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ABSTRACT

Shared-memory models for parallel computa-
tion (e.g. parallel RAMs) are very natural and
slready widely used for parallel sigorithm design.
The various models differ from each other mainly in
the way they restrict simultaneous processor access
to a shared memory cell. Understanding the relative
power of these models is importaat for understanding
the power of paralle] computation.

Two recent pioneering works shed some light
on this question. Cook spd Dwork {CD] (resp. Snit
[S]) present problems that, for instances of sise n,
can be solved in O(1) time on an n-processor PRAM
that allows simultaneous write (resp. tead} aceess to
shared memory, but tequire Q(log n) time on »
PRAM that forbids simultaneous write (resp. read)
sccess, regardless of the aumber of processors.

When allowing simultaneous write sccess, the
model must include a8 write-conflict resolution
scheme. Three suck schemes were suggested in the
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literature, and in this paper we study their relative
power. Here the situation is more semsitive, 28 a
smsll incresse in the awmber of processors allows
constant time simulation of the stromgest by the
weakest. By fixing the number of processors and
parametrising the number of shared memory cells,
we obtain tight separation results between the
models, thereby partially answering open questiops of
Visdkin ([V]. New lower bounds techaiques are
developed (or this purpose.

1. Introduction

Parsllel computation has been the object of
intensive study in recent years. Many models of syn-
chronous parallel computlation have been proposed.
One importaat model is the CRCW PRAM
(concurrent-read comcurrent-write parallel rsadom
access machine). Not only have numesous algosithms
been designed for the CRCW PRAM, but it has abso
been shown to be closely related to unbounded fan.in
circuits and slterasting Turing machines [CSV].

Specifically, a CRCW PRAM cobnsists of a set
of procemors (i.c., random access machines)
Py,P,, -+ - P, together with a shared memory. Ose
cycle of computation consists of three phases. In the
tesd phase, every processor msy resd one sbared
memory cell. In the compute phase, every processor
may perform computation. In the write pbase, every
processor may write into one shared memory cell.
Any number of processors caa simultaneously resd
from the same memory cell, aad any number: may
sttempt to simultaneously v.m into the same
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memory cell. An arbitrary amount of computation
will be allowed in each compute phase so that we can
concentrate ob communication betweea processors.

‘A lendamental question concernsing CRCW
PRAMs is how to resolve write conllicts. One
metbod is to assign priorities to processors and, if
more than one processor attempts to write to the
same memory cell, then the ome. with the highest
priority will succeed. In the case that the priority is
given to the processor of lowest index [G], we call
this the MINIMUM model.

Otber mechanisms for conBict resolutioa sppear
in the literature. In the ARBITRARY model, if more
than onme processor attempts to write to the same
memory cell, an arbitrary one will succeed [V]. The
COMMON mode! 3llows simultaneous writes to the
same memory cell only if all processors doing so are
writing & common vajue [K]. Write conflicts can also
be avoided by not sllowing them; ia the concurrent
read exclusive-write (CREW) PRAM, st most ope
processor can attempt to write to & givea memory
cell 3¢ each time step. An even more restrictive
model is the exclusive-read exclusive-write (EREW)
PRAM, in which both reads and writes are restricted
in this manner.

Any algorithm that runs on the ARBITRARY
model will rua uachanged op the MINIMUM model;
it an algorithm works regardless of who wins & com-
petition to write, then it will certsinly work if the
processor of lowest index always wizs. Thus the

MINIMUM model is st least as powerful as the’

ARBITRARY model. Similarly, the ARBITRARY

model is at least as powerful as the COMMON .

model, the COMMON mode! is at least as powerful
as the CREW PRAM, and the CREW PRAM is at
least as powerful as the EREW PRAM,

Our sim is 10 understand the relative power of
these models. Algorithms runming on sR of these
models have appeared in the litersture, and their
expositions oftea include attempts (o implement
them on the most testrictive model possible. Such
attempts are of little value without knowiag which of
the inclusions described above are strict,

Cook apd Dwork have shown that the CREW
PRAM is strictly less powerfu) thap the CRCW
PRAM. In particular, their wotk [CD| shows that the
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n-way OR function, which can be computed in oge
step on the COMMON model, requires f(log n) steps
using 3 CREW PRAM. By considering the problem
of searching for su element in a sorted list, Sair is})
has shown that the EREW PRAM & strictly less
powerful than the CREW PRAM.

In this paper, we obtain separation results for
the three CRCW models as a function of the sumber
of shared memory cells m (called the
communication width [VW]) whea the number of
processors is beld Bxed at n: This is an important
vestriction, since one step on the MINIMUM modet is
easily simulsted by two stepe oo the COMMON
model if the number of processors is squared and
sufficient commod memory is allowed. When width
is restricted, however, the three models are not
equivalent. Restricting width has s meaning in o
practical as well as theoretical sense; an Etbernet
may be cousidered a type of CRCW PRAM with
widthk 1.

Table 1 summarizes our results. on simulations
and separations. A particular mode! is denoted by
its name followed by the number of shared memory
cells in parentheses [e.g. COMMON(1)]. The time
bound given is the aumber of steps on the weaker
machine required to simulate one step on the more
powerful machine. All logarithms are to the bage 2.

The separations iu lines 1 and 2 of the table are
demonstrated by the Jower bounds it section 2: all
upper bounds are given in section 3. The lower
bounds on lines 1 and 2 are proved tight ia section 3
by providing corresponding wpper bounds. The
result in the third line of the table gives (when
¢ == 1) a simple and genera! simulation of any of the
three models on saother of the same width without
performing sny sorting. The upper bound in the
fourth live provides evidence for a 8(log n) separs-
tion  between the COMMON(m) and
ARBITRARY(m) when m = O(n*~); in section 4
we conjectute this separation, and present some pare
tial results that may lead to proving it. The resuhts
in the table leave some questions unanswered; more
work and probably other techuiques are needed to
extend these results for all ranges of m.

HY6Z: 11 200¢ €281y




Table 1

Simulating Simulated Time

Machine Machine Bounds
COMMON(m) |ARBITRARY(1) e[h‘(m 5
ARBITRARY(m) |MINDMUM(1) 9{%]
COMMON(em) (MINIMUM(m) o[—hT"(’g%ﬁ]
[m = O(n/c)]
ARBITRARY(1) {MINIMUM(m) o[-’!‘ﬁiﬂm—"]
[m>1)

New lower bourd techaiques are 'developed to
obtain the results above. We consider this work as
another step (following [S] [CD] [VW]) in forming a
foundation of lower bound techniques for parallel
computation. Also, as our lower bounds are on the
communication between processors, we believe these
techniques may be spplied to distributed (ssyachro-
pous) computation 3s well (e.g. in the Ethernet
model).

2. Lower Bouhds

3.1. Separating ARBITRARY(1) from

COMMON(m)

The problem of limulatiu one write step of an
ARBITRARY(m) is’ equivalent to the rouwin;
problem:

mecolour REPRESENTATIVE

Before: Each processor P, (1<i<n) has a colour
¢, (0< ¢, <m) koown only to itself.

After: Each processor P, knows a 0-1 value a,, where
¢,=1 for exactly one processor among those
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with each particular nonzero colour ¢, and 0
otherwise.

In the simulation, ¢, represents the memory cell
that the simulated P; wishes to write into; ¢, = 0 jf
P; does not wish to write. Once tbe problem is
solved, P; will write ilf a,==1, thus avoiding write
conflicts.

Clearly, the 1l-colour REPRESENTATIVE
problem takes only one step on aa ARBITRARY(1).
The followiag theorem provides s separation between
this model aad COMMON(m), by providing a
corresponding lower bound.

Theorem 1

The l-colour REPRESENTATIVE ptoblem requires
Toa(m + ) l steps oo s COMMON(m ).

Proof:

We give the simple proof for m==1. The 'input’
to an algorithm A solving this prodlem is a
specification of the values of all the ¢,. (Note that
now ¢,€{0,1}). We will use an adversary argument,
constructing an input on which A requires |log n ]
steps.

The write action of a particulsr processor P, at
step ¢ depends only on ¢, and the sequence of con-
tents (HoH,, - - - H,,) of the common memory cell,
where H; is the contents of M, before step 54+ 1. We
call this sequence the Aistory through time ¢. Given
s fixed bistory, we say P, writes on O (resp. 1) if it
attempts to write to the single memory cell M, whea
¢; = O (resp. 1). _

At each otep we will 'x’ the values of certain
¢,. This will be done in a manner such that all inputs
whose values at the fixed positions agree with the
corresponding fixed values, and which contain at
least one 1 (termed the “comsistent set™ of inputs)
will produce the same history up to that step. All
the inputs in the cousistent set are thus indistin-
guishable to the algorithm.

Positions mot Bxed are said to be free. Our
method of fixing positions will always Aix valoes to 0.
Suppose there are at least twb free positions i and j
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after some step T. Then there exists an input ; in
our consistent set in which ¢, is the only bit set to 1.
Similatly, there exists an iaput /; in which ¢; is the
only bit st to 1, and an input J;, ia which both ¢,
and ¢, are 1. Since these three inputs ¢sanot be dis-
tiaguished, peither P; nor P, csa assume that it is
the representative. Thus, if there are at least two
free positions after some step, the algorithm cannot
answer after that step.

- Initislly all positions are free snd all imputs
except the all-sero input are possible. Now suppose
that after step ¢, we have 2 set S of fixed positions, &
set F of free positions, and all inputs consistent with
S bave bhistory {HoH,, --- H,}. We can assume
without Joss of generality that no processor whose
position is fixed attempts to write.

1) It no processor writes inlo A, on 0 or 1 st step
i+ 1, thea we fix no positions, and H,,, = H,.

2) If there exist processors writing on 0 st atep 4.1,
cboose one such processor P,, fix ¢, to 0 (move §
from F to S), and set H,,, to de whatever P,
writes. (Because all inputs consistent with S gen.
erate the same bistory, P, will write the same
thing at step {+ 1 on all such inputs.)

3) Otherwise: all processors who are writing are writ.
ing on 1. Let W be the set of processors in free
positions who write on 1 at step £+ 1,

i) It [W] > [F|/2, thea 8x all free positions
pot in W to 0. Since we do not consider the
sll-zero input, them for every input conm-
sistent with the gew S, some processor ja W
receives a 1. Furthermore, there is an input
in our comsistent set in which all processors
in W receive a 1, and thus they must all
stlempt to write the same value. Let H,,,
be this value.

) It |W]| € |F]/2, x all positions {2 W to
0. No one writes at step ¢+1, and
Hy,y = H,.

In all cases the aumber of fres positions is cut
by at most a factor of 2. If the pumber of free posie
tions is greater than one at some step T, them the
algorithm must take at lesst T+ 1 steps to smswer
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on some input comsistent with the fixed positions.
Since we started with n free positions, this gives us
the lower bound of {log = .

This prool generalizes to arbitrary m to prove
the theorem as stated. @

ARBITRARY(m)

"The preceeding theorem demonstrated a
separation between an ARBITRARY(1) and a
COMMON(m). We csa show 3 similar separation
betweea 3 MINIMUM(1) and an ARBITRARY(m)
by considering the following problem:

from

MINDAUM(1)

m-eolonr MINIMIZATION

Before: Each processor P,(1<i<n) has 3 colour &
known oaly to itself.
After: Each processor P, knows the value ¢,, where

{' 1, iffor all j<i, cipbe; and ¢; >0
¢ 0 otherwiee

(that is, o] iff P; is the processor of lowest index
with colour ¢,)

Simulation of s MINIMUM(m ) is equivalent to
solving the m-colour MINIMIZATION problem in the
same way that simulating an ARBITRARY(m) was
equivalent to solving the m-colour REPRESENTA-
TIVE probiem.

Clearly, 1-colovr MINIMIZATION requires only
oze step ob a MINIMUM(1). The following theorem
provides the separation between this model and ag -
ARBITRARY(m) or COMMON(m).

Theorem 2

. n
l<olowr MINIMIZATION requires {TcT';'nTT)l

Steps on ab ARBITRARY(m).
Proof:

Let A be an algorithm which solves this problem. As
adverssry to an algorithm running on san
ARBITRARY(m), we are allowed not only to choose
the input to A, but to decide who wins each competi-
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tion to write.

We will (as before) maintain » set S of fixed
positions, a set F of [ree positions, a “‘consistent set”
of isputs whose definition depends os S, sad H;, s
specification of the coatents of the m memory cells
before step t+ 1, for t=0,1... Siace we will fix posi-
tions to 1 as well as O, the properties of these sets
will be somewbat different than in the previous
prool:

- For each poeition in S, we also record the
value to which that position is fixed.

- Our '‘consistent set” will be oll inputs con-
sistent with the fixed positions in S.

- A will produce bistory (HoH,, ' - - H,) on
every consistent input; thus, these inputs
are indistinguishable to A before step
1+ 1.

- For each [ree position s in F , there are no
positions of lower index fixed to 1. Thus
il there are two free positions ¢ and j
after step ¢, there is & consistent input for
which ¢, is the 1 of lowest index (set
¢,=1, al} other free positions to 0) and an

- input for which ¢, is the 1 of lowest
index. Since A csanot distinguish these
two, we can conclude that if F has more
than one free position, A -cannot solve the
problem in ¢ steps.

Initially, S =¢), and H, is the initial contents
of memory. These satisfy the conditions above.
Now suppose we have § and Ho H,, - - - H, satisfy-
ing the conditions above. Assume the pumber of free
positions in F is at Jeast m+ 1.

1) For all cells M, into which some processor writes
on 0 at time ¢+ 1 (given history H,: - H)),
choose one processor P., doing eo, fix position i,

"to 0, and declare P, to win the competition to

write into M, at time t+ 1 for all inputs con-
sistent with S. This fxes the contents of M, in
"g.".

2) Seppose there are r cells not taken care of in step
1 into which processors write only on 1. Let f

183

be the number of remaining fres positions.
Divide these free positions into r+1 nearly
equal groups; the first group will contain the

mm._'.’.—

r+1
g
r+1

groups will contain

positions, the Md the next
, and 30 on. (The last f mod (r+1)

e free positions). With

each such cell M,, sseociate the group contain-
ing the processor of Aigheet index writing into it
on 1; call this processor P.-’.. Since there are r
cells snd r+ 1 groups, at least one group will
have no cells associsted with it; suppose such »
group G comprises free positions p through g.
The idea is that by either forcing no one to
write or {orcing the processor of highest index to
writs, the adversary can provide "no informa-
tion” about group G.

i) Fix all free positions with index less than »
to 0. Any cells associsted with groups
containing free positions less thaw p will
have ¢, of ell processors writing into
them on 1 eet to O; hence, o one will
write into these cells at step t+ 1 for any
fuput cobsistent with §, snd their con-
teuts iv Hyy will be their contents in H,.

it) Fix all free positions with index greater
thas ¢ to 1. For any cell M, associated
with a group containing free positions
greater than ¢, we declare P,-"co win the
competition to write into A, at step t+1
for every input comsistent with S, thue
Bxing the contents of M, in H,,;. ’

8) The remaining cells have no processor writing into
them om any input in the comsistent set at step
t+1; the contents of these cells in My, will be
their contents in H,.

If the aumber of free paositions is less than
m<+ 1 at this point, say at time T, the algorithm cad
force us to fix all remaining free positions, and so we
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do bot continue the comstruction. Intuitively, the
number of free positious is cut down by at most a
factor of m+ 1 on each step. More precisely, if /, is
the nuinber of free positions st time #, we see that

fo=n

' fi
dacks \m_-bl'
and fr < m. Noting that the algorithm requires
T+ 1 steps on any input in the consistent set at time

T, we have the lower bound of ki‘%'ﬁ-i

required. ©

3. Upper Bounds

a1, ‘Simulating
COMMON(m)

MINIMUM(1) by

Theorem 3

The l-¢olour MINIMIZATION problem caa be solved

i q[ﬁ'ﬁ] steps on » COMMON(m).

Proof:

Throughout the algorithm, memory cells will contain
only 1's and 0's. Note that for the 1-colour MINIMI-
ZATION problem, ¢,€ { 0,1 }. We call the leftmost
processor the winner.

Oue iteration of the algorithm goes as follows:
First, all shared memory cells are set to 0. The pro-
cessors are divided into m-+ 1 pearly equal groups,
where each group contains a set of consecutively
numbered processors. The Bt 5 mod (m+1)
groups contain ——+—l- processors and the rest coa-

n
m+1l
(1€j<m) will write 1 into M, iff ¢,=1. At this
point, if all memory cells are unchanged, the winner
is in the (m+ 1)* group; otherwise it is in the group
corresponding to the memory cell of lowest index
cobtaining a 1.

. Processor P, in the j*

L4 v0Pi 0K
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We gote that a processor does not have to
koow which group contains the eventual winaer, ogly
if his group wins or mot. The following subroutines
ate weed to decide which of the above two cases
bolds, in constant time.

EMPTY MEMORY (m-way OR)

Before: Cells M, (1<i<m) each contain 1 o2 0
After: M, contsins 0 iff all M, were initially 0.
Procedure: Processor P; will re:d M, and, ifitis},
write 1 into M,.

LEFTMOST ONE IN MEMORY

(sssume m € Vn)

Before: Cells M; (1<i < m) each contain 1 or 0,
After: M, contains 1 iff all M, for j <$ were initially
0 and M, was initially 1.

Procedure: Processor i forms the ordered pair (j k)
from its name by setting jo(i mod m)+1 and
ki = m(j-1). I j<k and M, =1, it writes 0 into
M,.

Alter the LEFTMOST ONE IN MEMORY
slgorithm is applied, and the processors in group ¢
look at M, to sec il they are in the winning group or
not (depending on whether A, is 1 or O respectively).
Note that this algorithm requires m* processors; if
m>Vn, we only use the st Vn cells of memory
(e, divide into only Vn groups). Applying
EMPTY MEMORY will then allow the (m+1)*
group to decide if it is the winging group or not.

All processors except the ones in the winaing
group set ¢, =0 sad stop; the ones in the winning
group repest the above procedure with n replaced by
the size of the group. This continyes yntil the size of
the winping group is equal to 1; at this point, the
winnet is determined.

Intuitively, the algorithm cuts tho size of the
winning group by s factor of m+ 1 each time. More
precisely, if g is the size of the set of processors who
may still be the winger after the (* read,

Nnh=n
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If T is the number of iterations the algorithm takes,

. ‘ n
we bave ¢r<t, giving T < Tog(m+1 as

required. @

Corollarys The 1-colour REPﬁESENTATNE
' . o log n }

PROBLEM can be solved in time 0‘ fogim+ 1) on

s COMMON(1).

Theorem 3 states the upper bounds that sppesr
in lines 1 sad 2 of Table 1. The following theorem
gives the upper bound that appears in line 3 of Table
1.

Theorem 4

Simulating one step of 3 MINIMUM(m) cau be dose

on 3 COMMON(em) in O[EL.("?:_IT]' provided
m = O(n/e).
Proof:

Simulating one step of 3 MINIMUM(m) is equivalent
to solving the m-colour MINIMIZATION problem.
This csn be considered as m simultaneous l-colour
MINIMIZATION problems; devote ¢ cells of the
COMMON(¢m) to each problem, sad solve them in
parallel using the algorithm of Theorem 3. The res-
triction on m ensures that there are enough proces-
sors to do this.

3.2. Simulsting MINIMUM(m) by ARBLE
TRARY(1)

The problem that was studied in the previous
subsection was the simulation of MINIMUM(1) by
ARBITRARY(m) and COMMON(m). Here we
study the "complementary” problem of simulating
MINIMUM(m) by ARBITRARY(1} aad COM-
MON(1) models. This problem yields insight into the
strength of the ARBITRARY model relative to the
COMMON model, as will be discussed in the next
section. In what follows we obtsin a moutrivial upper
bound for simulating MINIMUM(m) by ARBI
TRARY(1). ‘
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_For j—l,:..

Our goal is to solve the m-colour MINIMIZA-
TION problem in the ARBITRARY(1) model. This
can clearly be dome in time m logs 8, by solving the
problem one colour st s time and using the sigorithm
of Theorem 3. We show below how to solve the prob-

lem in time o(_'%'iﬂ;"-), which says that for

m == n' (>0 Sxed) we meed ouly O(m) time,
matching the trivial lower bound. In comparison with
the one-atea-time algorithm, this solution uses an
sverage of O(1) steps per colour.

The idea is to try to solve the m dillerent prob.
lems concurrently, although we have oaly one com-
mon memory cell. We show frst how this can be
done for s simpler problem.

Consider the following special case of m-colour
MINIMIZATION, ecslled m-group MINIMIZATION.
In this problem, the n processors are partitioned into
m groups of sizes n;,na ..., N, Where n == im.

jma)
., m, ogly processors in group j are
allowed to have colour j. Therefore, if 3 processor P
belongs to group j, then its colour ¢ is either 0 or ;.
The information about ¢ can then be represented by
a single bit §, where b = 1 iff ¢ == §. Formally, the
problem can be defined 3s follows:

m-group MINIMIZATION

Before: There are n processors P, (1<i<n,,
1< ;< m), exch with a private bit §, ;.

After: Each processor P,; koows the value g,
where

1it ‘.’.j = 1 and b,d == 0 for ls'(f

85 ™ 1 0 otherwise
(s;; = 1 ifl P, is the processor of lowest index
within the §* group which bas color j)
Theorem §

m-growp MINIMIZATION can be solved in time
m+ Dax n, on ; ARBITRARY(1).

Proof:

We use the following simple algon'thin. lni;ially sll
groups are “unsolved™. )
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ie1;
repeat until all groups solved
For sll unsolved groups j,
. it 3, ; == 1 then P, ; writes j into A;;
It M is uncbanged (a0 ons wrote) thea
foe—i+l; ‘
any group j with n; < ¢ is solved
(‘,,’* = 0 for ‘" j)
else if M coutains j
group j is solved
(Ol"' - l"i.} = 0for & * ‘)
end repeat;
Note tbat, in each step, either ome group is
solved, or the size of all groups decreases by 1. The
claimted runping time follows. @

Note that the above slgorithm will not solve
m-colour MINIMIZATION quickly, because the size
of a colour may be O(n). But a similar technique
will work: instead of having just one processor Irom
each colour write, we bave an initial Iraction & of
processors from each colour write, where a depends
on the sumber of unsolved colours. If some processor
succeeds in writing, all processors of that colour mot

in the inmitial fraction drop out; if no one attempts to

write, all processors in all initial fractions drop out,
and the process is repeated. We can show:

Theorem 6

m-colour MINIMIZATION can be solved on an
ARBITRARY(1) io time o(L'l';"B!mi). °

The proof of this theorem requires substantial
analysis, and is deferred to the Snal version of this
paper.

4. Towards Separating ARBITRARY(m) from
COMMON(m)

Io the last section we gave an upper bouad oa
the simulstion of MINIMUM{m) by ARBE
TRARY(1). In ‘this section we explain how s lower
bound on the simulatioa of MINIMUM(m) by COM-
MON(1) would lead to separating COMMON(m)
from ARBITRARY(m), aad give some partial tesults
for this lower bound question.
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The tesult we are after, and believe to be true,
is:
Conjecturs 1: The m-colour MINIMIZATION prob.
lem ([which is equivalent to the simulation of
MINIMUM(m)} requires m log n steps on 3 COM-
MON(1). '

In fact, 3 weaker conjecture will suffice for our
purposes. Consider the m-groyp MINIMIZATION
problem where all groups are of the same sise,
pamely n/m. Call this problem the m-equal-group
MINIMIZATION problem.
Conjecture 2. The m-equal group MINIMIZATION
problem tequires m log (m/n) steps on .3 COM.
MON(1).

Theorem 7

If copjecture 2 holds, then there exists a problem
that can be solved in O(V{n/m)) steps on a2
ARBITRARY(m), but requires 2(v{n/m) log(n /m))
steps oo a8 COMMON(m). It m ws n', ¢ fixed, this
implies an QN(log n) weparation  between
COMMON(m) sad ARBITRARY(m).

“Proof:

The problem we consider is the Vnm -equal-group

MINIMIZATION problem.

186

Upper bound on ARBITRARY(m):

Partition the problem into m subproblems, each on
V{n]m) groups, and devote to each subproblem
n/m processors and ome shared memory cell from
the ARBITRARY(m). Al the subproblems csa be
solved i paraliel. The time meeded for each sub-
problem (and therefore for the whole problem) is, by
Theorem 6,

rneln)] - ovaTm)
Lower bound for COMMON(m):

It follows from Copjecture 2 that 2 COMMON(1)
requires [mm(v'.’:.m.)] steps to solve this prob-

lem. Since s COMMON(1) ean simulate one step of
s COMMON(m) in m oteps, 8 lower bound of
Q(Vn/mlog/n/m) = Q(Va]mlog{n/m)) ftollows

for s COMMON(m). »
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How to prove conjecture 27 We considered two
approaches, sad below we describe them and the par-
tial results they led to.

The first spproach was to coasider the strue-
ture of an optimal algorithm for the m-cqual-group
MINIMIZATION problem, and prove the lower
bound just for optimal algorithms usiag the informs~
tion on their structure. We coujecture (but caanot
prove) that there exists su optimal algorithm for the
problem that satisfies the following: if at time {
processot in & certain group will write on 1, then so
will all other processors in this group that are of
lower index. We call an algorithm with this propetty
*restricted”. This restriction seems natural, since we
are looking for the leftmost 1.

Thoorsm 8

Any restricted program on 3 COMMON(1) that
solves m-group MINIMIZATION requires at lesst

n
[Zjog(n; + 1] m + 1 etape.

For the purposes of the proof, it is necessary to intro-
duce yet another problem. CONSTRAINED m-
group MINIMIZATION is m-group MINIMIZATION
in which constraiats are placed upon the set of allow-
able inputs (i.e. allowable problem instances). This
additions! information is koown in advance by sll
processors.

The set OR is used to describe these con-
straints. Esch constraint is specified by su m-tuple
(... ,im) whete 1 S i; Enjfor jml, ... ,m
For potational convenience, we define bits d ; == O.
The semantics sssocisted with the statement
(ib e p*'n)GOR s

-
1= )'yﬂ tvd "'.i :
Thus among the Grst iy processors in group 1, the
Brst i; processors in group 2, . . . , and the first i,
processors in group m, there is at least one whose
private bit has value 1.
Lemma 1 ‘
A CONSTRAINED m-group MINIMIZATION prob-

lem with r different possible solutions requires at
least flog,r]~ m + 1 steps on 3 restricted COM-

0l 4 $0%L°ON
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MON(1).
Proof:

By inductios on ¢ and m.
If re=1, thea flogor]-m+ 1 =1-m
< 0 aad the claim is trivially true. It m = 1, then
the problem is equivalent to 1-color MINIMIZATION
for min{ i | ({)€ OR } processors. The claim fol-
lows from Theorem 2. Therefore let m,r > 1 sad
assame that the claim is true whea the problem has
less thas m groups of less thau r different possible
solutions.

Because the answer is mot yet kmowa, every
algorithm to solve the problem must perform at least
one step. Let us examine the first step of an optimal .
slgorithm which solves this problem. Since the algo-
rithm is optimal, the number of solutions for each
subproblem remaining after this step bas been per-
formed must be less than r, independent of ils out-
come. .

First, suppose that no processor writes on 0.
The monotone nature of the copstraints implies that
the fnput in which all private bits have value 1 is
always allowed. Therefore all processors which write
on 1 must write a common value,

For j=1,...,m, let b, mmax{k| P,
writes on 1); k == 0 if uo such Py; exists.. By
awumption each of the processors P ;, where
1< <madl ik, writes the sforemen-
tioned common value when its private bit b, ; is 1.
If the write does mot occur, then the private bits of
the processors which write on 1 must il be 0. The
remaining problem cau then be viewed as m-group
MINIMIZATION for processors P/, (1S j S m,
1<i €0, k) whete P;; == Ppy,, with con-
straints specified by OR ‘s ((ij,...,ia) |
(ib o ,‘..)E OR and l.; - max(o, ‘l., - k)) ).
However, if the write occurs, then the remaining
problem can be viewed as m-group MINIMIZATION
with one additional comstraint, namely (k;, . . . , ka)-

Notice that each solution for the original prob-
lem mun correspond to a solution for at least one of
these subproblems. Therefore, the number of solu-
tions for at least one of the two subproblems must be
[r/2]. By the induction hypothesis, that subproblem
requires st least flogy(r/2)]-m+1 steps on 3 res-
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tricted COMMON(1). Therefore the original prob-
lem requires flog,r ]—-!?‘3'0- 1 steps.

Now suppose there is some processor P, that
writes on 0. We focus attention on the two subprod-
lems obtained by fixing &, =0 apd b, =),
respectively. Each solution of the original problem is
s solution of st least one of these two subprobiems.
Thus the number of solutions for at least one of the
subproblems must be at lesst [7/2).

In particular, if & > 1, then the number of
solutions for the O subproblem is at least [r/2]. To
vee this, copsider the two cases where o;; == 0 snd
o, 1 If o,, == 0, every sclution to the 1 sub-
ptoblem is also 2 solution to the O subproblem. It
8;; == 1, then to every solution of the 1 subproblem
corresponds 3t least one solution of the O subprob-
lem, samely ope in which 6,.;; = 1. This is because
any coustraint :

m Y
j\-lul iYIo
that is satisfied by baving §;; = 1 is also satisfied by
having b,y == 1.

If the aumber of solutions for the O subproblem
is 3¢ Jeast [r/2], then an adversary would force pro-
cessor P, to write {(and bence determine the out-
come of the step) by setting 4, ; == 0. The 0 sub-
problem can be viewed as a CONSTRAINED m-
group MINIMIZATION with 1 fewer processor. For-
mally, the processors asre P;, (1€j<€m,
1 € i €n;) where

, m-liljest!
"= { n,  otherwise

b,

and
. P".'l-‘ i’j-lndl’?_*
Pis=1Pp, otherwise
The constraints are specified by
{(il,...,i,',...,s’.)](;‘,,...,i, ooy im)
€ OR )} where
. {:‘nlil'i,zk
W=l ith<t

Then, as above, the jower bound follows from the
induction hypothesis.

7OvLeON
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Otherwise, It == 1 and the aumber of solutions
for the 1 subproblem is at Jeast [r/2]. The 1 sud-
problem caa be viewed as CONSTRAINED (m-1)
group MINIMIZATION where the processors are P,
G=1...0-L1+1,...,m1< i< n)ad
the constraints are specified by ((5), ..., &,
"I-Q-b'-w ‘-,' (‘.1 4"‘:‘1-!0 ov‘l-ﬂw--n
in)€ OR }. By the induction hypothesis, the 1 sub-
problem requires f(logafr/2]]~(m =1)+ 1 =
flogzr] - m + 1 steps oa COMMON(1). Hencé the
original problem also requires at least this many
steps. @

Since m-group MINIMIZATION is s CON-
STRAINED m-group MINIMIZATION with sz

empty set of constraints and it has ll(n,- + 1) solu.
’ ¥

tions, Theorem 8 follows directly from Lemma 1.
Applying this result to m-equal-group MINIMIZA-
TION (n; = n/m), we see:

Corollary: Any restricted COMMON(1) sigorithm
for the m-equal-group MINIMIZATION problem
tequires ({mlog(n/m)) steps, if m < n/a.

The second approach towards proving conjec-
ture 2 was to generalize it. Consider any function
J:{01}*=~{01})" APRAM is said to compute
J if before the computation each processor P, bas 2
private bit c;, alter the computation P, has an
“aaswer” but e, and
Jle=c1,e5---¢,)m g0, -4, for all vectors
¢€ {0,1)". Clearly, the m-group MINIMIZATION

. problem is defined in this way. Let R(/) be the

tange of the function /. Then the following implies
conjecture 2.

Conjecture 3: Any COMMON(1) algorithm . that
computes a function f:{ 0,1 }"—={0,1}* requires
O(log| R(/)]) steps.

This seems like aa “information-theoretic”

lower bound, and, iadeed, would trivially follow il

188

the unique shared memory cell could contain oaly a
Boolesn value. We believe it holds in the gemeral
case, whes the cell cas bhold arbitrary values,
although this ability allows non-binary branching.
The best we cap provs is:




Theorem 9

Aly COMMON(1) algorithm that computes a func-
7:(01) ~{01}" requires
0( _lg|R(S)]
log Yog | R(/))

Ullomlnuly, this theorem is not strong enough to
prove the separation we seek. The proof of this
theorem is omitted due to space considerations, ahd
will appear in the final version of this psper.

oteps. ®
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