Knowledge, Creativity and P versus NP

Avi Wigderson
April 11, 2009

Abstract

The human quest for efficiency is ancient and universal. Computa-
tional Complexity Theory is the mathematical study of the efficiency
requirements of computational problems. In this note we attempt to
convey the deep implications and connections of the results and goals
of computational complexity, to the understanding of the most basic
and general questions in science and technology.

In particular, we will explain the P versus N P question of computer
science, and explain the consequences of its possible resolution, P =
NP or P # NP, to the power and security of computing, the human
quest for knowledge, and beyond. The connection rests on formalizing
the role of creativity in the discovery process.

The seemingly abstract, philosophical question: Can creativity be
automated? 1in its concrete, mathematical form: Does P = NP?,
emerges as a central challenge of science. And the basic notions of
space and time, studied as resources of efficient computation, emerge
as key objects of study to solving this mystery, just like their physical
counterparts hold the key to understanding the laws of nature.

This article is prepared for non-specialists, so we attempt to be as
non-technical as possible. Thus we focus on the intuitive, high level
meaning of central definitions of computational notions. Necessarily,
we will be sweeping many technical issues under the rug, and be content
that the general picture painted here remains valid when these are
carefully examined. Formal, mathematical definitions, as well as better
historical account and more references to original works, can be found
in any textbook, e.g. see [14, 17]. We further recommend the surveys
[19, 3, 18, 11] for different perspectives on the P versus NP question,
its history and importance.

1 Introduction - humanity’s quest for knowledge

Consider the basic notions of time, space, energy, mass, and two questions
regarding them.

Question 1

A basic problem faced by physicists is what are they? Attempting to
understand the universe, come up with a theory that explains (better than
previous theories) their nature, structure, interaction, origin,....

Question 2

A basic problem faced by the high-tech industry, is how to minimize
them?. For example, design a cell phone with video and Internet capacities,
that is faster, smaller, cooler, lighter (than previous cell phones).

There are many obvious differences between these questions. In particu-
lar, the roles played by the basic notions of time, space, energy and mass in
each are entirely different — in the first they are “neutral” objects of study,
while in the second they are scarce resources, whose use we are trying to
control.

But are these two questions related? There are of course some obvious
relations. For instance, humanity seems obsessed with pursuing both. While
the reasons may differ, in both cases there is willingness to invest huge efforts
to answer, or better understand them.

In this article we exhibit a far deeper connection between these questions.
Solving Q2 and questions like it may well be relevant (or even sufficient)
for solving Q1. Furthermore, this connection extends to most questions in
mathematics, science and technology pursued in our quest for knowledge.
We will argue that the P versus NP question — the central question of
computer science, holds the key to our ability to finding answers to questions
we raise! We shall see that if P = NP humanity can expect to answer most
questions it can pose. And we’ll also see how (stronger versions of) the
possibility P # NP, present enormous benefits to humanity as well, many
of which we are experiencing daily.

Thus the answer to an abstract mathematical question, "Does P =
NP7?”, carries a fundamental insight into the nature of our world, and what
can we hope to know about it. As such, it stands with the grand challenges,
like uncovering the laws of nature, explaining the workings of the human
brain and body, etc. At the same time P = NP7 addresses our ability
to meet these challenges, and in Godelian style, our ability to answer if
P=NP?.

We start by explaining the fundamental connection between Q1 and Q2
above. As these represent respectively science and technology, let us add

another question Q3 to represent mathematics. Q3 again seems as different
from Q1 and Q2 as they are from each other.

Question 3

Fermat’s last “theorem”!: Can the equation X™ 4+ Y™ = Z" be solved
with positive integers X,Y, Z for any n > 2 7

2 The connection: efficient verifiability

The main thesis of this section is:

For many interesting and important questions we humans raise and se-
riously study, we expect to be able to efficiently recognize a solution when
given or found.

Let us examine this thesis critically for the 3 questions above, as well as
for the fields of study they represent. We hope to make a convincing case for
this thesis, at least in this informal form. We shall later try to formalize the
word recognize and stress that efficiency is essential for its meaning. While
this may seem too “mechanical” or “computational” in some cases, we hope
to at least make the case that probing to what extent such recognition can
be so formalized, is an extremely important direction of study.

2.1 DMathematics

For Q3, indeed for all questions of mathematics, the thesis is obviously true.
After all, mathematics is characterized, and set apart from all other fields
of study, by the notion of proof. The meaning of resolving a mathematical
question is coming up with a formal proof for the associated claim. While it
has taken over three centuries and monumental work to understand the rele-
vant underlying mathematical structures, once Andrew Wiles wrote his (200
page) proof it became possible for the mathematical community to verify its
correctness in a couple of years. Moreover, for most known mathematical
theorems, proofs can verified by competent mathematicians in a matter of
days. We stress that this is not just verification — it is an efficient verifica-
tion. This ability allows the mathematical community to reach consensus
on truth, and constantly enlarge its knowledge base.

To make the efficiency point even stronger, we note that Wiles wrote his
proof in the common style of math papers, with lots of (standard) abbrevi-
ations and references to past work. But had Wiles written his proof com-
pletely formally (namely, in the syntax of the appropriate logical system),

Yes, we know it was solved

while it may have taken 20,000 pages rather than 200, a simple computer
program would have been able to verify the correctness of the proof in 1
second! That’s fantastically efficient. And moreover, work is underway to
allow math journal type proofs to be automatically converted to their logical
syntax format (again in 1 second), releasing Wiles from the chore above and
letting him focus on his next challenge. The recent survey [20] describes
such projects, including formalizing and verifying the extremely complex
(and computer-aided) proofs of the four-color theorem and the Kepler con-
jecture.

2.2 Science

Science studies the real, physical world, rather than the pure abstract one
of mathematics. Here there is no absolute truth, as the best understanding
we have of any phenomena is only as good as the observations relating to
it that we were able (so far) to make. Science progresses by a continuous
interaction between theorists and experimentalists. The first group suggests
theories to explain the available data. The second conducts experiments and
observations to enlarge the available data and test the theories.

In both activities, results are announced and papers are written only af-
ter their authors feel that they can convince their community that something
new was discovered. Again, the efficient recognition of novel ideas and new
phenomena is key to the progress in science. This holds not only in famous
cases that everyone learns about in school; theories like Newton’s mechan-
ics, Maxwell’s electromagnetism, Einstein’s relativity, etc,. and experimen-
tal discoveries like radioactive decay and the cosmic microwave background
radiation. It happens hundreds of times a day around the world - scientists
realize they are on to something, and can effectively convey it to their col-
leagues. And this of course holds not only for physics, but for all sciences,
including some of the social sciences.

Unlike mathematics, the efficient verification process clearly exists, but
is not fully specified (or even completely conscious), and indeed may differ
between areas of scientific activity. However, we believe that it is generally
possible for scientists to explicitly specify reasonably formally the type of
models they seek when attempting to explain some phenomena. Very gen-
erally, these are concise models which are typically algorithmic; be it Markov
models, system of differential equations, etc. such (predictive) models of-
ten describe the evolution of some system from one state to the next, in a
manner that can be efficiently tested to be consistent with given data.

This point, about the ability to convert an abstract notion of recognition

of discovery, into a concrete, efficient program to do so, is essential to this
article. Sometimes scientists are forced to be so explicit! Let us give but one
example to demonstrate the efforts of scientists to fully specify a procedure
to recognize new knowledge. While perhaps atypical, it hopefully shows that
“if there’s a will, there’s a way”, and that motivation can generate similar
examples in many other situations.

Let’s go back to Q1, and to what is perhaps the largest (the budget is
several billion dollars) experiment, designed to further our understanding of
time, space, energy, mass and more generally the physical laws of nature. We
refer to the LHC (Large Hardon Collider) at CERN, Geneva, which should
be operational in about one year. The outcomes of its experiments are
awaited eagerly by numerous physicists. If these do confirm (or refute) such
theories like supersymmetry, or the existence of the elusive Higgs particle
(responsible for mass in the current prevailing theory, the standard model),
this excitement will be shared with the public at large.

But how would they know? The LHC bombards protons against each
other at enormous energies, and detectors of all kinds attempt to record
the debris of these collisions. There are billions of collisions per second
(and the LHC will operate for several years), so the total data detected is
much, much larger than what can be kept. Moreover, only a few of these
collisions (less than 1 in a million) provide new information relevant to the
searches above (most information was already picked up by previous, less
sensitive colliders, and helped build up the current theories). So ultrafast
on-line computer decisions have to be made to decide which few information
bits to keep! The people who wrote these programs have designed and
implemented an efficient recognition device for new knowledge! Needless to
say, the programs that would search and analyze the kept data (20-mile high
stack of cd’s of it), would have to be designed to efficiently find something
new. Ultimately, we would like programs that would analyze the data and
suggest new models and theories explaining it directly.

But clearly, such huge investment of resources would never take place if
we were not convinced that new phenomena, if observed, could be efficiently
recognized.

2.3 Engineering

Let us proceed to Q2, and the design of a new cell phone. What is the
efficient verification of its properties? This is something we do on a daily
basis as consumers. When the new design hits the stores, we go there,
experiment with it to see that we like the Internet speed, the resolution of

the display, its weight, battery size, and of course its price, all of which can
be precisely defined and measured?.

But this is the usual story with engineering. The proof of the pudding,
as they say, is in the eating. When an engineering question is solved, an
implementation usually follows. Be it a cell phone, a bridge, a spaceship,
a new cancer drug, a molecular motor, or the good old fashioned wheel,
once designed, its discoverers (and us) can test to see that it satisfies all the
design constraints. And these tests had better be efficient, or we will never
know when we are done designing...

True, this field is far more diverse than the other two. Verification of
correctness of mathematical theorems, or of the novelty and consistency
of scientific theories, are academic in nature and are conducted mainly by
academicians. But while engineering crucially depends on math and science
to achieve its goals, its tasks are spread throughout all aspects of life. The
nature of engineering constraints is very diverse, and the ingenuity found in
the designs is often hard to precisely quantify.

Nevertheless, each particular design task, like Q2, does specify a set of
constraints, which are usually quite well defined and efficiently testable, or
no one would take it on. Typical commercial producers certainly specify for
themselves a series of tests and evaluations which a potential product has
to pass before being manufactured.

2.4 FEconomics and Politics

Finding the best design under a complex set of constraints is not limited to
engineering. Replacing the word “design” by “action”, we realize immedi-
ately that people, companies, and governments are continuously challenged
by problems of exactly this sort: setting the prices and profit margins of
products in the presence of competition, choosing the right interest rates to
balance growth and unemployment, making tactical and strategic decisions
in war, making the next move in a chess game, etc. The interactive nature
of these problems makes it harder to compare different actions. However,
given that people, companies and governments do make these decisions daily
means that they each have their own (efficient!) criteria for preferring some
actions to others. Are they making the best choices given these criteria?

2We may also consider some subjective things like color, style, etc. which are harder
to quantify generally, but perhaps can be quantified personally.

2.5 Humanities and the Arts

Pushing our luck a bit, we’d like to speculate that, perhaps in all creative
ventures we can imagine efficient verification taking place. While no specific
criteria are necessarily set in advance and no specific test is necessarily ap-
plied to an outcome, we can speculate about the process allowing a philoso-
pher or an artist to know that they have successfully completed something.
Similarly, our satisfaction when hearing a piano sonata or reading a novel,
can be explained perhaps by the successful completion of some (highly in-
dividual, but certainly efficient) process of evaluation.

3 The classes P and NP

P and NP are collections of problems. Their informal definition is given
below.

P is the collection of all tasks for which a solution can be efficiently
computed.

NP is the collection of all tasks for which a solution, when given, can be
efficiently wverified.

In the two subsections below we exemplify problems in each class.

3.1 The class NP

Let us start with NP, for which we have already accumulated examples.
Again, NP is the collection of all those tasks for which a solution, when
given, can be efficiently verified. The definition and importance of this class
evolved from the seminal papers of Cook [2], Levin [12] and Karp [13] in the
early 1970s.

For computational tasks, this classification has transformed computer
science. For numerous practical problems, especially optimization problems
arising in the industry, verification of good solutions is precisely defined, so
all these problems formally lie in N P. It became clear that numerous man-
years have and are being invested in trying (and often failing) to find efficient
general solutions to N P problems®. The remarkable unity of purpose of all
these computer programmers and engineers working on diverse, seemingly
unrelated problems, will be explained in section on universality 5.

As we have tried to argue in the previous section, NP actually captures
far more than computational tasks. After appropriately formalizing the

3Naturally, in industry failure is not well accepted, and often requirements are relaxed
and approximate or heuristic solutions are used

recognition process, all mathematical tasks, many engineering tasks, and
central scientific tasks as well fall into NP. We stress again our belief that
the seeming dichotomy between abstract and concrete recognition can be
bridged for great many of these problems. While the abstract recognition
of discovery is sometimes elusive, it is often simply because no motivation
existed for formalizing it (and turning it to an algorithm as required by the
formal definition of NP). We feel it can be done for a vast number of the
problems above. Accepting this, NP constitutes a huge portion of the new
knowledge, understanding and technology we seek.

Beyond grand challenges, everyday problems of finding a short route to
our destination, solving puzzles, trying to fit all suitcases to the trunk of our
car (we shall return to this one), scheduling our day under the constraints
of others, etc., are also all in NP. These are faced on a small scale by
each of us, and on a larger scale by essentially every private company and
public body, trying to optimize the use of various resources in the presence
of various constraints. And again here, the recognition of good solutions
often is, or can be, fully specified and simply verified.

Which of this vast array of N P problems can we ever hope to efficiently
solve? Can we solve them all?

Sure, some problems in NP we can solve. Adding 1+1, or adding any
two integers, is a problem in NP (since we have a quick way of verifying
an answer when given). But even if the answer wasn’t given, we could
quickly find the answer ourselves. This leads us to another important class
of problems, called P, of problems we can solve efficiently.

3.2 The class P

P is the collection of all those tasks for which a solution can be efficiently
computed. The definition and importance of this class evolved from the
seminal works of Cobham [1], Rabin [15] and Edmonds [5] in the 1960’s.

As mentioned, integer addition is in P. Indeed, a fast method for “long
addition” is taught in first grade, and enables us to add any two integers in
a number of steps which is proportional to their length. That’s as efficient
as you can get — just reading the data takes that long!

Such a “method” is called an algorithm — the fundamental recipe for
solving a given task (like addition) on every input data. An algorithm is the
intellectual heart of any computer program solving that task.

We learn and discover many efficient algorithms in school and in life,
showing that the relevant tasks are in P. Algorithms for other arithmetic
operations like “long multiplication” are also taught early on, and are also

efficient (but not as quick as addition). Sorting a deck of cards after a
game can also be efficiently done, with any number of cards. Searching
for a name in a 1000 page phone book (or any sorted list) is never done
sequentially, going from page 1 to page 2 to page 3 until we find the name.
This might actually take a 1000 steps. We invariably use the much faster
“binary search” algorithm: we look at page 500, and determine if the name
we seek is before it or after it. Then we go to the middle of the relevant
half, and do the same. Repeating this will converge to the location of our
name in merely 10 steps.

What we can quickly do by hand with an efficient algorithm on small
data, the computer does extremely quickly even on huge data. Essentially
anything you see implemented, is solving a problem in P, backed by the
necessary efficient algorithm. If your desktop does searches, spell checks,
Excel pie charts, cool graphic and computer games, it is only due to efficient
algorithms solving the underlying computational problems. If, in 1 second,
your e-mail is sent to the other side of the globe, Mapquest provides you with
a route to Timbuktu, and Google finds just the obscure web page you have
been looking for, you can thank the efficient algorithms designed to solve
these problems. The search for efficient algorithms, for a variety of practical
problems, still comprises much of the work done in theoretical computer
science. These tend to be stylized and abstract, and often much more work
is needed to actually implement them on real computer systems.

Perhaps a word is in order about inefficient algorithms. Imagine the
problem of finding a short route from A to B in a map of a 100 cities
(called the “Shortest Path Problem”). One sure (and tedious) way would
be to enumerate all routes starting with A and ending with B, computing
the distance for each. The number of such ways far exceeds the number of
atoms in the universe, and the time to perform it (on the fastest) computer
far exceeds the time since the big bang. Obviously, this is not how Mapquest
does it! They use a much faster algorithm, which of course is fast on any
given input map, even with a million cities.

But what about a related task: finding a short route from A to B, travers-
ing every city ezactly once (this famous problem is known as the “Traveling
Salesperson Problem*). Here too the brute-force, inefficient algorithm of
enumerating all possibilities would work. But is there a better algorithm?
Unlike for the Sortest path Problem above, here we have no idea! And you
can be sure that no computer you buy will solve The Traveling Salesperson
problem (or other, far more desirable ones) for you — regardless of the speed
of its hardware — the current lack of an efficient algorithm will render a
solution inaccessible even for moderate-sized data like a 100-city map!

In short, the class P consists of exactly those problems we either already
solve, or could ever hope to solve in practice! Understanding this class,
namely understanding the power and limits of efficient computation, is the
major task of computer science.

3.3 Grains of salt

Let us make two comments of a more sophisticated nature, on some of
the imprecisions above, which only a more technical article can remedy.
However, rest assured that these do not affect the moral of the story.

First, P is but one measure of efficiency, and there are many more refined
ones, which are perhaps more relevant to practice. Notions like nearly-
linear-time algorithms, and fast-on-average algorithms may be needed (and
computational complexity does study them!). Also, different computational
settings and different measures of efficiency which are beyond the scope
of this article may be (and are!) considered. But we stress that even on
moderate-sized data, we can only hope to solve problems in P. For this to
happen, efficient algorithms for these problems must be discovered!

Second, we have sneakily moved here from solving single “tasks” (like
proving Fermat’s last theorem or designing a cell phone with given criteria),
to solving “problems” (like addition or searching for short routes), which are
families of tasks of the same nature, with different input data. The latter
(“asymptotic”) viewpoint is essential for the very definition of algorithms,
and to distinguishing between brute-force, inefficient algorithms and clever,
efficient ones; only sufficiently large input data will reveal the difference in
the performance of a given algorithm. Indeed, problems faced by mathe-
maticians, scientists and engineers are typically “single instance” problems.
However, as the previous section should have demonstrated, many can be
collected into classes of instances (of proof verification, constraint satis-
faction, consistency checks etc. in various settings), which together form
problems that can be studied asymptotically.

4 P versus NP — can creativity be efficiently au-

tomated?

Let us write these definitions yet again:
P is the collection of all tasks for which a solution can be efficiently
computed.

10

NP is the collection of all tasks for which a solution, when given, can be
efficiently verified.

It is evident that every problem in P is also in N P. The correctness of
the algorithm generating the solution automatically certifies that solution!

But what about the converse? Is it possible that for every problem
for which verifying solution is easy, there is a simple program which would
generate such valid solutions efficiently? This is the P = NP7 question! To
make formal sense, this question had to wait to the 1970s for the formal
definitions of these classes in the above papers. It is remarkable, however,
to note that the P = N P? question, in quite precise terms, appears already
in 1954, in a letter from Godel to von Neumann (reproduced and translated
in the survey [18]) which was discovered only in the 1990s.

Considering the examples above of problems with efficient verification,
let us see what a positive answer to this question would mean.

4.1 If P=NP...

In a very strong sense, this possibility is utopia for the quest for knowledge
and technological development by humans.

There would be a short program that, for every mathematical statement
and given page limit, would quickly generate a proof of that length, if one
exists!

There would be a short program which, given detailed constraints on
any engineering task, would quickly generate a design which meets the given
criteria, if one exists. The design of new drugs, cheap energy, better strains
of food, safer transportation, and robots that would release us from all
unpleasant chores, would become a triviality.

And there would be a short program which, given data on some phenom-
ena and modeling restrictions, would quickly generate a theory to explain
that data within the modeling constraints, if one exists. Many things that
scientists hope to explain, like about how the brain works, the nature of
dark matter and dark energy, the structure and function of proteins, etc.
could potentially be done in a jiffy!

This all looks fantastic, and undoubtedly will positively revolutionize
the world we live in! Even if abstract efficient recognition (that we feel is
an inherent part of the discovery process above) could me made concrete
in only a tiny fraction of the problems above, P = NP will be nothing
short than revolution. The possibility that P = N P justifies the investment
of immense resources into proving it. If proved, far more effort will go to
mechanizing the recognition process, further enhancing the impact of such

11

a discovery.

4.2 Why don’t we believe it?

The evidence against the mathematical form of P = N P will become clear
when we discuss universality in the next section. The rest of this section is
informal, and certainly specualtive.

Intuitively, most people revolt against the idea that such amazing discov-
eries like Wiles’ proof of Fermat, Einstein’s relativity, Darwin’s evolution,
Edison’s inventions, as well as all the ones we are awaiting, could be produced
in succession quickly by a mindless robot. We would similarly revolt against
the possibility of a monkey spewing out a perfect Shakespeare tragedy.

And indeed, this analogy is in place. People have a strong sense that
creativity was absolutely essential in these and other discoveries, and will
be essential for important future ones. While elusive to define, people feel
that creativity, ingenuity or leap-of-thought which lead to discoveries are the
domain of very singular, talented and well-trained individuals, and that the
process leading to discovery is anything but the churning of a prespecified
procedure or recipe. These few stand in sharp contrast to the multitudes
who can appreciate the discoveries after they are made.

So how can one explain the creativity which is demonstrated in the exam-
ples above, and elsewhere? Some thinkers develop theories whose foundation
is a non computational model for cognitive functions. But all evidence shows
that the brain, like every other natural process, is an efficient computational
device*. While science is extremely far from understanding the brain’s hard-
ware and software, the laws of physics govern its behavior. And so if any
problem was solved by any brain, it was (by definition) an efficiently solvable
problem.

Clearly, some minds are stronger than others for performing different
tasks. When others solve problems or make discoveries we feel we couldn’t
have, we call them creative. But our concern here is with complete, universal
creativity, rather than sporadic instances of it. We ask about the solvability
of all tasks affording efficient recognition. If P = NP, any human (or
computer) would have the sort of reasoning power traditionally ascribed to
deities, and this seems hard to accept.

If this were a court case, it is safe to assume that the jury would vote
P # NP beyond any reasonable doubt. But P versus NP (despite its legal

“One can allow quantum machines too, replacing P by its quantum analog BQP,
without affecting the principles of this paper, but this would complicate other matters
and so we avoid it here

12

sound) is not a court case but a concrete, open mathematical question. We
will test the strength of this jury verdict, and the intuition supporting it, in
the next section.

4.3 Andif P#£NP?

Indeed, the jury feels we live in this real world, and not in the unlikely utopia
described above. Well, the good news is that all of us scientists, engineers
and mathematicians don’t need to look for new jobs! Knowledge acquisition
and technology will progress as it always had — slowly and painstakingly,
with critical dependence on new creative ideas.

But our job security is not the only reason to rule out P = NP. The
security and privacy of our identity, personal information, finances and in-
teractions, as we have come to experience in the computer and Internet age,
are in mortal danger if P = NP! Can P # NP put us at ease? Possibly,
but we need to know more. We will explain these connections, and further
refine the world in which P # NP into two possible ones, in section 6

5 Universality, or, how do we resolve P versus
NP?

Let us consider another question, “Trunk Packing”.

Question 4

Given the dimensions of a set of suitcases, and of the trunk of our car,
find a way to pack them all in the trunk, if possible.

Why did we descend to considering such a mundane problem, from the
sublime heights of profound scientific questions? Bear with me.

For one, it is a problem in N P: if anyone shows us how to arrange the
given suitcases in the trunk, we immediately recognize that success!

For another, our real life experience tells us that it seems like a difficult
problem. Unlike sorting or addition, for which we have efficient methods
which always terminate quickly, here no method suggests itself. We often
find, even with 5 suitcases, that we try one configuration after another, al-
ways to discover a problem with the last suitcase. But observe - with 100
suitcases (or more, as in packing a movers’ truck, or arranging electronic
components on a microchip - worthy problems which commercial compa-
nies face!), the number of possible arrangements is astronomical. Just like
searching for a short route through a 100 cities, or the monkey trying to
regenerate “War and Peace”, enumerating these possibilities is a brute-force

13

algorithm which will not terminate (even with all world computer cooper-
ating) before the sun burns itself off (that’s about 5000 million years). And
100 pieces of data is a tiny input (contrast it with the data produced by the
LHC experiment).

So is there an efficient algorithm for this problem? Is “Trunk Packing”
in P?

We don’t know the answer, but we will now explain why you should
care (and why we actually never left the sublime heights — this problem is
anything but mundane!).

Trunk Packing is in P, if and only if P = NP.

Well, now that we see it, we realize of course that at least one direction in
this equivalence its trivial. We already noted that “Trunk Packing” was in
NP, soifit not in P, clearly P # N P. But what about the reverse direction?
Note what the reverse says: if you find an efficient algorithm to pack your
trunk, you will have automatically done so for all problems in NP. How
on earth is it possible that this simple, earthly problem alone captures the
difficulty of all the numerous scientific and technological problems above?

The answer is Universality. The “Trunk Packing” problem is universal,
or in the CS jargon, “NN P-complete”. This means that not only is it in the
class NP, but that moreover it is as hard as any other problem in NP.
Formally, any algorithm for it produces an algorithm of essentially the same
efficiency, for any other problem in NP. Put differently (this may sound
sad), the creativity needed to solve packing problems suffices for all creative
tasks we talked about.

How can this magic work? The answer is translation (or in CS jargon,
reduction) between problems. It is a 3-step process whose structure we now
describe. Take any problem in NP (and its efficient verification). For exam-
ple, take Q3. In the first step, the description of Fermat’s last “theorem”,
(together with its logical verification procedure), is efficiently translated to
one instance of “Trunk Packing”, namely to a set of dimensions for each
suitcase and the trunk. In the second step, our hypothetical efficient algo-
rithm solves thsi instance and provides the required packing (if it exists).
In thet third step, a reverse translation is applied to the arrangement of
suitcases just produced, and efficiently converts it to a proof of Fermat’s.

The same can be done to any other mathematical claim. It is translated
to some instance of Trunk Packing. If no packing exists, the claim is false. If
it exists, any solution to that trunk-packing isnatce would translate back to
a correct proof of that claim. The same can be done to every question, like
the numerous ones above in science, engineering, economics and even art, as
long as the verification mechanism can be formalized! As you might guess,

14

the verification mechanism is the main ingredient in providing the efficient
dictionary for translating any problem back and forth to Trunk Packing.

The definition of universality (= N P-completeness), and the proof (via
explicit translation algorithms) that many natural problems (like Trunk
Packing) are N P-complete, was a turning point in the history of Computer
Science. It originates from the above mentioned seminal papers of Cook,
Levin and Karp [2, 12, 13]. By now, thousands of such problems are known,
across all sciences, whose computational hardness is the same. Thus “Trunk
Packing” is not special, and we could have used instead problems on protein
folding, airline scheduling, network routing or even in string theory. Such
a universal phenomena is extremely rare in science, and points again to the
fundamental nature of the class N P. Naturally, in Computer Science alone,
it includes hundreds of real life computational problems for which companies
of all kinds have sought (in vein) fast solutions for decades by thousands of
highly trained and motivated individuals. Inadvertantly, all were trying to
prove that P = NP. For computer scientists, this overwhelming fact is the
pragmatic reason to suspect that P #% N P.

In the absence of proof that P # NP, N P-completeness is the mark
of difficulty for a problem. A programmer who discovers that the problem
he/she was assigned to solve is N P-complete, is well-justified to start look-
ing for approximations or heuristics, knowing (as does her/his boss) that
it is unlikely an efficient algorithm to the given problem exists. A mathe-
matician who discovers that it is N P-complete to compute a property of a
mathematical structure he/she is studying, (should) know that it is unlikely
that a characterization of that property exists, and is well-justified to study
special cases.

The wealth and variety of these universal problems, and the decades of
unsuccessful effort invested by thousands of individuals (with strong intellec-
tual and commercial motivation) to solve them, is a strong case for believing
that P # NP.

Whether this is convincing or not, remember that the P versus NP
question is now completely well-defined. To resolve this major problem, one
either needs to devise an efficient algorithm for “Trunk Packing” (proving
P = NP), or to prove that no such algorithm exists (proving P # NP).
As mentioned, this requires deep understanding of efficient computation,
the major focus of Computational Complexity Theory. This field has made
tremendous progress and is vibrant with new exciting work, but at this point
seems to be far from resolving this conundrum. Still, the existing products of
this study are all over the computer and Internet world. Obvious examples
are the efficient algorithms already discovered, which underly most of the

15

applications we use daily. Far less obvious is the use of hard problems (for
which we expect no efficient algorithms) to enable security and privacy! We
turn to discuss now the unexpected usefulness of difficulty.

6 Cryptography: security and privacy in the com-
puter age

Cryptography, the age-old art of secret communication, became a major sci-
entific discipline of the widest practical importance around 1980, when the
seminal works of Diffie and Helman [4], Rivest, Shamir and Adleman [16]
and of Goldwasser and Micali [8] suggested to formally resting it on compu-
tational basis. The reader is referred to the monograph and textbooks by
Goldreich [6, 7] for (much) more information on the subject.

6.1 The integer factoring problem

We begin with our final sample problem, Integer Factoring.

Question 5

Given an integer N as input, find a nontrivial factorization of it (if one
exists). Namely find integers K, M, both larger than 1 and smaller than NV,
such that K x M = N (if no such factorization exists then N is called a
prime number.

For example, if the input was 1541, then the (unique!) answer is 23x67.
As usual we are interested in an efficient algorithm for this problem. Let us
make a few observations about it.

First, “Integer Factoring ” is in the class N P: given a solution, verifying
its correctness requires only multiplication, which as we noted already has
an efficient algorithm.

Second, it is not known to be in P. The brute-force algorithm for it,
trying all possible numbers below N (or even below v/N) to see if they
divide the input, is extremely inefficient, and completely useless even for
inputs with merely 1000 digits. Huge efforts were invested in finding faster
algorithms (and we shall soon see why). Some were discovered (which are
very clever in their use of deep mathematics), but even they are far from
being efficient, and still fail at factoring 1000-digit integers.

Third, note a simple corollary to the previous section: if “Trunk Packing”
has an efficient algorithm, so does “Integer Factoring”. We can efficiently
translate any integer factorization problem into a suitcase arrangement one!

)

16

The power and mystery of efficient computation, and the difficulty in char-
acterizing it, already manifest themselves in this simple connection.

But can this relation be reversed? Does a fast algorithm for “Integer
Factoring” imply one for “Trunk Packing”? In other words, is “Integer Fac-
toring” N P-complete? Can it get this “stamp of difficulty” that (lacking a
proof that P # NP) shows it to be as hard as all mathematical, scientific
and technological questions discussed above? Actually, we have good rea-
sons to believe it is not N P-complete, but it may still be extremely hard
computationally nontheless. So is it easy or hard?

Actually, who cares? Factoring integers certainly looks like a basic
question for a number theorist, but who else should worry if it is difficult or
not? Well, all of us do! Yes, you too! Let us explain why.

Today, the integrity and security of digital information relies on the
(assumed!) difficulty of “Integer Factoring”. When you log-in, pay your
bills electronically, shop and invest on-line, any petty thief with a quick
integer factoring algorithm can steal your identity, and clean your account
in a blink. Far worse, large financial institutions and governments rely on
the same assumption, thus the existence of such an algorithm in the wrong
hands can do huge damage to economic activity, as practiced today!

Remarkably few people are aware that so much rests on the (assumed)
computational difficulty of such simple-to-state problem, which requires (be-
sides creativity) only pencil and paper to solve. Moreover, this has been the
state of affairs for a couple of decades now! Like nuclear power and genetic
engineering, the possibility of harnessing the assumed difficulty of Integer
Factoring for technological development made its benefits (in this case, the
Internet and e-commerce revolutions) as well as its potential dangers, part
of our daily life.

There are at least two reactions to this shocking news. One, intellectual:
what’s the connection? How can the difficulty of factoring enable such magic
as secure e-commerce? And the second, practical: what can be done to
better safeguard digital information?

6.2 Resting security and privacy on (more) solid grounds

We shall only touch briefly on the intellectual question (which deserves a
separate article), mainly relating those aspects that are relevant to the prac-
tical, pressing one.

Just like “Trunk Packing” is a universal for the class of all problems
with efficient verification, it turns out that “Integer Factoring” is universal
for all cryptographic problems, namely those which arise in digital security

17

and privacy protocols. This understanding (which includes the highly non-
trivial task of defining this class) evolved in the 1980’s, following the N P-
completeness revolution of the 1970’s. Again, a key element was efficient
translations (or reductions). Solutions (called protocols) to cryptographic
problems were based (often ingeniously) on Integer Factoring in such a way
as to guarantee the following. Any quick way an adversary had to break
the security or privacy of such a protocol, can be translated into an efficient
algorithm for factoring integers (which we assume does not exist!).

The famous RSA protocol [16], established such a connection for the most
basic cryptographic problem: Secret Communication. The tall order taken
in the modern definition of this problem completely forbids any common
information between the two parties who wish to secretly communicate! This
fits perfectly the digital world and the fact that many pairs of agents who
never met (or existed), might need to suddenly exchange secret information
(e.g. like your first transaction with Amazon) over the (insecure) Internet,
with eavesdroppers listening to all conversations. In plain language, we
are looking for a method which allows Alice and Bob, who never met, to
engage in a secret conversation in the presence of their adversary Carl, that
nevertheless will be meaningless to Carl. Sounds impossible? If “Integer
Factoring” is hard, it can be done!

Here is another, perhaps more “impossible” task which is achievable
under the same assumption on factoring. It is called zero-knowledge proofs.
Suppose that you, Alice, discover something, for which you can write down
a formal, convincing argument (a proof a famous mathematical conjecture,
like the Riemann Hypothesis, is a good example, but a solution to master-
level Sudoku puzzle is just as good). You want to convince your friend,
Bob, of your achievement. Sure, you can show Bob your solution, which
will certainly convince him, but you are anxious (being somewhat paranoic)
that Bob may later claim to others that it was his original solution, and no
yours (this is a basic problem of copyrights). The magical zero-knowledge
proofs allow you to convince bob of any such achievement of yours, in a
way that reveals absolutely nothing about the solution! Again — you give no
information, yet Bob is convinced beyond any reasonable doubt that you
had a proof (assuming of course you had one — like with normal proofs, you
can never fool Bob to believe youhave a proof if you don’t). Just imagine the
power of this primitive to controlling malicious behavior in cryptographic
situations — agents can be forced to prove that they behave as they should.
In normal proofs they would be reluctant, since actions often depend on
private information, but with zero-knowledge proofs they can do it without
violation of privacy!

18

Here are some other tasks which can be performed under the same
assumption, in a completely digital environment (no physical implements
whatsoever): contract signing, public bids, electronic ballots, payments, ran-
dom selection, and more. We most certainly do not assume that any party is
trusted by all others. Despite these draconian restrictions, protocols relying
on the difficulty of factoring ensure the privacy of participants’ secrets (not
even a fraction of a bit would leak), as well as resilience against cheaters and
saboteurs. As mentioned, the set of techniques developed for these different
ingenious protocols culminated to give general methods to solve essentially
any cryptographic problem, with arbitrary privacy and security constraints
(see]9, 21, 10]).

Why factoring?

A remarkable feature of the “Integer Factoring” problem holds the key to
this magic. It is the inverse of an efficiently computable function, “Integer
Multiplication”. Indeed, let @ and R be prime® numbers (say 1000 digits
long) and let N = @ X R be their product. Contrast the two pieces of data:
the pair (@, R), and their product, N. Both pieces of data are equivalent
from a purely informational standpoint: each one uniquely defines the other!
But computationally, holding the first is far more powerful than the second:
from the pair (Q, R) we can efficiently compute the product N (via long
multiplication), in a fraction of a second. But holding N, and assuming
factoring is hard, we’ll never figure out the pair (@, R). This asymmetry is
at the heart of using “Integer Factoring” as a basis of cryptography. Indeed,
if I randomly pick @, R and publish their product N for the whole world to
see, I can use this knowledge of the factors to solve problems which depend
on N, that no one else without this knowledge can solve. In particular, I can
decipher sercret messages whose encoding depends on NV, thereby creating
a secret communication channel using which anyone can send me private
messages which noone else can read. Now if everyone does what I just did, a
magical network of secure communication is erected without any prior joint
knowledge between communication parties or any hardware!

The careful reader may have noticed a crucial technical point about the
nature of hardness of Integer Factoring required by such application, which
we have not addressed before. If we want these randomly generated instances
of factoring to be hard, we need Integer Factoring to be typically hard, and
not just on rare instances (it may well be the case that Trunk Packing
is typically easy, and only rarely requires trying almost all possibilities).

® Again, primes have no nontrivial divisors. We choose primes here so that the factor-
ization of N will be unique.

19

This notion of average-case hardness is also well developed in computational
complexity, but we shall not elaborate further on it here.

Are there other problems with such remarkable properties as Integer
Factoring, which can serve as universal foundations for cryptography? We’ll
discuss this in the next subsection.

6.3 Inside P# NP

What if “Integer Factoring” turns out to be easy? How likely is the possi-
bility that an efficient method for it will be discovered tomorrow? And rest
assured (or alternatively start panicking) — huge efforts are made to do it,
as the stakes are so high!

Well, the answers again are in the domain of computational complexity.
Here are some possibilities, indeed, viable research directions pursued by
the Computational Complexity community. In the interest of keeping e-
commerce alive, it would be nice if either of these succeeds.

Best: prove that “Integer Factoring” is not in P. This would flatly (and
mathematically) rule out an efficient algorithm for factoring, certifying its
assumed hardness. Note that such a result would imply P # NP, which
seems extremely difficult, so no one expects this to happen soon (even if
indeed factoring is hard).

Second best: prove that “Integer Factoring” is N P-complete, namely
equivalent in complexity to “Trunk Packing” and thus to all those thousands
of problems, for which our confidence in their hardness is far stronger. As
it happens, techniques have been developed to show that such a result is
unlikely (even if factoring is hard), but not impossible as far as we know.

Next: Find other “cryptographically universal” problems. This class
is actually referred to as one-way functions®, to capture the asymmetry of
computational power needed to compute the function and its inverse. Any
such universal problem would do; if e.g. “Integer Factoring” ends up being
easy, we can alternatively rest the security and privacy of digital informa-
tion on the (assumed) hardness of any other one-way function (we note that
proving this was an enormous intellectual achievement!). Thus finding other
one-way functions is an extremely important research direction, of (as we
shall soon see) deep scientific interest to boot. At this point, this “uni-
versality class” seems much much smaller (or at least more elusive) than
N P-complete problems. So far, only a handful of different alternatives to

S Actually, Integer Factoring is a one-way function with a crucial extra property called
“trap-door”, but for this article we would not make this further important distinction

20

“Integer Factoring” have been suggested, and almost none of them are used
practically.

In the discussion above we assumed that the hypothetical world in which
P # NP contains one-way functions, and e-commerce thrives with them.
However, it is also possible that there are no one-way functions, and no
e-commerce as we know it either!

And if no one-way functions exist?

We have elaborated on the huge positive implications of the existence of
one-way functions. Indeed, they compensate us at the loss of the P = NP
utopia and its far grander promise. What about the possibility that they do
not exist? Does it hold any positive prospect (to compensate for the loss of
e-commerce)? How likely is it? The attempts to answer these again requires
a high-level, scientific formulation of one-way functions.

When we ask for a function which is easy to compute, but hard to invert,
we are asking for an efficient process that is not efficiently reversible. In
this formulation, we know exactly where to look for one-way functions: all
around us!

Every natural process can be viewed as computationall.

Natural processes constantly evolving input data (current state of the
universe) following the laws of nature to produce the output (next state of
the world). Thus weather computes itself, DNA computes proteins, the cell
processes these, the brain processes its sensory input into actions, seashells
and coral grow into their remarkable formations, schools of fish and flocks
of geese migrate, stars burn and galaxies rotate, snowflakes form, snow and
rain and apples fall on scientists heads and on and on and on.

A fundamental object of science is to understand the laws governing
these computations, and a fundamental test of this understanding is the
ability to predict them. Namely, being able to compute, given the input
data (current state), the outcome of the process (next state). And the
processes we study are, by and large, efficient. When we have understood
any such process, we have a candidate one-way function. The current level
of scientific understanding provides numerous such candidates! Can all of
these efficient processes be reversed?

If there are no one-way functions, the answer is positive. Given the cur-
rent state, we can always efficiently produce a possible previous one. Far
more (and proving this requires much more work), the same assumption
implies that a typical previous state can be efficiently computed from the
current one. In short, we can go back in time and find explanations for phe-
nomena we are observing. Indeed, the ability to find typical “explanations”
will enable finding ones of minimum entropy (in a well-defined sense), thus

21

(by Occam’s razor), the best explanations. This can have a revolutionary
impact in finding meaning in huge sets of data, like astronomical data, bi-
ological data, or the output of the LHC experiment. Note that we already
saw this as a consequence of P = N P, and now we see that even if P #£ NP,
but one-way functions do not exist, this powerful tool of scientific discovery
is still available.

7 Conclusions — more challenges of computational
complexity

Let us end by noting that we have demonstrated here the deep philosoph-
ical, scientific and technological aspects of only two central questions of
Computational Complexity: “does P = NP?” (can creativity be efficiently
automated?) and “do one-way functions exist?” (can every efficient process
be reversed?). Let us mention a few others, all of which have similar depth
and significance, whose study has already gained us remarkable, and often
surprising understanding, but resolution still eludes us.

e What is the power of randomness in computation? Can coin tosses
speed it up (as they seem to, in numerous probabilistic algorithms)?
And if so, where (in the real world) can we get such perfect random-
ness? If imperfect randomness exists in nature, can we “purify” it
efficiently?

e What is the power of quantum computation? Can classical comput-
ers efficiently simulate quantum phenomena? Or can quantum phe-
nomena like superposition speed up classical computation? If so, can
sufficiently accurate and decoherence-resistant quantum computers be
built?

e What is the power of parallel computation? Can 100 computers solve
every problem 100 times faster than one? 10 times faster?

e Are time and space interchangeable? Can we always save on one by
spending more of the other?

e What is the power of distributed computation? Which global proper-
ties can be obtained by simple, local interactions on a large network?

e What can machines learn? Which algorithms best prepare robots to
cope and even excel in an unknown and unexpected world? Can we
do better than a baby?

22

e What happens when we integrate economics in computation? Which
incentives can be given to private individuals to induce joint efficient
and fault-free computation?

In all these questions, the focus on algorithmic efficiency has suggested
new, valuable definitions, or revealed remarkable new structure and proper-
ties, of many notions that have been studied for ages, such as randomness,
learning, knowledge and proof. And we’ve only just begun! On top of all
its obvious past and future impact on technology, the quest to understand
and classify what is efficiently computable thus far transcends the realm of
computer science, and stands as a central quest of the scientific agenda.

Acknowledgements

I wish to thank Scott Aaronson, Sanjeev Arora, Freeman Dyson, Lance
Fortnow, Oded Goldreich and Gil Kalai for valuable comments on earlier
versions of this paper.

References

[1] Alan Cobham, The intrinsic computational difficulty of functions. In
Proc. Logic, Methodology, and Philosophy of Science II, North Holland,
(1965), 24-30.

[2] Steve A. Cook, The Complexity of Theorem-Proving Procedures, Annual
ACM Symposium on Theory of Computing (1971), 151-158.

[3] Steve A. Cook, “The P vs. NP Problem”, CLAY Mathematics Founda-
tion Millenium Problems, http://www.claymath.org/millennium

[4] Whitfield Diffie and Martin Hellman, ”New Directions in Cryptography”,
IEEE Transactions on Information Theory, vol. IT-22, (1976), pp: 644-
654.

[5] Jack Edmonds, “Paths, Trees, and Flowers”, Canadian Journal of Math-
ematics 17 (1965), 449-467.

[6] Oded Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness, Algorithms and Combinatorics series (Vol. 17), Springer,
(1999).

23

[7] Oded Goldreich: Foundation of Cryptography (in two volumes: Basic Tools
and Basic Applications), Cambridge University Press, (2001) and (2004).

[8] Shafi Goldwasser and Silvio Micali, “Probabilistic Encryption”. Journal
of Computer Systems and Science, 28, 2, (1984), 270-299.

[9] Oded Goldreich, Silvio Micali and Avi Wigderson, “Proofs that Yield
Nothing but their Validity, or All Languages in NP have Zero-Knowledge
Proof Systems”, Journal of the ACM, Vol. 38, No. 1, (1991), 691-729.

[10] Oded Goldreich, Silvio Micali and Avi Wigderson, “How to Play Any
Mental Game”, Proc. of 19th STOC, (1987), 218-229.

[11] Russell Impagliazzo, “A personal view of average-case complexity”,
Proc. of the 10th IEEE Annual Conference on Structure in Complez-
ity Theory (1995), 134-147.

[12] Leonid A. Levin, “Universal search problems”, Problemy Peredaci In-
formacii 9 (1973), 115-116. English translation in Problems in Informa-
tion Transmission 9 (1973), 265-266.

[13] Richard Karp, “Reducibility among combinatorial problems”, Complex-
ity of Computer Computations R. E. Miller and J. W. Thatcher (eds.),
Plenum Press, (1972), 85-103.

[14] Christos H. Papadimitriou, Computational Complezity. Addison Wes-
ley, (1994).

[15] Michael O. Rabin, “Mathematical theory of automata”. In Proceedings
of the Nineteenth ACM Symposium in Applied Mathematics, (1966), 153-
175.

[16] Ron Rivest, Adi Shamir, Len Adleman. “A Method for Obtaining Dig-
ital Signatures and Public-Key Cryptosystems”. Communications of the
ACM, Vol. 21 (2), (1978), 120-126.

[17] Michael Sipser, Introduction to the Theory of Computation. PWS
(1997).

[18] Michael Sipser, “The History and Status of the P versus N P Question”,
STOC (1992), 603-618.

[19] Avi Wigderson, “P, NP and Mathematics - a compu-
tational complexity perspective”, Proceedings of the 2006

24

ICM (International — Congress of Mathematicians), (2006),
http:/ /www.math.ias.edu/ avi/PUBLICATIONS/MYPAPERS /W06 /w06.pdf

[20] Freek Wiedijk (Ed.): The Seventeen Provers of the World, Lecture
Notes in Computer Science 3600, Springer (2006).

[21] Andrew C. Yao. “How to generate and exchange secrets”, Proceedings
of the Twenty-seventh IEEE Symposium on Foundations of Computer
Science, (1986), 162-167.

25

