
Relationless completeness and separations

Pavel Hrubeš∗, Avi Wigderson† and Amir Yehudayoff†
∗ Department of Computer Science, Princeton University, Princeton, NJ.

Email: pahrubes@gmail.com.
† School of Mathematics, Institute for Advanced Study, Princeton, NJ.

Emails: avi@ias.edu and amir.yehudayoff@gmail.com.

Abstract—This paper extends Valiant’s work on VP and
VNP to the settings in which variables are not multiplicatively
commutative and/or associative. Our main result is a theory of
completeness for these algebraic worlds. We define analogs of
Valiant’s classes VP and VNP, as well as of the polynomials
permanent and determinant, in these worlds. We then prove
that even in a completely relationless world which assumes
no commutativity nor associativity, permanent remains VNP-
complete, and determinant can polynomially simulate any
arithmetic formula, just as in the standard commutative,
associative world of Valiant.

In the absence of associativity, the completeness proof gives
rise to the following combinatorial problem: what is the small-
est binary tree which contains as minors all binary trees with n
leaves. We give an explicit construction of such a universal tree
of polynomial size, a result of possibly independent interest.

Given that such non-trivial reductions are possible even
without commutativity and associativity, we turn to lower
bounds. In the non-associative, commutative world we prove
exponential circuit lower bounds on explicit polynomials, sep-
arating the non-associative commutative analogs of VP and
VNP. Obtaining such lower bounds and a separation in the
complementary associative, non-commutative world has been
open for about 30 years.

Keywords-Algebraic complexity. Completeness. Separations.

I. INTRODUCTION

In his seminar paper [19], Valiant extended complexity
theory to the algebraic setting of computation of multivariate
polynomials. As analogs of the fundamental classes of
Boolean functions P and NP, he defined two classes of poly-
nomials, now called VP and VNP: the first are polynomials
(of small degree) computable by small arithmetic circuits,
and the second are polynomials definable as a Boolean
sum

∑
ē∈{0,1}p f(x̄, ē), with f(x̄, ē) in VP. The exponential

summation is an arithmetic analogy of disjunction in the
non-deterministic Boolean case. The strength of VNP is wit-
nessed by the fact VNP contains every explicit polynomial1.
Most polynomials one meets in mathematics are explicit
in this sense, and this is also the case of the important
permanent polynomial. Valiant goes on to show that under
the natural projection reductions the permanent polynomial

Research supported by NSF Grant CCF-0832797.
1A polynomial of low degree is explicit, if we can compute the coefficient

of any monomial in it in polynomial time.

is complete for VNP, and that the determinant polynomially
simulates any arithmetic formula (and thus by Hyafil’s result
[12] the determinant quasi-polynomially simulates VP). He
goes on to draw important conclusions from these results,
most prominently exposing the universality of linear algebra
for efficient arithmetic computation, and bringing the natural
mathematical question of permanent vs. determinant as
capturing (a version of) the fundamental computational P
vs. NP problem.

In the subsequent paper [20], Valiant proceeds to make
the case that, given the lack of progress on proving lower
bounds for general Boolean circuits, one may naturally turn
to the strictly simpler problem of proving them for general
arithmetic circuits. Assuming GF (2) as the underlying field,
the difference between the two problems is that Boolean
circuits (which compute functions) may use cancellations
arising from the relation x2 = x, while arithmetic circuits
(computing polynomials) may not. In a sense, Valiant pro-
poses removing relations from the mathematical structure
underlying the computation, as an alternative to the more
common approach of handicapping circuits’ structure, for
example, by limiting their depth.

In this paper, we take Valiant’s proposal of removing rela-
tions to its logical conclusion. In the usual arithmetic setting
one assumes that polynomials satisfy standard multiplicative
relations: that multiplication is commutative and associative.
Proving superpolynomial lower bounds for commutative
associative circuits (implying VP 6= VNP) seems far from
reach despite decades of attempts, and so we might try to
prove lower bounds for circuits which cannot use either
(or both) of these multiplicative relations2; a task which is
strictly easier.

This approach gives rise to four natural classes of poly-
nomial algebras. For a field F and a set of variables X ,
let us consider free algebras FA,C[X], FA,C̄[X], FĀ,C[X],
FĀ,C̄[X], where the indices indicate whether we assume that
the variables X are commutativite resp. associative. The first
is the standard polynomial algebra. In the non-comutative
cases the order of variables in a monomial matters, and in the
non-associative cases each monomial comes with a binary

2However, we assume that addition, as well as multiplication with field
elements, is associative and commutative, and that multiplication distributes
over addition.

tree which describes its mltiplicative structure.
Like Valiant, we can now look at complexity classes,

which may be similarly denoted VPA,C, VPA,C̄, VPĀ,C,
VPĀ,C̄ and VNPA,C, VNPA,C̄, VNPĀ,C, VNPĀ,C̄. The first
in each set is Valiant’s VP and VNP. The classes VPĀ,C,
VNPĀ,C, for example, are the non-associative, commutative
versions of Valiant’s classes. It now makes sense to study
the power and weakness of these classes, wonder about
completeness, and in particular ask the VP vs. VNP question
in each of its four variants.

A. Non-commutative, associative computation

Non-commutative algebras abound in mathematics, with
the most common examples being tha algebra of matrices,
group algebras of non-commutative groups, and the quater-
nion algebra. Note that, unlike the algebra FA,C̄[X], these ex-
amples are not “free”: for example, d×d matrices x1, . . . x2d

satisfy the identity
∑
σ∈S2d

sgn(σ)
∏2d
i=1 xσ(i) = 0.

Algorithms over (non-commuting) matrices can be carried
out by (commutative) operations on their entries, so it
may not be clear where non-commutative algorithms arise
naturally. But considering matrices as “atomic”, and thus
their multiplication as non-commutative, can be extremely
useful. One classical example is Strassen’s matrix multi-
plication algorithm, and its improvements [8,7,. . .], where
the recursive step treats submatrices as atomic. Another
example is the sequence of works, culminating in [5], on
approximating permanent via evaluating determinants on
random non-commuting elements (from Clifford algebras).

The weakness of non-commutative computation as com-
pared with commutative one is usually illustrated by the
following simple example. The polynomial x2 − y2 can
be commutatively computed as (x + y)(x − y), using one
multiplication. Without commutativity, the term xy−yx does
not cancel, and we need two multiplications.

This example is just the tip of an iceberg. Computation
over the free non-commutative algebra FA,C̄[X] was studied
in several papers, with Nisan’s seminal paper [14] con-
taining the most important techniques and results. Defining
non-commutative versions of determinant and permanent
DETA,C̄ and PERMA,C̄, Nisan proves an exponential lower
bound for the size of any non-commutative formula for any
of these polynomials. Moreover, he proves an exponential
separation between the formula and circuit size in this model
(a result which stands in sharp contrast to the commuta-
tive case, where formulae can superpolynomially simulate
circuits [12], [22]). Nisan’s lower bound techniques were
later strengthened by Chien and Sinclair [4] to prove the
same exponential lower bounds for PERMA,C̄ and DETA,C̄

in concrete non-commutative algebras, including the ones
mentioned above.

The question of lower bounds for non-commutative cir-
cuits, however, remains wide open. We mention two very

recent papers on the subject. One is by the present au-
thors [11], where it is shown how exponential lower bounds
for general non-commutative circuits may be obtained from
certain super-linear commutative lower bounds. The other,
by Arvind and Srinivasan [1], shows that PERMA,C̄ and
DETA,C̄ have the same non-commutative circuit complexity,
up to polynomial factors. This implies that small non-
commutative circuits for the determinant gives small com-
mutative circuits for the standard permanent. In other words,
they prove that DETA,C̄ ∈ VPA,C̄ implies VPA,C̄ = VNPA,C̄

(and hence VP = VNP).
Our main contribution in this setting is simply establish-

ing the completeness of PERMA,C̄ and DETA,C̄. Like in
the commutative case, PERMA,C̄ is complete for VNPA,C̄

and DETA,C̄ can polynomially simulate non-commutative
formulae. This was apparantly never observed before. We
obtain this as a consequence of the more general statement
in the non-commutative and non-associative case. A direct
proof in non-commutative associative setting would, how-
ever, be easier and give better parameters.

B. Non-associative computation

We discuss here both the commutative and non-
commutative versions of non-associative computation.

Non-associative algebras are quite common in mathe-
matics as well. The most notable ones are Lie algebras,
which may be viewed as matrix algebras with the “bracket”
product3. Lie algebras are not commutative either, but do
satisfy other nontrivial relations like xx = 0 and the Jacobi
identity (xy)z+ (yz)x+ (zx)y = 0. There are some known
non-associative algebras which are commutative, e.g. the
Jordan algebras, but they too are not free.

It is evident that in the non-associative setting, when
describing a polynomial, every monomial must come with
a specification of the ordering of multiplications of the
variables in it (this can be given by a parenthesis structure,
or equivalently a binary tree whose leaves are the variables).

The composition of operations in computer programs is
typically non-associative, which makes this issue present in
wide areas of program schemas, verification and symbolic
computation. One beautiful concrete example of how a non-
associative algorithm is useful in solving a basic problem is
Valiant’s CFL (Context Free Language) recognizer, see [18].
For a fixed context free grammar4 G, the recognizer on input
x must determine if x can be generated by the grammar G.
A classical cubic time algorithms existed for the problem,
and Valiant gives a sub-cubic algorithm by reducing it
to matrix multiplication. However, the matrix entries are
elements of a non-associative monoid defined by Valiant
from the given grammar G and input x. The algorithm
solves a general problem: computing the transitive closure

3For square matrices A, B, this product is defined by [A, B] = AB −
BA.

4Without loss of generality, in Chomsky normal form.

of an upper-triangular matrix with non-associative entries,
giving a polynomial in which every monomial is computed
in all possible multiplication orderings (corresponding to all
possible derivations of the string x by the grammar G).

The non-associative model, even when commutative, turns
out to be simple enough to allow lower bound proofs. We
use standard rank arguments to obtain exponential lower
bounds for an explicit polynomial. We also prove, as in
the non-commutative case, completeness theorems for the
determinant DETĀ,C and the permanent PERMĀ,C. Thus
the exponential lower bound above holds also for the per-
manent, and we get a separation VPĀ,C 6= VNPĀ,C. We note
that this proof is certainly “natural” in the sense of Razborov
and Rudich [16], which may be interpreted as meaning that
efficient non-associative arithmetic circuits cannot compute
“pseudo-random” polynomials.

C. Completeness in the relationless model

The completeness results in the previous sections are
proved in a very weak computational model, namely, a
model where no multiplicative relations hold. We consider
such a weak model merely to view the completeness results
in their most general form. Our proof extends Valiant’s
proof to the relationless setting. Indeed, we closely follow
the recent version of this proof by Malod and Portier [13],
which we find very amenable to the extensions we need. The
loss of commutativity presents only a few subtleties which
can be handled reasonably simply. The loss of associativity,
however, presents a major hurdle, which is of a purely
combinatorial nature.

In the absence of either commutativity or associativity,
there are many ways to define permanent and determinant.
In order for the completeness theorems to hold, we must
define permanent and determinant in a careful, perhaps not
the most natural, way. We find it noteworthy that such a
definition is possible, and that the nontrivial completeness
proofs can be carried out in such a weak computational
model. When defining the relationless determinant DETĀ,C̄

and permanent PERMĀ,C̄, we need to “commit” to an
ordering of multiplication of monomials, which is capable
of emulating arbitrary orderings. As orderings are specified
by trees, this gives rise to a problem about finding a certain
“universal” tree; we explain this problem and our results
in the next subsection. We conclude this one with the
consequences of this reduction: PERMĀ,C̄ is complete for
the class VNPĀ,C̄, and every polynomial computed by a
relationless formula of size s is a projection of DETĀ,C̄ of
size s+ 1. This consequently holds also in the free algebras
FA,C[X],FA,C̄[X], and FĀ,C[X].

D. Universal trees

In this paper, binary trees are rooted, uniform and ordered
(see Section II-A).The size of a binary tree is the number

of leaves in it. We now discuss two standard notions of
universality of trees. We say that a binary tree T is
• n-subgraph universal, if T contains every binary tree

of size at most n as a subtree,
• n-minor universal, if T contains every binary tree of

size at most n as a minor.
In both cases, the tree T must be able to accommodate both
very balanced and very unbalanced trees. As it happens,
either type of universal tree would suffice for a completeness
reduction, if it has polynomial size.

The question of subgraph universal trees was studied in
[6]. They showed that the smallest n-subgraph universal
tree has size nΘ(logn). This is superpolynomial in n and
thus unsuitable for our purposes. Interesting, though not
related to our goal, is the fact that there exist small subgraph
universal graphs: in [9], it was shown that when a graph G
is a good enough expander of linear size, it contains all
(unordered) binary trees of size at most n as subgraphs. To
the best of our knowledge, the question of minor universal
trees was not studied before. In this paper we construct a
n-minor universal tree of size O(n4), the construction being
in polynomial time.

II. FORMAL DEFINITIONS AND RESULTS

A. Definitions
We give formal definitions of the notions described above.

Relationless polynomials: Let F be a field, and X
a set of variables. Unless otherwise stated, the variables
we consider have no multiplicative relations: they are non-
commutative and non-associative. However, addition re-
mains commutative and associative, and multiplication is
distributive over addition. We define algebra of relationless
polynomials, FĀ,C̄[X], as the free algebra generated by F, X
and operations +, ·, where the operations satisfy, for every
a, b ∈ F and f, g, h ∈ F〈X〉,
• a+ b = a+F b, a · b = a ·F b, where +F, ·F are the field

operations,
• a · f = f · a,
• 0 · f = 0, 1 · f = f , where 0, 1 ∈ F is the zero, unit

element of F,
• f + g = g + f , f + (g + h) = (f + g) + h, and
• f · (g + h) = f · g + f · h, (g + h) · f = g · f + h · f .

A relationless polynomial is an element of the algebra F〈X〉.
A monomial in F〈X〉 is a product of variables in X . Every
polynomial g in F〈X〉 can be uniquely written as

∑
i biαi,

where bi ∈ F and αi are distinct monomials. The field
element bi is called the coefficient of αi in g. The degree of
a monomial α is defined in the obvious way: deg(xi) = 1
for a variable xi and deg(α1α2) = deg(α1) + deg(α2).
The degree of a polynomial f is the maximal degree of a
monomial in f with a non-zero coefficient.

We can similarly define three other classes of polynomi-
als, FA,C[X], FĀ,C[X], FA,C̄[X], depending on whether we
include the relations f · g = g · f and f · (g ·h) = (f · g) ·h.

Relationless circuits: We consider computations in the
algebra of relationless polynomials. A relationless arithmetic
circuit Φ is a directed acyclic graph as follows. Nodes (or
gates) of in-degree zero are labelled by either a variable in
X or a field element in F. All the other nodes have in-degree
two and they are labelled by either + or ×. The two edges
going into a gate v labelled by × are labelled by left and
right. This is important for functionality, as the variables do
not commute.

The two standard complexity measures for circuits are
size and depth: the size of a circuit, |Φ|, is the number of
edges in it, and the depth of a circuit is the length of the
longest directed path in it. For a node v in a circuit Φ, denote
by Φv the sub-circuit of Φ rooted at v. Denote by Xv the
set of variables that occur in Φv . The gate v computes a
polynomial Φ̂v ∈ F〈Xv〉 in the obvious way. The degree of
v, deg(v), is the degree of Φ̂v . A formula is a circuit in
which every gate has out-degree one (and so it is a directed
binary tree).

In this paper, polynomials and circuits stand for relation-
less polynomials and circuits, unless stated otherwise.

Complexity classes.: As mentioned before, Valiant de-
fined the algebraic analogs of P and NP, which are now
called VP and VNP. In this paper, we denote these classes by
VPA,C,VNPA,C, and we define three other classes of polyno-
mials VPA,C̄,VPĀ,C,VPĀ,C̄ and VNPA,C̄,VNPĀ,C,VNPĀ,C̄

as well. Technically, there is one such class for every field
F, but we omit this dependency for the sake of simplicity.
We state the formal definitions of VPĀ,C̄,VNPĀ,C̄, the other
three definitions are similar.

A family of relationless polynomials {fn} is called p-
bounded, if there exists a polynomial q(n) so that for every
n, the polynomial fn is in q(n) variables, it has degree at
most q(n), and it can be computed by a circuit of size at
most q(n). The class of relationless p-bounded families of
polynomials is denoted VPĀ,C̄.

A family of relationless polynomials {fn} is called p-
definable, if there exist polynomials p(n) and q(n), and a
p-bounded family {gn} so that each fn is in q(n) variables,
each gn is in q(n) + p(n) variables, and

fn(x1, . . . , xq(n))

=
∑

e1,...,ep(n)∈{0,1}

gn(e1, . . . , ep(n), x1, . . . , xq(n)).

The class of relationless p-definable families of polynomials
is denoted VNPĀ,C̄.

A polynomial f is called a projection of a polynomial g,
if f(x1, . . . , xn) = g(y1, . . . , ym), where each yi is either
a variable xj or a field element. A family of relationless
polynomials {fn} is called VNPĀ,C̄-complete, if it is in
VNPĀ,C̄ and for every family {gn} in VNPĀ,C̄, there exists
a polynomial p(n) so that for every n, gn is a projection of
some fm with m ≤ p(n).

Let us state an important property of the four VNP classes.
Let {fn} be a family of polynomials in one of the algebras
Fp,q[X], p ∈ {A, Ā}, q ∈ {C, C̄}, and let VNPp,q be the
corresponding VNP class. We say that {fn} is explicit, if
fn has polynomial degree and there exists a polynomial-
time algorithm5 which, given n and a monomial α as inputs,
computes the coefficient of α in fn.

Fact 1. If {fn} is explicit then {fn} ∈ VNPp,q .

In the case VNPA,C = VNP, this was shown in [19]. We
leave the other cases as an exercise for the reader.

Binary trees and universal trees: In this paper, binary
trees are rooted, uniform and ordered. More exactly, a binary
tree T
• has one special node called the root of T ,
• every node in T which is not a leaf has exactly two

children, and
• if a node u in T has two children u1, u2, one of the

edges 〈u, u1〉, 〈u, u2〉 is labelled with left and the other
with right.

The size of a binary tree, |T |, is the number of leaves in it6.
If T1, T2 are two binary trees with roots u1, u2, we define
(T1, T2) as the tree whose root u is connected to the two
roots u1 and u2, and the edge 〈u, u1〉 is labelled by left and
〈u, u2〉 by right. If we do not allow redundant parenthesis
((. . .)), every parenthesis structure can be associated with
a binary tree. For example, (()())() is associated with the
tree ((v1, v2), v3). Every monomial α of degree r can thus
be associated with a binary tree with r leaves, representing
the multiplicative structure of α. Given an ordered set F =
(F1, . . . , Fr) of relationless polynomials, and given a binary
tree T with r leaves, denote by

∏T
F the product of the

polynomials in F according to the tree T . For example,
when T = ((v1, v2), v3),
T∏

(x1 + 1, x2, x3) = ((x1 + 1)x2)x3 = (x1x2)x3 + x2x3.

We want to define relationless permanent so that it is
VNPĀ,C̄-complete. The number of binary trees of size n is
exponential in n. Hence there exists an exponential number
of monomials of degree n and n variables, differing only in
their multiplicative structure (in the associative, commutative
world there is only one such monomial). This poses a
difficulty in the definition of permanent, for its multiplicative
structure must somehow encompass the structure of all
possible monomials. In order to overcome this obstacle, we
introduce the notion of universal tree. Roughly, a universal
tree contains every small tree as a minor.

Let T be a binary tree and let V be a non-empty subset of
the leaves of T . Define κ(T ;V) as the minor of T induced

5That is, a Turing machine. To avoid discussing how to handle, say, reals
on a Turing machine, assume that fn has 0, 1-coefficients.

6Since we assume that trees are uniform, the total number of nodes in a
tree is at most twice the number of its leaves.

by the set V , formally defined as follows. If T = v ∈ V
then κ(T ; {v}) = v. When T = (T1, T2), let V1 be the set of
elements in V which are leaves of T1 and V2 be the elements
of V which are leaves of T2. Define

κ(T ;V) =

 κ(T2;V2) if V1 = ∅,
κ(T1;V1) if V2 = ∅,
(κ(T1;V1), κ(T2, V2)) otherwise.

For a node v in T , denote by Tv the sub-tree of T rooted
at v. The definition can be restated as follows:

1) Remove from T all nodes v such that the subtree of
Tv does not contain an element of V . This gives a tree
T ′.

2) T ′ is, in general, not a binary tree, as it may contain
nodes v with only one child v′. Contract such vertices
until a binary tree is obtained.

Let t ≥ 1 be a real number. We say that a tree T is t-
universal, if for every binary tree T of size at most t, there
exists a subset V of leaves of T so that T = κ(T ;V).
Clearly, we can always assume that t is a natural number;
we allow t ∈ R for our convenience. In Section III, we show
how to efficiently construct a universal tree T of size at most
t4.

Permanent and determinant.: Valiant [19] showed that
permanent is VNP-complete. In the relationless world, there
are many options to define the permanent. In order to show
that it is VNPĀ,C̄-complete, we have to define it in a specific
way, using universal trees. This enables us to simulate the
various multiplicative structures of relationless polynomials.

We first define PERM(T) relatively to a given binary tree
T . Let T be a binary tree with t leaves and let M be a t× t
matrix. Define

PERM(T)(M) =
∑
σ

T∏
(M1,σ(1), . . . ,Mt,σ(t)),

where σ is a permutation of [t] = {1, . . . , t}. Fix an integer
n, and let T = T (n) be the n-universal tree defined in
Section III. Let m be the number of leaves in T (thus m is
polynomial in n), and let X = (xi,j) be a m×m matrix of
variables. Define

PERM(X) = PERMn(X) = PERM(T)(X) .

We also show that determinant is universal; we define the
determinant similarly:

DET(T)(M) =
∑
σ

(−1)sgn(σ)
T∏

(M1,σ(1), . . . ,Mt,σ(t)),

and

DET(X) = DETn(X) = DET(T)(X).

B. Results

Let us state the main results of this paper.

Theorem 2. The permanent is VNPĀ,C̄-complete, over any
field of characteristic different than two.

Theorem 2 implies the following corollary.

Corollary 3. The permanent is VNPĀ,C-complete and
VNPA,C̄-complete, over any field of characteristic different
than two.

An important step in the proof of the theorem is the
following universality of the permanent and determinant,
which is well-known in the associative, commutative world.

Theorem 4. For every arithmetic formula Φ, there exists
a matrix M of poly(|Φ|)-dimension with entries that are
either variables or field elements so that Φ̂ = PERM(M).
A similar statement holds for the determinant, that is, there
exists a matrix M ′ of poly(|Φ|)-dimension with entries that
are either variables or field elements so that Φ̂ = DET(M ′).

A key ingredient in the two theorems above is the con-
struction of a universal tree:

Theorem 5. For every t ≥ 1, there exists a t-universal
tree T of size at most t4. Moreover, we can construct T in
polynomial time, and, given a binary tree T of size at most
t, we can find V so that T = κ(T ;V) in time polynomial
in t.

On the other hand, we can show that in the non-associative
world, VP 6= VNP. In Section V we prove an exponential
lower bound on circuit size of an explicit non-associative
commutative polynomial, which gives:

Theorem 6. Over any field, VPĀ,C 6= VNPĀ,C.

This immediately implies:

Corollary 7. Over any field, VPĀ,C̄ 6= VNPĀ,C̄.

III. UNIVERSAL TREES

Universal sequences.: The first ingredient in the con-
struction of the universal tree is a construction of a universal
sequence. We say that a sequence of positive real numbers
b̄ = 〈b1, . . . , bn〉 ∈ Rn covers a sequence of positive natural
numbers ā = 〈a1, . . . , am〉, if there exist i1 < i2 < · · · <
im ∈ [n] so that aj ≤ bij for every j ∈ [m]. The indices
i1, . . . , im are called covering of ā by b̄. For a real parameter
t ≥ 1, we say that b̄ ∈ Rn is t-universal, if b̄ covers every
ā = 〈a1, . . . , am〉 such that a1 + · · ·+ am ≤ t.

Lemma 8. For every t ≥ 1, there exists a t-universal
sequence b̄ = 〈b1, . . . , bn〉 such that

1) b̄ consists of real numbers of the form t/2j , j ∈
{0, . . . , blog tc}, and

2) for every j ∈ {0, . . . , blog tc}, the number t/2j occurs
exactly 2j times in b̄.

The sequence can be constructed in time polynomial in t and
for a given ā, we can find a covering of ā by b̄ in polynomial
time.

Proof: For t ≥ 1, let us construct a t-universal sequence
b̄(t) by induction on btc. If btc = 1, set b̄(t) = 〈t〉. If
btc > 1, let

b̄(t) = 〈b̄(t/2), t, b̄(t/2)〉,

the concatenation of b̄(t/2), t, b̄(t/2). It is easy to see that
1 and 2 are satisfied, and it thus remains to show that b̄(t)
is indeed universal.

Assume btc > 1, otherwise the statement is immediate.
Let ā = 〈a1, . . . , am〉 be a sequence of positive integers
such that s =

∑
i∈[m] ai ≤ t. If s ≤ t/2, then b̄(t) covers

ā, since b̄(t/2) already covers a. Otherwise, let j ∈ [m] be
the smallest natural number so that

∑
i≤j ai > t/2. Hence∑

i<j ai ≤ t/2 and
∑
i>j ai ≤ t/2. Therefore b̄(t/2) covers

a1, . . . , aj−1 and aj+1, . . . , am. Since aj ≤ t, b̄(t) covers
ā.

Lemma 8 implies the following corollary (it will not be
used anywhere in this paper, but may be interesting in its
own right).

Corollary 9. For every t ≥ 1, there exists a t-universal
sequence b̄ = 〈b1, . . . , bn〉 such that n = O(t) and b1 +
· · ·+ bn = t(blog tc+ 1).

The following fact is a commonly used property of trees,
usually attributed to Spira [17].

Fact 10. Let T be a binary tree with |T | ≥ 2. Then there
exists a node v in T such that |T |/3 < |Tv| ≤ 2|T |/3. Such
a node can be found in polynomial time.

Proof of Theorem 5: We construct T (t) by induction on
btc. If btc = 1, set T (t) to be a single node. Otherwise, let
b̄ = 〈b1, . . . , bn〉 be the (2t/3)-universal sequence given by
Lemma 8. We define T (t) by the following self-explanatory
picture

QQ
T (b1)��

T (b1) QQ
T (b2)...

��
T (bn−1) QQ

T (bn)��
T (bn)

T (2t/3)

The tree is an ordered one, edges going to the left of
the central branch are labelled by left and the ones to the
right by right. We denote the copies of T (bi) to the left of
the central branch by T L(bi) and the ones to the right by
T R(bi). The bottom copy of T (2t/3) is denoted T0.

Let us first bound the size of T (t). We have |T (t)| = 1

if btc = 1, and by Lemma 8, if btc > 1, the size of T is

|T (t)| = |T (s)|+ 2
(blog sc∑

i=0

2i|T (s/2i)|
)
, where s = 2t/3.

(1)

Looking for an upper bound |T (t)| ≤ tc, c > 1, it is
sufficient to satisfy

tc ≥ tc(2/3)c
(

1 + 2
2c−1

2c−1 − 1

)
.

Hence it is sufficient to have

(3/2)c ≥
(

1 +
2c

2c−1 − 1

)
.

This is satisfied for c = 4. Obviously, the construction of
the tree takes polynomial time.

Let us show that T (t) is t-universal. Fix a binary tree T
of size |T | ≤ t. We describe how to find a set V of the
leaves of T (t) so that T = κ(T ;V).

If |T | = 1, set V to be the leftmost leaf of T (t).
Otherwise, let |T | > 1. Let v0 be the node given by Fact 10
so that |T |/3 < |Tv0 | ≤ 2|T |/3. Since T0 is 2t/3 universal,
we can find V (0) a subset of leaves of T0 such that

Tv0 = κ(T0;V (0)) = κ(T (t);V (0)).

Let γ = (vm, . . . , v1, v0) be the directed path from the root
of T to v0. For ` ∈ [m], let u` be the child of v` in T that
is not v`−1, and let a` be the size of Tu` . Thus, |Tv0 | +∑
` a` = |T | ≤ t and so

∑
` a` ≤ 2|T |/3 ≤ 2t/3. Since

b̄ is (2t/3)-universal, we can find i1 < i2 < · · · < im such
that a1 ≤ bi1 , . . . , am ≤ bim . If u` is the left child of v`, let
V (`) be the subset of leaves of T L(i`) such that

Tu` = κ(T L(i`);V (`)).

Such a set exists since T L(i`) is bi` -universal and a` ≤ bi` .
Otherwise, u` is the right child of v`; let V (`) be set of
leaves of T R(i`) such that

Tu` = κ(T R(i`);V (`)) .

Define V = V (0) ∪
⋃
`∈[m] V

(`). We claim that for every
` ∈ {0, . . . ,m},

Tv` = κ
(
T (t);V (0) ∪

⋃
k∈{0,...,`}

V (k)
)
.

This is straightforward to verify by induction on `. The time
it takes to find V is polynomial in t (similarly to (1)).

IV. COMPLETENESS

In this section we show that the permanent is complete
even in the relationless world. The standard proof the
permanent’s completeness has three parts (see, for example,
[3]). In the relationless world, the proof consists of three
parts as well, but each one is slightly modified. We first
describe the three steps.

Part I: simulating circuits by Boolean sums over for-
mulas.: As in the standard proof, the first part is to show
that circuits can be efficiently simulated by a Boolean sum
over polynomial size formulas.

Denote by VNPĀ,C̄
e the family of polynomials {fn} in

VNPĀ,C̄ so that the polynomials {gn} in the definition of
VNPĀ,C̄ have polynomial size formulas (instead of polyno-
mial size circuits). Formally, the first part of the proof is the
following theorem, which is proved in Section IV-A

Theorem 11. VPĀ,C̄ ⊆ VNPĀ,C̄
e, over any field.

Theorem 11 implies the following.

Corollary 12. VNPĀ,C̄ = VNPĀ,C̄
e, over any field.

Part II: universality.: The second part in our proof as
well as in the standard proof is to show that the permanent
is universal, that is, formulas can be efficiently simulated by
permanents (a similar statement holds for determinant).

Lemma 13. For every arithmetic formula Φ of size s, there
exist a tree T with t ≤ s + 1 leaves and a t × t matrix
M with entries that are either variables or field elements
so that Φ̂ = PERM(T)(M). A similar statement holds for
the determinant, that is, there exists a t× t matrix M ′ with
entries that are either variables or field elements so that
Φ̂ = DET(T)(M ′).

Lemma 13 is proved in Section IV-B. It implies Theo-
rem 4 by embedding M,M ′ in a matrix of |T (t)|-dimension,
as in the end of the proof of Theorem 2 below.

Part III: the permanent simulates Boolean sums.: In
this part we show that we can write Boolean sum over
one variable as permanent of a small matrix. This property
differentiates the permanent from the determinant, and here
we must assume that the underlying field has characteristic
different from 2.

To state and prove this property, we need to add field
elements to a given matrix. Let M be an s× s matrix. Let
M (1) be a s × t matrix, M (2) be a t × s matrix and M (3)

be a t× t matrix, so that all the entries in M (1),M (2) and
M (3) are field elements. We call the matrix

M =
[

M M (1)

M (2) M (3)

]
a t-field-increment of M . To define the permanent of M ,
we need to choose a canonical tree P (t) with t leaves (P
stands for path): P (1) is the leaf v1, and for i > 1, set
P (i) = (vi, P (i−1)) with a new leaf vi.

The following theorem shows that the permanent simu-
lates Boolean sums.

Proposition 14. Assume that the underlying field is of
characteristic different than two. Let M be an s× s matrix
with entries that are variables, field elements, and a special
variable e. Let T be a tree with s leaves. Let se be the
number of entries in M that e occurs in.

Then there exists a (5se)-field-increment M ′ of M so that

PERM(T ′)(M ′
∣∣
e=0

)

= PERM(T)(M
∣∣
e=0

) + PERM(T)(M
∣∣
e=1

),

with T ′ = (T, P (5se)). Every variable other than e occurs
in H as many times as it occurs in M .

Proposition 14 is proved in Section IV-C.
The completeness proof.: Given these three parts, we

can prove that the permanent is complete.
Proof of Theorem 2: The standard proof that the

permanent is in VNP also implies that the permanent is in
VNPĀ,C̄ (alternatively, use Fact 1). It remains to show that
every polynomial in VNPĀ,C̄ is reducible to permanent. Let
f = fn be in VNPĀ,C̄. Corollary 12 tells us that without
loss of generality f is of the form

f(x̄) =
∑

ē∈{0,1}p
g(ē, x̄),

with p polynomial in n and g computable by a polynomial
size formula. Lemma 13 tells us that there exists a poly-
nomial size matrix M with entries that are either variables
xi, ej and field elements so that

f(x̄) =
∑

b̄∈{0,1}p
PERM(M

∣∣
ē=b̄

).

Proposition 14 tells us that there exist polynomial size
matrices H1, . . . ,Hp and corresponding trees T1, . . . , Tp so
that

f =
∑

b1,...,bp−1

(∑
bp

PERM(M
∣∣
ep=bp

)
)

=
∑

b1,...,bp−1

PERM(Tp)(Hp)

= · · · =
∑
b1

PERM(T2)(H2

∣∣
e1=b1

) = PERM(T1)(H1).

Finally, let T be a |T1|-universal tree of size polynomial
in n, as given by Theorem 5. Let V be a subset of the leaves
of T so that κ(T , V) = T1. Let M be a |T | × |T | matrix,
whose rows and columns are labelled by leaves of T , in
the order defined by T . Define the entries of M so that the
restriction of M to the rows and columns in V are H1, and
in all the other rows and columns it is the identity matrix,
namely, for every 〈i, j〉 not in V × V , we have Mi,j = 1 if
i = j and Mi,j = 0 otherwise. Thus,

f = PERM(T1)(H1) = PERM(M).

A. Simulating circuits by Boolean sums over formulas

In this section, we employ the method of Malod and
Portier [13] to prove Theorem 11.

1) Parse trees: Given a circuit Ψ, we define a family of
trees, which we call parse trees. They are intended to capture
computation of monomials in Ψ. A parse tree T consists of
nodes that are labelled by nodes of Ψ. The root of T is
labelled by the output node of Ψ. If Ψ has only one node,
T consists only of one node as well. If v is the output gate
of Ψ, then

1) if v = v1 × v2, then T = (T1, T2), where T1, T2 are
parse trees of Ψv1 ,Ψv2 , and

2) if v = v1 + v2, then T is Ti with the edge 〈vi, v〉
added to it, where Ti is a parse tree of Ψvi and i is
either 1 or 2.

A parse tree T computes a monomial T̂ in the obvious
way: Let µ(T) be the minor of T that consists only of
product gates and input gates, that is, after contracting all
edges going into sum gates in T (µ stands for multiplicative
part). The tree µ(T) is a binary tree. Every leaf v in µ(T)
is an input gate in Ψ labelled by Ψ̂v . The t leaves of µ(T)
are ordered in a natural way: if v = v1 × v2 in µ(T),
then the leaves in µ(T)v1 are smaller than the leaves in
µ(T)v2 . Denote this order by (v1, v2, . . . , vt). The monomial
T computes is

T̂ =
µ(T)∏

(Ψ̂v1 , . . . , Ψ̂vt). (2)

We say that a circuit Ψ is multiplicatively disjoint if for
every u = u1 × u2 in Ψ, the two circuits Ψu1 and Ψu2 are
disjoint. When Ψ is multiplicatively disjoint, all the parse
trees of Ψ are indeed trees. Multiplicatively disjoint circuits
can be decomposed as follows.

Claim 15. If Ψ is multiplicatively disjoint, then

Ψ̂ =
∑
T

T̂ ,

where T is a parse tree of Ψ.

Proof: The claim follows by induction on the size of
Ψ.

The following proposition shows that circuits can be
efficiently simulated by multiplicatively disjoint circuits. The
proof proceeds in the same way as in [13], and will not be
repeated here.

Proposition 16. Let Φ be a relationless circuit of size s
computing a polynomial f of degree r, then there is a
multiplicatively disjoint relationless circuit Ψ of size O(r4s)
computing f as well.

2) Parse trees are Boolean vectors: We use parse trees
to simulate a circuit by a Boolean sum over a formula.

Proof of Theorem 11:
Let f be a polynomial in n variables of polynomial

degree, and let Φ be a relationless circuit of polynomial size
computing f . Let Ψ be the multiplicatively disjoint polyno-
mial size circuit computing f given by Proposition 16, and

let s be the size of Ψ, s being polynomial in n. Claim 15
implies that

f =
∑
T

T̂ ,

where T is a parse tree of Ψ. It thus remains to reduce the
sum over parse trees to a Boolean sum. Intuitively, auxiliary
Boolean variables will be used to identify parse trees of Ψ
together with the monomials they compute.

Let T = T (s) be the s-universal tree of polynomial size
given by Theorem 5. Recall that we have a polynomial time
algorithm that, given a tree T of size at most s, finds V =
V (T), a set of leaves of T , so that T = κ(T ;V). There
may exist more than one such set V , we fix the set to be the
one that the algorithm outputs. Let σ be the natural bijection
between leaves of T and leaves in V , namely, if the leaves of
T are v1, . . . , vm and the leaves in V are u1, . . . , um (order
the leaves according to the order defined by the trees), then
σ(vi) = ui for every i ∈ [m].

We now define the auxiliary variables that we use. For
every gate v in Ψ, let a(v) be a variable, and let ā be the
vector of variables a(v). For every leaf u of T , let b(u) be
a variables, and let b̄ be the vector of variables b(u). For
every leaf u of T and input gate w in Ψ, let c(u,w) be a
variable, and let c̄ be the vector of variables c(u,w). We are
interested in zero-one assignments of ā, b̄, c̄.

Let ζ be a 0, 1-assignment to the variables ā, b̄, c̄. We say
that ζ is good, if

1) Tζ = {v : ζ(a(v)) = 1} is a parse tree of Ψ,
2) Vζ = {u : ζ(b(u)) = 1} is the set V (µ(Tζ)) of

leaves of T , and
3) ζ(c(u,w)) = 1 if and only if u ∈ V (µ(Tζ)) and the

leaf σ−1(u) of Tζ is w.

For a leaf u of T , let

Lu = (1− b(u)) +
∑
w

c(u,w)Ψ̂w,

where w is an input gate of Ψ. If ζ is good, we thus have

T̂ζ =
T∏

(Lu1 , . . . , Lum)
∣∣∣
ζ

(3)

where u1, . . . , um are the leaves of T and
∣∣∣
ζ

denotes

substituting every variable e in ā, b̄, c̄ by ζ(e).
Given a Boolean assignment ζ, we can determine in

polynomial time whether it is good. Cook’s theorem tells
us that there exists a polynomial size Boolean formula B
in variables ā, b̄, c̄ and some additional variables d̄ so that ζ
is good if and only if there exists a zero-one assignment
ζd to the variables d̄ so that B(ζ, ζd) = 1. As we are
interested in the value of B only for Boolean inputs, we
can assume that B is an arithmetic formula. This also tells
us that commutativity and associativity is not an issue. We

can therefore write

f =
∑
T

T̂ =
∑
ζ,ζd

B(ζ, ζd)
T∏

(Lu1 , . . . , Lum)
∣∣∣
ζ

B. Universality

We now show that the permanent in universal in the
relationless world; a similar claim holds for the determinant.

Claim 17. For every arithmetic formula Φ, there exist s ≤
|Φ|+ 1, and an s× s matrix M with entries that are either
variables or field elements and a tree T with s leaves so
that Φ̂ = PERM(T)(M). Moreover, M has the following
property: for every i ∈ [s − 1], Mi,i+1 = 1 and for every
j > i+ 1, Mi,j = 0.

Claim 17 immediately implies Lemma 13.
Proof: The lemma follows by induction on the size of

Φ. If the size of Φ is one, set

M =
[

1 1
0 Φ̂

]
and T a binary tree with two leaves. Thus, PERM(T)(M) =
Φ̂ and M has the claimed structure.

If Φ = Φ1 × Φ2, let s1, s2,M1,M2, T1, T2 be given by
induction. Set s = s1 + s2 ≤ |Φ|+ 1, set

M =
[
M1 E
0 M2

]
,

where E is a matrix that has a one in the lower left corner
and zero elsewhere, and set T = (T1, T2). Thus,

PERM(T)(M) =
∑
π′

T∏
(M1,π(1), . . . ,Ms,π(s))

+
∑
π1,π2

T1∏
(M1,σ(1), . . . ,Ms1,σ(s1))

·
T2∏

(M1,σ(1), . . . ,Ms2,σ(s2))

= 0 + Φ̂1 · Φ̂2 = Φ̂,

where π′ is a permutation so that π′(s1) = s1 + 1, π1 is
a permutation of [s1], and π2 is a permutation of [s2]. The
reason why the sum over π′ is zero is that by the pigeon hole
principle, for every π′, there exists i > s1 so that π′(i) ≤ s1

and so Mi,π′(i) = 0.
If Φ = Φ1 + Φ2, let s1, s2,M1,M2, T1, T2 be given by

induction. Let s = s1 + s2 + 1 ≤ |Φ|+ 1 and let M be the
following s× s matrix

M =

 1 v 0 0
0 M1 v1 0

M2[1] 0 v2 M2[2+],

 ,

where v is a row vector with 1 in the leftmost entry and 0
elsewhere, v1, v2 are column vectors with 1 in the bottom
entry and 0 elsewhere, M2[1] is the first column of M2, and
M2[2+] is the matrix M2 without the first column. Define
a tree T with s leaves so that the following is satisfied for
every polynomials,

T∏
(1, f1, . . . , fs1 , 1, . . . , 1) =

T1∏
(f1, . . . , fs1) and

T∏
(f1, 1, . . . , 1, f2, . . . , fs2) =

T2∏
(f1, . . . , fs2) . (4)

To achieve this, let T ′ be the tree ((u1, T1), u2), where
u1, u2 are two new nodes. The tree T is obtained by
attaching the tree T ′ to the leftmost leaf of the tree T2.

The definition of M guarantees that the following prop-
erties of permutations π of [s] are satisfied.

1) If π(1) = 1 and π(s1 + 1) = s1 + 2, then there exists
i ∈ [s] so that Mi,π(i) = 0.

2) If π(1) = 1, π(s) = s1 + 2 and
M1,π(1), . . . ,Ms,π(s) 6= 0, then π(i) ∈ {2, . . . s1 + 1}
for every i ∈ {2, . . . s1 + 1} and Mi,π(i) = 1 for
every i ≥ s1 + 2.

3) If π(1) = 2, π(s1 + 1) = s1 + 2 and
M1,π(1), . . . ,Ms,π(s) 6= 0, then π(i) ∈ {1, s1 +
3, . . . s} for every i ∈ {s1 + 2, . . . s} and Mi,π(i) = 1,
for every 1 ≤ i ≤ s1 + 2.

4) If π(1) = 2 and π(s) = s1+2, then there exists i ∈ [s]
so that Mi,π(i) = 0.

Using (4), we can thus write

PERMT (M)

=
∑
π∈(ii)

T∏
(M1,π(1), . . . ,Ms,π(s))

+
∑

π∈(iii)

T∏
(M1,π(1), . . . ,Ms,π(s))

=
∑
π∈(ii)

T∏
(1,M2,π(2), . . . ,Ms1+1,π(s1+1), 1, . . . , 1)

+
∑

π∈(iii)

T∏
(M1,π(1), 1, . . . , 1,Ms1+2,π(s1+2)Ms,π(s))

= PERM(T1)(M1) + PERM(T2)(M2) = Φ̂.

To prove the statement for the determinant, we may need
to change signs of v, v1, v2 in the case of a sum gate.

C. The permanent simulates Boolean sums

To prove Proposition 14 we use the fact that the proposi-
tion holds in the commutative, associative case [3].

Proof of Proposition 14: Assume that the underlying
field is of characteristic different than two. Let M be an s×s
matrix whose entries are distinct variables, except a special

variable e that appear se times in M . That is, we assume
that either Mi,j = xij or Mi,j = e, where e, xij : i, j ∈ [s]
are distinct variables, and e appears at se positions in M .

The standard proof in the commutative, associative world
tells us that we can construct a (5se)-field-increment M ′ of
M so that

PERM(M ′
∣∣
e=0

) = PERM(M
∣∣
e=0

) + PERM(M
∣∣
e=1

) .
(5)

This implies that every variable other than e occurs in
M ′
∣∣
e=0

as many times as it occurs in M . Equality (5) is an
equality of commutative, associative polynomials. Neverthe-
less, we claim that due to the structure of the polynomials in
(5), the equality holds also in the relationless setting. Let T
be a tree with s leaves, and let T ′ = (T, P (5se)). We claim
that

PERM(T ′)(M ′
∣∣
e=0

) (6)

= PERM(T)(M
∣∣
e=0

) + PERM(T)(M
∣∣
e=1

).

This holds since every relationless monomial that appears
in (6) corresponds to a unique associative, commutative
monomial, as we now explain. Let α be a commutative,
associative monomial of the form

α = xi1j1xi2j2 . . . xikjk ,

where i1 < · · · < ik ∈ [s] and j1, . . . jk ∈ [s] are
distinct. Let u1, . . . us be the leaves of T , ordered according
to the ordering of T . Let Tα be the tree κ(T ;V), where
V = {ui1 , . . . uik}. Let α? be the non-commutative non-
associative monomial defined as

α? =
Tα∏

(xi1j1 , xi2j2 , . . . , xikjk) .

First, we can see that every monomial that has a non-zero
coefficient in (6) is of the form α?, where α is as above.
Second, the coefficient of α? on the left resp. right hand
side in (6) is equal to the coefficient of α on the left resp.
right hand side of (5). (For the left hand side, inspect the
definition of field-increment.) Hence, (5) implies (6).

V. THE NON-ASSOCIATIVE COMMUTATIVE WORLD

We now show that in the non-associative, commutative
world, VNP is strictly stronger than VP. We do so by con-
structing an explicit non-associative polynomial that requires
exponential size circuits. In this section, all polynomials are
non-associative commutative.

Let {Sn} be a fixed family of binary trees such that Sn has
n leaves and the family is constructible in polynomial time.
Otherwise the particular structure of Sn is not important.
Let Vn be the polynomial of degree 2n and variables z0, z1

Vn =
∑
ζ<ζ′

Sn∏
(zζ(1), . . . , zζ(n))

Sn∏
(zζ′(1), . . . , zζ′(n)) ,

where ζ, ζ ′ ∈ {0, 1}n and “<” stands for lexicographic
ordering.

We are going to prove an exponential lower bound on the
circuit-size of Vn. It would perhaps be more natural to de-
fine Vn as

∑
ζ

∏Sn(zζ(1), . . . , zζ(n))
∏Sn(zζ(1), . . . , zζ(n)).

This would however allow us to prove the lower bound only
if char F 6= 2.

The first step of the proof is given by the following linear
lower bound.

Lemma 18. Assume that∑
i,j∈[k]:i<j

xixj =
∑
i∈[m]

figi ,

where fi, gi are homogeneous polynomials of degree 1. Then
m is at least (k − 1)/2. This holds over any field.

Proof: The lemma is true even in the associative,
commutative setting. The integer m is at least the minimum
rank of a k × k matrix A which satisfies

Aii = 0 and Aij +Aji = 1

for every i, j ∈ [k]. Setting B = A+At, we obtain a matrix
B with 0 on the diagonal and 1 everywhere else. Hence B
has rank at least k − 1, and A has rank at least (k − 1)/2.

For a monomial α, let us say that it respects the tree Sn,
if α =

∏Sn(zζ(1), . . . , zζ(n)), where ζ ∈ {0, 1}n; we write
α = z(ζ). A polynomial g respects Sn if every monomial
α which has a non-zero coefficient in g respects Sn. In
particular, g is a homogeneous polynomial of degree n (or g
is zero). We use the following simple claim. It is this point
where we essentially use non-associativity.

Claim 19. Assume that β is a monomial with a non-zero co-
efficient in Vn and β = α1α2, where 0 < degα1,degα2 <
2n. Then both α1 and α2 respect Sn.

We need one other claim, whose proof is the same as
in the standard associative commutative case. We say that
a polynomial is homogeneous if all its monomials with
non-zero coefficients have the same degree. We say that a
circuit Φ is homogeneous, if every node v in Φ computes a
homogeneous polynomial.

Claim 20. Assume that f is a homogeneous polynomial of
degree d, and that f is computed by a circuit of size s. Then
f can be computed by a homogeneous circuit of size O(d2s).

We are ready to prove the lower bound.

Proposition 21. Over any field, every non-associative circuit
computing Vn has size 2Ω(n).

Proof: Let Φ be a circuit of size s computing Vn.
Losing a factor of at most O(n2), we can assume that
Φ is homogeneous. Let v1, . . . , vm be the set of product
nodes in Φ such that vi = ui × wi, deg vi = 2n and

deg ui,degwi < 2n. Thus m ≤ s and it is easy to show
that

Vn =
∑
i∈[m]

aiΦ̂uiΦ̂wi .

where ai is a field element.
Let us show that there exist polynomials fi, gi, for i ∈

[m], which respect Sn and

Vn =
∑
i∈[m]

figi . (7)

For a polynomial g =
∑
j bjαj with every bj a field element,

define g′ as the polynomial

g′ =
∑

j:αj respects Sn

bjαj .

The polynomial g′ respects Sn. Claim 19 implies

Vn =
∑
i∈[m]

aiΦ̂′uiΦ̂
′
wi ,

and (7) follows.
We use Lemma 18 to bound m in (7) from below.

For every ζ ∈ {0, 1}n, introduce a new variable xζ , and
let X = {xζ : ζ ∈ {0, 1}n}. If g =

∑
ζ bζz(ζ) is a

polynomial in variables z0, z1 which respects Sn, let g? be
the polynomial

∑
ζ bζxζ in variables X . The polynomial

g? is a homogeneous polynomial of degree 1 (or the zero
polynomial). Equation (7) and the definition of Vn imply
that ∑

ζ,ζ′∈{0,1}n:ζ<ζ′

xζxζ′ =
∑
i∈[m]

f?i g
?
i .

By Lemma 18, this implies that m ≥ (2n − 1)/2.
Since we assume that Sn can be constructed in time

polynomial in n, Vn is in VNPĀ,C by Fact 1. This and
Proposition 21 imply Theorem 6.

ACKNOWLEDGMENT

We wish to thank Swastik Kopparty and Leslie Valiant
for helpful discussions, and Valentine Kabanets for useful
references.

REFERENCES

[1] V. Arvind and S. Srinivasan. On the hardness of the noncom-
mutative determinant. ECCC TR09-103, 2009.

[2] M. Braverman, S. Cook, P. McKenzie, R. Santhanam and D.
Wehr. Pebbles and branching programs for tree evaluation.
MFCS, pages 175 – 186, 2009.

[3] P. Burgisser. Completeness and reduction in algebraic com-
plexity theory. Springer-Verlag Berlin Heidelberg 2000.

[4] Algebras with polynomial identities and computing the deter-
minant. S. Chien and A. Sinclair. SIAM Journal on Computing
37, pages 252 – 266, 2007.

[5] S. Chein, L. Rasmussen and A. Sinclair. Clifford algebras
and approximating the permanent. Journal of Computer and
Systems Sciences 67, pages 263-290, 2003.

[6] F. R. K. Chung, R. L. Graham and D. Coppersmith. On trees
containing all small trees. The Theory of Applications of
Graphs, John Wiley and Sons, pages 265–272, 1981.

[7] H. Cohn, R. Kleinberg, B. Szegedy and C. Umans. Group-
theoretic algorithms for matrix multiplication. FOCS 05’,
pages 379–388, 2005.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of Symbolic Computation 9,
pages 251–280, 1990.

[9] J. Friedman and N. Pippenger. Expanding graphs contain all
small trees. Combinatorica 7(1), pages 71–76, 1987.

[10] M. Goldberg and E. Lifshitz. On minimal universal trees.
Mat. Zametki 4, pages 371 – 378, 1968.

[11] P. Hrubes, A. Wigderson and A. Yehudayoff. Non-
commutative circuits and the sum-of-squares problem.
Manuscript, 2009.

[12] L. Hyafil. On the parallel evaluation of multivariate polyno-
mials. SIAM J. Comput. 8(2), pages 120 – 123, 1979.

[13] G. Malod and N. Portier. Characterizing Valiant’s algebraic
complexity classes. J. Complexity 24(1), pages 16–38, 2008.

[14] N. Nisan. Lower bounds for non-commutative computation.
STOC 91, pages 410–418, 1991.

[15] N. Nisan and A. Wigderson. Lower bounds on arithmetic
circuits via partial derivatives. Computational Complexity, vol.
6, pages 217–234, 1996.

[16] A. A. Razborov and S. Rudich. Natural proofs. STOC 94’,
pages 204–213, 1994.

[17] P. M. Spira. On time-hardware complexity tradeoffs for
Boolean functions. 4.Hawaii Symp.on Syst.Sc., 525-527.

[18] L. G. Valiant. General context-free recognition in less than
cubic time. JCSS 102, pages 308–315, 1975.

[19] L. G. Valiant. Completeness classes in algebra. STOC ’79,
pages 249–261, 1979.

[20] L. G. Valiant. Why is Boolean complexity theory difficult?
Poceedings of the London Mathematical Society symposium
on Boolean function complexity, pages 84 – 94, 1992.

[21] L. G. Valiant and V. V. Vazirani NP is as easy as detecting
unique solutions. STOC ’85, pages 458463, 1985.

[22] L. G. Valiant, S. Skyum, S. Berkowitz and C. Rackoff. Fast
parallel computation of polynomials using few processors.
SIAM J. Comput. 12(4), pages 641–644, 1983.

