

of arriving at z is µ(F zA × F zB), and given

that the input arrived at z , it is uniformly

distributed in F zA×F zB . The main lemma

below intuitively shows that if the input

arrived at z and the rectangle at z has nice



properties, then with high (enough) prob-

ability the input will proceed to a child

w of z which is equally nice. Nice means

that both F zA , F
z
B are large enough, and

that the player not holding vt−1 has very

little information on vt = f(vt−1).

Denote by cz the total number of bits

sent by the players before arriving at z .

Assume without loss of generality that A

speaks at z . Let fzA(fzB) be random vari-

ables uniformly distributed over F zA(F zB).

Recall that T uses ≤ ε
2n bits, and let δ

satisfy δ = Max 4
√
ε, 400 ε . Define z to be

nice if it satisfies:

1. I(fzA) ≤ 2cz

2. I(fzB) ≤ 2cz

3. I(fzB(vt−1)) ≤ δ

Main Lemma:

If z is nice, and w a random child of z,

then Pr[w not nice] ≤ 4
√
ε+ 1

n .

Proof: Assume A sends c(≥ log n) bits

at z . (In general the possible messages

in a particular step may differ in length.

For simplicity, we assume here they don’t.

Handling the general case requires only a

slight changes in the proof of claim 2 be-

low). Thus cw = cz + c for all children w

of z . We will now give upper bounds sep-

arately on the probability of each of the

three properties defining nice being false

at a random child w .

Claim 1: Pr[I(fwB ) > 2cw] = 0 .

Proof: B sent nothing, so ∀w FwB = F zB

and

I(fwB ) = I(fzB) ≤ 2cz < 2cw . 2

Claim 2: Pr[I(fwA ) > 2cw] ≤ 1
n .

Proof: Z has 2c children, and child w

is chosen with probability µ(FwA )
/
µ(F zA) .

Thus by Lemma 3 Pr[I(fwA ) > 2cw] ≤

Pr[µ(FwA )
/
µ(F zA) < 2−2c] ≤ 2−c ≤

1/n . 2

Claim 3: Pr[I(fwA (vt)) > δ] ≤ 4
√
ε .

Proof: We may assume now that I(fwA ) ≤

2cw ≤ εn . The random variable fwA

is a vector of random variables fwA (v)

for all v ∈ VA . Thus by Lemma 4,∑
v∈V

I(fwA (v)) ≤ I(fwA ) ≤ εn . So

if vt was chosen uniformly from vA ,

PrU [I(δwA(vt)) > δ] ≤ ε
δ by Markov’s in-

equality. But vt = fzB(vt−1) , so vt is dis-

tributed with I(vt) = I(fzB(vt−1)) ≤ δ as



we assumed z was nice. By Lemma 5 (and

our choice of δ),

Pr[I(fwA (vt)) > δ] ≤ ε
δ

(
1 +

√
4δ
ε/δ

)
≤ 4
√
ε . 2

Now we can conclude the proofs of The-

orems 2 and 4 form the main lemma. Con-

sider any nice leaf ` of the protocol tree

T , labeled by an answer (0 or 1). Say A

spoke on the last round k . Then I(vk) =

I(f `B(vk−1)) ≤ δ. So by Lemma 6, even if

the algorithm gives one bit (say parity) of

the answer, it is correct with probability

≤ 1
2 + 2

√
δ .

Conclusion of Theorem 2 Take ε =

10−4 . The root of T is nice, so by the main

lemma and induction we have a positive

probability (≥ 2−k) of reaching a nice leaf,

contradicting the fact that the protocol

never errs. This proves only CB,k(gk) =

Ω(n− k log n), since we augmented an ar-

bitrary T ′ to a nice protocol T .

The lower bound CB,k(gk) = Ω(n)

(which is stronger when k ≥ n
logn) requires

a more delicate argument that we sketch

below. The idea is to follow the same steps

of the proof with the following changes.

(1) We stay with the original protocol T ′,

as we cannot afford the players sending

log n bits per round as in the nice protocol

T . (2) We still fix the vertex vt−1 by the

player sending the message at round t, but

avoid paying log n bits for this informa-

tion by removing this vertex from our uni-

verse. Thus the information I is measured

relative to a smaller set of pointers at ev-

ery round. (3) We prove a weaker main

lemma, which is clearly sufficient in the

deterministic case, namely that every nice

node z has at least one nice child w. The

details are left to the interested reader.

Conclusion of Theorem 4. Pick ε =

10−4 · k−2 . Thus the probability of not

reaching a nice leaf is ≤ k 1
25k = 1

25 , and

the probability that the protocol answers

correctly is less than 1
25 + (1

2 + 2
5
√
k
) <

0.95 . Thus we get DB,k
1/20(gk) = Ω( n

k2 −

k log n) , or Ω( n
k2 ) for all k < ( n

logn)1/3.

The theorem for this range of k follows

from Lemmas 1 and 2. The higher range

of values for k is handled by the trivial

Ω(k) lower bound for k-round protocols,

which is stronger in this range.



Proof of theorem 5: As mentioned

above, the left inequality was proven in [7],

so we prove only the right inequality. The

proof is based on the Karchmer-Wigderson

characterization of circuit depth in terms

of communication complexity, which can

be stated as follows. For every monotone

function h on n variables with minterms

Min(h) and maxterms Max(h) define

a communication search problem Rmh ⊂

Min(h)×Max(h)× [n] in which player A

gets a minterm S ∈Min(h), player B gets

a maxterm T ∈Max(h), and their task is

to find an element in S ∩ T . Then mono-

tone formulae for h and protocols for Rmh

are in 1-1 correspondence via the simple

syntactic identification of ∨ gates with pa-

lyer A’s moves and ∧ gates with player B’s

moves. In particular, depth correspondes

to the number of rounds, and logarithm of

the size to the communication complexity.

In view of the above, all we need to give

now is a reduction from computing gk,n to

the computation of Rmh for some function

h which has a depth k formula of fanin n

at each gate. Once this is done the players

can solve Rmh and hence gk,n in d rounds

and logLF d(k, n) communication by sim-

ulating the guaranteed depth d circuit for

h.

Let h be defined by a formula that is a

complete n-ary tree of depth k, alternat-

ing levels of ∨ and ∧ gates (say with ∨ at

the root), and distinct nk variables at the

leaves. The players agree on a fixed label-

ing of the nodes of this tree in which the

root is labeled v0, the childern of every ∨

gates labeled by VB, and children of ev-

ery ∧ gate labeled by VA. Let fA and fB

be the inputs to players A,B respectively.

Player A constructs sets Si of nodes from

the ith level inductively as follows. S0 con-

tains the root. If level i contains ∨ gates,

than for every gate in Si labeled v he adds

to Si+1 the unique child of this gate la-

beled fA(v). If level i contains ∧ gates,

then for every gate in Si he adds all its chil-

dren to Si+1. In a similar way (exchanging

the roles of gates) player B constructs his

sets Ti. It is easy to verify that Sk is a

minterm of h, Tk is a maxterm of h, and

that they intersect at a unique leaf, whose



label is f (k)(v0). This completes the re-

duction, and hence the proof.

3 The Three-Party Model

Let g : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 →

{0, 1} be a function. Players P1, P2, P3

are given (x2, x3) , (x1, x3) , (x1, x2) re-

spectively with xi ∈ {0, 1}ni and com-

pute g from this information by exchang-

ing messages according to a predeter-

mined protocol. We consider only 3-round

protocols in which each player speakes

once. Let M i(g) denote the communi-

cation complexity when player Pi speaks

first (and then the other two in arbi-

trary order), and M s(g) the complexity

when they all speak simultaneously (an

oblivious protocol). Clearly, for all i ∈

{1, 2, 3} M i(g) ≤M s(g) .

Let u : {0, 1}2n × {0, 1}n × {0, 1}logn →

{0, 1} be the following function. Interpret

the first string x1 as a 2-universal hash

function ([3]) h , mapping {0, 1}n to itself,

the second string x2 as an argument y to

h , and the third x3 as an index j ∈ [n].

Then u(h, y, j) = h(y)j . The next two

theorems exhibit an exponential gap be-

tween 3-round protocols that differ in the

order in which players speak.

Theorem 6: M1(u) = M2(u) = O(log n)

Theorem 7: M3(u) = Ω(
√
n) .

Let f : {0, 1}m → {0, 1}n be an arbi-

trary function, and for any m′ < m define

gf : {0, 1}m′ × {0, 1}m−m′ × {0, 1}logn →

{0, 1} by gf (x1, x2, x3) = f(x1 ◦ x2)x3 ,

where ◦ denotes concatenation. The next

theorem gives the relationship of size-

depth trade-offs in circuits to 3-round

oblivious protocols.

Theorem 8: If f above can be com-

puted by a circuit of size O(n) and depth

O(log n) , then M s(gf ) = O(n/ log log n) .

Proof of Theorem 7

Restrict the value of j to be j ∈ [
√
n].

Thus we consider h : {0, 1}n → {0, 1}
√
n

which is still a universal hash function.

Assume M3(u) ≤
√
n/4 . This means

that there is a new protocol to compute

z = h(y) in which P3 sends
√
n/4 bits,

and then players P1 and P2 can compute

each bit of z separately, using altogether

n/4 bits.



Pick values m1,m2,m3 to the messages

of P1, P2, P3 in this new protocol with

the largest “support”, and take (h, y) uni-

formly at random. As |m3| ≤
√
n/4 , and

|m1| , |m2| ≤ n/4 we have

Pr[h(y) = z |m1,m2,m3] ≤

2
√
n/4 Pr[h(y) = z |m1,m2]

(∗)
≤

2
√
n/4 · 2−

√
n/2 = 2−

√
n/4 < 1.

The inequality (∗) follows from Lemma 10

of [11] regarding the distribution of hash

values when little information is given on

each of h, y .

Proof of Theorem 8

Let f : {0, 1}m → {0, 1}n be com-

puted by a circuit C of size O(n) and

depth O(log n). By a result of Valiant [17],

there are s = O(n/ log log n) wires in

C , e1, e2, . . . , es with the following prop-

erty. For every input x ∈ {0, 1}m , and

every j ∈ [n] , f(x)j is determined by the

values e1(x), . . . , es(x) on these wires, to-

gether with the values of xi , i ∈ Sj with

|Sj | ≤ nε . To compute gf , note that P3

has access to x = (x1 ◦ x2) (which is the

input to f) can compute the values on the

wires. P2 and P3 , now knowing j = x3 ,

exchange the necessary bits in Sj to com-

plete the computation of f(x) .
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