DETERMINISTIC SIMULATION
OF PROBABILISTIC CONSTANT
DEPTH CIRCUITS

Miklos Ajtai and Avi Wigderson

- ABSTRACT

We explicitly construct, for every integer n and ¢ > 0, a family

of funciions (pseudorandom bit generators) f, : {0,1}" - {0, 1}"

with the following property: for a random seed, the pseudorandom

output “looks random" to any polynomial size, constant depth,

unbounded fan-in circuit. Moreover, the functions f,, themselves

can be compured by uniform polynomial size, constant depth circuits.
Some (interrelated) consequences of this result are given:

1. Deterministic simulation of probabilistic algorithms. The
constant depth analogues of the probabilistic complexity
classes RP and BPP are contained in the deterministic
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complexity classes DSPACE(n') and DTIME(2™) for any
e20.

2. Making probabilistic constructions deterministic. Some
probabilistic construction of structures that elude explicit
constructions can be simulated in the above complexity
classes.

3. Approximate counting. The number of satisfying assignments
to a (CNF or DNF) formula, if not too small, can be arbitrarily
approximated in DSPACE(n*) and DTIME(2"), for any
e>0.

We also present two results for the special case of depth 2 circuits.
They deal, respectively, with finding a satisfying assignment and
approximately counting the number of satisfying assignments. For
example, 3-CNF formulas with a fixed fraction of satisfying assign-
ments, both tasks can be performed in polynomial time!

1. INTRODUCTION

The relationship between randomized and deterministic compu-
tation is a fundamental issue in the theory of computation. The
results on this subject fall into the following categories.

e 1.1. Simulating Randomness by Nonuniformity

Adleman [Ad] showed that any language in RP can be computed
by a polynomial size family of circuits. However, the proof is
existential, and there is no known way of explicitly constructing
these circuits. A similar result, for simulating probabilistic, poly-
nomial size, constant depth circuits by nonuniform deterministic
ones is due to Ajtai and Ben-Or [AB).

1.2. Simulating Randomness under an Unproven Assumption

Yao [Ya] has shown that if one way functions exist, then RF is
contained in DTIME(2"), for any fixed positive &. Note that the
assumption is extremely strong, as it implies in particular that
P # NP coNP. Similar results are given in [FLS), who study the
space complexity of the simulation, and [RT), who consider RNC
instead of RP.
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Delerministic Simulation of Probabilistic ACo
1.3. Simulating Randomness by Alternation

Sipser and Gacs [Si] showed that BPP is contained in A{. Of
course, the time or space complexities of languages in this class are
unknown. A related result, due to Stockmeyer [St), is that approxi-
mate counting is in Af.

14. Simulating Specific Randomized Algorithms

By a careful analysis of how randomness is used in a specific
algorithm, one may be able to replace it by a deterministic construc-
tion. Such examples are the parallel algorithms in [Lu, KUW, KW].
Also related are explicit constructions of graphs with special
propertes, which can be found in [Ma] and [GG]).

There were no explicit upper bounds on the deterministic simu-
lation of any nontrivial class of probabilistic algorithms. In fact,
there is no such simulation that does less than brute force enumer-
ation of all possibilities for the random inputs.

We prove in this paper that probabilistic, polynomial size,
constant depth, unbounded fan-in circuits can be simulated in
DSPACE(n') [and hence also in DTIME(2")], for every fixed
positive ¢&. This is done by generating a small set of pseudorandom
binary strings, such that a randomly chosen one of them “looks
random™ to any polynomial size, constant depth circuit.

It is interesting to note that our “pseudorandom bit generator”
Is purely combinatorial, in contrast to the number theoretic gener-
ators used in cryptography (e.g., [Sh, BM, BBS)).

The proof that our generator ‘“‘works” requires an intimate
understanding of the structure of constant depth circuits. Such an
understanding is drawn from the lower bound proof techniques for
such circuits [Aj, FSS). Moreover, these lower bounds are all
“probabilistic” (or “nonconstructive”), and an essential part of
building the generator is making them explicit. To this end we use
the idea of “k-wise independent” random variables (e.g., see
[ACGS, Lu, An, KUW])),

In Section 2 we give definitions and state our main theorem. In
Section 3 we discuss applications of the main theorem, and in
Section 4 we give the proof. In Section 5 we obtain refined results
on depth 2 circuits, and discuss their applications.
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2. DEFINITIONS AND THE MAIN THEOREM

A circuit C is a directed acyclic graph with node labels. The nodes
of indegree zero are labeled with input variables, the nodes of
outdegree 2ero are labeled with output variables, and the rest of the
nodes are labeled from {AND, OR, NOT}. We put no bound on
fan-in or fan-out.

The size of a circuit C, s(C), is the number of nodes in it. The
depth of C, d(C), is the length of the longest input-output path. We
say that C is an (s, d)-circuit if s(C) < s and d(C)<d. ,

We shall be interested in families of circuits. Let 5,d: N — N be -
fupctions. We say that {C,},n = 1,2,...is an (s,d)-family if for all J
n, 5(C,) < 5(n), d(C,) € d(n). If s = n°",d = O(1) then {(C,)isa |
PC family (polynomial size, constant depth). :

A family is uniform if there exists a Turing machine that on input
n in unary, outputs a description of C,, using only O(logn) space
[Ru]. We shall mainly deal with one output circuit, Every such
circuit C with n inputs computes a function C: {0,1}* - {0,1} ina
natural way. Define p(C) = Pr[C(x) = 1], where x¢ {0,1}" with
uniform probability.

For inputs that are generated pseudorandomly we use the
following. Let f: {0,1}" — {0,1)" be a function. Define pAC) =
Pr[C(x) = 1], where x = f(y) and ye {0,1}" with uniform
probability.

Two important parameters measure the “goodness™ of fas a
pseudorandom bit generator for a circuit C. The natural one is
|p(C) = pAC)|. Another parameter,, for which we get better
bounds, is how small ¢an p(C) get so that still p,(C) does not
vanish.

We can now state the main theorem. The present form of the
Main Theorem is stronger than the on¢ given in [AW), since the
order of quantification has been changed.

MaiN Turorem. Let & be fixed. Then there exists a family of
functions {f,: {0,1}" - {0,1}"}, n = 1,2,..., with the following
properties:

(/) {/,} can be computed by a uniform, PC family of circuits.
(So in particular, {f,} can be computed in LOGSPACE.)
(if) Letl, d, u be fixed integers and {C, } be any (n',d) family of
circuits. Then for every sufficiently large n,
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@ (p(G)=p(C€n™
(6) for a fixed * = t(l,d,¢), if p(C,) 227", then
PL(C,.) > 0.

3. APPLICATIONS

The applications are given not necessarily in order of importance,
but rather in order of notational convenience, All the applications
are based on the fact that we can get a fairly good approximation
of the output behaviour of C, by “testing” it on only 2" inputs.

The following notation will be used often. Let & N=[0,1]bea
function. We say that g is polynomially small if g(n)~' = n°" We
say that g is subexponentially small if g(n)~' = o(2"), for every
fixed ¢ > 0.

3.1.  Approximate Counting

Let the number of satisfying assignments to a (CNF or DNF )
formula Fbe # F. Computing # F from Fis % P complete. It is not
known whether # P is in the polynomial hierarchy. An easier
problem is approximate counting, which is in this case to find an
integer in the range [(1 + )" % F, (1 + p)# F]. Call this § approxi-
mation. For any polynomially small 8, § approximation was shown
to be in A7 by Stockmeyer [S]. No explicit deterministic upper
bounds were known for approximate counting. Let p(F) = # F/2"
be the fraction of satisfying assignments of F, where n is the number
of variables in F,

COROLLARY 1. Consider formulas F with polynomially small
P(F). Then for every fixed ¢ and every polynomially small f, the #
approximation problem for Fis in DSPACE(n') fand hence also in
DIIME(2")).

Proof (sketch). F is a polynomial size depth 2 circuit, In
DSPACE(n') all the “seeds” y of /., can be generated, £,(y)
computed and tested on F. The output is &y ene FUL(2D2". By
(if), part (a) of the main theorem, it is the desired approximation.

3.2. Easy Cases of Satisfiability

If we are just interested in finding a satisfying assignment to a
formula F, the result above can be improved. In [VV], Valiant and
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204 MIKLOS AJTAI and AVI WIGDERSON

Vazirani showed that finding a satisfying assignment in formulas
with exactly one such assignment is essentially as hard as the
general case. The following result, which complements theirs, says
that if the number of satisfying assignments is large enough, then
satisfiability becomes easier.

CoroLLARY 2. Consider formulas F with subexponentially
small p(F). Then for any ¢ > 0 a satisfying assignment of F can be
found in DSPACE(n°) (and DTIME(2)].

This result follows from (if), part (b) of the main theorem.
3.3. Making Probabilistic Constructions Deterministic

Following Sipser [Si), we define a probabilistic construction to be
a language L < {0, 1}* x {0, 1}* with the property that if (v, v)€ L,
then Pr((u, x)e L] » 1/2, where x is uniformly chosen with [x = ||
(« usually gives the size of the required object in unary, and then a
random object of the right size has the desired properties.) The
deterministic construction problem for L is, on input ¥, to generate
vs.l (u,v)eL. '

If Ley/, Sipser calls it a £ construction. He shows that if L is
a 3¥ construction, then the deterministic construction problem for
Lis,is in I7, ,. (An analogous statement is true for [T7.)

Note that Le 5’ or Le[]/ means that L can be recognized by a
uniform family of constant depth (but possibly exponential size)
circuits. We say the L is a PC construction if it can be recognized
by a uniform PC family of circuits.

CoroLLary 3. If L is a PC construction, then for any ¢ > 0 the
deterministic construction problem for L is in DSPACE(n') [and in
DTIMEQ2™)).

Note that the uniformity is needed for our deterministic machine
to generate the circuit recogmzing constructions of size |u, where u
is the input.

3.4, Deterministic Simulation of Probabilistic Constant Depth Circuits

A probabilistic circuit C is one with “real” input vanables, 2,
and random input variables, x. If [z| = » and [x] = m[=m(n)),
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C computes a function C: {0,1})""" = {0,1}. Let p[C(2)] =
Pr[C(z,x) = 1] when xe {0, 1} with uniform probability. The idea
of recognizing languages by probabilistic circuits is that the behav-
iour of p[C(z)] will depend on whether z is in the language or not.

We define two families of complexity classes, PC(x), PC2(a)
where PC refers to polynomia) size, constant depth, 1 and 2 refers
to whether we allow one or two sided errors, and « is the “accuracy™
(in general a: N — [0, 1) is a function). A language L & {0,1}* is in
PC 1(a) if there exists a uniform PC family {C, } s.t. for every n and
i every ze{0,1)" we have

e L S T — P P ——

T

zeL - p[C(2)) 2 a(n) and z2¢ L — p[C(2)] = 0.

A language L < {0, 1}* is in PC2(a) if there exists 2 uniform PC
family {C,} s.t. for every n and every 2€ {0,1)"

zeL - p[C(2)] 2 1/2 + o(n)
z¢L - p[C(2)] < 1/2 — a(n).
COROLLARY 4. For every fixed ¢ > 0 we have

(i) for every subexponentially small function «, PCl(x) S
DSPACE(n*)

(#) for every polynomially small function @, PC2(x) &
DSPACE(n').

4. PROOF OF THE MAIN THEOREM

The key notion is that of approximating a circuit. A given circuit
will undergo a series of simplifications, each restricting the inputs,
that will change the output behaviour by only tiny amounts.

] The proof has two logical parts. In Part I we show how to
! approximate n' ~“ input bits of a PC circuit by only O(log n) bits. In
Part II we show how to iterate this construction, adding only a
constant to the depth and a polynomial to the size,

[

g e Tl b e et
. - — i

4.1. Part I: Sketch of the Proof

As we mentioned, the task in this part is to replace n' ~* random
bits by O(logn) random bits without affecting the output behavior
of the circuit by much, and implement this change by a PC circuit.
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Suppose that C'is a constant depth polynomial size circuit with
the set of variables A = {x,,... X, }. First we show that if Wis a
random subset of 4 with n'~* elements and we substitute random
values for the variables in A — W then with high probability the
resulting circuit will actually depend only on ¢ variables where ¢ is
a constant. [See Definition 1. “W is (¢, 7)-local.”]

If we know such a set W then we can define a pseudorandom
input f for C in the following way. Let flLi—w and f)y be indepen-
dent, f1,,, uniform on the set of all possible assignments on A — W
and let f]u be uniform on all subsets of W with ¢ elements. (See
Definitions 2 and 3; “Yis (W], t)-uniform.”) We will show how to
generate such an flw only from O(logn) random bits. For such an
f we have that Pr(C(x) = 11— PriC(f) = 1) <n”" where uis @
large constant.

Unfortunately fstill depends on the subset W. To pick a random
W with n' ~* elements requires too many random bits. We will show
however that a W with the required properties can be generated
from only O(log n) random bits. To make this part of the argument
clearer, first we show those combinatorial properties of a random
subset W that guarantee that the circuit we get from C by substituting
random bits for the variables in A — W depends only on elements.

If we consider only depth 2 circuits the essential property of
W is the following; if a small subset ¥ of A is given [|V| <7,
B+ (1 —¢g) < 1] then with high probability W will intersect it in a
st of constant size. (See Defipition 4. “Small intersection
property.”) This property will imply that if a polynomial family of
Vs are given then still with high probability W will intersect each
of them in a set of constant gize. This property will make it possible
to replace large conjunctions (or disjunctions) by small ones.

For depth 4 circuits we have to iterate this argument, SO W
must be included in a sequence of sets Xy X2 "R Xy = W
so that each X; has the small intersection property in X,_,. (See
Definition 5. “‘d-iterated small intersection property.)

Now we can define the pseudorandom input ffromthen —n'~
random bits, which specifies its value on A = W, and from the
O(logn) random bits, which describes a W with the d-iterated
small intersection property and apother O(logn) random bits,
which give.a (W, 7) uniform fly- So altogether from n—n'™" +
O(logn) random bits we defined a pseudorandom input f so that
|p(C) = pAC) <n™™. In Part 1T we will iterate this argument 0
decrease the number of necessary random bits to '

1]
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We need some notation. Let C be a circuit on n variables 4 =
{x,,...,x,}. For any subset Y < A and a binary vector v of length
[¥1, let Cy, denote the circuit obtained from C by assigning the
values v 1o the variables in Y, in the natural order. If v is chosen
uniformly at random then denote by Cy the random variable C, .
Let Z be a random variable taking values from {0, 1}*, then denote
Pr(C(Z) = 1] by pIC(2)).

Proposition 1 asserts that for a random set of all but n' ~* of the
input variables and a random assignment to them, the resulting
circuit will depend only on a constant number of inputs (although
it has n'=* of them).

DerFiNiTION 1. We say that a circuit C depends on ¢ variables if
there exists a subset T < A of size 1 s.t. for every assignment to the
variables in 7, the resulting circuit is constant. We denote the
minimum such ¢ by ¢(C) and some T of this cardinality by T(C).

If ¢ is an integer and t > 0 the set W < A is called (t, 1)-local if
Pritf(C,_w) €2) 21 =277,

ProrosiTION 1. Let d, /, u be positive integers and £ > 0. Then
there exists an integer 7 so that if n is sufficiently large, Cisa (', d)
circuit with » input variables A, and W< A is random with
|W| = n'"¢ then Pr(1(C,.,) > 1] € n~* where we take the prob-
ability over the product space “‘choose W, then choose assignment
onAd-WwW"

Moreover, there exists a r > 0 depending only on d, /, u, ¢ so that
with probability at Jeast 1 — n™" the set W is (1, r)-local. (Here the
probability is over choices of W only.)

The proof of Proposition 1 is an inductive argument on the depth
of the circuit, similar in flavor to the lower bound proofs in [Aj),
[FSS], [Ha), and [Ya). In fact, the first part of Proposition 1 appears
with a different proof in [Aj]. The inductive step is based on a
property of depth 2 circuits, which will be given in Theorem |
(Section 5).

We do not prove Proposition ] now since we later (Proposition
2) will prove a stronger version of it, namely we can pick W
randomly from 2 uniformly given polynomial size family of subsets
of A. This remark also relates to Corollary 5
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Note that different choices of v may result in different subsets
T(C,w,) Of W that the resulting circuit depends on. However,
Proposition 1 tells us that the output distribution of C will essen-
tially remain unchanged if instead of assigning random values to
the variables in W (not in W -~ A), we usc assignments that “look
random” only on ¢ subsets of W. This motivates the next definitions
and corollary.

DefiNrmioN 2. A random variable Z = Z.,....2, wth
Z,e{0,1} is said to be (m,¢,p)-uniform if for all 1 €i€sm
Pr(Z, = 1) = pand for every t-subset [ of {1,...,m} the variables
{Z,|ie ]} are mutually independent. When p = 0.5 we say that Z
is (m, r)-uniform.

The key fact about (m, t)-uniform sequences is that they can be
simply generated from only tlogm random bits by PC circuits,
using polynomials over finite fields. The explicit construction will be
given later.

DEFNITION 3. Let W A and integer ¢ be fixed. A random
variable Ye(0,1)" is called (W,0)-uniform if Ylw is (WI,0-
uniform, Y|,_w is uniform, and these two restricted random vari-
ables are independent.

Corollary 5 below follows easily from the above definitions and
Proposition 1.

COoROLLARY 5. Letd, ], u,e 1, tbeasin Proposition 1, For each
possible W of size n'~* let Y™ e{0, 1) be an arbitrary (W, 1)-
uniform random variable. Then

(1) If Wis chosen uniformly at random, then we have | p(C) —
plIC(Y™)) < n”".

(2) If Wis (1,t)-local, then | p(C) - plC(Y™) < 27~.

(3) If Wis (r, t)-local then there1s an evaluation w on W so that
Pr(Y™)y = w)>0and Pr(Cy, = 1)2 plc(Y™)) — 27"

Proof Fixvin{0,1)*"",let C’ = Cy.w, (0n inputs from W),
and consider p(C’) vs. p(C’, Y"|y). In the first we consider a
uniform distribution on inputs to C* and in the second only a
t-uniform distribution. The circuit reacts identically if (C’) < thence
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we get errors only if #(C’) > t. By Proposition 1, for a random W
and v, this happens with probability smaller than »™". (1)

For a (1,7)-local set W, this happens with probability smaller
than 2°". (2)

(3) follows from (2) by averaging over the possible assignments
w 1o W in the random variable Y™ [replace p[C(¥Y™)] by p(C)}.

We are now in the situation where, if given a (z, t)-local set W,
we can replace its n'~* random input bits by O(logn) random
bits. Corollary 5 shows that most W will work, but to specify a
random set W we need as many as n' ~“log # bits. Our next step will
be to generate (f,7)-local sets W pseudorandomly, using only
O(log n) random bits. This is done by extracting from the proof of
Proposition 1 only the essential properties of the random variable
W that are actually used.

Dermvition 4. Let X be a random variable whose values are
subsets of a set A of size n. We say that X has the small intersection
property with parameters a, , ¢ if for every set Ve Awith|V|<r
we have that if 5 < 1, then

Pr(VnX|€<szl—n (1=a=

DermvmioN 5. The random variable X' G A has the d-iterated
smal) intersection property with parameters a, §, ! if there exists
a sequence of random variables X, .. LXsothat X = X, X, &
X, and for any possible fixed values B,,.... B, of the variables
X,,..., X, we have that X;,, with the condition X, = B,,..., X, =
B, has the small intersection property with parameters a, B, ¢

PrOPOSITION 2. The consequences of Proposition 1 and Corol-
lary 5 hold if we replace a randomly chosen W of size n'~“ by a
random variable W that has the d-iterated small intersection
property with parameters | — &, /2, t

The proof of Proposition 2 is based on the following Lemmas, 1
and 2.

Before stating the lemmas, we state Theorem 1, which is proved
in Section 5. Intuitively, it shows that a depth 2 circuit of small
bottom fan-in is almost completely determined by a small subset of
its input variables.
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TueoreM 1. Let C be a depth 2 circuit of bottom fan-in £k
with input variables in A. Then for every r = 2% there exists a
subset Q € A4 s.t.

(1 181
(2) Pr(Cp # 0,1)<27".

Furthermore, if |4| = n, the set Q can be found in time O(n*).

LemMma 1. Let k, & be fixed. For any z if n is sufficiently large, C
is a depth 2 circuit with bottom fanin at most k; W is a random
variable with the (1 — ¢, £/2, 2) small intersection property and ¢ < 7
then with probability at least 1 — n~? the set W satisfies the
following inequality:

Prit(Cow)st]l21~— 2~

Proof of Lemma 1. Apply Theorem 1 with r = 7% 1o obtain
the set Q. By (1) of the theorem, |Q| < A = n and since W has
the small intersection property, Pr(Q n W| £ t) = 1 = n~“%,

Now fix W so that (W~ Q| <1t By (2) of the theorem at
most 29'=" of the assignments to @ do not determine the value
of C. Hence, at most 29~ of the assignments to Q — W will
have an extension in Q n W that does not fix C, and since these
are chosen randomly in C,., and |Q ~ W| 2 |Q] ~ ¢ we have
Pr(i(Crom) > ) € 287 ((291=') = 27"*' m 2-t""+0_If n is suf-
ficiently large then n%* = ¢ 2 n** — z 2 n** 5o the probability is
not greater than 2-w*

Using Lemma 1, we can reduce the depth of a PC circuit C (as
in [Aj], [FSS]) by applying it to all the bottom depth 2 circuits of C.
Once each of these depends only on ¢ inputs, we change it from
CNF to DNF or vice vera without blowing the size up by more than
2' (a constant) and hence reduce the number of alternations (depth)
of C by 1. This is the essence of Lemma 2, and since a pseudo-
random W is good enough for Lemma 1, it suffices also for
Lemma 2.

LemMa 2. Foralld, /, k, ¢ > 0 thereis a 7 and a 7 > 0 so that
for any z 3 ¢ if n is sufficiently large and C is an (n’, ) circuit with
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bottom fanin at most k, and W has the small intersection property
with parameters | —e, ¢/2, z then with probability at least
| — n~UeD=1 the set W will satisfy Pr(C,_ 4 is a depth d — | circuit
with bottom fan-in £) 2 1 — 2",

Now to prove Proposition 2, we simply apply Lemma 2 d umes
to the circuit (again, as in [Aj], [FSS), [Ya], [Ha]). The resulting
circuit (with high probability) depends only on a constant number
of inputs, which implies the proposition.

Note that in Definition 4 only intersections of cardinality ¢ or less
are important. From this it is easy to deduce:

LemMMma 3. If Wis an (n,n™*, {)-uniform random variable, then
X = (i|W(i) = 1} has the small intersection property with par-
ameters 1 —¢,¢/2, 1.

Proof of Lemma 3. Let V< A with |[V|<n?, s<t. If
[V~ X| 2 s then there are distinct v,,...,v,€ ¥~ X. The number
of s-tuples v,,...,v, is (V') € (%), and for any fixed s-tuple
‘Uy,...,u, we have Pr(v,,...,v,e X) € (n™") since s € t and Wis

(n,n™*, t)-uniform. So Pr(lVmnX|2s5)< (" )n™*) € n'™n " =
n—‘{l—»{l—al—nﬂjr‘

Again such a random variable can be constructed from ¢logn
random bits by PC circuits. To get a random variable with the
d-iterated small intersection property one can use 4 independent
constructions as above, which require only dr log n random bits. We
will give the construction in detail in Part IL.

To summarize the first part of the proof, we have shown how to
replace n' ~* random bits by O (log n) random bits, thus reducing the
number of inputs by roughly n' ~* without substantially affecting the
output probability of the circuit. This was done by first using
O(log n) bits to specify a pseudorandom set W of size n' ~* of inputs.
Then use other O(logn) bits to create a pseudorandom assignment
to variables in W. The remaining n ~ n'"* inputs receive truly
random assignments.

4.2. Partll

At this point it is natural to iterate the construction roughly n'
times. However, this presents some difficulties. For example, if we
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implement the construction in the first part, the depth of the circuit
increases by a constant, and so we cannot repeat that more than a
constant pumber of times. Another problem that bounds the number
of iterations is that we must keep the circuit polynomial in the
asumber of remaining inputs, so we have to stop when at least a
polynomial fraction remains.

Conceptually performing this iterative process, we obrain a
sequence of roughly pseudorandom subsets of variables, that
together with the remaining part (of size roughly n‘) form a par-
tition of the set of variables. To each pseudorandom subset we
assign (independently) a pseudorandom assignment [requiring a
total of O(n*log n) bits], and to the remaining subset assign random
variables (only n°).

In order to perform this process in constant depth, we shall
generate all parts in the partition together with their assignments
simultaneously. We first define the partition assignment pair
abstractly, as random variables, and then show how they can be
generated from #' random bits.

DEFNITION 6, Let d, ¢ be integers and & > 0. For every n and
0 < u<n define (F,P) to be a (d, 1,8)-fooling pair of random
variables if the following conditions hold:

(1) Each value of Fisa 0,1 assignment to the variables in 4,
[A] = n.

(2) Eachvalueof P = (P,,...,P,) is a sequence of subsets of
A so that Pg,...,P, form a partition of A.

(3) Forall0€i<puifA,..., 4., are fixed disjoint subsets of
A then the random variable P, with the condition
Py = Agy... Py = A has the d-iterated small intersec-
tion property with parameters ! — 26,4,1.

(4) ForallO€isy if Ag,...,A; are fixed subsets of 4 then
with the condition P, = Aqg,..., = A, the random vari-
ables F|,,, ..., Fl,, are independent.

(5) Foral0<i<uifA, sS4 then F|,, with condition P, = A,
is an (|4, |, /)-uniform random variable.

(6) There is a set A, < A so that |4,| = W, Pr(P,=A,)2
| - 2" Pr(A, & P,) = 1, and Fl, has a uniform distri-
bution over all possible assignments on 4,.

The technical properties of the fooling pair guarantee that it fools
any PC circuit with the appropriate parameters.
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PROPOSITION 3. For all 4, /, u, 4 there exists a ¢ such that for all
sufficiently large n, u < n and a (d, t, §)-fooling pair ¢F, P) we have
the following.

(1) Forevery (#, d)circuit C with ninputs, | 2(C) — p[C(F)] <
i

(2) There exists a t > 0 depending only on d, [, u, § so that
PIC(F)) 2 p(C) — u2.

The proof of this Lemma will be by induction, which will show
that the simultancous construction definition of the fooling par-
tition assignment pair actually simulates the natural iterative
construction. For this we need the following definition and Lemmas
4 and 5.

DEFINITION 7. For all 0 € i < u let ¥, be the random assign-
ment to the variables in A4 that coincide with F on Uj<: P; and
take random values uniformly and independently of (F,P) on
A~ u." </ R '

Lemma 4. Forall buta fraction n~*~? of the values B thit P may
take, and for all 0 < i € u — 1 we have |p[C(Y,)] — p[C(Y,.)) €
n~"=%, when these probabilities are conditioned by the event
P =35

Note that, conditioned on the event P = Bwe have Pr[C(Y,) =
1] = p(C) and provided that P, = A, we have PriC(Y,) = 1) =
Pr[C(F) = 1] so, according to property (6) of a fooling pair,
Lemma 4 implies part (1) of Proposition 3.

Proof of Lemma 4. In the following proof all probabilities
are considered with the condition P = B. Let F, = F| e
Then for every value B that P may take Pr(C(Y.) == kf] =
L Pr(F, = [)Pr[C(Y,) = 1|F, = f] where f takes all of the
possible values for F,.

Suppose now that £ is fixed. We may consider C as a circuit with
the variables 4 — |( J,<: £; by evaluating the remaining variables
according to f. We will denote this cireuit by D. According to the
definition of a fooling pair, P, has the d-iterated small intersection
property with parameters | — 25, §, ¢ (even if £, is fixed). Proposi-
tion 2 implies that for all but a fraction n~*~* of values B, that P,

e e e L
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may take we have that the set B, is (1, t)-local with respect to the
circuit D. Therefore (2) of Corollary (5) implies that for all but a
fraction n~*~? of values B, that P, may take, given the event £, = f
we have

IPrIC(Y,) = 1]— Pr[C(Y,)) = 1] € n~*~2.

Since u < n this implies that for all but a fraction n=*~? of the values
B that P may take the inequality holds for all i = 0,...,u -~ 1.

LeMMa 5. For all but a fraction n~*~? of the values B =
(By,...,B,) that P can take and for all 0€i<pu~—1if fis an
assignment with Pr(F, = f|P = B) > 0, then there exists an exten-
sion f’ of f to {J, ¢, B; so that

Pr(F, = f'|P = B)>0, and

Pr(C(Y.,,) = 1|P = B, F,, =[]
2 Pr(C(Y,) = 1|P = B,F, = f]=2""".

The proof of this Lemma is essentially the same as the proof of
Lemma 4, only in the last step we use property (3) from the
modified form of Corollary 5 as described in Proposition 2. Part (2)
of Proposition 3 follows from Lemma 5.

Proposition 4 deals with the explicit construction of a fooling
pair from a small number of random bits.

ProOPOSITION 4. Let d, ¢ be integers § > 0. Then for every large
enough n a fooling pair {F,,P,) can be constructed with u =
[n¥* ), by a LOGSPACE uniform PC family of circuits, given as
inputs 2d (1 4 1)(u + 1) logsn + n* random bits.

DermniTionN 8. (1) We will denote the finite field with g ele-
ments by K,. We suppose (without the loss of generality) that » is
a power of two,n = 2'and K, = K;[y,] (wherey, is given uniformly)
and so the elements 1, 3,, ..., (y,)""' form a basis of the vectorspace
K, over K,. For each x € K, let £ denote the sequence of coefficients
of the representation of x in this basis. (There is no difficulty wath
giving the bases of K, in LOGSPACE since an irreducible poly-
nomial over K, of degree k can be found by the brute force method
in LOGSPACE.)
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(2) Let g,(%y, ... Xy Yis -+ - Yuiw) e @ function with u(n) +
v(n) variables where each x; can be an clement of K, and each y, can
be an integer between 0 and 2'~'. We say that g, can be uniformly
computed by a family of (n",c,) circuits if there are absolute
constants ¢, , ¢, and a uniform family of (2", c,) circuits C, with
(u(n) + v(n)}h ioputs and A outputs soO that for any sequence
X1y oy Xugmys V1o - - - » Vot frOm the domain of g if the input of C, is
Riyeer s Ruoms Proe s s Jugn (Where j, is the binary representation of the
number y;) the output is Z(x;,. .., Xy Yise Yom)-

LemMa 6. The following functions can be computed by an
(1%, ¢,) circuit:

(1) g(x,,x,) or g(x,y) for any ge LOGSPACE.
(2) xx,.

3) x.

(@) xo+X + "+ X4y

(5) Xo+ X, X4+ X0+ + i (K

Proof. (1) If 2 = (o, ci®uy), % = {Pos++ooBPrat X
g(x1,%;) = {Yo,--,Va-1) then y; = L A:::iu (aj«=a; A ﬁ;”b} A
y,++d,) where V' is taken for all @, b, de K, with d = g(a,b) and
a= Cai): x )‘ﬁ-—l): 5 - <b0""!bh-l>v a - <d0| -1dh——l>-

(2) and (3) follows immediately from (1).

4) If aq,...,%., are the coefficients of x, and [ T
arc the coefficients of g(Xg,.-.,Xs.,) i$ the basis 1, orennV !
then B = Vi@~ @) A A (#pa1y** @y-()] Where the dis-
junction V‘ is taken for all 0,1 sequences ay,...,%-) with
G+ '+ 4 a,., = 1 (mod 2). Since there are only n/2 such sequences
the size of the circuit is polynomial in n.

(5) follows from (4), (3), and (2).

DeFNiTION 9. If xe X, let int(x) denote the integer whose
binary representation js the same as the sequence of cocfficients of
xin the basis 1,9,...,7""' [thatis £ = int(x)). Conversely if y is an
integer between 0 and n — 1 then let fd( y) be the clement of K, with
int[ fid(y)) = .

(2) Suppose i, tare integers 0 < i, t < n. Letus define a random
variable 2!, = {Z4,...,2,-» in the following way. Take a
random polynomial of degree at most ¢~ 1 f(x) = @ + &, x +
o 4 a,_ ¥~ over K,, so that a,,...,a,_, are chosen uniformly

- ’

gl et - P g P

e —

e A

e = G i i o g g g gty 3

e PR il et e o — -

e AR B

s,

i

o T




216 MIKLOS AJTAI and AVI WIGDERSON

and independently from K,. For cach 0<j<nlet z =1 iff
int[fld(j)] < i

(3) We define a random variable S, . where i, ar¢ as in the
previous definition and k is a positive integer, whose values are of
{0,...,n—1}. Let P2 VRN ) e £ SN - R indepen
dent random values of the random variable Z,. Foreach0 < j <n
let je ST o iff 5§ = Gm = s}o= 1.

Lemma 7. (1) If 0 € iz <n then Zr, is an (n,1, i/n)-uniform
random variable.

(2) Ifi = n*then Sj. satisfies the k-iterated small intersection
property with parameters (1 = «,a/2,1).

(3) S7,, has the following property: for each 0 < j < n we have
Pr(jeSi.) = (i)'

@) 1f i(n), t(n), k(n)€ LOGSPACE and i(n),k(n) <n, 0 € i<n,
0 < t(n) < logyn = h then there exists uniform families C,, D, of
(n, c,) circuits where ¢, , ¢, ar¢ absolute constants, which realizes

o t0) B0 Sl n.a0m - MoTE precisely C, has th inputs, D, has kth
inputs and both have » outputs, and if we take their input randomly
(uniformly) then the output sequence of C, has the same distnbution
as Zlj,. .« and the output sequence of D, has the same distribution
as the characteristic function of S, 1a.kim -

Proof of Lemma 7.

(1) Seee.g [KUWI

(2) Part (1) and Lemma 3 implies the assertion for k = 1. For
an arbitrary k our statement follows from the trivial fact
that the intersection of k independent random variables
with the small intersection property with parameters
(1 — «,a/2,1) has the k.iterated small intersection property
with the same parameters.
For k = 1 our statement is equivalent 1o the following: if f
is a random polynomial of degree at most 7 in K, [(x] then
for any fixed be K, Pr {int(f (b)) < i) = i/n. This assertion
follows from the fact that f(b) has a uniform distribution in
K. For an arbitrary k our assertion follows from the case
k = | and the independence of the sequences {s{, .- - Shad
in the definition of S{;-
Follows from (5) of Lemma 6, since it guaraniees that the
random polynomial in the definition of Z;, can be evaluated
by a (n°, ¢,) circuit.

i S i -I-e- o .y . T
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DeriNnimion 100 Jf C is a circuit with n outputs then let
5¢q(C) = {84,...,5,., be arandom variable whose values are the
output sequences of C if the input of C is taken randomly and
uniformly from the set of all possible inputs and let set(C) =
{(0<j<nls =1}

Proof of Proposition 4. Assume A = {0,1,...,n—1}. Let
4> 0, d, 1 be fixed. Suppose that » is sufficiently large and u =
[n“*""). Let Dy,D,,...,D, be disjoint (n*,c,) circuits with
d(t + 1)log,n inputs and n outputs, so that forall i = 0,..., u the
random variable ser(D,) satisfies the d-iterated (1 = 8, 6/2, 1) small
intersection property and for any re A Pr(reset(D,)] = (n'~%/n)
(where ¢, and ¢, are absolute constants), Note that Lemma 7
implies the existence of such circuits. Let GGy ..sGy B8
digjoint (1%, ¢,) circuits with (z + 1)log,n inputs and n outputs
(where ¢;,c, are absolute constants) so that for each 0 i<
seq(G;) is (n,0)-uniform. Lemma 7 guarantees the existence of
such circuits. Let G, be a circuit with [#’] inputs and » outputs
s0 that the value of the ith output is equal to the value of the ith
input if i > »° and 0 otherwise. Of course if the input is randomized
uniformly, then we get a uniform distribution on the first [#]
outputs.

Now we define the circuit C that will give as an output the
function F of a fooling pair.

Suppose that the circuits Dy,...,D,, G,,...,G, are pairwise
disjoint. If py, ..., p,, 4o, ---, 4, are inputs for D,, ..., D,, G,...,G,
thenp = (P, ..., usQos+++,4,) Will be an input for C. C will have
n outputs and the value of the ith output C(p|i) is defined by the
following boolean expressions. If i > [n*) then

u=1 f o |
i =V (G410 A D(pI) A A=D1 ()

r=Q

otherwise C(pli) = G, (g, |i).

(The meaning of (x) is the following: if j is the smallest non-
negative integer with j < x4 and D;(p;|t) = 1 then C(p|i) =
Gj(g|i), if there is no such integer then C(p|i) = 0.

Clearly there is an (n%, ¢) circuit with these properties where
¢y, ¢ are absolute constants.

We define the parts of P, ., F, in the partition as follows:
thinking of Dy, D,, . .. » D, as subsets of 4, we take F,]<npt0
be all elements in D, that do not belong to D,, r < j, and P, are the

e i g = g
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remaining elements. Formally, for j < p

=1
ieB iz nt A D(p1) = 1A ADpID =1 if
r=(

P=A-|) P

Jen
Now we prove that (F,P) is a fooling pair.

(1) follows immediately from the definition of F.

(2) The defining formula of P, implies that the scts are disjoint
and the definition of P, implies that they cover A.

(3) Fori<u P = set(D)— N o set(D)={rlr <n’}. The
conditions P, = Ao, ..., P, = A, restrict only the
values of D,,...,D,., but D, is independent of them.
Therefore set(D,) has the d-iterated small intersection
property with parameters (1 — 5,6/2, 1) even with the con-
ditions Py = Aq,... . Since P, < set(D;) it also has the same
small intersection property.

If P = A then F|, = seq(G;)l,,. Since the outputs of each
G, are independent for j = 0,...,i the random variables
Fl4.,--.,Fl, are also independent.

If P, = A, then F|, = 5eq(G)i4 and seq(G) is (n,7)
uniform and as we have shown in the proof of (3) it 18
independent of P,.

Letd, = {r|r <n’}. A, < P,alwaysholds according to the
definition of 4, and P,. The definition of G, and Fl, =
seq(G,)|4, implies that F|,, has 2 uniform distribution so we
have to prove only Pr(P, = 4,)2 1 - il

Let reA—A,, i<p be fixed. According to our assumption
Prireset(D,)) » n~*. Since the D,’s are independent we have
Prir¢Ui st € (1 =n~y < (1~ n-dy ™ < 9= This
proves our assertion since P Uiy set(D;) = 0.

The Main Theorem follows from Proposition 3 and Proposition 4
if we choose any & > 0 so that § — 0 as n— .

5. DEPTH 2 CIRCUITS

The two results in this section are algorithms for the problem .}

of approximate counting and finding a satisfying assignment,

= FETIA
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respectively, in depth 2 circuits (or CNF/DNF formulas). The two
important parameters that affect the running time of the algorithms
are the fraction of satisfying assignments and the sizes of clauses.

Let4 = {x,,...,x,} be a set of boolean variables. A clause C is
a conjunction of literals from A, e.g., C = x, A X3 A Xg. A DNF
formula Fis a disjunction of clauses (we will take £ to be both the
set of clauses and their disjunction, so F = V., ,C). |F | denotes
the number of clauses in £. For a clause or set of clauses A, v(H)
will denote the set of variables occurring in H. If for all CeF,
[v(C)| € &, then F is a k — DNF formula. Similarly we define
k-CNF formula.

We need some notation which is similar to that of Section 4.

Assume A S v(F), and Y & A. We can restrict F by assigning
values to variables in Y. If ye {0,1}'"", then Fy,, denotes the restricted
formula after assigning y to ¥ (in order). Say that restrictions (Q, ¢)
and (Y, y) satisfy (Q,9) = (Y,y)if Y Q and ¢ agrees with y on Y.

We further define F, to be the random variable (formula) F,,
where y&{0,1}" is chosen uniformly at random. Note that if
Z< Ythen Pr(Fy ¢ 0,1) € Pr(fF; # 0,1).

Theorem 1 deals with the approximation of depth 2 circuits. It
shows that the output almost always depends on a small subset of
the input variables.

THEOREM 1. Let C be a depth 2 circuit of bottorn fanein <k
with input variables in A. Then for every r > 2 there exists a
subset Q < A s.t.

(1) Q1<
) Pr(C, # 0,1)< 2",

Furthermore, if |4| = n, the set Q can be found in time o).

Proof. 1t is enough to prove Theorem | in the case when the
boolean formula F corresponding to C is a k-DNF formula. We
prove the theorem by induction on k.

k=1 1If |FI<r then set G = F else let G be a subset of
any r clauses in F. Let Q = v(G). Then |Q|<r<r* and
PrFp#0,1) <2,

k > 1, Assume the inductive assumption for all values less than
k. Let G be a maximal subset of pairwise disjoint clauses from F
formally £, D& G — v(£) ~ v(D) = @ but for all Ec F — G there
exist a De G with v(E) no(D) = @.
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Case I |G| > r2*. Let 6 & G with |G] = r2". Set @ = v(G).
We have |Q| < kr2* < ¥, and

Pr(Fg £ 0,1) € Pr(fp 2 1)< rLPr(EQ ¥ < =274°
Ke
< -2"Y"g2™

Case2: |G| < r2*.LetZ = v(G). Partition the clauses inF—G
into families, H(Y,y) one for each Y & Z 1<|\Y|<€k—1,and
y&{0,1}", as follows: H(Y.y) = {EcF - G|v(E)nZ = Y and
Ey, # 0}. Clearly therc are at most (kr2*)* such families, and
Fw Gv Vy,H(Y,)).

Consider the formulas Hy,, = H(Y,»)y, v(Hy,) s A —2,and
each is a (k — 1) — DNF formula since G was maximal. Apply the
inductive assumption to each A, , with parameters k — 1 for k and
2r for r. Let Qy, be the sets guaranteed inductively. Hence for all

Y,y we have

1) 1Qy,l & @rY*="" and
2) Pri(Hy,)g,, # 0,1]€ 27

Now set @ = Zu Uy, Qy,- Then

(1) Q] €121 + Ly 1@r,) < P2 + (k2P 2}~ < P

To prove that Pr(Fy # 0,1) € 27" we observe the following. Let
q6{0,1)° s.t. Fp, # 0,1. Then G, = 0, and in fact, Fp, =
V > vy (Hyy)gq- Therefore for at least one pair (Y,)),
(Hy,)oq # 0,1, and since Qyy & @ we have

(2) Pr(Fp # 0,1) € Ty, PriHy,lo, # 0,1]< (k227" <

g

The proof shows that the subset Q can be f ound in DTIME(r").
(Indeed, let h(k) denote the time necessary for finding Q. Since
\F| € n*, G can be found in time O(7"). @ = Zu Uy, Qr,, which
implies that Q can be found in time O*)+ Ly, hk— 1) €
n*h(k — 1) that is h(k) € n*h(k = 1)]

Theorem 1 can be used as an algorithm for approximate counting
(see Section 3.1).

COROLLARY 6. Let k, p, P be fixed, F any k-CNF or k-DNF
formula, p(F) = p. Then the p-approximation problem can be
solved in deterministic polynomial time.
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Theorem 2 gives a somewhat faster algorithm for the simpler
problem of finding a satisfying assignment.

Tueorem 2. Let F be a satisfiable k-CNF formula on n variables
with p = p(F). Then we can find a satisfying assignment of F in
DTIME(k|F| + 2 0o#r7"),

For example this theorem says that 3-CNF instances of SAT with
a polynomially small fraction of satisfying assignments are easy, as
we can find one in polynomial time!

Proof. (Skerch). Simple counting shows that any maximal set of
clauses has at most 2*(logp~') elements, otherwise some clauses
would be satisfied. We try all assignments to this variable and
proceed with induction on k.
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