Near Optimal separation of Tree-like and
General Resolution

Eli Ben-Sasson* Russell Impagliazzo Avi Wigderson *
January 17, 2003

FINAL VERSION

Abstract

We present the best known separation between tree-like and gen-
eral resolution, improving on the recent exp(n°) separation of [BEGJ98].
This is done by constructing a natural family of contradictions, of size
n, that have O(n)-size resolution refutations, but only exp(£2(n/logn))
size tree-like refutations. This result implies that the most commonly
used automated theorem procedures, which produce tree-like reso-
lution refutations, will perform badly on some inputs, while other
simple procedures, that produce general resolution refutations, will
have polynomial run-time on these very same inputs. We show, fur-
thermore that the gap we present is nearly optimal. Specifically, if
S (St) is the minimal size of a (tree-like) refutation, we prove that
St = exp(O(Sloglog S/ log S)).

*Division of Engineering and Applied Sciences, Harvard University and Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA. E-mail:
eli@eecs.harvard.edu. This research was supported by Clore Foundation Doctoral
Scholarship.

tComputer Science & Engineering Department, UC, San Diego, Mail Code 0114, 9500
Gilman Drive, La Jolla, CA 92093. E-mail: russell@cs.ucsd.edu. Research supported
by NSF Award CCR-0098197 and USA-Israel BSF Grant 97-00188.

tSchool of Mathematics, Institute for Advanced Study, Princeton, NJ, and Hebrew
University, Jerusalem, Israel, E-mail: avi@ias.edu. This research was supported by
grant number 69/96 of the Israel Science Foundation, founded by the Israel Academy for
Sciences and Humanities

1 Introduction and Main Results

The resolution refutation system is one of the oldest and most commonly
methods for proving the unsatisfiability of CNF formulas, and is interesting
from a theoretical as well as practical point of view. From the theoretical
point of view, this system is fairly simple, as it has a single derivation rule,
and all proof-lines are clauses. Still, in spite of its simplicity, we do not
understand it fully, and there remain several interesting and important open
problems regarding this system. One such natural question, solved in this
paper, is the following:

Question: What is the largest possible gap between the minimal number of
lines (=clauses) in a refutation, versus the minimal number of lines in
a tree-like refutation 7

“tree-like” means that each non-axiom line is a premise for at most one
other line in the refutation.

In order to understand the appeal of resolution to automated theorem
proving (ATP) let us recall the ATP problem: Given a contradiction T, try
to find a refutation of 7 in the most efficient way, in terms of time and
space. Let us look at the following couple of natural methods for finding
such a refutation.

Recursion: pick a variable z, and recursively try to refute 7, and 77, which
are the restrictions of 7 to x = 0, (x = 1 resp.). Such methods are
called DLL-Procedures.

Dynamic Programming (also known as Davis-Putnam): Start from the
axioms T, arbitrarily derive new clauses 7', using the resolution rule,
and set 7 < 7 UT’. Repeat this procedure until the empty clause is
derived. If one picks a variable z and performs all possible resolutions
on it, the method is called a DP-procedure.

Let us briefly describe the pros and cons of these methods, and their nat-
ural connection to resolution. The recursive procedure has recursion depth
that is bounded by the number of variables, thus it is extremely space-efficient
- the space required is at most linear in the input size. Its main flaw is that
it corresponds to a decision-tree for the problem of finding a clause falsified
by an assignment to the variables. It turns out that such a decision-tree

is a tree-like resolution refutation of 7 (see lemma 7). Thus, the recursive
method will be time-costly on inputs that do not have short tree-like resolu-
tion refutations.

The dynamic programming method, on the other hand, produces general
resolution refutations. Thus, if 7 has a short refutation, one might hope to
find such a refutation by using such a method. Indeed, we shall see that for
certain contradictions, there exist dynamic programming proof search meth-
ods that are extremely efficient (polynomial time). The main disadvantage
of the method is the large space it might use. If we wish to save all possible
resolution consequences we might require space that is exponential in n.

We conclude that understanding the relation between (minimal) general
and tree-like refutation size will help us understand the relative efficiency of
these two proof search methods. Formally, for a fixed contradiction 7 let
S(T) (S7(T) resp.) be the number of lines in a minimal general (tree-like
resp.) refutation of 7, and let w(7 F 0) be the size of the largest clause in a
refutation of 7. We are interested in measuring the gap between S and Sr,
and in this paper deliver the following couple of messages. The first message
is that the gap can be very large. Let | 7| be the number of clauses in 7.

Theorem 1 (Lower Bound) There exists an infinite family of explicitly
constructible contradictions {T,} such that |T,] = O(n), S(T,) = O(n),
w(T, F0) =0(1) and Sr(T) = exp(Q(2)).

logn

It is easy to see that Sr < 2%. Our second message is that there is a
non-trivial upper bound on the gap, and it is almost tight:

Theorem 2 (Upper Bound) Sr(7) = eXp(O(%T%S(T))), for all CNF
contradictions T .

Theorem 1 is proved by giving a construction which associates to every
circuit (fan-in 2 DAG) G on n edges a contradiction 7 (G) with the following
properties.

1. T(G) has O(n) variables and O(n) clauses.
2. T(G) has general Resolution refutations of length O(n).

3. T(G) has Resolution refutations of width O(1) (i.e. all clauses in the
refutation have a constant number of variables).

4. Every tree-like Resolution refutation of 7(G) has length at least exp(P(G)),
where P(G) is the classical pebbling number of the circuit G.

The pebbling measure of a circuit G' is the minimal memory size needed

to carry out the computation described in the circuit G, on an input z, (both
G and z are given as inputs), assuming each gate output costs one memory
unit.

The construction of the contradictions is motivated by a special case

of it for the Pyramid graph of [BEGJ98|, which was in turn motivated by
[MR98]. We show that the pebbling measure of the graph G is an exponen-
tial lower bound on the tree-like size of refuting 7 (G). The connection of
pebbling to tree-like size allows us to use graphs that have a high pebbling
measure. Specifically, [CPT77] explicitly construct for every n a graph G,
of size O(n) satisfying P(G,) = Q(n/logn). This, combined with (1) and
the upper bound (2), gives a truly exponential separation between general
and tree-like Resolution systems (the previous best bound being the recent
exp(y/n) separation of [BEGJ98]. Finally, (3) means that for these con-
tradictions, the natural “restricted-width” dynamic programming algorithm
[BW99], that searches for a minimal width refutation, has polynomial time,
which is exponentially faster than any recursive method.

Theorem 2 uses techniques from [CPT77], who showed that if a Boolean

function has a circuit of size S then it has a circuit of depth S/log S. We use
similar techniques to show that one can “cut” any general refutation roughly
in half, by removing some of the middle lines. Then we construct a small
tree-like refutation, depending on the relative size of the “middle part” that
was removed.

The paper is organized as follows. After presenting the essential defini-

tions in section 2, we start by proving the lower bound (section 3), followed
by the upper bound (section 4). We end with a discussion of the applications
of these bounds to automated theorem proving (section 5).

2 Definitions

2.1 General

x will denote a Boolean variable, ranging over {0, 1}. Throughout this paper
we shall identify 1 with True and 0 with False. A literal over x is either x
(denoted also as z') or Z (denoted also as 2°). A clause is a set of literals,

3

and a CNF formula is a set of clauses. A clause is viewed as the Boolean
function that is the disjunction of its literals. It is customary to write a
clause {¢1,...,4;} as {1 V...V 4. Analogously, a CNF formula is viewed as
the Boolean function that is the conjunction of its clauses. It is customary
to write a CNF {C,...,Cn} as C1 A ... A Cp,. We say that a variable x
appears in a clause C' (denoted z € C) if a literal over x is an element of C.
A CONF formula 7 is said to be satisfiable if there exists some assignment to
the Boolean variables, that sets it to 1. Otherwise the formula is said to be
unsatisfiable. Let T = {C1,C5...Cy} be a CNF formula over n variables,
a Resolution derivation m of a clause A from 7 is a sequence of clauses
7w = (D1, D, ... Dg) such that the last clause is A and each line D; is either
some initial clause C; € 7T or is derived from previous lines using one of the
following rules.

Resolution Rule: If C, D are clauses and x is a variable such that z € C
and T € D, we say C,D are resolvable on x and their resolvent is
CUD —{z,z}. C,D are called the assumptions of the derivation and
CUD —{z,z} is the consequence.

Weakening Rule: If C', D are clauses then C'U D is a weakening of C. C
is the assumption and C' U D is the consequence.

A resolution refutation' of T is a resolution derivation of the empty clause
0 from 7. The following theorem is the fundamental property of the reso-
lution proof system. A CNF T implies a clause C (denoted 7 = C) if all
assignments that fix 7 to 1 also fix C' to 1.

Theorem 3 (Implicational Completeness) Forany CNF T and any clause
C, T = C iff there is a resolution derivation of C from T. In particular, T
1s unsatisfiable iff it has a resolution refutation.

A circuit is a Directed Acyclic Graph, in which each vertex has fan-in 2
or 0. A vertex with fan-in 0 is called a source, and a vertex with fan-out 0 is
called a target. All non-source vertices are called internal vertices.

A derivation 7 yields a circuit G, with || vertices. Each vertex of G is
labeled by a clause of 7, and for derivation steps edges are added from the

! Throughout this paper we will only discuss derivations and refutations in the Resolu-
tion proof system. Hence a derivation is always a resolution derivation and a refutation is
always a resolution refutation.

vertices labeled by the assumptions to the vertex labeled by the consequence.
A derivation 7 is called tree-like if G is a tree; A tree-like derivation may
have multiple sources labeled by the same initial clause in 7. The size of the
derivation 7 is the number of lines (clauses) in it, denoted S,. S(7) (S¢(T))
is the minimal size of a (tree-like) refutation of 7. Notice that since every
tree-like derivation is also a general derivation, we have S(7) < Sr(7). On
the other hand, it is not hard to see that any general derivation of size S can
be converted to a tree-like derivation of size at most 2°, giving the trivial
upper bound Sy (7) < 257,

2.2 Restrictions

For C a clause, z a variable and a € {0, 1}, the unit restriction of C setting
T to a is:

C if x does not appear in C
Clz=a et) if the literal z® appears in C
C\{z' %} otherwise

A restriction is a set of distinct unit restrictions. Namely, a restriction p of
size k is set of ordered pairs p = {(z;,,a1) ..., (z;,ax)}, where i; # i; for
all distinct 7, 5" € {1,...k}, and a; € {0,1}. For p a restriction of size k, we
define
Clp = Clasy=arlriy=as - - - lasg =

Similarly, 7, o {C|, : C € T}. Form = (Cy,...C,) a derivation of Cj
from 7 and p a restriction, let 7|, = (C1, ... C%) be the restriction of 7 on p,
defined inductively by:

Ci|p CieT

C, v Ci, C; was derived from Cj, V y and Cj, V § via one
resolution step, for j; < js <4

CiVv Al, C;=C;V Avia the weakening rule, for j <

=

The consequence of resolving a clause B with 1 is defined to be B. We shall
assume w.l.o.g. that m|, does not contain the clause 1, by removing all such
clauses from 7|,.

2.3 Width

DEFINITION 4 (Clause width) The width of a clause C, denoted w(C), is
the number of literals appearing in it. The width of a set of clauses is the
maximal width of a clause in the set, i.e. w(T) = maxcer{w(C)}.

DEFINITION 5 (Proof width) The width of deriving a clause A from the
formula T, denoted w(T + A) is min, {w(7w)}, where the minimum is taken
over all derivations m of A from T. We also use the notation T +F, A to
mean that A can be derived from T in width w. We will be mainly interested
in the width of refutations, namely in w(T F 0).

2.4 Decision Trees

Let 7 be a CNF formula. A search problem for T is the following: given an
assignment « to the variables, find a clause C' € T such that C(a) = 0, if
there is such a clause, and otherwise (i.e. 7 () = 1) answer 1.

DEFINITION 6 (Decision Trees for CNF' Search Problems) A Decision Tree
s a binary tree, with internal vertices labeled by variables, edges labeled by
0 or 1, and leaves labeled with the possible outputs. Every assignment to the
variables defines a path through the tree in the natural way, and the label
at the end of the path is said to be the output of the decision tree on that
assignment.

We say that D is a Decision Tree for the Search problem for T if it
correctly solves it on every input.

For T a CNF formula, let Sp(T) denote the minimal size of a Decision
Tree solving the CNF Search Problem for T .

Decision trees for CNF search problems are closely related to tree-like
resolution, as the following lemma shows.

Lemma 7 For T an unsatisfiable CNF, Sp(T) = Sp(T)

Proof: The Tree of the resolution refutation is a decision tree, where each
internal vertex is labeled by the variable resolved upon at that step. Hence
Sr(T) < Sp(T)-

For the opposite direction, we claim that given a decision tree, we can
derive from it a tree like refutation without increasing its size. Notice that if

6

T is unsatisfiable, every leaf is labeled by a clause, since 1 is not a legitimate
answer. We look at two leaves labeled C;, C;, with their father v labeled z. If
x does not appear in one of the two clauses (w.l.o.g. C;), then we may label
v with Cj, erase its sons, and make the tree smaller. Otherwise, w.l.o.g. =
must appear in C; in positive form and in C} in negative form. In this case
we may label v with the consequence of resolving C;, C; on z. Continuing in
this way up through the decision tree we conclude that Sp(7) > Sp(7). U

2.5 Pebbling

The pebbling measure of a circuit is, intuitively, the space needed for simu-
lating the computation of the circuit on a Turing machine. For a thorough
introduction to results regarding pebbling, see the game excellent survey [P].
In this section we briefly state the essential definitions and facts that will be
used later on in our discussion.

DEFINITION 8 (Pebbling) Let G a circuit, and let S and T be subsets of the
vertices such all sources of G are included in S and the target is included in
T. S s called the set of starting points and 1" is the set of terminal points for
the following 1-player game. At any point in the game, some vertices of G
will have pebbles on them (1 pebble per vertez), while the remaining vertices
will not. A configuration s a subset of vertices, comprising just those vertices
that have pebbles on them. The rules of the pebble game are as follows.

1. At any time, a pebble may be placed on any vertex in S.

2. If all immediate predecessors of a vertex have a pebble on them, a pebble
may be placed on that verter.

3. A pebble may be removed from any verter.

4. If a pebble is placed on a vertex in T, the player wins and the game
ends.

A legal pebbling of T on G from S is a sequence of configurations, the
first being the empty set, the last containing some element of T', and in which
each configuration follows from the previous configuration by one of the rules.
The number of pebbles used in such a pebbling is the maximum number of
pebbles in any configuration. The pebbling price of T on G from S, denoted

7

Pg(S,T), is the minimal number of pebbles needed in any legal pebbling of T
from S on G.

Notice that Pg(S,T) = 1 iff S and T intersect, and that Pg(S,T) =
P;(S,{t}) for some t € T. We remark that in this paper all vertices of the
DAGs considered have fan-in either 0 or 2.

2.6 A game for proving lower bounds on tree-like res-
olution

Lower bounds for size of tree-like resolution proofs can be given in terms of
a 2-player game; this description is due to [PI00]. Any small tree-like proof
will give a good strategy for one of the players, so a good strategy for the
other player yields a corresponding lower bound on proofs.

Let 7 be an inconsistent set of clauses. Consider the following game
between two players, the Prover, and the Delayer. In each round, the Prover
chooses a variable to be assigned a value. Then the Delayer chooses one of
0,1, or . If 0 or 1 is chosen, no points are scored, the variable is set to the
chosen bit, and the next round begins. If x is chosen, then the Delayer scores
one point, but the Prover then can choose the value for the variable. The
game ends when one of the clauses in 7 is forced to false by the assigned
values, i.e., when all the literals in the clause are assigned false.

Lemma 9 IfT has a tree-like resolution refutation of size S, then the Prover
has a strategy where the Delayer can win at most [log S| points.

Proof: Fix a proof of size S. The Prover will maintain the following
invariant after each round: If the Delayer has scored ¢ points, then the partial
assignment will falsify a clause in the proof, and the sub-tree rooted at this
clause will be of size at most S/2'. In particular, this will show the claimed
bound on the number of points the Delayer can score.

Let C be the clause from the invariant at the previous round. If C' is a
leaf, then the game halts, since a clause in 7 has been falsified. Otherwise,
the Prover picks the variable x resolved on to derive C' from Cy and C] in
the proof. If the Delayer assigns the variable a value, at least one of the two
clauses Cy, (1 is falsified, and this is the new clause for the invariant. If the
Delayer chooses *, and scores a point, then the Prover chooses the value to
falsify the clause with the smaller sub-tree. This is at most half the size of
the sub-tree for the current clause, so the invariant is maintained. L]

Corollary 10 If the Delayer has a strategy which always scores r points,
then Sp(T) > 27.

3 Lower Bound

In this section we prove the lower bound of theorem 1, by explicitly present-
ing a family of contradictions that achieves the lower bound. The family of
contradictions is a generalization of [MR98] and [BEGJ98|. For these contra-
dictions we expose a connection between pebbling and tree-like Resolution.
We start by defining these contradictions.

DEFINITION 11 (Pebbling Contradictions) Let G be a circuit, and S and T
subsets of vertices. Associate a pair of Boolean variables z(v)g, x(v); with
every vertex v € V(G). Pebgsr, the Pebbling Contradiction of G is the
Boolean formula consisting of the following clauses:

Source Axioms: z(s)y V z(s); for each s € S.
Target Axioms: Z(t)y and Z(t); for eacht € T

Pebbling Axioms: (z(u1), A z(u2)p) — (x(v)o V x(v)1) for ui,us the two
predecessors of v, and all a,b € {0,1}. This is equivalent to the clause
T(u1)a V Z(u2)p V 2(v)o V x(v)1.

Notice that Pebg s is a 4-CNF over 2|V| variables, with O(|V]) clauses.
Since by definition all sources of G appear in S, and the target of G' appears
in T, it is not hard to see that Pebg s is unsatisfiable. Furthermore, it has
a short, constant width resolution refutation.

Lemma 12 For G a circuit, S(Pebg,sr) = O(|V]) and w(Pebg,sr - 0) < 6.

Proof: Fix a topological sort of G. In order of this sort, we derive z(v)o V
z(v); for each v € V. If v has no predecessors, v € S, so this is an axiom.
If v has two predecessors, u; and uy, we have inductively derived z(uq)o V
x(u1)1, and z(ug)g V x(uz);. Together with the four Pebbling Axioms for
v, these imply the clause z(v)o V z(v);. By the implicational completeness
of Resolution (theorem 3) there is a derivation of x(v)y V z(v); from the
above mentioned clauses. This derivation has constant width and size, since
it involves at most 6 variables. Hence, starting from the Source Axioms, one

9

can infer z(t)o V x(t);, for a target ¢ € T, in constant width and size O(|V]).
Then, resolving with the Target Axioms, one derives 0. (]

The following theorem is the main result presented in this section, and it
immediately implies theorem 1.

Theorem 13 Sy (Pebg gr) = 2UFa(ST),

Proof [Theorem 1]: Lemma 12 shows that for any circuit G, the pebbling
contradiction based on G has a linear size, constant width, general resolu-
tion refutation. [CPT77| present an infinite family of explicitly constructible
circuits {G,,}, with |V(G)| = n and Pg(S,T) = Q(n/logn). Taking the
Pebbling contradictions of these graphs, theorem 13 implies a lower bound
of 284n/108n) opy the tree-like refutation size, completing the proof of theorem
1.]

The rest of this section is devoted to the proof of theorem 13. We use
Corollary 10; we give a strategy for the Delayer that achieves at least
P;(S,T) — 3 points on Pebg s r-

The strategy is as follows: Set S’ = S, 7' = T. On each round, the Prover
proposes a variable z(v);.

The Delayer’s response is as follows:

Case 1 If v € T', assign the variable 0.
Case 2 If v € §' assign the variable 1.

Case 3 Ifv ¢ S'UT’, and if Pg(S', T'"U{v}) = P5(S’,T"), assign the variable
0 and add v to 1"

Case 4 Ifv ¢ S'UT", and if Ps(S",T'U{v}) < Pg(S',T"), respond * (letting
the Prover assign a value) and add v to S'.

We prove that the strategy above earns the Delayer at least Pg(S,T) — 3
points by showing that Pg(S’,T") only decreases by the number of points
earned, and is at most 3 at the end of the game.

Lemma 14 When the game terminates, Pg(S',T') < 3.

Proof: Note that, if any variable z(v); is set to 1, it happened either in
Case 2 or Case 4, and in either case v € S'. Similarly, if both z(v)e and z(v),
are assigned 0, the first to be assigned was either via Case 1 or Case 3, and

10

so v € T' . (If the first to be assigned fell under Case 4, v would be put in
S’, and the second variable would have been assigned 1 via Case 2.)

So a source axiom will never be violated for s € S C S’, because both
variables will not be set to 0, and similarly, a target axiom will never be
violated for t € T C T". So at the end of the game, a a pebbling axiom is
violated, say for node v with predecessors u and u’. To be violated, both
z(v)o and z(v); must be set to 0, so v € T". Also, at least one of z(u), and
x(u); must be set to 1, so u € S'. Similarly, v’ € S’. So to pebble 7" from
S’ using three pebbles, simply place a pebble on both v and «', and then on
t. []

Lemma 15 For any v € V and any sets S, T, Pg(S,T) < max{Pg(S,T U
{v}), Pa(SU{v},T) + 1}

Proof: One way to pebble T from S is to first pebble T'U {v} from S,
using Pg(S,T U {v}) pebbles. If the result is a pebble in T, stop, otherwise
the final configuration has a pebble on v. Keeping that pebble on v, remove
the other pebbles, then simulate a pebbling of 7" from S U {v}. This second
stage uses a total of Pg(S U {v},T)+ 1 pebbles. O

Lemma 16 After any round, if the Delayer has scored p points, Pg(S',T") >
PG(Sa T) — P

Proof: At the beginning of the game, both sides are Pg(S,T). Note that
the only case when Pg(S’,T") changes is in Case 4. In this case, Pg(S',T" U
{v}) < Pg(S',T") at the beginning of the round. By Lemma 15, this means
P (S'"U{v}, T") > Pg(S',T") —1. Since in Case 4, the Delayer scores a point,
and v is added to S’, this preserves the invariant. (]

Corollary 17 Using the strategy described, the Delayer scores at least Pg(S,T)—
3 points.

Corollary 18 Any tree-like resolution proof of Pebg, s has size Q(2F¢ba(ST)),

4 Upper Bound

In this section we prove that the gap presented in the previous section cannot
be “too large”. Specifically, we prove theorem 2. This shows that the lower
bound stated in theorem 1 is nearly optimal.

11

The theorem will be proved by explicitly constructing a small size tree
like refutation of 7 given a small size general refutation. We shall limit our
attention only to “hard” contradictions, for which the gap between tree-like
and general size is maximal, and bound from above the refutation size for
these inputs.

In order to prove theorem 2, we shall work with a different size mea-
sure, hereby defined. This measure, inspired by [HPV77, CPT77|, counts
the number of internal edges in the graph of a minimal refutation, and is
closely connected to the standard size measure S defined above. For techni-
cal reasons we will restrict ourselves to proofs 7 such that G; has maximal
fan-out 2. This is not a big limitation, because any proof 7 can be converted
to a proof 7’ such that G, has fan-out 2, where the size of 7’ is at most twice
the size of w. (If C' is used as an assumption in k derivation steps, make k
copies of C using the weakening rule).

DEFINITION 19 (Internal Size) An internal vertex of a DAG is any non-
source vertex. An internal edge in a DAG connects two internal vertices.

For G a DAG, e(G) is the number of internal edges in G. For T a CNF
contradiction, define the internal size of refuting T to be:

e(T) o min{e(G,) : 7 is a refutation of T and G, has mazimal fan-out 2}

We define f(e) to be the mazimal tree-like size of refuting T, given that T
has a refutation with internal size e. Formally:

f(e) € max{Sp(T) : e(T) < e}

T is called e-maximal if e(T) = e, Sp(T) = f(e), and removing any clause
from T enlarges e or makes T satisfiable.

We start by proving two lemmas that will be used in the proof of the
main theorem.

Lemma 20 f(e+1) <2f(e).

Proof [Lemma 20]: Let 7 be an e+ 1-maximal contradiction, and let 7 be
a refutation of 7 having e+ 1 internal edges. Let C be a clause of 7 that is a
consequence of resolving two axioms A, B € 7T, and is involved in at least one
internal edge. (The proof has at least one internal edge. Repeatedly backing

12

from the current node to any internal predecessor, starting at the source of
this edge, we eventually get to a minimally internal vertex, which must be
labeled by such a C.) Let 7" =T U{C}. T’ has a tree like refutation 7" of
size at most f(e), since deleting the derivation of C' from 7 gives a refutation
of 7' with < e internal edges. Adding the derivation ATB to T" whenever C
appears as an axiom in 7", will be a refutation of 7 which is at most double
the size of T".]

Let (Stn) o ym (") For m > n let (") & o,

g <m

Lemma 21 Given a CNF formula with m clauses and n variables, there is
a decision tree solving the CNF search problem, with size at most <’:n)

Proof [Lemma 21]: Consider the following strategy for the CNF search
problem. In every step, we have a partial assignment p , we query a variable,
and add its value to p. If at the beginning of a step, p has forced any clause
to be false, we stop and output that clause. If p has forced all clauses to be
true, we stop and output ”true”. Otherwise, we choose the first clause whose
value is not forced, and query the first variable in that clause whose value is
not assigned.

In each step of the above strategy, there is one value for the query that
satisfies the current clause. Along any path of the decision tree, the satisfying
value can be chosen at most m times before all clauses are forced to true, and
the decision tree terminates. Thus, a path in the tree can be described by a
sequence of n bits with at most m 1’s, where 1 means, assign the satisfying
value, and 0, assign the other value. Therefore, there are at most (<’;n) such
paths.

Next, we wish to show that any G, can be split “in half”) into two
derivations, each having roughly half the number of internal edges appearing
in the original G.

DEFINITION 22 (Topological Partition) Let vy ...vs be a topological ordering
of the vertices of a circuit G. For 0 <i < S, let Vy(i) = {v1,...,v:}, and let
Vi(i) = {vit1,---vs}. Let Go(i) (G1(i) resp.) be the subgraph of G induced
by Vo(z) (Vi(i) resp.). Let eo(i) (e1(i) resp.) be the number of internal edges
in Go(1) (G1(7) resp.). Let M; be the set of internal vertices of Vy(i) that are
connected to vertices in V1 (i), and define m; = | M;].

An internal vertex of Gy(i) is also an internal vertex in G, thus M; is
a subset of the internal vertices of G. Notice that 7 = (Cy,...,Cs) is a

13

topological ordering of G. If V;(3), Vi (¢) is a topological partition of G, then
Vo(7) is a resolution derivation from 7, and V; (i) is a resolution refutation

Lemma 23 (Existence of an Equal Topological Partition) [CPT77] For
V1 ...Vg a topological ordering of the vertices of a single-target circuit G- with
mazimal fan-out 2, there exists a partition of G such that |ey(i) — e1(i)| < 2.
Such a partition is called equal, and for an equal partition, ey(i) < S 4 2.

Proof: ey(0) =0, eg(S) = eand ey(i+1) < eg(i)+2, since adding the vertex
vi+1 to V(i) increases the number of internal edges in V(i) by at most 2 (G
has maximal fan-in 2). The fan-out of G is at most 2, so e;(i+1) > e1(i) — 4,
since removing v;4; from V; (i) can transform at most 2 internal vertices of
G1(7) into source vertices of G (i + 1), and each of these two new sources has
fan-out at most 2, meaning at most 4 internal edges are removed from G(7)
when v;1; is removed. Hence, there exists an ¢ such that |eg(¢) — e1(7)| < 3.
G has a single target, so every vertex in M; is connected to at least one
vertex in V;(i). Hence e(G) > eg(i) + e1(i) + m;, and eg(z) < &=2t3, m
We are ready to prove the main theorem of this section:

Theorem 24 There exists a constant ¢ > 0, such that for all integers k > 4,
f(ka) < 2c-2k-1og1c

Proof: By induction on k. Let ¢ > 8 be large enough that the claim is
true for all £ < 4, and assume the claim holds for all values smaller than
some fixed k > 4. Let e = k2F. We assume 7T is a CNF in n variables which
has a refutation with at most e internal edges, and show how to construct a
tree-like refutation of size 26218k,

First, if n > e, there is some variable z never resolved on in the proof.
Deleting and any clause containing = from the proof makes it only smaller,
and keeps it a refutation. So without loss of generality, we assume n < e.

Let m = (C1, Cy, ... Cs) be a refutation of 7, such that G, has e internal
edges. Let my, 71 be the equal partitioning of 7 at some 1 < ¢ < S, denote
eo = eo(i),e1 = e1(7) and m = |M;].

Given the partition, we present two alternative methods for constructing
tree-like refutations of 7. We choose our method according to the size of m:

m > 2F - The Brute Force method Each clause C' € M; was derived by

a derivation with at most eg < ™ + 2 < (k — 1)25 ! + 2 internal

14

edges (by lemma 23), hence it has a tree like derivation of size at most
F((k—1)28"1+2) < 4f((k—1)2F1) (by lemma 20). We replace m; with
a tree-like derivation, that, similarly, has size at most 4f((k — 1)2F 1),
and then replace each axiom C' € M; by the tree-like derivation of size
at most 4f((k — 1)2%71). The total size of this derivation is at most
16f2((k — 1)2%1). Using induction we get:

16f2((k; _ 1)2k—1) S 24+02k log(k—l) S 262k logk
The last inequality is true for ¢ > 8 and k£ > 4.

m < 2¥ - The Intelligent method By lemma 21, there is a decision tree
D of size at most (<’;n) solving the CNF search problem over M; (M;
may be satisfiable). Look at a leaf v of D. If v is labeled C' € M;, using
lemma 23 we claim C can be derived from 7 by a tree like derivation
of size at most f(5™ + 2) < 4f(%5™) (the previous inequality uses
lemma 20 again), and we plug into v this “small” tree-like derivation.
Otherwise v must be labeled 1. This means that the restriction p
defined by the path leading to v, satisfies M;, and hence m|, is a
refutation of 71, with at most ™ + 2 internal edges (lemma 23).
Hence, there is a tree like refutation of 7, of size at most 4f(%5™)

(lemma 20). This can be transformed into a derivation from 7 of C,,

the clause which contains all literals set to 0 by p, without increasing its

size. Plugging the tree-like derivation of C, into v, for every v labeled 1

in D, transforms D into a tree-like refutation of 7. We need only show

that the new tree-like refutation is not too large. Its size is bounded

by:
n k2F —m
< . e 1
<() =)
n<e+1,so
k2% +1 k2k —m
< . 2
< (") e)
k>4 and m < 2*, so
k2k K2k —2F 92k _m
§2’“+1<m>-f(5t 5) (3)
By lemma 20
k+1 k2" L p2ism _ 1)9k-1
<ot (M) 0% (k- 2t @

k2k

k+1
(12

)f((k 12t (5)

(because (&)2% is monotonically increasing in m for m < r/4, and
m < 2F < k2%/4, we can substitute m = 2F to upper bound the
quantity)

< 2k+1(4k)2k . 9c2¥ " log k-1 (6)

< 9k+1+2:25+2%-(log k) +(1/2)c(2" log k) (7)
_ 2k+1+2k-(2+1ogk(1+c/2)) < 202"’-logk (8)

The last inequality follows for £ > 4 and ¢ > 8.

We are now set to prove theorem 2.
Proof [Theorem 2]: Let 7 be a contradiction, and 7 be its minimal size
refutation, with S(w) = S(7) = S. Let #’ be the minimal size refutation for
which G+ has maximal fan-out 2. By our discussion in the beginning of this
section, |7'| < 2S. Hence e o e(Gp) < 4-85, because at most two internal

edges enter a vertex of Gp. Set k % [log 102561. Clearly e < k2%, and recall

that f(e) is monotonically increasing, hence:

Slog 1055)

Sr(T) < fle) < f(k2") = 20582
U]

5 Applications to Automated Theorem Prov-
ing

Some of the most extensively used and investigated methods for proving un-
satisfiability of CNF formulas, are called Davis-Putnam procedures. Actu-
ally, these procedures are derived from a system devised by Davis, Logemann
and Loveland [DLL62|, and hence we will refer to them as DLL Procedures.
A DLL procedure relies on choosing a variable z (called the splitter), and
trying to refute T |,—r and T |,—F recursively.

16

If T is unsatisfiable, DLL(T) terminates providing a tree-like resolution
refutation of 7. The DLL procedure is actually a family of algorithms; an
algorithm in the family is specified by a rule that determines the choice of
splitter at each recursive step.

A different method is to seek a minimal width refutation. Algorithms for
finding such refutations are well-known in the Al community ([Sel95]), but
were given additional theoretical motivation by [BW99]. (See also [BP96]).
One algorithm to do such a search can be described as follows:

A(T)
fix w=20
Repeat {
If0e 7 end
Else {
increase w

repeatedly derive from 7 all clauses of
width < w and add to T

}
}

Algorithm A has running time bounded by n?®(7"9) because this is
the maximal number of different clauses that will be encountered. A sim-
ple consequence of this observation, is that the pebbling contradictions pro-

vide concrete examples for which algorithm A exponentially outperforms any
DL L-procedure.

THO

Theorem 25 Let DLL be any implementation of a DLL procedure. There
exists an infinite family of unsatisfiable CNF formulas T such that Time(DLL(T))
is exponentially larger than Time(A(T)), i.e., exp(Time™ M Time(A(T))).

Proof: We use the notation of section 3. Take 7 = Pebg s a circuit G
with high pebbling measure P (S,T) = |V|/log|V| By lemma 12

Time(A(T)) = |V|°W
By theorem 1, any tree-like refutation of 7, must have size at least

o ragrry)

Since the run time of any DLL procedure is bounded from below by the size
of its output, which is a tree-like refutation, the theorem follows. L]

17

6 Open Problems

One result of this paper is that for all CNF's

Sloglog S

<
ST > eXp(IOgS)
Another result is that for some CNF's
S
<
eXp(logs) = ST

Can the gap between the two bounds be closed ?

Hopcroft, Paul and Valiant proved that any circuit with n vertices can be
pebbled with O(n/logn) pebbles [HPV77]. Thus, one cannot hope to find
“harder” graphs whose pebbling measure will match our upper bound. The
analysis we perform is locally tight, so it seems that using our techniques
one cannot obtain better results. Finally, we do not have good intuition as
to which of the two bounds (if any) is the right one.

References

[ALS6]

[BEGJOS]

[BKPS93]

[BPY6]

R. Aharoni, N. Linial. Minimal Non-Two-Colorable Hypergraphs
and Minimal Unsatisfiable Formulas. In J. of Combinatorial The-
ory, Series A, Vol. 43, No. 2, (1986) pp 196-204.

M. L. Bonet, J. L. Esteban, N. Galesi, J. Johannsen. Exponential
Separations between Restricted Resolution and Cutting Planes

Proof Systems. In 39th Symposium on Foundations of Computer
Science (FOCS 1998) pp. 638-647.

P. Beame, R. Karp, T. Pitassi, M. Saks. On the Complexity of
Unsatisfiability Proofs for Random k-CNF Formulas. Preliminary
version in Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, pages 561-571, Dallas, TX, May 1998. Final
version in SIAM Journal on Computing, 31(4):1048-1075, 2002.

P.Beame, T. Pitassi. Simplified and Improved resolution lower
bounds. Preliminary version in 37th Annual Symposium on Foun-
dations of Computer Science, pp 274-282. Burlington, VT, Octo-
ber 1996. IEEE. Final version in SIAM Journal on Computing,
31(4):1048-1075, 2002

18

[BP97]

[BTS8]

[BW99)

[C74]

[CEI96]

[CPT77]

[CR79]

[CS88)

[DLL62]

[H85]

[HPV77]

[IPS97]

S. Buss, T. Pitassi. Resolution and the Weak Pigeonhole Prin-
ciple. In Springer-Verlag Lecture Notes in Computer Science.
(Publications of selected papers presented at Proceedings from
Computer Science Logic '97).

S.R. Buss, G. Turan. Resolution Proof of generalized Pigeonhole
principles. In Theoretical Comp. Sci., 62:(1988)311-317.

E. Ben-Sasson, A. Wigderson. Short Proofs are Narrow - Resolu-
tion made Simple. In Journal of the ACM, March 2001, Vol. 48
No. 2. Preliminary version in STOC99.

S. A. Cook. An Observation on Time-Storage Trade-Off. In J. of
Comp. and Sys. Sci., Vol 9 (1974), pp. 308-316.

M. Clegg, J. Edmonds, R Impagliazzo Using the Groebner Basis
algorithm to find proofs of unsatisfiability In Proceedings of the
28th ACM symposium on Theory of Computing, 1996, pp 174-183.

R. Celoni, W.J. Paul, R.E. Tarjan Space Bounds for a Game on
Graphs. In Math. Systems Theory, 10 (1977), pp 239-251.

S. A. Cook, R. Reckhow. The relative efficiency of propositional
proof systems. In J. of Symbolic Logic, Vol. 44 (1979), pp. 36-50.

V. Chvatal, E. Szemerédi Many Hard Examples for Resolution
In J. of the ACM, Vol 35 No. 4, pp. 759-768.

M. Davis, G. Logemann, D. Loveland. A Machine program for
theorem proving. In Communications of the ACM, 5:394-397,
1962.

A. Haken. The Intractability of Resolution. In Theoretical Com-
puter Science, 39 (1985), pp. 297-308.

J.E. Hopcroft, W. Paul, L. Valiant. On Time vs. Space. In J.
ACM, 24 (1977), pp. 332-337.

R. Impagliazzo, P Pudlak, J. Sgall. Lower Bounds for the
Polynomial-Calculus and the Groebner Basis Algorithm. In Com-
putational Complezity, 8(2) (1999), pp. 127-144. Electronically at

19

[MROS]

[PI00]

[R95]

[R6]

[RR94]

[RWY97]

[Sel95]
[T68]

[U87]

Electronic Colloguium on Computational Complezity, Reports Se-
ries 1997, Available at http://www.eccc.uni-trier.de/eccc/. Tech-
nical Report TR97-042.

R. Raz, P. McKenzie. Separation of the Monotone NC Hierarchy.
In Combinatorica 19(3) (1999), pp. 403-435. Preliminary version
in Proceedings of the 38th FOCS, 1997, pp. 234-243.

N. Pippenger Pebbling. Technical Report, IBM Watson Research
Center.

P. Pudlak and R. Impagliazzo, Lower bounds for DLL algorithms
for k-SAT. In Proceedings of SODA 2000, pp. 128-136.

A. A. Razborov Unprovability of Lower Bounds on Circuit Size in
Certain Fragments of Bounded Arithmetic. lzvestia of the RAN,
59 (1), pages 201-222, 1995.

A. A. Razborov Lower Bounds for the Polynomial Calculus. In
Computational Complexity, Vol. 7, No 4, 1998, pages 291-324.

A. A. Razborov, S. Rudich. Natural Proofs. In Journal of Com-
puter and System Sciences, Vol. 55, No 1, 1997, pages 24-35.
Preliminary version in Proc. of the 26th STOC, 199/, pp. 204-
213.

A. A. Razborov, A. Wigderson, A. Yao. Read-Once Branching
programs, rectangular proofs of the pigeonhole principle and the
transversal calculus. In Proc. of the 29th STOC, 1997, pp. 739-
748.

B. Selman, personal communication, 1995.

G.S. Tseitin On the Complexity of Derivation in Propositional
Calculus. In Studies in Constructive Mathematics and Mathemat-
ical Logic, Part 2. Consultants Bureau, New-York-London, 1968,
pp. 115-125.

A. Urquhart. Hard Examples for Resolution. In J. of the ACM,
Vol 34 No. 1, pp. 209-219.

20

[U95] A. Urquhart. The Complexity of Propositional Proofs In The
Bulletin of Symbolic Logic, Vol 1 No. 4 (1995), pp. 425-467.

21

