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Abstract

Is it easier to solve two communication problems together than separately? This question is related
to the complexity of the composition of boolean functions. Based on this relationship, an approach to
separating NC1 from P is outlined. Furthermore, it is shown that the approach provides a new proof
of the separation of monotone NC1 from monotone P .

1 Introduction

The communication complexity model was first studied by Yao [22]. It was originally motivated by
applications to distributed computing and VLSI, where it captures essential features in an natural way
(see [2] and the references within). Recently, unexpected connections were found between this model
and seemingly unrelated areas of combinatorial optimization [21] and circuit complexity [15].

A very natural question to ask is the “direct sum” question: Is it easier to solve two problems together
than separately? This question is related, in its essence, to similar questions in algebraic complexity
[3] and other models [7]. We show that for the original model of Yao [22], in which the problems are
Boolean functions, one can lower bound the amount of savings possible. Our main interest, though, is
in the case of search problems, or relations. This is because of the equivalence between communication
complexity of relations and circuit depth [15]. In particular, we will informally relate the direct sum
question to the complexity of the composition of boolean functions.
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The key observation which motivates this paper is that if the depth complexity of the composition
of two functions is close to the sum of the individual complexities, then NC1 is different from P . This
direction provides an explicit family of functions, quite different than P -complete functions, for which
this approach can lead to super-logarithmic lower bounds.

We test the feasibility of our approach in two settings. One is the setting of universal relations,
which abstract the role of the functions involved. The second is the setting of monotone computation.
Both settings provide encouraging answers. For universal relations, the lower bounds for composition
were proven by Edmonds et.al. in [4]. For monotone computation we give here a simple new proof of
the separation between the monotone analogues of NC1 and P . This was first proved by Karchmer &
Wigderson in [15].

2 Preliminaries

Consider three finite sets X, Y and Z, and a ternary relation R ⊆ X × Y × Z. Given such a relation,
consider the following game between players I and II: For (x, y) ∈ X × Y , give x to player I and y to
player II. Their goal is to agree on any z ∈ Z with the proviso that (x, y, z) ∈ R. Let C(R) be the
communication complexity of the above problem.

This model, for the case where R defines a function F : X × Y 7→ Z has been extensively studied
in the literature [22, 16, 2]. In particular, Mehlhorn & Schmidt [16] gave a useful way of obtaining a
lower bound on C(F ) from the rank of an associated matrix. Let K be any field, and assume without
loss of generality that Z ⊆ K. Let M(F ) be a matrix whose rows (columns) are labeled by elements of
X (respectively Y ), and whose (x, y) entry is F (x, y). Then if rk is the rank function of matrices over
K, we have 1.

Proposition 1 [16] C(F ) ≥ log rk(M(F ))

For general relations (search problems), the model was studied in [15, 12] with the following moti-
vation. Let f : {0, 1}n 7→ {0, 1} be a Boolean function, and let d(f) be the minimal depth of a boolean
circuit computing f . Let [n] = {1, ..., n}. Define the relation Rf ⊆ f−1(1)×f−1(0)× [n] by (x, y, i) ∈ Rf

if and only if xi 6= yi. The following theorem is our starting point:

Theorem 1 [15] For every f , d(f) = C(Rf ).

For monotone computation, we have a similar theorem. Let f : {0, 1}n 7→ {0, 1} be a monotone
function, and let dm(f) be the minimal depth of a monotone boolean circuit computing f . Let min(f)
and max(f) be the set of minterms and maxterms of f . Recall that p ⊆ [n] is in min(f) (respectively

1The logarithm in this paper is always taken base 2
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max(f)) if it is a minimal subset with the property that assigning the value 1 (respectively 0) to the
variables in p forces f to output 1 (respectively 0). We define the monotone relation associated with f ,
Rm

f ⊆ min(f)×max(f)× [n], by (p, q, i) ∈ Rm
f if and only if i ∈ p ∩ q. Now we have:

Theorem 2 [15] For every monotone f , dm(f) = C(Rm
f ).

In what follows we will use the notion of reducibilities between relations.

Definition 1 Let R ⊆ X × Y × Z and R′ ⊆ X ′ × Y ′ × Z ′. We say that R is reducible to R′, R ≤ R′,
if there exist functions φI : X 7→ X ′, φII : Y 7→ Y ′ and ψ : Z ′ 7→ Z such that for every (x, y)

(φI(x), φII(y), z′) ∈ R′ ⇒ (x, y, ψ(z′)) ∈ R.

The motivation for the above definition is contained in the following lemma:

Lemma 1 Let R ⊆ X × Y × Z and R′ ⊆ X ′ × Y ′ × Z ′. If R ≤ R′ then C(R) ≤ C(R′).

We will also use a more general definition of reducibilities which in informal terms can be defined
as follows: We say that R ≤α R

′ if there is a protocol for R that first obtains a result z′ for an instance
of R′ as above, and then uses α extra bits of communication to find a solution z of R. In this way, if
R ≤α R

′ then C(R) ≤ C(R′) + α. See [12] for further details concerning reductions.

We will use the following “disjointness” functions: Let P([n]) denote the power set of [n] and let
Pl([n]) denote the collection of all subsets of [n] of size l. Let In : P([n]) × P([n]) 7→ {0, 1} where
In(S, T ) = 0 iff S ∩ T = ∅. Also, for l ≤ n/2, let Il,n : Pl([n])× Pl([n]) 7→ {0, 1} where Il,n(S, T ) = 0 iff
S ∩ T = ∅. It is well known that the associated matrices have full rank over the Reals.

Theorem 3 [11] Over the Reals, rk(M(In)) = 2n and rk(M(Il,n)) =
(n

l

)
.

Corollary 1 C(In) ≥ n and C(Il,n) ≥ log
(n

l

)
.

3 Direct sum of relations

Definition 2 Given two relations R ⊆ X × Y ×Z and R′ ⊆ X ′× Y ′×Z ′ we define the direct sum (or
tensor product),

R⊗R′ ⊆ (X ×X ′)× (Y × Y ′)× (Z × Z ′)

where ((x1, x2), (y1, y2), (z1, z2)) ∈ R⊗R′ if and only if (x1, y1, z1) ∈ R and (x2, y2, z2) ∈ R′.
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Intuitively, R⊗R′ corresponds to solving instances of R and R′ simultaneously. Given any relation
R and k ≥ 1 we define the relation R(k) by R(1) = R and R(k) = R ⊗ R(k−1). The following definition
arises naturally.

Definition 3 For a relation R define the amortized complexity of R, Φ(R) by

Φ(R) = inf
k

1
k
· C(R(k))

Question 1 What is the relation between C(R⊗R′) and C(R) + C(R′)?

Clearly, C(R⊗R′) ≤ C(R)+C(R′). Feder, et.al. [6] give an example where C(R⊗R) = C(R)+O(1).
In the example C(R) = O(log n) (where n is the input size) so it can be that one can never save more
than an additive amount of O(log n). In fact, in [6] it was proven that for the case of non-deterministic
complexity, one can never save more than an additive factor of O(log n).

For functions the situation is simpler. We give below two lower bounds on the possible savings in
computing direct sum of functions.

The first one is based on the fact that the rank of matrices is multiplicative with respect to tensor
product, and implies that the rank lower bound of Proposition 1 is additive with respect to the direct
sum of functions.

Proposition 2 For R,R′ functions we have

C(R⊗R′) ≥ log rk(M(R)) + log rk(M(R′))

Proof: For two matrices M and M ′ over the same field K, denote by M ⊗M ′ their (standard) tensor
product. It is well known that rk(M ⊗M ′) = rk(M)rk(M ′).

Assume that the answer sets Z,Z ′ of R,R′ are subsets of the field K, and let R · R′ : (X ×X ′) ×
(Y ×Y ′) → K be the function defined by R ·R′((x, x′), (y, y′)) = R(x, y)R′(x′, y′) (multiplication in K).
Note that M(R ·R′) = M(R)⊗M(R′). It is easy to see that a trivial reduction gives R⊗R′ ≥ R ·R′.
Therefore, using Proposition1 we have

C(R⊗R′) ≥ C(R ·R′) ≥ log rk(M(R)⊗M(R′)) ≥ log rk(M(R)) + log rk(M(R′))

Corollary 2 If R is a function then Φ(R) ≥ log rk(M(R)) over any field.

The relationship between the logarithm of the rank and communication complexity is not known,
and there may be an exponential gap between them. Thus we derive another lower bound on the
amortized communication complexity of functions in terms of its communication complexity. The same
result was independently obtained in [6].
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Theorem 4 For a function R with C(R) ≥ 2(log n)2 (again n is the input size) we have

Φ(R) = Ω(
√
C(R))

4 Composition of boolean functions

Let Bn denote the set of all boolean functions on n variables. Given f ∈ Bn and g ∈ Bm we define the
composition f ◦ g : {0, 1}nm 7→ {0, 1} by

f ◦ g( ~X1, ..., ~Xn) = f(g( ~X1), ..., g( ~Xn))

where ~Xi ∈ {0, 1}m for i = 1, ..., n. For k ≥ 1 we define a function f (k) by f (1) = f and f (k) = f ◦f (k−1).

When one looks at the relation Rf◦g one gets the impression that to solve it, one will have to solve
an instance of Rf and an instance of Rg. A natural question here to ask is

Question 2 What is the relation between C(Rf◦g) and C(Rf ) + C(Rg)?

Clearly, C(Rf◦g) ≤ C(Rf ) + C(Rg). As pointed out by Sipser [20], we can have strict inequality
if we let f = g = x1 ⊕ x2 ⊕ x3. Pudlák [17] gave an example with an additive gap that tends to
infinity. He shows that taking f = g = Tn

2 (where Tn
2 is the threshold 2 function) then C(Rf◦g) ≤

C(Rf ) + C(Rg)− log log n. We know of no example that achieves a bigger gap. In the next section we
will argue that if C(Rf◦g) is not too far from C(Rf ) + C(Rg) then NC1 6= P .

To understand why we believe that C(Rf◦g) may be related to C(Rf )+C(Rg) one has to look closely
at the game defined by Rf◦g. Player I gets a vector ( ~X1, ..., ~Xn) which induces a vector ~x ∈ f−1(1) by
xi = g( ~Xi). Similarly, player II gets a vector (~Y1, ..., ~Yn) which induces a vector ~y ∈ f−1(0). Suppose
that the vectors are such that if xi = yi then ~Xi = ~Yi. Then an answer (i, j) for the game Rf◦g will
provide us with an answer i for Rf and an answer j for an instance of Rg.

The only nontrivial case when such a lower bound can be proven was proposed by Andreev [1], and
was a main source of inspiration for this paper. Let ⊕n be the parity function on n bits. Implicit in [1]
is:

Theorem 5 [1]

C(Rf◦⊕n) ≥ C(Rf ) +
3
4
C(R⊕n)−O(log log n)

After a sequence of improvements, an essentially optimal bound for this case was obtained by Hastad
[8].

Theorem 6 [8]

C(Rf◦⊕n) ≥ C(Rf ) + C(R⊕n)−O(log log n)
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Both results in fact give the corresponding stronger result for formula size. They use random
restriction arguments, which go particularly well with functions like parity, but seem to be inadequate
for our purposes, as may become clearer in the next section.

5 Compositions of functions and NC1 vs. P

In this section we will relate the notion of composition to the NC1 vs. P question. The main idea
is that if we start with a hard function on a few bits and compose it with itself many times, then we
will hopefully get a function on n variables with super-logarithmic depth complexity but which can
be defined in P (and even in NC2). The following theorem shows that a good answer to question 2
implies NC1 6= P . Note that the condition we need is much weaker than the separation provided by
the examples in the previous section.

Theorem 7 If for some 1 ≥ ε > 0 every f satisfies C(Rf◦f ) ≥ (1 + ε)C(Rf ) then NC1 6= NC2.

Proof: Take k = log n/ log log n and let f ∈ Blog n be the hardest function on log n variables so that
d(f) = C(Rf ) = Ω(log n). Then f (k) has n variables and it is readily seen to be in NC2. But

C(R
f (k)) ≥ (1 + ε) · C(R

f (k/2))

≥ (1 + ε)log k · C(Rf )

= Ω(log1+ε n/ log log n)

so that f (k) 6∈ NC1.

Note that we don’t need an explicit description of f . We could take f to be a random function.
Also, we don’t need the full strength of the assumption of the theorem. We can weaken the assumptions
in many ways without weakening the conclusion. For example, we have the following theorem:

Theorem 8 If for a random function f and for every g, C(Rf◦g) ≥ ε ·C(Rf )+C(Rg) then NC1 6= NC2.

Proof: An inductive argument shows that there exist k functions f1, · · · , fk on log n variables each such
that C(Rfi

) = Ω(log n) and C(Rf1◦...◦fk
) ≥

∑
i ε · C(Rfi

). Choosing k as before yields a function in
NC2 which requires Ω(log2 n/ log log n) depth.

And so on and so forth. Also, by noting that any function on log n variables can be described with
only n bits, the above theorems yield a separation between non-uniform NC1 and uniform NC2.

6 The universal relation for composition

One way to test our approach, is by introducing a “universal” relation that abstracts away the role of
a particular function in the composition. We define a communication problem Uk,n as follows: Let T
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be a balanced, degree n, depth k tree. Players I and II have labelings ϕI and ϕII , respectively, each
mapping every node of T to {0, 1}. The pair (ϕI , ϕII) is legal if:

1. ϕI(r) 6= ϕII(r) where r is the root of T .

2. If ϕI(v) 6= ϕII(v) then there is a son u of v such that ϕI(u) 6= ϕII(u).

The goal of the players is to agree on a leaf l of T such that ϕI(l) 6= ϕII(l) if (ϕI , ϕII) is legal. In
case the input pair is illegal, the players can output any answer.

The following lemma shows why we call Uk,n the Universal Relation for Composition:

Lemma 2 For any f1, ..., fk ∈ Bn, Rf1◦...◦fk
≤ Uk,n.

Proof: Let f = f1 ◦ ... ◦ fk. A circuit for f can be described by putting, in every node in T of depth
i, 0 ≥ i ≥ k − 1, a gate of the function fi+1, and the leaves are the input wires in the natural order.
Every input to f gives a truth value to every node in T in the natural way, by evaluating the subcircuit
rooted at this node. Finally, observe that the labelings ϕI , ϕII obtained in this way from two inputs
xI , xII , respectively, form a legal pair. Thus we have just described the required reduction from Rf to
Uk,n.

Note that f1 ◦ ... ◦ fk has nk variables, and that C(Uk,n) ≤ kn(1 + o(1)). In [14] we conjectured that
this bound is tight, with the obvious motivation of testing our approach. This conjecture was proved
by Edmonds, et.al. [4]. They used beautiful information theoretic arguments to measure the progress
made (in a top-down direction) by an arbitrary protocol on successive levels of the composition, and
proved the following strong bound.

Theorem 9 [4] C(Uk,n) ≥ kn−O(k2
√
n log n)

A completely different method was used by Hastad & Wigderson [9] to give a slightly stronger lower
bound. They use a bottom-up approach that utilizes a Nec̆iporuk-like subadditive measure on protocols.

Theorem 10 [9] C(Uk,n) ≥ kn−O(k3 log k)

Note that both lower bounds leave open whether C(Uk,n) = Ω(kn) when k ≥
√
n. While this range

is not too interesting when replacing the universal problem by real functions, determining Uk,n in this
range remains an interesting problem in Communication Complexity.
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7 The Monotone universal relation for composition

In this section we define the monotone analogue Um
k,n of the universal relation, and prove a tight lower

bound for its communication complexity, for all values of k and n.

Let T be as before. Let players I and II have labelings ϕI and ϕII , respectively, mapping every node
of T to {0, 1}. This time the pair (ϕI , ϕII) is legal if:

1. ϕI(r) = ϕII(r) = 1.

2. If ϕI(v) = ϕII(v) = 1 then there is a son u of v such that ϕI(u) = ϕII(u) = 1.

The goal of the players is to agree on a leaf l of T such that ϕI(l) = ϕII(l) = 1 if (ϕI , ϕII) is legal.
In case the input pair is illegal, the players can output any answer.

The following lemma is the analogue to lemma 2. We omit its proof which is essentially the same.

Lemma 3 For any monotone f1, ..., fk ∈ Bn, Rm
f1◦...◦fk

≤ Um
k,n.

For this problem it is much easier to prove a tight lower bound. It relies on a connection between
the monotone universal relation and the set disjointness problem. This connection was also used in [18].

Theorem 11 C(Um
k,n) ≥ nk − 2

Proof: Observe that Um
1,n is the problem in which every player gets a subset of [n] as input, and their

task is to find a member of the intersection if it is nonempty. This gives the simple reduction In ≤2 U
m
1,n,

in which both players, after receiving the result of Um
1,n on their input subsets, check that indeed it is a

member of their input.

It is natural to seek a similar reduction from I
(k)
n to Um

k,n, but we are not sure at all that one exists.

Rather, we define a weaker function I(∧k)
n , and reduce it to Um

k,n. Like in I(k)
n , the players get k pairs of

subsets of [n] (each player gets one set from each pair), but rather than deciding for each pair if it is
intersecting, they are required only to output 1 if all k pairs are intersecting, and 0 otherwise (i.e. if
some pair has empty intersection). It is easy to see that M(I(∧k)

n ) is the kth tensor power of M(In).
By Propositions 1 and 2 we have C(I(∧k)

n ) ≥ kn.

Note that k sets S1, S2, · · · , Sk can be used to define a labeling of T in the following way: the root
is labeled 1, and the node at depth j defined by the path i1, i2, · · · , ij is labeled 1 iff for all 1 ≤ l ≤ j

we have il ∈ Sl (and is labeled 0 otherwise).

Given inputs for I(∧k)
n , the players can use this procedure to define labelings ϕI ,ϕII . It is easy

to check that in this case the pair (ϕI , ϕII) is legal for Um
k,n iff there exist a leaf l of T such that
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ϕI(l) = ϕII(l) = 1. This occurs iff all the k input pairs for I(∧k)
n consist of intersecting subsets. The

reduction I(∧k)
n ≤2 U

m
k,n is given now by applying a protocol for Um

k,n on the pair (ϕI , ϕII), and checking
that indeed both labelings have 1 on the answer.

Therefore we have C(Um
k,n) ≥ C(I(∧k)

n )− 2 ≥ nk − 2.

8 The approach and mNC1 vs. mP

In this section we show that the proposed approach provides us with a simple new way of separating the
monotone classes mNC1 from mP . This separation was first proved in [15] by providing an Ω((log n)2)
monotone depth lower bound for the st-connectivity function. That proof relied on complicated combi-
natorial and probabilistic arguments. In contrast, the new proof uses a sequence of simple reductions,
following the monotone version of the ideas in Section 5. Still, we remark that the lower bound obtained
here is only log n log log n. This bound can be slightly improved, using the fact that the complexity of
the function f , below, is O(nlog n).

Recall that the intuition behind our belief that C(Rf◦g) is close to C(Rf )+C(Rg) was that, to solve
Rf◦g we have to solve an instance of Rf and an instance of Rg. In the monotone case, we can prove
this:

Lemma 4 For every monotone f, g, Rm
f ⊗Rm

g ≤ Rm
f◦g.

Proof: A minterm (maxterm) of f ◦ g consists of a minterm mf (a maxterm Mf ) of f and for each
i ∈ mf (i ∈Mf ) a minterm mi

g (a maxterm M i
g) of g. This understood, we can define the reduction by

letting the pair (mf ,mg) be mapped to the minterm of f ◦ g defined by letting mi
g = mg for every i.

Similarly with the maxterms.

Corollary 3 C(Rm
f ⊗Rm

g ) ≤ C(Rm
f◦g).

Corollary 4 (Rm
f )(k) ≤ Rm

f (k)

If we could find a monotone function f such that C((Rm
f )(k)) = ω(k log n) then we would have

mNC1 6= mP by the above considerations. Fortunately, the following theorem is implicit in Razborov
[19], and was made explicit in [12] :

Theorem 12 [19, 12] Let l = c log n for some suitable c > 0. There exist a monotone function f on n

variables such that Il,n ≤1 R
m
f .
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In fact, the function f can be explicitly described - it is the set-covering problem. However, this is
not important for us. We also remark that while this theorem is the only step in the whole proof that
is technically nontrivial, this reduction is reasonably simple.

Corollary 5 For f and l as above, I
(k)
l,n ≤k (Rm

f )(k) ≤ Rm
f (k) .

We can now give a simple proof that mNC1 6= mP :

Theorem 13 mNC1 6= mP .

Proof: To apply the ideas of section 5 we scale the number of variables logarithmically. Let l =
c log log n and f be the function on log n variables given by theorem 12. C(Rm

f (k)) ≥ C(I(k)
l,log n) =

Ω(k(log log n)2) follows from corollary 5, the additivity of the rank lower bound (Proposition 2) and
Theorem 3. If k = log n/ log log n then f (k) has n variables and C(Rm

f (k)) = Ω(log n · log log n).

Note that we don’t care if f is an explicit function or not; as it has only log n variables its truth
table could be given as extra n input bits.

9 Conclusions and Future work

In this paper we have presented a concrete new approach for proving nonmonotone super-logarithmic
lower bounds for circuit depth. This approach have generated new types of questions in communication
complexity, which were studied here and in subsequent papers [6, 13, 4, 9], some of which show that
this approach is useful in restricted settings. We feel that the results obtained so far are encouraging
enough to seriously attempt to use this approach for the general model, and we make it somewhat more
concrete below.

Our approach suggests to separate the intuition that to solve Rf◦g one has to solve an instance of Rf

and an instance of Rg, from the intuition that one cannot save much by solving two problems together.
The following plan to show NC1 6= NC2 comes to mind:

1. Show that C(Rf (k)) is close to C(R(k)
f ).

2. Show that there is a hard function f ∈ Bn such that C(R(k)
f ) = ω(k log n).

Note that item 2 asks for the existence, rather than an explicit construction, of a hard function.

Question 3 Is there a function f ∈ Bn such that Φ(Rf ) = ω(log n)?
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An affirmative answer will put us half way through our plan. A negative answer, in the other hand,
will break most of our intuition. It is worthwhile to note that Khrapchenko’s lower bound [10] is additive
with respect to ⊗ so that Φ(R⊕n) ≥ 2 log n where ⊕n is the parity of n variables. Also, it is not hard
to show that Φ(U1,n) ≥ n− 1. We believe that Φ is not far from C.
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