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Abstract On the positive side, we give efficient probabilistic

From the point of view of sequential polynomial
time computation, the answer to the question
in the title is 'yes’. The process of self-reducibility
is & linear time Turing (eracle) reduction from
a given combinatorial search problem to an ap-
propriately defined decision problem.

However, from the point of view of fast parallel
computation, the answer is not so clear. Many
of the sequential algorithms that were '‘marked
off’ as being "inhorently sequential” embed
within them the self-reducibility process, Can
this inherently sequential process be parallelized?

To study this problem, we define an abstract
setting (namely that of an independence system)
in which one, universal search_problem ceptures
all combinatorial search problems. We consider
several natural decition and function oracles to
which this search problem may be reduced.
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parallel reductions to these oracles. These reduc-
tions constitute a scheme for parallelizing search
problems in case the oracles for these problems
are themselves efficiently computable in parallel,
We give examples of problems that did not yield
to parallelism before, but can be parallelized
using this scheme,

On the negative side, we prove lowsr bounds
on eny defermininistic paralle]l reductions to the
same oracles. If p processors are used, the se-
quential (linear) running time cannot be en-
hanced by more than a factor of O(log p) and
hence {or any polynomial number of processors
the problem remains inherently sequential. This
proves that randomization can be exponentially
more powerful than determinism in our model,
and suggests that NC ¢ Random NC.

Finally, we state some intriguing conjectures and
suggest new directions of research in complexity
theory that arise from this work.

1. Introduction
1.1 Motivation

A key question in the theory of paraliel computa-
tion is which (combinatorial) problems are sus-
ceptible to efficient parallelization, or in short,
does PeNC? In the study of the analogous ques-
tion, P=NP?, people quickly realized that (using
self-reducibility) thoy can dispose of search
problems and consider only decision problems.
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A similar line of thought for the PmNC? question

seems to fail. Many decision problems have sim-
ple parallel algorithms, which give no clue to
parallelizing the relevant search problems. For
example, testing whether a graph is Bulerian can
be easily done by looking in the parity of the
degrees of the vertices. However, finding an
Euler circuit is mauch harder [4IS — 84). Other
examples are Biconnectivity (VT — 84], Pattern
Matching [G — 84], Strong Orientation [V — 84),
and Maximal Independent Set [KW —84] to
mention but a few, In all thess cases, the seem-
ingly inherently sequential nature of the serial
algorithms caused researchers to seek (and find)
completely new algorithms. The mass of new
parallel algorithmic techniques that resulted has
undoubtedly benefitted the field. However, it has
not shed any light on whether these "inhorently
sequential”  slgorithms can be directly
paralielized,

In this paper we try to "take the bull by the
horns" and confront this question. To do this,
we [ormalize an abstract setting which captures
all problems of this type, and in which we can
prove both upper and lower bounds. Surprising-
ly, our results seem to imply that efficient
parallelization of such "inherently sequential”
algorithms is impossible deterministically, but
can be achieved with the aid of randomization,

Before describing the general setting, consider
first two concrete search problems, which we
use to clarify our approach and the points we
shall focus on. The input to both problems is
a simple undirected graph G(V,E), where
Vai12,...1}

1. Find s maximal independent set in G.

2. Find a maximum (cardinality) independent
set in G.

Simple sequential algorithms for these problems
are given below.

Algorithm 1
M9
for im 1 to n do;
ifM U {i}isindependentin GthenM < M U {i};
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end;
output <+ M;

Algorithm 2
M-
for imiton do;
it MU (i} is contained in & maximum
independent  sot of G then M « MU {i};
end;
output - M;

Let us observe the following.

1) The two algorithms use the input graph G in
& very restricted way; they each require only
s specific (Boolean} sct function of the vertices.
Henoco they will perform equally well if an orucle
for the appropriate function is given instead of
the input. Later we shall assume that the inputs
sre replaced (or represented) by such oracles.

2) The computational complexity of the func-
tions (or oracles) used in the two
strikingly different (it PsNP); theftmisinl’
while the second is NP-hard. However, the rela-
tive complexity of the search problem (comput-
ing & rejation) to the appropriate decision prob~
lem (computing a function) is polynomial se-
quential time, as each slgorithm halts after »
stops given its oracle. We shall ask whether a
similar statement is true if we replace "polyno-
mial sequential time" by "fast paraile] time" or
“emall W”-

3) The choice of an oracle by the algorithm is
crucial. Although both problems deal with inde-
pendent sets in graphs, there s no pelynomial
time slgorithm (unless P=NP) for the second
problem that uses the oracle of the first algo-
rithm. Given a search problem, using which ors-
cles can it be solved, say, in NC? (and can these
oracles be computed in NC?)

4) In the two algorithms above, every decision
point (oracle query) depends on the outcome of
previous decisions (oracle answers), Such algo-
rithms are often called "inherently sequential”.
We recognize this "inherently sequential” pro-
cess a3 the well known "self-reducibility” pro-
cess of reducing 2 search problem to s decision
problem,
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12 A Genenl Setting - Independence
Systems and Oracles

An independence system § is defined by » pair
(BI). E is a finite set of n elements, called the
ground set. 1 is a family of subsets of E, called
the independent sets of S. The independent sets
are closed under containment, namely if
AeBecE and B el then also £ ¢ I. The sets
in 25 — I are called dependent, A ot McEisa
maximal independent set of S if Af is indepen-
dent, but every supersct of M s dependent.

Now we are ready to state the search probiem
whose complexity we study. .

S-search: Given an independence sysiom S = (E.I),
find @ maximal independent set of S.

The S-search problem is universal, in the sense
that every combinatorial search problem can be
stated in this form. More formally, let a search
problem be given in terms of its input-output
binary relation, say R ¢ {0,1}" x {0,1}". Then
for every input x « 0,1} one can construct an
independence systom S, on 2n elements, whose
maximal independent sets are in one-to-one cor-
respondencs with the a-bit m'mpyutxslying
(xy) ¢R, The ground set of S, will be

{e, @, B}, and for every yw= np.0, st
(xy) € R, the corresponding maximal indepen-
dent set A, will contain, for 1 € { € a, the sle-
ment & or & iff  is 1 or O, respectively,

Note: The paragraph above does not say much
by itself. One can choose many other "universal”
problems with enough information to encode all
search problems. Also, the fact that a problem
is universal does not necessarily means it is useful
for understanding the problems it captures. The
resuls in this paper are the justification for our choice.

The first step towards studying the complexity
of the S-search problem is to explain how the
input to the problem is given, and what is consid.

ered "input size". Clearly, an arbitrary indepen-
dence system on n elements may require 2°*
bits to describe it. However, as mentioned above,
we shall assume the input S is (given by) an
oracle (which can be thought of as @ large ran-
dom access input tape) to eome set function
f5:2% + N. The input size will be n, the size of
the ground set K, which is also the size of an
oracle query. (This is 2 natural choioe for input
size, ag will be seen in a minute.)

The most natural oracle to describe an indepen-
dence system i3 the independence oracle
ind5:2% « {0,1}. For every A ¢ K, inds(4) = 1 iff
A ¢ Iin §. Computing the function inds is the
universal decision problem corresponding to our
universal search problem (at least as far a3 se-
quential computation is concerned). This is scen
from the self-reducibility algorithm below,

M@
for im 1 to n do;
if indg(M U {i1) = { then M ~ MU {i};
end;
output «AM;

Note: Since the running time of the self reducibil-
ity algorithm should symbolize sequential inear

_ time, n was the natural choice for the input size.
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Also notice that the two algorithms in the previ-
ous subsection use an independence oracle of the

appropriate independence systom.

Another oracle that we shall study is the mnk
oracls, ranks:2% + {0,1,2,...n}. For every
A < E, ranks(A) = Max{|B}:BcA,Bel}. In
words, rank gives the size of the largest indepen-
dent subset of a given (possibly dependent) set.
(Note that indg(4) w 1 iff ranke(4) = |4 D.

We need some more notation before continuing,
Let MI be the family of maximal independent
sots in S = (5.J). For F < E, the induced subsys-
tom on F is S(F) = (FI(F)), whers I(F) =
{[CeM MeMIand M F }.
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Now define RANK; to be the family of rank
functions for all induced subsystems of S. For-
mally, RANKg = {rankg, | F € E}.

We shall prove probabilistic upper bounds and
deterministic lower bounds on the the complexi-
ty of solving the search problem when the input
is given by either an independence oracle or the
family RANK of rank oracles. For brevity, other
oracles for which we have similar results but no
concrete applications will not be discussed here.

Before stating the results; we describe the com-
putstional model,

1.3 The model of computation

~Our model will be & parallel decision tree with

an input oracle. A probabilistic declsion tree of
parallelism p with cracle f is a tree with three types
of nodes,

1. Randomization nodes. Every such (internal)
node has some number 4 of branches, each
taken with probability 1/d,

2. Oracle Query nodes. Every such (internal)
node is labeled with p subsets Ay, Aa,.. Ay
of E. The branches from this node are la-
boled with all possible oracle answers
LAy, fA),..., f4y).

3. Leaves. Every leaf is labeled with one subset
of E.

Assume without loss of generality that every
independence system on 7 elements has the same
ground set 5. A tree K is said to solve the
S-tearch problem for size n, if for every input
(system) § of size n and for every root-leaf path
the tree may take on input S, the leaf is labeled
with & maximal independent set of §.

For s given tree H, let ¢(H,S), the cost of S,
be the expected (with respect to the randomiza-
tion n¢ .., number of oracle query nodes on
a root-eaf path that § may take. Let c(&,n) be
" the maximum c(H,S) over all inputs S of size
n. Finally, the expected time to solve a problem
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of size 1 with oracle fand parallelism p, denote
Thos(np), is the minimum of c(Hn) over &

trees H of parallelism p that solve the searc
problem for size .

A deterministic parallel decision tree is a special cas
of the probabilistic one, in which there are n
randomization nodes. The deterministic time t
solve the search problem, Tdzr(np) is similari
detind'

Finally, we extend the definitions above to com
putations with a family of oracles, G. The onl
difference is that now % query is & peir (g, 4
with ¢ € Gand £ ¢ £, when we wish g(4) evalu
sted. In the complexity notation, G will replacy
the superscript /.

Thochoicoofadocisiontmeitv«ymtun!fu
proving lower bounds, but should be justified a:
an upper bound model. In our case it is done
only to avoid technical detail. Qur decision tree
algorithms can be implemented on 2 PRAM witl
only & factor » mere processors, and only
factor of logn more time.

1.4 Main Results and Applications

The main resuits stated below wers obtained vis
othnmulu,that_woshanduedbeinhtel
sections. These other results are of independen
hxwm.tndmtpplhbleboyoudthosooped
this paper. We also note here that a special case
ottheonml.s.uwonuooronuy'l.sam
also in [KUW - 84),

All logarithms in this paper are to the base 2.
THEOREM 1.1: For every p>1,

Thing) = 0 )

n
(lot P
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Tpe (np) = )

An immediate coroliary to this theorem is that
if we allow only polynomial number of proces-
sors, then the soquential linear time
cannot be significantly improved, as both lower

bounds in the theorem become 0(

n
log n)
The next oorollary, conceming the space required

to (sequentlally) solve the search problem, is

much less immediate. Here, a Turing machine
will use a (write only) oracle tape to get informa-
tion about the input system, and we shall bound
the amount of work space used to find a maxi-
mal independent set. The self reducibility process
seoms to require not only sequential linear time,
but also linear space. This observation is support-
ed by:

COROLLARY 1.1: Let TM be 8 Turing machine
with independence oracle or RANK oracles, that
solves the S-search problem for size » using
work-space s (2 precise definition is omitted).
Then s = Q(vR)

This lower bound follows by extending results
about fast parallel simulation of space bounded
muachines, to machines with input oracies,

Probabilistic Uppar Bounts

THEOREM 1.2: Tixps(nn) = O(Vn)

Unlike the upper bound in theorem 1.2, which
holds for any independence system, we could
prove the next one only for the systems in which
all maximal independent sets have the same
cardinality. We call such systems regulsr.,

THEOREM 1.3: For regular systems,
T (rn) = O((logm)?)
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These two theorems show that using randomizs-
tion, one can obtwin a non-trivial paralle] speed-
up of the self-reducibility process. Whether this
speed-up transiates into an actual fast algorithm
for concrete search problems obviously depends
on whether the appropriate oracles can efficient-
ly computed in parallsl, We now give examples
of problems which had no non-trivial paraflel
solution before, but yield to this genersl method.
We start with applications of theorem 1.2.

Consider the following problems, where m is
polynomial in .

1. Minimal Hitting Set.
Inpat: A family {4,,4;,...4,} of subsets of
a universe U,| U= .
Problem: Find a minimal subset ¥ ¢ U such
that ¥4, « §.

2, Maximally positive 2-satisfiability,
Input: A 2.CNPF formula on n vsriables.
Prodlem: Find a satisfying assignment (if one
exists) whose set of positive literals is maxi-
mal,

3. Minimal Generating set.
Input: A set I1 = {w,»,,...,v,} of permuta-
tions on m letters, generating a group G.
Problem: Find 3 minimal (irredundant) sub-
set of II that generates.G.

For problems 1 and 2, the independence oracle
is easily computed in NC. For problem 3, com-
puting indepsndence reduces to group member-
ship testing. The latter can be computed in Ran-
dom NC whea G is abelian (CM -83] or a
2-group (R — 83). Hence we have:

COROLLARY 1.2: A probabilistic PRAM with
a polynomial number of processors can solve the
problems 1, 2, and the aforementioned special
cases of problem 3 in expected time
O(n(logn)™).

The most important applications we have are for
theorem 1.3. In [KUW — 84] we show how to
compute a class of rank functions for matching-
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related problems in Random NC. These results
yield

COROLLARY 1.3: The following search prob-
lems can be solved in Random NC: finding a
perfect matching, finding a maximum edge-
weight matching when weights are given in
unary encoding, finding @ maximum node-
weight matching in any node-weighted graph,
and finding a maximum flow in a network when
the capacities are given in unary encoding,

2. Group Testing and Lower
Bounds

In this section we describe and analyze a search

problem in a different setting, in which it is sasier
to prove lower bounds, Relating this setting to
i systems we can translate these
results into lower bounds for $-search.

2.1 The X-search Problem

The setting is a universe of U of N boolean
variables {x;, x,...., xy}. An instance is any truth
assignment to these variables, or squivalently,
s subset X' < U/ of "TRUB" variables. The ssarch
problem is

X-search: Given X, find an elemens of X (if one
exises)

As before, X is not given explicitly, but by an
oracle. The or omecle, ory: 27 = {0,1} is defined
by on{V = L iff ¥NX 5 9.

Thkmcin;mmdinthapnntoapmn
several seemningly unrelated problems. One is the
so called “group testing” problem [& — 84), in
whichonehgivonamo(coins.somolegdlnd
some counterfeit, and is asked to identify one
(or all) counterfeit coins using different types
of scales (which amount to different oracles).
Stockmeyer (S - 83] considers the complexity
of approximating the size of X using the or and
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weaker oracles, as a structured model to stud
the complexity of problems in #P. In(FRW ~ 8¢
this setting comes yp naturally in considering t
relative power of different conflict resolutio
schemes in concurrent-write models of parall
computation.

Asthex-smhproblemilint«aﬁnginitsdi
Weconsideraboupperboundsonit.nbefm
weusenp-waydeciﬁontruuourmml.\ﬁt&
queries to the or oracle and leaves Iabeled wit
2 variable from U. Denote the probabilistic an

deterministic complexities of the X-search prob
lem for universe of size N by Tonos(Np) an

Toar(Np), respectively, We give tight bound
on these quantities below.

THEOREM 2.1; For every J.
log N ~vor log N

e € Tpsr(Np) ¢ —2"__ o4

log(p-l-l)s osx(Np) log(p+1).*

THEOREM 2.2: Tpy05(N,log N) = O(1)
Proof of THEOREM 2.1:

Theupporboundinthothcoromisasimpk
(p+1)-way search, which is an extension of
bin;rymrehforp-l.mlowbmmd‘icl
generalization of an adversary argument that
appears in (FRW ~ 84], which we describe be-
low.

Thoadversarywlllexhibituuboetol’inpmthn
Iollownlmgpathdownthetrn.nﬁswillbu
done by succesively restricting a set of inputs
J,thaturivutoapurﬁcuhnrunodovofdupth
r,by:pproprintelymwuingthoquwluuv.
Everyhputintherutrhwdinputm.l,.,..,wﬂl

tn‘iwntthochilduofvdaﬁnedbythmm-
swers.

Thoset.l,winhavou:implo structure; it will
eonhinalludsfyln;usipmenhtotaimﬂe
conjunctive normal form formula g, on the vari-
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ables in U. The set of satislying assignments of
a formula g will be denoted by J(g).

ACNFtormuhgucdhdponifeverymgtt-
ed variable appears in a singleton clause. So,
£ = (N.P) where Nis a set of clauses of the form
(%), and P is a set of clauses of the form
(x1 Uxp U .. UXy). An important parameter of
a positive formula is its "size”, 5(g), defined by
2(g) » min{|{C]: C¢ P} when P is nonempty,
which will always be the cass.

Note that if J, = J(g) is the set of inputs that
reaches a depth ¢ node v in the tree, and if
s(g) > 1, then v cannot be a leaf (why?). We
shall start with go = (x; Uxz U ... Uxy) at the
root of the tree (50 5(gp) = N). Our adversary
will ensure that for every 7,5(2) 2 N+ 1),
which will complete the proof. This is shown in
the next lemma. Let 5, = Np+ 1),

LEMMA 2.1: Let g be a positive formula with
3(g) 27> 1. Let J,= J(g) be the set of inputs
that reach & node v at depth ¢ in the tree. Then
there exists a child » of v, and a positive formula
&+1, such that all inputs in J,,, m= J(g,41) reach
the node u, and s(g,,;) 2 74

Proof: Let A 4s,....4, © U be the set of oracle
queries at node v, Our adversary will answer the
queries according to the following algorithm. Let
s - (N,.P .

Nep = N; Py - B;
for i= 1 to g do;
(Ais Aig100 Ay are 3till Unanswered.Assume
A is the smallest unanswered query).
if 4} 2 4, then do;
answeror(4,) w or(A;,)) = ... = or(4?) = 1;
Py = Py U4 U 4 V.. U4,
halt;
end;
else do; ( |4|< e )
answer or{4,) = 0;

§ 'd  CBGLON

Nay = Ny Vi@ Ix e 4k
for every Ce P 8et C « C=A4;
for every ji<jSpset A - A - A;
end;
&1 = (NP
end;

The loop is performed st most p times, in each
of which the size of every clause is decreased
by at most 7,,;. Furthermore, at ths last itera-
tion, all clauses added to P,,; have size at least

Vie1s

Proof of THEOREM 2.2: Assume that Xj2 1
(this can be verified in a single query). This
algorithm has two parts, which are encompassed
in the following two lemmas, The first lemma
shows that a special case of the X-search prob-
lem, when [ = 1, can be solved deterministically
in one step. The second shows how to
probabilistically reduce the general case to the
special one in expected constant time.

Assume wlog that Nw 2™ for some integer m
(otherwise add dummy false variables to U).

LEMMA 2.2: If [ = 1, then T ogr{N,log M) = 1.

Proof: Let the variables in U be indexed by
distinct m-bit vectors bby..b, The set of or
queries of the oracle will b.A!.Az. we g, defined
by A; m{x ¢ Ul the i'th bit in the index of x is
1}. It is immediate that if the answers to the
queries are g;, @z, .3y, resp., then the index of
the unique positive variable in U {5 a,0;..8..

LEMMA 2.3: Assume that 2**~! g Y g 2™
for some k ¢ {0,1,...,m — 1}. Uniformly choose
a random subset ¥ of U with [{=2*. Then
PrilVnX = 1] 3 (20)7.




' = my
PriVNX = 1) M(m)(l M)

220411 - 279 3207

To complete the proof of the theorem, as we
don't know Y] in advance, we simply try all
possible values for k in lemma 2.3. More precise-
ly, the first set of queries in the algorithm is
Yo, V1, «.Vmey Where ¥, is a random subset of
U of cardinality 2*, Then, for the smallest k such
that or(¥,) = 1, the algorithm of lemma 2.2 is
applied on the universe ¥.. Az |V, NX] may be
different than one, the output of the algorithm
is verified (by a single query), and in case it is
false, we restart the whole algorithm egain. It
is clear that the algorithm: solves the X.search

problem in an expected constant number of
steps, and it uses only m = log N queries per step.

Prool:

2.2 The Relation between S-search
and X-search

We shall now establish the relationship between
the S-search and the X-search problems. Theo-
rem 1.1 will follow as a corollary of theorem
2.1 above and the following theorem.

THEOREM 2.3; Let N = (g)m
2

Toerne) 2 Topr(No)

TR (np) 2 T ppr(Nnp)

Proof : First we deal with the first part of the
theorem. Consider the family of independence
systems of size n all of whose maximal indepen-
dent sets have cardinality n/2, Associate with
each (n/2)-subset M of E a boolean variable x,,
and let U be the set of these variables. Note that
|Ul = N. A natural 1-1 correspondence be-
tween instances of S-search from this family and

£6GL 0N
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instances of X-search from U is given when for
every system S, the corresponding Xy contains
exactly the variables associated with masximal
independent sets of S.

We now show that every p-way tree H for these
S-search instances can be transformed into o
p-way tree H' for X-search instances from U,
Simply replace every independence oracle query
4 ¢ E in H by the or oracle query V, € U, where
Vi = {xx ¢ Ul4 c M} in H'. Similarly, replace
every leaf label M < £ in H by the variable x,,
in &', It is etraightforwerd that the 1-1 corre-
spondence between instances extends to the
computations of the trees i and H’, which com-
pletes the proof for the first part.

For the second part we use the same correspon-
dence betwween instances of the two problems.
It remains to show the correspondence between
querics. Every query is now of the form
(rankg;ry A) where 4 € F ¢ E, We show how this
query can be "simulated" by 4]+ 1or oracle
queries V3, ¥}, .. ¥ defined as follows. V2 =
§x0: IM N A} 2 k and M < F]. It follows from the
definitions that rankg(s(4) =

maxtk :or(¥5) = 13, which complotes this part
of the proof.

3. Probabilistic Recurrence
Relations and Upper Bounds

For convenience, we state again our main upper
bounds,

THEOREM 1.2: T3%5(n.0) = O(VF)

THEOREM 1.3: For regular independence
systems, 705 (n,n) = O(Qog n)*)

A similar result to thearem 1.3, for the special
case of the matching problem, appears in
(XUW — 84]. In sybsection 3.1 we prove theo-
rems 1.2 and 1.3. From the analyses of the two

Ad
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probabilistic algorithms that give the upper
bounds above we extract a general problem, and
treat it in subsection 3.2.

3.1 Algorithms
Proof of THEOREM 1.2:

Below is an algorithm for S-search when S is
. given by an independence oracle. The algorithm
will maintsin three sets, IN, OUT and F, such
that before every stags of the algorithm, JN will
contain elements that will appear in the final
maximal independent set, OUT will contain ele-
ments that will not appear in the final maximal
independent sot, and F will contain elements
about which the aljorithm is still undecided.
Note that INY OUT U F = E.

Algorithm

IN«§/; OUT~$§ /; F«E
while | F>O do;
for each i @ 1,2, | F] unitormly choose a
random j-subset 4, of B
R; = {a ¢ F - A|indg(INV {a}) = 1};
- |Ri
k « i that maximizes
{i + njinds(INUA) = 1 };
IN « INUA
OUT « OUTUR,;
F o Fesy ~Ry;
ond;
output « IN;

To analyze the expected number of iterations,
we study the expected decroase of the size of
Fin one iteration of the while loop. Firet observe
that what happens in each iteration depends only
on the independence subsystern §’ = (F,J) where
J={CeF|INUC 1}

We need some notation. Let | Fl=m, and lot 4,
be defined as in the algorithm, and g & random
element in F~ A4, Set ¢=Prlindy(4)) = 1], and

Pg.h[i’d:’(ﬁr U {ﬂ}) - 1 'i’df(‘i) - l] We ob-
viously have ¢ = n Op

Let R;, 7, and k be as in the algorithm. Then after
one iteration |F] = m decreases by k + r,, We now
show that E{k + ] 2 L:'f'-

Let / be the smallest integer such that

p,<l—'/—l-___. We distinguish two cases:
m

Caul.l)f-'rhenl’r[k-bm)mzqf;-
-1

—— — —‘.
Hp,z(l Jﬁ) >e™". Hence, Elk + n] 2
Ex] 2 22,

Case 2./ § V. By a similar argument, ¢ > ¢,
From the definition of , E{/+ n] 2 vm. There-

fore, Elk + n] 2 e'E{l+ ] > "/cz

It follows from the above that if before an
iteration of the while loop | F}= m, then after
this iteration, EQF) € m~ ¢~'vm. Deriving
theorem 1.2 directly from this inequality is a
simple matter. However, we recognize here a
very general problem that is described in the
next subsection.

Proof of THEOREM 1.3; We give a probabilistic
algorithm that uses the rank oracles to find a
maximal independent set. The algorithm will
maintain one set, F, that inktially will be E, the
ground set. In every iteration of the loop in the
algorithm we shall remove “redundant” ele-
ments from F, until F will be a maximal indepen-
dent sct. This is in contrast to the previous
algorithm, in which the maximal independent
set was constructed gradually.

Let H,, denote the mth harmonic number,
Algorithm

F « E; r = rankg(E);
while |A> r do;
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m « |Ff
pick & random i ¢ {0,1,...,m — 1} with prob,
| S
(m - ’)Hm’
pick uniformly s random j-subset 4 of F;

R« {¢ € F ~ A| rankgis(4 U {e}) = rankgen(4)}
Fe FaR;

end;
output « F

For the correctness of the algorithm, it is suffi-
cient to prove that if at the start of a while loop
iteration F contains 8 maximal independent set
of the input system S, then $0 does F = R at the
end of thig iteration, which means that the ele-
ments in R are really redund:nt. This is shown
in lemma 3.1,

Theboundonthonumberofqueﬁesporstep
is obvious. As for the running time, we will show
inlemma 3.2 that in every iteration the expected
size of R is a large fraction of |Fl—-r, and it is
hers that we use the ty of the system,
83 we know that the algorithm will halt when
[Fl = r. Then, as in the previous algorithm, the
boundmthecxpoceedtotalrunningtimewm
follow from the general results in the next sub-
section.

LEMMA 3.1: Consider a specific iteration of the
loop. If initiaily F contains a maximal indepen-
dent set of S, then s0 does F -~ R.

Proof: Consider any subset A of F. By definition
(see page 3), rankgn(4) = max JANM|: M
is a maximal ind. set in S(F)]. By the assumption
in the lemma, S(F) is not empty. Take any

maximal independent set M that achieves this

maximum, By definition of S(F), M is also a
maximal independent set in S. It is sufficient to
prove that M ¢ F — R. But notice that for any
seM~A, ranksn(AVUfe}) 2 [(AU{e})NM|
= [ANM{+ 1 2 mnken(4) +1 > rankgm(4),
so these eloements will never belong to R,
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LEMMA 3.2: Let | Flw m in the start of a partic-
ular loop iteration. Then E[JR[} = 1"?"-1

Proof: Let A; be 3 uniformly chosen random
i-subset of F, and ¢ a uniformly chosen element
in F~4. For im01..m~1 define p, =
Pr{ranksin(4,U{e)) > rankgpn(4)).  Clearly,

(33
E[mnksmu‘)] - E.pj. In partiocular, for i w.m

m-3
we have 7 = mikg s (F) = Ep,. Using this fact

and thadistributiox: defined in the algorithm we
have EJR]) = £ 2;_—‘1)?1-»)(»: -) =

1 m-t m-—r
B:E‘ A-p) = ==

3.2 Solving Probabilistic Recurrence
Relations

These recurrence relations come up in the analy-
sis of any algorithm that works in stages. Given
that after every stage some natural parameter
of the problem decreases by & random amount,
about which we know only the expectation, we
must find as much as possible about the distribu-
tion of the number of the algorithm re-
quires. This is the situation not only in the analy-
sis of probabilistic algorithms, but also in the
probabilistic analysis of deterministic algorithms,
mutenturohfunollpeciﬁcmdmdnpod!-
lc algorithms, which are special cases of the
results below, Wo now state precisely the prob-
lemn and our results, '

Let {X},iw 12, be a tamily of random vari-
ables s.t. X; amumes valyes from {0,1,2,....4}.
Consider the following prooees:

input m « »

1«0

while m > 0 do;
m e m—Xy
t e t41:;
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end;
output T « ¢;

What can be said about the distribution of 7,
given n, and the information that E[X] 2 g(),
where g:R* =« R* is a1 monotone non-
decreasing function.

THEOREM 3.1:

. dx
E[nngxsz'.md

PrT > (a+ 1)[:—‘—’5-] < ™ for every a> 0.
§(x)

This theorem is best possible in the sense that
there are distributions of the randon variables
X,, with the given expoctations, for which the
upper bounds are tight, The proof supplies these
distributions. The second part of the theorem
is somewhat surprising, as we get information
about the tail of the distribution of 7, although
we are given only the expectation of the X;. This
is very useful, as we can extend results on expec-
tation to results with probability tending to 1,
simply by letting @ be any divergent function of
n.

4. Discussion

The main issus of this paper is the relative com-
plexity of solving search problems (computing
relations) to solving decision problems (recogniz-
ing langusges, computing functions). This issue
becomes nontrivial for "weak" models of com-
putation, such as small depth-circuits and small.
space Turing muchines. Our paper seems to be
the first to address this issue, which we feel is
fundamental in complexity theory, and we hope
to ses continuing research in this area,

We have chosen independence systems and ora.
cles as a general setting in which this general
problem can be studied, for arbitrary models of
computation. The natural way in which indepen.
dence systems capture the problem, and the
results we have, seem to justify this choice.
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Input oracles (as in [HX ~ 81]) make a useful
structured model for two reasons. Firstly, we
are able to prove lower bounds which capture
at least our intuition about the gap between
deterministic and probabilistic parallel computa-
tion. Secondly, the choice of an oracle requires
s deep understanding of what is the essential
information from the input that an algerithm
uses to solve a particular problem.

The independence and RANK oracles cannot
significantly enhance the sequential running time
of the self-reducibility algorithm. How about
other oracles? We vaguely state hers the follow-
ing conjecture. For deterministic parallel compu-
tation with & polynomial number of processors,
no significant speed-up of sequential time it pos-
sible, regardless of the oracle used, as long it gives
“intringle" information, (“Intrinsic” roughly
means independent of the order of elements in
E, so, for example, the oracle cannot have some
maximal independent set as the answer to some
query.)

The relationship between computing relations
and functions when space is restricted, is atmost
completely open, except for our result in corol-
lary 1.1. It is particularly interesting whether
randomization or even nondeterminiem help to
get good upper bounds. Such bounds are no
precluded by corollary 1.4, since the analoguer
of Savitch [Sa-70] and Borodin-
Cook-Pippenger [BCP ~ 83] theorems about
converting nondeterministic and probabilistic
small space computations into deterministic ones
are false for machines with input oracles!

"To conclude, the theery of computation has

concentrated on function computation, namaly
on computations in which the output is uniquely
defined by the input. As in practice (e.g. search
problems) this may be more than we need, we
hope that this paper will initiste a study of the
computation of relations.
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