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Abstract
A common subproblem of DNF approximate count-

ing and derandomizing RL is the discrepancy prob-
lem for combinatorial rectangles. We explicitly con-
struct a poly(n)-size sample space that approximates
the volume of any combinatorial rectangle in [n]n

to within o(1) error (improving on the constructions
of [EGLNV92]). The construction extends the tech-
niques of [LLSZ95] for the analogous hitting set prob-
lem, most notably via discrepancy preserving reduc-
tions.

1 Introduction
In a general discrepancy problem, we are given a

family of sets and want to construct a small sam-
ple space that approximates the volume of an ar-
bitrary set in the family. This problem is closely
related to other important issues in combinatorial
constructions such as the problem of constructing
small sample spaces that approximate the indepen-
dent distributions on many multivalued random vari-
ables [KW84, Lub85, ABI86, CG89, NN90, AGHP90,
EGLNV92, Sch92, KM93, KK94], and the problem
of constructing pseudorandom generators for space
bounded computation [Nis90, NZ93, INW94, AW96].

More precisely, one can define the following notion
of a discrepancy set: Let U be a set and F be a family
of subsets of U . A multiset S of U is said to be an
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ε-discrepancy set for F if for each element A ∈ F , the
difference between the fraction of points in U that be-
long to A and the fraction of points in S that belong
to A is within ε. In this paper, motivated by the issue
of the construction of space bounded pseudorandom
generators, we investigate the problem of construct-
ing small discrepancy sets for a special class of sets
called combinatorial rectangles: for positive integers
m and d, a combinatorial rectangle of type (m, d) (or
an (m, d)-rectangle) is a subset of [m]d of the form
R = R1×R2× . . .×Rd, where each Ri ⊆ [m]. We use
R(m, d) to denote the family of all (m, d)-rectangles.

It is easy to show that if we select O(md/ε) points
from [m]d uniformly at random, then the resulting set
is almost surely an ε-discrepancy set for R(m, d). On
the other hand, the problem of finding an explicit con-
struction for such a set of size polynomial in m, d and
ε−1, is still open.

The discrepancy set problem for rectangles was first
studied in the context of number theory and real anal-
ysis, where the family of sets considered was the fam-
ily of geometric rectangles in which each “side” Ri
of the rectangle is an interval. [BC87] and [Nie] are
good references for this material, which contain sharp
existential bounds mainly for small dimensions. The
general problem of explicit constructions in high di-
mensions, and for combinatorial rather than geometric
rectangles, was first formulated in [EGLNV92]. Their
motivation was approximating independent multival-
ued distributions. They gave a poly size construc-
tion for the geometric case, and two quasi-polynomial
constructions for the general case: of size (md/ε)log d

(based on Nisan’s bounded-space generator [Nis90])
and size (md/ε)log 1/ε (based on k-wise independence).
These become polynomial size (respectively) if either
the dimension d or the error ε are bounded.

Another source of explicit constructions of small
sample spaces for this problem comes from observ-
ing that (non)membership in a rectangle can be
checked by a DNF formula of size O(md). Thus small
sample spaces which approximate such circuits are
good discrepancy sets with the same error. Nisan’s
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constant-depth generator [Nis91] (and the improve-
ments in [LVW93]) again give (completely different)
quasi-polynomial constructions.

Our main result is an explicit construction of a sam-
ple space for this problem of size polynomial in m, d
and εlog ε. In other words it is polynomial as long as
1/ε < exp(

√
logmd). While reducing the error signif-

icantly below the constant bound that follows from
previous constructions, it falls short of the natural
goal of 1/ε = (md)O(1). Our construction is differ-
ent than previous ones for the discrepancy problem,
and follows rather closely the constructions for the
related hitting set problem for rectangles (where all
we need is that every rectangle of volume at least
ε is hit by at least one point in the small sample
space). Thus, the hitting set problem is the one-sided
error version of the discrepancy problem. For this
simpler problem a fully polynomial solution, namely
an explicit set of size (m log d/ε)O(1), was given by
[LLSZ95]. It is achieved by a sequence of “hitting-
preserving” reductions, which we generalize in this
paper to “discrepancy-preserving” reductions. These
simplify and reduce (in turn) various parameters of
the problem without affecting too much the volume of
the sets and the size of the sample needed. Naturally,
while in the (one-sided) hitting set problem it suffices
to control a lower bound on the volume, we need to
keep tight upper and lower bounds throughout these
reductions.

Our description (and motivation) of the construc-
tions comes from the perspective of constructing pseu-
dorandom generators, which we explain below. Let
l,m, d be positive integers. An (l,m, d)-generator G
is a function that maps {0, 1}l to [m]d. G is said to
ε-fool the (m, d)-rectangles if the multiset image of G
in [m]d, which is of size 2l, is an ε-discrepancy set for
R(m, d). Thus to construct a small discrepancy set for
R(m, d), it suffices to construct an (l,m, d)-generator
that ε-fools the (m, d)-rectangles with small l.

An (m, d)-rectangle can be visualized as a width-2
read-once branching program of length d over alpha-
bet [m] in the natural way. Since in general any pseu-
dorandom generator for non-uniform space bounded
computation in the finite state machine model [Nis90]
can fool width-mΩ(1) read-once branching programs
over alphabet [m], it fools all (m, d)-rectangles. In
particular, Nisan’s pseudorandom generator [Nis90]
gives an (l,m, d)-generator with l = log d(2 logm +
log d+ log ε−1) that ε-fools the (m, d)-rectangles, and
the Impagliazzo-Nisan-Wigderson generator [INW94]
gives one with l = logm+2 log d(log d+log ε−1). Both
of these generators are efficient in the sense that they

are computable in polynomial time (polynomial in the
length of the output) and linear space (linear in the
length of the input). Nevertheless, these fall short
of the natural lower bound of l = O(logm + log d +
log ε−1). Our new construction, in this language, is an
efficient generator with l = O(logm+log d+log2 ε−1).
It is interesting to observe that achieving a bound
l = logm + O(log ε−1) + f(d) for an arbitrary func-
tion f will result in a o((logn)2)-bit generator which
fools all constant-width read-once branching programs
- one of the main challenges in derandomizing space-
bounded computation and a major motivation for our
interest in the discrepancy problem.

The rest of the paper is organized as follows. In
Section 2, we provide basic notation and definitions;
moreover, we formalize the reduction framework in
terms of the compositions of function reductions which
helps us to clarify certain subtleties in the generator
construction. An overview of the construction is given
in Section 3.1 and the details of the construction are
given in the later sections.

2 Preliminaries

2.1 Basic Notation
For a set U , we let 2U denote the family of subsets of

U and letM(U) denote the family of multi-subsets of
U . With respect to a fixed order of the elements in U ,
we identify each S ∈M(U) with a nonnegative integer
vector indexed by U such that for any element u ∈ U ,
the entry indexed by u is the number of appearances
of u in S. For example, if U = {a, b, c} whose elements
are in alphabetical order and S = {a, c, c, c} ∈ M(U),
then we have U = (1, 1, 1) and S = (1, 0, 3). Clearly,
the inner product < S,U > is the cardinality of S,
which we denote by |S|.

Let U and V be sets. We say that a matrix is a
U × V matrix if the rows and columns of the matrix
are indexed by the elements of U and V , respectively.

For typographical simplicity, we will not specify
whether a vector is a row or a column vector in the
case that this is easily seen from the context.

All integers are positive unless otherwise specified.
If m is an integer, we use [m] to denote the set of
integers {1, 2, . . . ,m}.

2.2 Discrepancy Sets and Reductions
Let U be a set. For a subset A ⊆ U , the volume of

A (in U), denoted vol(A), is defined to be the fraction
of elements in U that lie in A, i.e.,

vol(A) = volU (A) =
< A,U >

< U,U >
.



Let S ∈M(U). The discrepancy of A with respect to
S (in U) is defined to be

discS(A) = discUS (A) = |< A,S >

< U,S >
− vol(A)|.

For A ⊆ 2U , we define discS(A) = maxA∈A discS(A).
We say that S is an ε-discrepancy set for A if
discS(A) ≤ ε.
Remark: Here we emphasize the facts that volume is
defined only on sets but not on multisets, while dis-
crepancy is defined only on sets but with respect to
multisets.

Let U and V be sets. A reduction Λ between U
and V is a U × V nonnegative integral matrix. The
cost of the reduction, denoted cost(Λ), is defined to
be the maximum column sum of the matrix; the im-
age of the reduction, denoted image(Λ), is defined to
be ΛV . (Here we emphasize that image(Λ) is a mul-
tiset.) Clearly, |image(Λ)| ≤ cost(Λ)|V |. It is often
convenient for us to view such a reduction as a bi-
partite multigraph on U and V such that there are k
edges connecting vertex u ∈ U and vertex v ∈ V if
and only if the (u, v)-th entry of the reduction is k.
The cost of the reduction is thus the maximum degree
of any vertex in V , and the image of the reduction is
the set of neighbors of V in U counting multiplicity.

Let Λ be a reduction between U and V . Then it is
clear that for any A ∈M(U) and any B ∈M(V ), we
have AΛ ∈M(V ) and ΛB ∈M(U).

Suppose A ⊆ 2U and B ⊆ 2V . A reduction Λ be-
tween U and V is said to be (A,B, δ)-discrepancy pre-
serving if for any S ∈M(V ), discΛS(A) ≤ discS(B) +
δ. That is, S is an ε-discrepancy set for B implies
that ΛS is an (ε+δ)-discrepancy set for A. Therefore,
intuitively, such a reduction reduces the problem of
finding a discrepancy set for family A to the problem
of finding a discrepancy set for family B.

Proposition 2.1 Let U and V be sets and let A ⊆
2U . For an arbitrary B ⊆ 2V , suppose Λ is a re-
duction between U and V that is (A,B, δ)-discrepancy
preserving, then image(Λ) is a δ-discrepancy set for
A.

This is because discV (B) = 0 for any B ⊆ V .
2.3 Function Reductions

We will be dealing with reductions specified by
function families, which we call function reductions.
One remark on notation: in the case that a function
family is a singleton set {f}, we may use f for sim-
plicity.

Any function f that maps V to U specifies a re-
duction Λf between U and V in a natural way: for

u ∈ U and v ∈ V , Λf (u, v) = 1 if and only if
f(v) = u. We note that for any X ⊆ U , XΛf is
the subset f−1(X) of V and in particular, we have
UΛf = V . For a family F of functions mapping V to
U , the function reduction ΛF between U and V spec-
ified by F is defined to be the sum of Λf over f ∈ F ,
i.e., ΛF =

∑
f∈F Λf . The image of F , image(F),

is defined to be image(ΛF ) = ΛFV . It is clear that
cost(ΛF ) = |F| and |image(F)| = |F||V |.

Let A ⊆ 2U and B ⊆ 2V . F is said to be (A,B, δ)-
good if for each A ∈ A the following hold:

• for any f ∈ F , AΛf ∈ B, and

• |Ef∈F [vol(AΛf )]− vol(A)| ≤ δ, where the expec-
tation is over a randomly chosen f ∈ F .

Lemma 2.1 Let U and V be sets. Suppose F is a
family of functions mapping V to U . For A ⊆ 2U

and B ⊆ 2V , if F is (A,B, δ)-good, then the function
reduction ΛF is (A,B, δ)-discrepancy preserving and,
consequently, image(F) is a δ-discrepancy set for A.

Proof: Fix any S ∈M(V ). We want to show that for
any A ∈ A, discΛFS(A) ≤ discS(B) + δ.

discΛFS(A) = |< A,ΛFS >
< U,ΛFS >

− vol(A)|

= |
∑
f∈F < AΛf , S >∑
f∈F < UΛf , S >

− vol(A)|

= | 1
|F|

∑
f∈F

(
< AΛf , S >
< V, S >

− vol(A))|

≤ 1
|F|

∑
f∈F

|< AΛf , S >
< V, S >

− vol(AΛf )|+

| 1
|F|

∑
f∈F

vol(AΛf )− vol(A)|

≤ max
B∈B

discS(B) +

|Ef∈F [vol(AΛf )]− vol(A)|
≤ discS(B) + δ.

Now Proposition 2.1 concludes the proof since
image(F) is ΛFV by definition. 2

Lemma 2.1 suggests that in order to construct a
small-sized ε-discrepancy set for A ⊆ 2U , it suffices to
construct a family F of functions mapping V to U for
some V that is (A,B, ε)-good for some B ⊆ 2V , such
that both |F| and |V | are small (thus |image(F)| is
small).



2.4 The Composition of Families of Func-
tions

Let V1, V2, . . . , Vk be sets, and let Fi, 1 ≤ i ≤ k− 1,
be a sequence of families of functions with each Fi
mapping Vi+1 to Vi. The composition of Fi, denoted
F (k−1) =

⊙k−1
i=1 Fi, is defined to be the family of all

functions of the form f1 ◦ f2 ◦ . . .◦ fk−1, where fi ∈ Fi
for each i and ◦ denotes the function composition. The
following fact can be easily proved by induction:

Proposition 2.2 Let V1, V2, . . . , Vk be sets and for
each 1 ≤ i ≤ k − 1, let Fi be a family of functions
mapping Vi+1 to Vi. Then the composition F (k−1) is a
family of functions mapping Vk to V1 of size Πk−1

i=1 |Fi|
such that ΛF(k−1) = Πk−1

i=1 ΛFi . In words, the function
reduction specified by the composition is the product of
the function reduction specified by each single family
in the composition.

The next lemma will be useful for our generator
construction.

Lemma 2.2 Let V1, V2, . . . , Vk be sets and let Ai ⊆
2Vi for 1 ≤ i ≤ k. Suppose for each 1 ≤ i ≤ k − 1,
Fi is a family of functions mapping Vi+1 to Vi that
is (Ai,Ai+1, δi)-good. Then the composition F (k−1) is
(A1,Ak, δ)-good where δ =

∑k−1
i=1 δi.

Proof: We prove by induction on k that F (k−1) is
(A1,Ak, δ)-good. The case where k = 2 is trivial.
Assume that it holds for k − 1 and we show for k.

Fix any A ∈ A1. We first need to show that for
any f ∈ F (k−1), AΛf ∈ Ak. Let f = f1 ◦ f2 ◦
. . . ◦ fk−1 ∈ F (k−1) be arbitrary. Then it follows
from Proposition 2.2 that Λf = Πk−1

i=1 Λfi . By the
induction hypothesis, we have AΠk−2

i=1 Λfi ∈ Ak−1.
Since Fk−1 is (Ak−1,Ak, δk−1)-good, by definition,
(AΠk−2

i=1 Λfi)Λfk−1 ∈ Ak. It remains to show that
|Ef∈F(k−1) [vol(AΛf )]− vol(A)| ≤ δ.

|Ef=f1◦...◦fk−1∈F(k−1) [vol(AΛf )]− vol(A)|
= |Ef1◦...◦fk−2∈F(k−2)Efk−1∈Fk−1

[vol(AΠk−2
i=1 ΛfiΛfk−1)]− vol(A)|

= |Ef1◦...◦fk−2∈F(k−2) [ (Efk−1∈Fk−1

[vol(AΠk−2
i=1 ΛfiΛfk−1)]− vol(AΠk−2

i=1 Λfi))

+ (vol(AΠk−2
i=1 Λfi)− vol(A)) ]|

≤ Ef1◦...◦fk−2∈F(k−2) [ |(Efk−1∈Fk−1

[vol(AΠk−2
i=1 ΛfiΛfk−1)]− vol(AΠk−2

i=1 Λfi)| ]

+ |Ef1◦...◦fk−2∈F(k−2) [vol(AΠk−2
i=1 Λfi)]− vol(A)|

≤ δk−1 +
k−2∑
i=1

δi = δ

where the first term of the last inequality holds
since AΠk−2

i=1 Λfi ∈ Ak−1 by induction, and Fk−1 is
(Ak−1,Ak, δk−1)-good; the second term holds because
F (k−2) is (A1,Ak−2,

∑k−2
i=1 δi)-good by induction, and

Λf1◦...◦fk−2 = Πk−2
i=1 Λi. 2

2.5 Efficiency in Function Computation
For the purposes of constructing pseudorandom

generators, we review some facts about the efficiency
in the computation of functions.

We say that a function f is in TS(t(n), s(n)) if on
input of length n, f is computable in time tO(1)(n) and
in space O(s(n)); and we say that a family of functions
is in TS(t(n), s(n)) if each function in the family is so.

A family F of functions is said to be indexable if
F can be identified with [|F|] in the sense that each
function f ∈ F can be indexed by an integer in [|F|]
(or a bit-sequence of length dlog |F|e) so that if f is in
TS(t(n), s(n)), then given its index, the computation
of f can be simulated in TS(t(n), s(n)) as well.

It is not difficult to see the following:

Proposition 2.3 Let k be fixed and let V1, V2, . . . , Vk
be sets. Suppose for each 1 ≤ i ≤ k − 1, Fi is
a family of functions mapping Vi+1 to Vi. If Fi is
in TS(ti(n), si(n)) for each i, then

⊙k−1
i=1 Fi is in

TS(Πk−1
i=1 ti(n),

∑k−1
i=1 si(n)). Moreover, if each Fi is

indexable, so is
⊙k−1

i=1 Fi.

Given an indexable family F of functions mapping
V to U , the unification of F , denoted GF , is defined
to be a function mapping [|F|]×V to U such that: on
input (α, v) ∈ [|F|]× V , GF takes the function f ∈ F
indexed by α, simulates the computation of f(v) and
outputs the result. It follows immediately from the
construction that:

Proposition 2.4 Let F be an indexable family of
functions. Then image(GF ) = image(F), and if F
is in TS(t(n), s(n)), so is GF .

2.6 k-wise Independent Hash Function
Family

Let a, b be integers. A family H of functions map-
ping [a] to [b] is said to be a k-wise independent hash
function family if for any u1, u2, . . . , uk ∈ [a] such that
ui 6= uj for 1 ≤ i < j ≤ k, and any v1, v2, . . . , vk ∈ [b],

Prh∈H [h(ui) = vi for 1 ≤ i ≤ k] = 1/bk.

(A pairwise independent hash function family is usu-
ally called a universal hash function family [CW79].)

It is easy to check that a k-wise independent hash
function family is a (k−1)-wise independent hash func-
tion family. We will need the following well-known
fact:



Theorem 2.1 Let k be fixed. Then for any a, b that
are integer powers of 2, there is an explicit construc-
tion of a k-wise independent hash function family
mapping [a] to [b] of size (max(a, b))k. Moreover, the
family is indexable and is in TS(log ab, log ab).

2.7 Combinatorial Rectangles, Discrep-
ancy Sets and Pseudorandom Gener-
ators

For integers m and d, let U = [m]d. A combinato-
rial rectangle of type (m, d) (or an (m, d)-rectangle) is
a subset of U of the form R = R1 × R2 × . . . × Rd,
where each Ri ⊆ [m]. By definition, the volume of R
is thus

vol(R) = |R|/|U | = Πd
i=1|Ri|/md.

R is said to be PIP , which stands for pairwise in-
dependent projections, if for any 1 ≤ i < j ≤ d,
|Ri∩Rj |

m = |Ri|
m · |Rj |m . We use R(m, d) to denote

the family of all (m, d)-rectangles, and we use PIP -
R(m, d) to denote the family of all PIP (m, d)-
rectangles.

Let l,m, d be positive integers. An (l,m, d)-
generator G is a function that maps {0, 1}l to [m]d.
(Note that the output length of G is ddlogme.) We
call l the input-length of G. G is said to ε-fool the
(m, d)-rectangles if G is (R(m, d), 2{0,1}

l

, ε)-good, or
equivalently, image(G) is an ε-discrepancy set for
R(m, d); we call such a generator G efficient if it is in
TS(d logm/ε, l), i.e., if it is computable in time poly-
nomial in the length of the output over ε, and in space
linear to the length of the input.

We can see now to efficiently construct a small-sized
ε-discrepancy set for R(m, d), where by efficient con-
struction we mean that the construction time is poly-
nomial in the size of the output set, it suffices to con-
struct an efficient (l,m, d)-generator that ε-fools the
(m, d)-rectangles with small l. In the next section we
will present such a construction.
2.8 The INW Generator for Path Net-

works
Our construction will make use of a pseudorandom

generator introduced in [INW94] which applies to the
following communication model.

Suppose there are d processors p1, . . . , pd connected
by a path. Each processor pi receives an input xi ∈
[m]. They then follow some communication proto-
col Π in which each processor can send messages to
adjacent processors (where the protocol specifies the
messages sent by each pi depending on its input xi
and the messages it has received so far). Eventually
the protocol terminates with processor pd either in an

“accept” or a “reject” state. We will call such a pro-
tocol an (m, d)-protocol. The accepting set ACC(Π)
of the protocol is the set of inputs (x1, . . . , xd) ∈ [m]d

which cause pd to accept. The complexity of the pro-
tocol is the maximum over all the inputs (x1, . . . , xd)
and processors pi of the number of bits sent by pi on
input (x1, . . . , xd).

An (l,m, d)-generator G is said to ε-fool an (m, d)-
protocol Π if

|Pry∈{0,1}l [G(y) ∈ ACC(Π)]− |ACC(Π)|
md

| ≤ ε.

The following theorem is a restatement of a result in
[INW94].

Theorem 2.2 For each positive integer m, d, c and
any 0 < ε ≤ 1, there is an explicit construction of
an efficient (l,m, d)-generator that ε-fools all (m, d)-
protocols of complexity at most c with l = O(logm +
log d(c+ log d+ log ε−1)).

3 The Generator Construction
In this section we present the construction of our

pseudorandom generator for combinatorial rectangles
and prove the following:

Theorem 3.1 Let m, d be positive integers and let
0 < ε ≤ 1. Then for some l = O(logm +
log d + log2 ε−1), there is an explicit construction of
an efficient (l,m, d)-generator that ε-fools the (m, d)-
rectangles. Consequently, there is an efficient con-
struction of an ε-discrepancy set for (m, d)-rectangles
of size polynomial in m, d and εlog ε.

In particular, in the case that ε = 2−O(
√

logmd),
the size of the discrepancy set in our construction is
polynomial in m and d.

3.1 The Overview of the Construction
For this discussion, let us fix integers m, d and a

real 0 < ε ≤ 1. We want to construct an efficient
(l,m, d)-generator that ε-fools the (m, d)-rectangles
with l = O(logm + log d + log2 ε−1). The starting
point of our construction is the pseudorandom gener-
ator for communication networks of [INW94].

Any (m, d)-rectangle R = R1 × . . . × Rd can be
naturally visualized as an accepting set of an (m, d)-
protocol Π of complexity 1 in the following way: Let
p1, . . . , pd be d processors in a path network as defined
in Section 2.8. On input x = (x1, . . . , xd) ∈ [m]d to the
network, for each 1 ≤ i ≤ d the processor pi receives
the i-th coordinate xi ∈ [m] and sends 1 bit to pi+1

such that, it sends 1 if and only if it receives a 1 from
pi−1 and at the same time xi ∈ Ri, where we assume



that p1 always gets 1 from an imaginary p0 and the bit
sent by pd is the output of the protocol. So pd accepts
x if and only if x ∈ R. That is, R = ACC(Π). Also it
is clear that the complexity of the protocol is 1. Now
by Theorem 2.2 we have:

Corollary 3.1 Let m, d be integers, 0 < ε ≤ 1, and
let l = O(logm+log d(log d+log ε−1). Then there is an
explicit construction of an efficient (l,m, d)-generator
G∗ that is (R(m, d), 2{0,1}

l

, ε)-good.

Remark: With a more careful analysis for the spe-
cial case of dealing with (m, d)-protocols of complex-
ity 1, we can strengthen the above result to have
l = dlogme+ 2dlog de(dlog de+ dlog ε−1e).

With respect to what we need, the shortcomings
of G∗ are that the dependence of l on log d is not
linear and that the dependence of l on d and ε−1 is
multiplicative but not additive. On the other hand,
if we apply generator G∗ to (m′, d′)-rectangles for
some m′, d′ where d′ depends polynomially only on
ε, then the input-length we need for G∗ in this case
is O(logm′+ log2 ε−1). Intuitively, what this observa-
tion suggests is that if we could first construct a func-
tion family F∗ of “small” size that reduces the prob-
lem for (m, d)-rectangles to the problem for (m′, d′)-
rectangles where m′ is polynomial in m, d, ε−1 (thus
logm′ is linear in logm, log d and log ε−1) and, impor-
tantly, d′ is polynomial in ε−1, then G∗ for the lat-
ter problem would have short input-length O(logm+
log d + log2 ε−1) and so, by composing F∗ and G∗,
we could obtain a “small”-sized family F of functions
with short input-length. Therefore, the unification of
F would provide a desired generator.

More precisely, what we will do for our con-
struction is the following: For some m′ =
poly(m, d, ε−1) and d′ = poly(ε−1), we first con-
struct a family F∗ of functions mapping [m′]d

′
to

[m]d that is (R(m, d),R(m′, d′), 2ε/3)-good, where
the size of F∗ is 2s for some s = O(log d +
log ε−1). Furthermore, F∗ is indexable and is in
TS(d logm/ε, logm + log d + log ε−1). Then we let
G∗ be the (l′,m′, d′)-generator given by Corollary 3.1
such that G∗ is (R(m′, d′), 2{0,1}

l′

, ε/3)-good. Thus
l′ = O(logm + log d + log2 ε−1) and moreover, G∗ is
in TS(d′ logm′/ε, l′) because of its efficiency. Define
F = F∗◦G∗. By Lemma 2.2, F is a family of (l′,m, d)-
generators of size 2s that is (R(m, d), 2{0,1}

l′

, ε)-good.
Moreover, by Proposition 2.3 F is indexable and is in
TS(d logm/ε, l′). Now Proposition 2.4 tells us that
GF is an efficient (l,m, d)-generator that ε-fools the
(m, d)-rectangles, where l = l′+ s = O(logm+ log d+

log2 ε−1). Thus to accomplish our generator construc-
tion as stated in Theorem 3.1, it suffices to build the
family F∗.

The family F∗ in our construction is a composition
of a sequence of three families of functions Fi, 0 ≤
i ≤ 2, with each Fi mapping Vi+1 to Vi for some Vi.
Each function family in the sequence specifies a func-
tion reduction that reduces one construction problem
to another one with simpler structure. The reduction
sequence mainly follows the idea in [LLSZ95] where
the problem for general rectangles is first reduced to
the problem for PIP rectangles, and then is further
reduced to the problem for rectangles whose dimen-
sion depends polynomially only on ε. One difference
between our construction and the one in [LLSZ95] is
in the dimension reduction. In [LLSZ95], the error in-
troduced by this reduction can be bounded only from
above, which is sufficient for their purposes of con-
structing (one-sided) hitting sets, but is inadequate for
our purposes of (two-sided) discrepancy set construc-
tion. One technical contribution of our work is that
in the dimension reduction, we reduce the dimension
to polynomial in ε−1 while keeping the error bounded
small from both sides. The details of the constructions
will be given in the next few subsections. The prop-
erties that this sequence Fi satisfies are summarized
below.

For 0 ≤ i ≤ 3, each Vi is of the form [mi]di for some
mi, di such that, with possible exceptions on m0 = m
and d0 = d, all the other mi and di are integer powers
of 2. (Note that the m′, d′ in the above description are
now m3 and d3, respectively.)

Family F0: As a preliminary for the next two con-
structions, the purpose of this function family is to re-
duce the problem for (m, d)-rectangles where m, d are
arbitrary to the problem for (m′, d′)-rectangles where
m′, d′ are integer powers of 2.

For m1 = O(m0d0/ε) and d1 = O(d0), F0 is
a family of one single function from V1 to V0 that
is (R(m, d),R(m1, d1), ε3 )-good. Moreover, it is in
TS(d1 logm1, logm1 + log d). We will call F0 the pre-
liminary reduction function family.

Family F1: To accomplish the dimension reduc-
tion, it is desirable to deal with PIP rectangles and
not general ones. Function family F1 reduces the
problem for general rectangles to the problem for PIP
rectangles.

For m2 = (max(m1, d1))2 and d2 = d1, F1 is a
family of one single function from V2 to V1 that is
(R(m1, d1), P IP -R(m2, d2), 0)-good. Moreover, it is
in TS(d2 logm2, logm2). We will call F1 the PIP
reduction function family.



Family F2: This is the major component of our
construction which specifies a function reduction that
reduces the PIP rectangle problem to the problem
for rectangles whose demension depends polynomially
only on ε−1.

For m3 = m2 and d3 = O(ε−1ln2ε−1), F2 is
a family of functions mapping V3 to V2 that is
(PIP -R(m2, d2),R(m3, d3), ε3 )-good. The size of F2

is (max(d2, d3))3. Moreover, F2 is in TS((d2 +
d3) logm3, log(d2d3)). We will call F2 the dimension
reduction function family.

Furthermore, each function family Fi is indexable.
It is clear from the parameters chosen above that

m′ = m3 = poly(m, d, ε−1), d′ = d3 = poly(ε−1),
and since 2s = Π2

i=0|Fi|, s = log(max(d2, d3))3 =
O(log d + log ε−1). Moreover, by Lemma 2.2, F∗ =⊙2

i=0 Fi is a family of functions mapping [m′]d
′

to [m]d that is (R(m, d),R(m′, d′), 2ε/3)-good; and
by Proposition 2.3, F∗ is indexable and is in
TS(d logm/ε, logm+log d+log ε−1). Thus F∗ is what
we needed.

In the rest of this section, we present the construc-
tions of the sequence of function families described
above. For the clarity of our presentation, we will
first give the constructions of F1,F2, assuming that
m1 and d1 are integer powers of 2. We will then jus-
tify this assumption later in Section 3.4 by presenting
the construction of family F0.

3.2 PIP Reduction Function Family
Let V1 = [m1]d1 where both m1 and d1 are as-

sumed to be integer powers of 2, and let V2 = [m2]d2

where m2 = (max(m1, d1))2 and d2 = d1. We con-
struct a family F1 of functions mapping V2 to V1

that is (R(m1, d1), P IP -R(m2, d2), 0)-good. That is,
the function family F1 specifies a function reduction,
which we call PIP reduction, that reduces the prob-
lem of finding a discrepancy set for (m1, d1)-rectangles
in V1 to the problem of finding a discrepancy set for
PIP (m2, d2)-rectangles in V2. We want F1 to be in-
dexable and in TS(d2 logm2, logm2) as well.

The construction given here follows from the con-
struction of the PIP -reduction in [LLSZ95]. We
present the construction for completeness.

LetH be a pairwise independent hash function fam-
ily mapping [d2] to [m1] of size (max(m1, d2))2 = m2

obtained by Theorem 2.1. We identify H with [m2].
Define a function f : V2 → V1 as follows

f(h1, . . . , hd2) = (h1(1), . . . , hd2(d2)).

Let F1 = {f}. Then F1 is trivially indexable. It is not
difficult to check that F1 is in TS(d2 logm2, logm2).

Thus it remains to show that F1 is (R(m1, d1), P IP -
R(m2, d2), 0)-good.

Let R = R1 × . . . × Rd1 ∈ R(m1, d1). For 1 ≤ i ≤
d2 = d1, define R′i = {h ∈ H = [m2] : h(i) ∈ Ri}.
Then RΛf = R′1 × . . . × R′d2

= R′ is an (m2, d2)-
rectangle in V2.

By the definition of H, |R
′
i|

m2
= Prh∈H [h(i) ∈ Ri] =

|Ri|
m1

, which implies that vol(R′) = vol(R). Hence,
|Ef∈F1 [vol(R′)]− vol(R)| = 0.

To complete the proof, we now show thatR′ is PIP .
For any 1 ≤ i < j ≤ d2,

|R′i ∩R′j |
m2

= Pr
h∈H

[h(i) ∈ Ri and h(j) ∈ Rj ]

=
|Ri|
m1

|Rj |
m1

=
|R′i|
m2

|R′j |
m2

.

3.3 Dimension Reduction Function Fam-
ily

The purpose of function family F2 is to specify a
function reduction, which we call dimension reduction,
that reduces the problem of finding a discrepancy set
for PIP (m2, d2)-rectangles in V2 to the problem of
finding a discrepancy set for rectangles whose dimen-
sion depends only on ε.

Let V3 = [m3]d3 where m3 = m2 and d3 =

2dlog(8ε−1 ln2(8ε−1))e (thus d3 ≥
8 ln2 8

ε

ε ). Let H be a
3-wise independent hash function family mapping [d2]
to [d3] of size (max(d2, d3))3 given by Theorem 2.1.
For each h ∈ H, we define a function fh : V3 → V2 as
follows:

fh(p1, . . . , pd3) = (ph(1), . . . , ph(d2)).

Let F2 = {fh : h ∈ H}. Since H is indexable and is in
TS(log d2d3, log d2d3) by Theorem 2.1, F2 is indexable
and is in TS((d2 + d3) logm3, log d2d3). We want to
show that F2 is (PIP -R(m2, d2),R(m3, d3), ε3 )-good.

Let m, d be integers and R = R1 ×R2 × . . .×Rd ∈
R(m, d). For the proof we need the following nota-
tions. For 1 ≤ i ≤ d, let βi = |Ri|

m , δi = 1− βi and for
a subset S ⊆ [d], we denote

TS = ∩i∈SRi, γ(S) =
|TS |
m3

, π(S) =
∏
i∈S

βj ,

ν(S) =
∑
i∈S

δi, µ(S) =
∑

i,j∈S,i<j
δiδj , and

τ(S) =
∑

i,j,k∈S,i<j<k

δiδjδk.



Fix any R = R1× . . .×Rd2 ∈ PIP -R(m2, d2). It is
easy to verify that for every h ∈ H, RΛfh = Th−1(1)×
. . .×Th−1(d3) = R(h) ∈ R(m3, d3). We are left to show
that |Ef∈F2 [vol(RΛf )]−vol(R)| = |Eh∈H [vol(R(h))]−
vol(R)| ≤ ε

3 .
We want to estimate |Eh∈H [vol(R(h))] − vol(R)|.

The main lemma we will need is the following:

Lemma 3.1 Let m, d, d′ be integers and H be a 3-
wise independent hash function family mapping [d] to
[d′]. Then for any R ∈ PIP -R(m, d) and for every
h ∈ H,

vol(R)−
∑
q∈[d′]

µ(h−1(q))

≤ vol(R(h))

≤ vol(R) +
∑
q∈[d′]

τ(h−1(q)).

Let us first assume that the lemma holds and see
that the estimation follows. By the lemma, we have
that

|Eh∈H [vol(R(h))]− vol(R)|
≤ Eh∈H [

∑
q∈d3

µ(h−1(q))] + Eh∈H [
∑
q∈d3

τ(h−1(q))].

For the estimation, we consider two cases depend-
ing on the volume of R. The first case is when
vol(R) ≥ ε

8 . Then ε
8 ≤

∏
i∈[d2] βi =

∏
i∈[d2](1 − δi) ≤

exp(−
∑
i∈[d2] δi), which implies that

∑
i∈[d2] δi ≤

ln 8
ε .

Eh∈H [
∑
q∈[d3]

τ(h−1(q))]

=
∑
q∈[d3]

Eh∈H [
∑

i,j,k∈h−1(q),i<j<k

δiδjδk]

=
∑
q∈[d3]

∑
i,j,k∈[d2],i<j<k

Pr
h∈H

[h(i) = h(j) = h(k) = q]δiδjδk

=
∑
q∈[d3]

(
1
d3

)3
∑

i,j,k∈[d2],i<j<k

δiδjδk

≤ (
1
d3

)2(
∑
i∈[d2]

δi)3

≤ ε2

64 ln4( 8
ε )

ln3(
8
ε

)

≤ ε

64

where the third equality is by the choice of H as a 3-
wise independent hash function family. Similarly, one

can show that Eh∈H [
∑
q∈d3

µ(h−1(q))] ≤ ε
8 . Therefore

|Eh∈H [vol(R(h))]− vol(R)| ≤ ε
3 in this case.

In the second case we have vol(R) < ε
8 . We let

R′ be another PIP (m2, d2)-rectangle containing R
such that ε

8 ≤ vol(R′) ≤ ε
4 . (The existence of such

an R′ is not difficult to justify.) Since R′ contains R,
then for every h ∈ H, R′(h) = R′Λfh contains R(h),
and thus Eh∈H [vol(R(h))] ≤ Eh∈H [vol(R′(h))]. By the
right inequality in Lemma 3.1 and the above analysis,
we have that

Eh∈H [vol(R′(h))] ≤ vol(R) + Eh∈H [
∑
q∈[d3]

τ(h−1(q))]

≤ ε

4
+

ε

64
<

ε

3
.

Since volumes are always
nonnegative, |Eh∈H [vol(R(h))] − vol(R)| ≤ ε

3 in this
case as well.

Now it remains to prove Lemma 3.1.
Proof of Lemma 3.1:

Let R = R1 × R2 × . . . × Rd. We first show two
preliminary facts.

Proposition 3.1 For any S ⊆ [d],

π(S)− µ(S) ≤ γ(S) ≤ π(S) + τ(S).

Proof: Let S ⊆ [d] be arbitrary. By definition, γ(S) =
|∩i∈SRi|

m = 1− |∪i∈SR̄i|m . Applying inclusion-exclusion,
we have that

γ(S) ≤ 1−
∑
i∈S

|R̄i|
m

+
∑

i,j∈S,i<j

|R̄i ∩ R̄j |
m

= 1−ν(S)+µ(S),

where the equality follows from the fact that R is PIP ,
and that

γ(S) ≥ 1−
∑
i∈S

|R̄i|
m

= 1− ν(S).

Since it is easy to prove by induction on the size of S
that

1− ν(S) + µ(S)− τ(S) ≤ π(S) ≤ 1− ν(S) + µ(S),

combining this with the above facts about γ(S) we
draw the conclusion. 2

Proposition 3.2 Let x, y, z be nonnegative real num-
bers such that x ≤ 1 and 0 ≤ x − y ≤ z ≤ x + y.
Let x′, y′, z′ be nonnegative real numbers such that
0 ≤ x′ − y′ ≤ z′ ≤ x′ + y′ ≤ 1. Then xx′ − y′ − y ≤
zz′ ≤ xx′ + y′ + y.



Proof: By assumptions, (x− y)(x′− y′) ≤ zz′ ≤ (x+
y)(x′ + z′). Also we have that (x − y)(x′ − y′) ≥
x(x′−y′)−y ≥ xx′−y′−y and that (x+y)(x′+y′) ≤
x(x′ + y′) + y ≤ xx′ + y′ + y. The proof is complete.
2

Now we prove by induction the following inequali-
ties: for each 1 ≤ t ≤ d′,

t∏
q=1

π(h−1(q))−
t∑

q=1

µ(h−1(q))

≤
t∏

q=1

γ(h−1(q))

≤
t∏

q=1

π(h−1(q)) +
t∑

q=1

τ(h−1(q)).

The case where t = 1 follows from Proposition 3.1. For
the inductive step, it is easy to check that Proposition
3.2 establishes the inequalities.

Finally, the lemma follows by substituting d′ for t
in the above inequalities. 2

3.4 Preliminary Reduction Function
Family

We justify the assumption that m1 and d1 are in-
teger powers of 2.

We have V0 = [m]d where m, d are arbitrary inte-
gers. For some m1 = O(md/ε) and d1 = O(d) that
are integer powers of 2, we will construct a function
family F0 that is in TS(d1 logm1, logm1 + log d) and
is (R(m, d),R(m1, d1), ε3 )-good.

The function family we shall construct contains a
single function fm,d which is obtained by composing
two other functions: fm and fd. Let W = [m1]d. fm is
a function fromW to V0 that is in TS(d logm1, logm1)
and is (R(m, d),R(m1, d), ε3 )-good, and fd is a func-
tion from V1 to W that is in TS(d1 logm1, log d) and
is (R(m1, d),R(m1, d1), 0)-good. Thus fm,d = fm ◦ fd
is as needed.

3.4.1 The Function fm

Let c0 = d 8d
ε e and let m1 = 2dlog c0me. Define the

function fm : W → V0 as follows: f(p1, . . . , pd) =
(q1, . . . , qd) if and only if for each 1 ≤ i ≤ d, pi ≡ qi
(mod m). Clearly, fm is in TS(d logm1, logm). We
want to show that fm is (R(m, d),R(m1, d), ε3 )-good.

Fix any R = R1 × . . . × Rd ∈ R(m, d). Let R′i =
{p ∈ [m1] : (p (mod m)) ∈ Ri}. Then RΛf = R′1 ×
. . . × R′d2

= R′ ∈ R(m1, d). All that remains is to
show that |vol(R′)− vol(R)| ≤ ε

4 .

Let c be the unique integer such that cm ≤ m1 <
(c + 1)m. Then it is clear that c ≥ c0. Since
bm1
m c|Ri| ≤ |R

′
i| ≤ dm1

m e|Ri|, we have that

(
cm

m1
)dvol(R) ≤ vol(R′) ≤ (

(c+ 1)m
m1

)dvol(R).

Now

(
cm

m1
)d ≥ (

c

c+ 1
)d ≥ (1− ε

8d
)d ≥ (

1
4

)
ε
8 ≥ 1− ε

4
,

which implies that (1− ε
4 )vol(R) ≤ vol(R′), and

(
(c+ 1)m
m1

)d ≤ (
c+ 1
c

)d ≤ (1 +
ε

8d
)d ≤ 2

ε
8 ≤ 1 +

ε

8
,

which implies that vol(R′) ≤ (1+ ε
8 )vol(R). Therefore

|vol(R′)− vol(R)| ≤ ε
3 and this concludes the proof.

3.4.2 The Function fd

Let d1 = 2dlog de and let V1 = [m1]d1 . Define the
function fd : V1 → W as follows: fd(q1, . . . , qd1) =
(q1, . . . , qd). That is, fd simply outputs the first d co-
ordinates of the input and discard the rest. Obviously,
fd is in TS(d1 logm1, log d).

To see that fd is (R(m1, d),R(m1, d1), 0)-good, we
observe that for any combinatorial rectangle R = R1×
. . .×Rd ∈ R(m1, d),

RΛfd = R1 × . . .×Rd × [m1]d1−d ∈ R(m1, d1)

and RΛfd has the same volume as R has.
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