
6546 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

Explicit Capacity Approaching Coding for
Interactive Communication

Ran Gelles , Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi , and Avi Wigderson

Abstract— We show an explicit (that is, efficient and deter-
ministic) capacity approaching interactive coding scheme that
simulates any interactive protocol under random errors with
nearly optimal communication rate. Specifically, over the binary
symmetric channel with crossover probability �, our coding
scheme achieves a communication rate of 1−O(

√
H(�)), together

with negligible exp(−�(�4 n/ log n)) failure probability (over
the randomness of the channel). A rate of 1 − �̃(

√
H(�)) is

likely asymptotically optimal as a result of Kol and Raz (2013)
suggests. Prior to this paper, such a communication rate was
achievable only using randomized coding schemes [Kol and Raz
(2013); Hauepler (2014)].

Index Terms— Interactive communication, coding protocols,
tree codes, deterministic interactive coding.

I. INTRODUCTION

A. Background

CODING for interactive communication, the subject of
this paper, connects two large bodies of work, cod-

ing theory and communication complexity. Both study com-
munication cost, but with very different settings and goals
in mind. Coding Theory, born with Hamming’s [26] and
Shannon’s [34] breakthrough papers, is a vast discipline which
deals largely with one-way communication between two
remote parties (Alice and Bob), each holding an input (resp.
x , y, possibly from some joint distribution). Major focus is
on a single communication task: Alice wants to convey x
to Bob, and the challenge is doing so reliably when the

Manuscript received April 26, 2017; revised January 18, 2018; accepted
April 2, 2018. Date of publication April 24, 2018; date of current version
September 13, 2018. R. Gelles was supported in part by NSF under Grant
CCF-1149888 and in part by the Israel Science Foundation under Grant
1078/17. B. Haeupler was supported in part by the NSF under Grant CCF-
1527110 and Grant CCF-1618280, and in part by the NSF CAREER award
under Grant CCF-1750808. G. Kol was supported in part by the Fund for
Math and in part by the Weizmann Institute of Science National Post-
Doctoral Award Program for Advancing Women in Science. N. Ron-Zewi
was supported in part by NSF under Grant CCF-1412958 and Grant CCF-
1445755, in part by a Rothschild fellowship, and in part by an Alon fellowship.
A. Wigderson was supported by the NSF under Grant CCF-1412958. This
paper was presented at the 2016 Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms.

R. Gelles is with the Faculty of Engineering, Bar-Ilan University, Ramat
Gan 52900, Israel (e-mail: ran.gelles@biu.ac.il)

B. Haeupler is with the Department of computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, USA (e-mail: haeupler@cs.cmu.edu).

G. Kol is with the Department of Computer Science, Princeton University,
NJ 08540, USA (e-mail: gkol@cs.princeton.edu).

N. Ron-Zewi is with the Department of Computer Science, University of
Haifa, Haifa 3498838, Israel (e-mail: noga@cs.haifa.ac.il).

A. Wigderson is with the School of Mathematics, Institute for Advanced
Study, Princeton, NJ 08540, USA (e-mail: avi@ias.edu).

Communicated by P. Gopalan, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2018.2829764

communication channel between them is unreliable, e.g. some
of the communicated bits are flipped randomly or adversari-
ally. Alice’s messages are encoded by longer codewords to
overcome this “noise”, and one attempts to minimize the
communication cost needed to achieve high reliability in
each noise model. Communication Complexity, an important
research area introduced by Yao [36] 30 years later, also strives
to minimize communication cost, but has an opposite focus: it
assumes a perfect communication channel between Alice and
Bob, who now want to perform an arbitrary communication
task (e.g. computing an arbitrary function f (x, y)) using a
two-way interactive communication protocol.

The seminal work of Schulman [30]–[32] merged these
two important subjects, and studied coding schemes for arbi-
trary two-way interactive communication protocols. Given
the interaction and adaptive nature of two-way protocols,
this significantly extends the challenge of coding theory. For
example, while trade-offs between coding parameters, like the
fraction of correctable errors and redundancy for one-way
communication have been well understood at least in principle
already in Shannon’s paper, and explicit codes matching them
were found for many channels, these questions are still far
from understood in the two-way case.

In the above papers Schulman set up the basic models,
proved the existence of nontrivial coding schemes for any
interactive protocol, in both the random and the adversarial
noise models, and gave an efficient randomized coding scheme
for random noise. Progress on finding trade-offs between
parameters, and approaching them using efficient coding
schemes has been slow for a while, but the past few years
have seen an impressive flood of new techniques and results
on the many challenging questions raised by this general
setting, see, e.g., [1], [2], [4]–[7], [9]–[11], [14], [16]–[19],
[21], [23]–[25], [27] and the survey [15] by Gelles. To infor-
mally cite but one central recent result, Kol and Raz [27]
(see also [21]) proved that for the binary symmetric channel
BSC� , in which every communicated bit is flipped indepen-
dently with probability �, the communication rate for certain
protocols is 1 − �̃(

√
H (�)), where H is the binary entropy

function. This should be contrasted with the one-way setting
in which the communication rate of BSC� is known to be
1 − H (�). Kol and Raz [27] and Haeupler [21] also gave
efficient randomized coding schemes for the BSC� with rate
1−�(

√
H (�)) and 1−�(

√
�) respectively.

Next we describe the basic protocol structure and cod-
ing problem more precisely. We use the standard model of
alternating, deterministic protocols. Assume that Alice and

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3615-3239
https://orcid.org/0000-0002-8416-893X

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6547

Bob communicate to perform a distributed task, e.g. compute
some function f (x, y) on their respective private inputs x
and y. We fix a deterministic communication protocol π for
this task, in which the parties alternate sending bits: Alice
sends one bit in odd steps, and Bob sends one bit in even
steps. We further assume that they communicate the same
number of bits on every input (the length n = |π | of π will be
our main complexity parameter). Finally, we assume that each
party outputs π(x, y), the entire transcript of their conversa-
tion (this “universal” output captures all possible tasks, e.g.,
computing a function). If there is no noise on the channel,
this is essentially the standard communication complexity
setting.

Now assume that the communication channel is noisy. Our
main result is concerned with the probabilistic noise model
but throughout we shall consider also the adversarial noise
model. In the probabilistic BSC� model each communicated
bit is flipped independently with a constant probability �.
In the adversarial model an adversary can flip an � fraction
of the communication bits. To cope with the errors, Alice
and Bob run a coding scheme � that should simulate the
noiseless protocol π over the noisy channel. That is, for
any inputs x, y the parties hold and for any noiseless pro-
tocol π , after running the coding scheme � over the noisy
channel, each party should output π(x, y) (if the coding
scheme and/or the channel are probabilistic, this should happen
with high probability over the randomness). We assume that
the parties alternate also in the execution of �, and as we
assumed π has a fixed length (communication cost) |π | for
every input, we can assume the same for �, denoting its
length by |�|.

One basic parameter of a coding scheme � is the rate,
defined as |π |/|�|, which captures the redundancy of �
relative to the noiseless protocol π (this definition parallels the
standard one of rate as the ratio between message length to
codeword length in one-way communication). Ideally, the rate
should approach the capacity of the channel. Another impor-
tant goal is explicitness. Ideally the coding scheme should
be deterministic,1 and the computational complexity of the
parties using the scheme � (given π and their inputs) should
be at most polynomial in |π |. In this work we focus on the
probabilistic noise model BSC� which is the original model
studied in [30]. We leave the question of generalizing our
results to the adversarial setting as a significant challenge for
future research.

B. Problem Statement and Main result

1) Problem Statement: Let X, Y be finite sets, and let π be
a deterministic two-party interactive protocol between Alice
and Bob that assumes reliable channels. For any x ∈ X
given to Alice and any y ∈ Y given to Bob, the protocol

1This presents a subtle issue in the presence of random noise. To prevent
a deterministic coding scheme from using the random noise as a source of
randomness, one actually uses the so-called arbitrarily varying channel (AVC)
that extends BSC� , with which an adversary may determine the probability
�i ∈ [0, �] in which the i-th bit is flipped, see e.g., [12]. In particular, � must
be correct also if there is no noise at all.

π communicates n = |π | bits, alternating between the parties,
after which both parties output π(x, y).

Next, the communication channel is replaced with BSC�

for some fixed constant � < 1/2. The task we wish to solve
is the following: given any protocol π as above, devise a
deterministic protocol � that simulates π , that is, for any
x ∈ X given to Alice and any y ∈ Y given to Bob, the “coding
scheme” � communicates N = |�| bits, alternating between
the parties, after which both parties output π(x, y); The
coding scheme � should have (i) a good communication
rate n/N , ideally 1 − Õ(

√
H (�)), (ii) a deterministic time

complexity which is polynomial in n, and (iii) a negligible
failure probability, ideally exponential in n but at most n−ω(1)

over the randomness of the channel.
2) Prior State of the Art: As mentioned above, this line of

work was initiated in [30], which gave an efficient randomized
coding scheme of (small) constant rate over BSC� assuming
the parties share a common random string; this assumption
was recently eliminated in [16]. The follow-up work [31] gave
also a deterministic scheme of (small) constant rate (bounded
away from 1) (small) for both the probabilistic and adversarial
error models. However, this latter scheme was based on tree
codes for which no efficient construction is currently known,
and therefore it is non-efficient.

In recent years there have been quite a few advancements on
obtaining efficient randomized coding schemes with optimal
parameters. Specifically [4] obtained the first efficient ran-
domized scheme of (small) constant rate in the adversarial
error model; Later, Ghaffari and Hauepler [18] achieved in
the adversarial setting an efficient randomized scheme with
optimal resilience and (small) constant rate. For the case where
the noise level is low, � → 0, Kol and Raz [27] showed that the
capacity of BSC� in the interactive setting is 1−˜�(

√
H (�)),

and gave an efficient randomized coding scheme with rate
1−�(

√
H (�)) over BSC� channels; Haeupler [21] obtained

an improved efficient randomized scheme that achieves a rate
of 1−�(

√
�) over BSC� channels. The scheme of [21] also

works for adversarial channels corrupting any � fraction of
transmission with a rate of 1−�(

√
� log log 1/�). Both rates

are conjectured to be optimal [22]. As to efficient deterministic
coding schemes, [5] gave an efficient deterministic scheme
of (small) constant rate over the BSC� with failure probability
exp(− log�(1) n) by providing a sub-exponential time tree
code construction and applying any tree-code based determin-
istic coding scheme separately on blocks of polylogarithmic
length. Subsequent to this work Cohen et al. [11] gave an
explicit deterministic binary tree code construction over a
polylogarithmic size alphabet. Since this tree code does not
have an efficient decoding algorithm it does currently not yet
lead to an improved interactive coding scheme for the BSC� .

3) Main Result: Our main result provides the first interac-
tive coding scheme for BSC� channel which is both efficient,
deterministic and approaching the capacity.

Theorem 1 (Main): For every sufficiently small constant
� > 0 and every sufficiently large n (as a function of �),
there exists an efficient deterministic interactive coding scheme
� that simulates any noiseless protocol π of length n over

6548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

BSC� with rate 1 − O
(√

H (�)
)

and failure probability
exp(−�(�4 n/ log n)).

As mentioned above, a rate of 1−�̃(
√

H (�)) is conjectured
to be optimal due to the results of [27]. Obtaining an efficient
deterministic coding scheme with similar rate (or even with
some (small) constant rate) for an adversarial channel remains
a challenging problem.

C. Overview of techniques

Our coding scheme exploits the idea of code concatena-
tion [13], which is a very common (simple yet powerful)
technique in the one-way coding theory literature, and our
main conceptual contribution is an adaptation of this technique
to the interactive setting.2

Concatenation usually consists of two separate coding lay-
ers: an inner code which is defined over binary alphabet
and may be inefficient, and an outer code which must be
efficient and is defined over large alphabet. In the standard
concatenation approach one first splits the binary message into
short blocks, say of length O(log n), views each block as a
single symbol in a large alphabet, and encodes the message via
the outer code where each block is considered as a single input
symbol for the outer code. Then one switches view again and
thinks of each large output symbol of the outer code as a binary
string, and encodes each such string separately via the inner
code. Such concatenation results in an efficient binary code,
and by choosing the right parameters one can also guarantee
that the final code has high rate and low failure probability.

More concretely, in the typical concatenation setting one
chooses the outer code to be a code of nearly optimal rate
ρout ≈ 1 that is resilient to some δout fraction of adversarial
errors. The inner code on the other hand is chosen to be a
code of some rate ρin that has optimal exponentially small
failure probability over BSC� . It can be verified that the rate
of the final code is the product ρout · ρin of the rates of the
outer and inner codes, and since we chose the rate ρout of
the outer code to be close to 1 then the rate of the final code
would be roughly the rate of the inner code ρin. Furthermore,
the final code fails only if more than δout fraction of the
inner codes fail, which for sufficiently large δout happens with
probability at most (2−�(log n))δout(n/ log n) = 2−�(δout ·n) over
BSC� . To summarize, in the above setting of parameters the
final code inherits on one hand the running time and the
resilience of the outer code, and on the other hand the alphabet
size and the rate of the inner code.

Towards an interactive version of concatenation, we take a
careful examination of the properties that the outer and inner
codes should satisfy in order to enable interactive concatena-
tion. As it turns out, assuming that both the outer and inner
codes are interactive coding schemes, the only other property
that is required for interactive concatenation is that the outer
code could be encoded online when viewing both its input and

2The unpublished memo [33] and the work [5] constructed tree codes
using layers of codes of different lengths combined together via “pointwise
concatenation” (see “Outer Code” paragraph below for an illustration of
this approach); However, this seems rather different from our concatenation
approach whose purpose is to turn an optimal non-efficient inner code and an
efficient non-optimal outer code into an efficient and optimal coding scheme.

output symbols as binary strings. This property is crucial in the
interactive setting since the original protocol is an interactive
protocol over binary alphabet and therefore one cannot encode
a large chunk of it a-priori before it was communicated. One
way to ensure the online encoding property is to insist that
the outer code would be systematic, which means that for
every output symbol yi it holds that yi = (xi , ri) where xi

is the i -th input symbol (the “systematic” part) and ri is
the “redundant” part that may depend on all previous input
symbols. Indeed, if this is the case, then the parties can
first communicate xi via the original protocol in an online
fashion, and then communicate ri which depends only on
previous input symbols. As linear codes can always be made
systematic it in fact suffices that the outer code would be
linear. We believe that this observation may be useful in the
future for the design of other interactive coding schemes.

For simplicity, in our concatenation lemma (Lemma 4) we
show how to implement the above program for the special
case in which the outer code is a tree code based interactive
coding scheme3 (and the inner code is an arbitrary ineractive
coding scheme). To obtain our final construction, as the outer
code we use an efficiently encodable and decodable linear
tree code of relative distance �(1/ log n) and rate ≈1, defined
over an O(log n)-bit alphabet. As the inner code we use
an exponential time deterministic interactive coding scheme
over binary alphabet that can correct � fraction of adversarial
errors (and so has exponentially small failure probability
over BSC�) with rate 1 − O(

√
H (�)). The resulting coding

scheme is then an efficient interactive coding scheme of rate
1− O(

√
H (�)) and failure probability exp(−�(�4 n/ log n))

over BSC� .
In what follows we describe the outer and inner codes we

use in more detail and the techniques used to obtain them.
We start with the inner code construction which is more
technically involved.

1) Inner Code: The inner code construction is based on an
efficient randomized coding scheme by Haeupler [21]. That
scheme achieves a rate of 1− O(

√
�) over a BSC� (together

with exponentially small failure probability), however it is
randomized. We obtain our inner code by derandomizing this
scheme, and the main technical challenge here is to derandom-
ize the scheme without damaging its rate. On the other hand,
we do not need the derandomization to be efficient, since we
will run the inner code only on protocols of length O(log n).

Our derandomization approach generalizes the derandom-
ization technique of [4], however it is more involved due
to the need to maintain high rate in derandomization, and
the intricacy of the coding scheme of [21] and its analy-
sis. In more detail, the main use of randomness in both
schemes [21], [4] is to allow the parties to check, with high
probability, whether or not they are synchronized (e.g., hold
the same partial transcript). To this end, the parties choose
a random hash function and communicate short hashes of
their own states of length
 � n. Note that due to this
shrinkage in length, it may happen that although the parties are

3We note however that currently essentially all known deterministics inter-
active coding schemes are based on tree codes or their variants.

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6549

unsynchronized, the hash values they exchange are the same,
leading the parties to falsely believe they are synchronized.
Such an event is called a hash collision.

In [4], Brakerski et al. first show an upper bound of 2O(n)

on the number of different sequences of partial transcripts that
may occur during a run of their coding scheme. They then
show that for each such sequence, at least a 1 − 2−� (
�n)

fraction of the randomness strings lead to at most �n hash
collisions, which is a small enough number of hash collisions
that allows the simulation to be completed correctly. Choosing

 = �(1/�), a union bound shows the existence of a single
random string that works for all sequences.

In our case, since we want to maintain a high rate we cannot
afford to communicate hashes of length �(1/�). To this end,
we observe that when the adversary is limited to corrupting
at most a fraction � of the transmissions, then there are only
2O(H(�)n) = 2O(log(1/�)�n) different noise patterns that should
be considered; denote these as typical noise patterns. We then
carefully modify the way the coding scheme of [21] compares
the states the parties hold, using linear hash functions. The
linearity of the hash functions along with the specific way
in which we perform the comparisons make hash collisions
depend (roughly) only on the specific noise pattern and the
randomness string, and most importantly, (almost) independent
of the specific noiseless protocol π that is simulated by the
coding scheme and the inputs (x, y) of the parties (The fact
that hash collisions do not entirely depend only on the noise
pattern and the randomness string actually creates further
complications in our proof which we ignore for now, see
Section V-B for more details).

We then show that for each typical noise pattern, at least a
1−2−�(
�n) fraction of the randomness strings lead to at most
�n hash collisions. Consequently, choosing
 = �(log(1/�)),
a union bound argument on all the possible noise patterns
proves the existence of a single random string that works for
any typical noise pattern. This results in a slightly reduced rate
of 1 − O(

√
H (�)) compared to [21] in which
 was chosen

to be some constant independent of �.
2) Outer Code: The starting point for the outer code con-

struction is a tree code construction outlined in an unpublished
memo by Schulman [33]. That construction uses the idea
of encoding substrings of increasing lengths 2t , using an
asymptotically good error-correcting code with constant rate
and relative distance, then layering the output codeword across
the next 2t levels. However, since the codes used in [33]
had rate bounded away from 1 the resulting tree code had
rate O(1/ log n); on the other hand, the obtained relative
distance was constant �(1).

For our application, we require that the tree code has high
rate very close to 1, but are willing to tolerate low (even
slightly sub-constant) distance. To deal with this, we first
replace the codes used in [33] with codes of rate 1 −
O(1/ log n) = 1 − o(1) and relative distance roughly
1/ log n = o(1). Furthermore, to guarantee high rate we also
use systematic codes and spread only the redundant part across
the next 2t levels. The resulting tree then has rate ≈ 1,
relative distance roughly 1/ log n, and O(log n)-bit alphabet.
Moreover, if the codes used are linear then so is the tree code.

To turn the tree code described above into an interactive
coding scheme we use in our concatenation lemma (Lemma 4)
a scheme similar to the tree code based scheme of [31].
However, the original analysis of [31] only achieved a constant
rate bounded away from one,4 regardless of the rate of the tree
code, and we provide a slightly tighter analysis of this scheme
that preserves the rate of the tree code. We also observe that
the coding scheme preserves the linearity of the tree code, and
consequently this scheme could be used as the outer code in
our concatenation scheme.

D. Organization of the Paper

We begin (Section II) by recalling several building blocks
and setting up notations we will use throughout. Our main
concatenation lemma is provided in Section III, along with a
formal statement of the inner and outer codes we use. These
prove our main Theorem 1. The detailed proof of the concate-
nation lemma appears in Section IV. In Sections V and VI
we present our inner and outer code constructions,
respectively.

II. PRELIMINARIES

All logarithms in this paper are taken to base 2. We denote
by H : [0, 1] → [0, 1] the binary entropy function given by
H (p) = p log(1/p)+ (1− p) log (1/(1− p)) for p /∈ {0, 1}
and H (0) = H (1) = 0. Let F2 denote the finite field of two
elements and let N denote the set of positive integers. For an
integer n ∈ N let [n] := {1, . . . , n} and for a pair of integers
m, n ∈ N such that m ≤ n let [m, n] := {m, m + 1, . . . , n}.
For a vector x ∈ �n and integers 1 ≤ i ≤ j ≤ n we
denote by x[i, j] the projection of x on the coordinates in
the interval [i, j], and we let |x | = n denote the length of
x . Finally, the relative distance between a pair of strings
x, y ∈ �n is the fraction of coordinates on which x and y
differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi �= yi }| /n.

A. Error-Correcting Codes

A code is a mapping C : �k
in → �n

out. We call k the message
length of the code and n the block length of the code. The
elements in the image of C are called codewords. The rate of
C is the ratio k log |�in|

n log |�out| . We say that C has relative distance at

least δ if for every pair of distinct vectors x, y ∈ �k
in it holds

that dist(C(x), C(y)) ≥ δ.
Let F be a finite field. We say that C is F-linear if �in,

�out are vector spaces over F and the map C is linear over
F. If �in = �out = F and C is F-linear then we simply say
that C is linear. Finally, if k = n then we say that a code
C : �n

in → �n
out is systematic if �in = �s and �out = �s+r

for some alphabet � and integers s, r ∈ N, and there exists
a string R(x) ∈ (�r)n such that (C(x))i = (xi , (R(x))i) for
every x ∈ �n

in and i ∈ [n] (that is, the projection of (C(x))i

on the first s coordinates equals xi). We call x and R(x) the
systematic part and the redundant part of C(x), respectively.

4Indeed, the tree code based scheme in [33] is run for 5|π | rounds, so rate
is at most 1/5.

6550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

Specific families of codes: We now mention some known
constructions of error-correcting codes that we shall use as
building blocks in our tree code construction, and state their
relevant properties. We start with the following fact that
states the existence of Reed-Solomon codes which achieve the
best possible trade-off between rate and distance over large
alphabets.

Fact 2 (Reed-Solomon Codes [29]): For every k, n ∈ N

such that k ≤ n, and for every finite field F such that |F| ≥ n
there exists a linear code RS : F

k → F
n with rate k/n

and relative distance at least 1 − k
n . Furthermore, RS can

be encoded and decoded from up to (1 − k
n)/2 fraction of

errors in time poly(n, log |F|).
The next fact states the existence of asymptotically good

binary codes. Such codes can be obtained for example by con-
catenating the Reed-Solomon codes from above with binary
linear Gilbert-Varshamov codes [20], [35].

Fact 3 (Asymptotically Good Binary Codes): For every
0 < ρ < 1 there exist δ > 0 and integer k0 ∈ N such that the
following holds for any integer k ≥ k0. There exists a binary
linear code B : {0, 1}k → {0, 1}n with rate at least ρ and
relative distance at least δ. Furthermore, B can be encoded
and decoded from up to δ/2 fraction of errors in time poly(n).

B. Tree Codes

A tree code [32] is an error-correcting code : �n
in → �n

out
which is a prefix-code: for any i ∈ [n] and x ∈ �n

in the first
i symbols of (x) depend only on x1, . . . , xi . For simplicity
we shall sometimes abuse notation and denote by also the
map : � j

in → �
j
out which satisfies that

(

(x1, . . . , x j)
)

i =(

(x1, . . . , xn)
)

i for every i ∈ [j] and x ∈ �n
in. Observe that

this latter map is well defined as ((x1, . . . , xn))i depends
only on x1, . . . , xi .

We say that has relative tree distance at least δ if for
every pair of distinct vectors x, y ∈ �n

in such that i ∈ [n] is the
first coordinate on which x and y differ (i.e., (x1, . . . , xi−1) =
(y1, . . . , yi−1) but xi �= yi), and for every j such that i ≤ j ≤
n it holds that

dist

(

(x)[i, j],(y)[i, j]
)

≥ δ.

Alternatively, the relative tree distance of a tree code can
be defined via the notion of suffix distance [14] (see
also [6] and [8]). The suffix distance between a pair of strings
x, y ∈ �n is

distsfx(x, y) := max
i∈[n]

{

dist

(

x[i, n], y[i, n]
)}

.

It can be shown that a tree code has relative tree distance at
least δ if and only if for every pair of distinct vectors x, y ∈
�n

in it holds that distsfx((x),(y)) ≥ δ.
Finally, we say that can be (efficiently) decoded from α

fraction of errors if there exists a polynomial time decoding
algorithm dec which takes as input a vector w ∈ �l

out for
any length l ∈ [n] and outputs a vector y ∈ �l

in of the same
length such that if w is α-close to some codeword (x) in
suffix distance then the decoding algorithm recovers x from

w, i.e., ∀l ∈ [n], w ∈ �l
out, x ∈ �l

in: If distsfx
(

w,(x)
) ≤ α,

then dec(w) = x .

III. EXPLICIT CAPACITY APPROACHING CODING SCHEME

In this section we prove our main Theorem 1. This theorem
is an immediate implication of our concatenation lemma
below. The concatenation lemma proves that given an efficient
deterministic systematic tree code (used as an outer code) and
a possibly inefficient deterministic coding scheme (used as an
inner code), one can construct an efficient deterministic coding
scheme, and states the parameters of the resulting coding
scheme as a function of the parameters of the outer and inner
codes. We now give the concatenation lemma (whose proof
appears in Section IV). Then, in Lemmas 5 and 6 below,
we state the existence of inner and outer codes with good
parameters, whose concatenation proves our main Theorem 1.
Recall the definition of ‘simulation’ given in Section I-B.

Lemma 4 (Concatenation): Suppose that the following
hold:

1) (Inner code) There exists a deterministic interactive
coding scheme � that simulates any noiseless protocol
π of length s+ 2(r + 1) with rate ρ� in the presence of
up to δ� fraction of adversarial errors, and with running
time T�.

2) (Outer code) There exists a systematic tree code :
�n

in → �n
out with �in = {0, 1}s , �out = {0, 1}s+r and

rate ρ that can be encoded and decoded from up to
δ fraction of errors in time T.

Then for every γ > 0 there exists a deterministic interactive
coding scheme �� that simulates any noiseless protocol π �
over BSCδ�/2 of length n · (s − 2) · (1− γ) with rate

ρ

2− ρ + 4/(s − 2)
· ρ� · (1− γ),

and failure probability

exp

[

−�

(

n

(

δ

36
· s + 2(r + 1)

ρ�
· δ

2
�

4
· γ − H

(

δ

36
· γ

)

))]

.

Furthermore, the coding scheme �� has running time

O(n · (T + T�)).

The following lemmas give an exponential time determin-
istic coding scheme that will be used as the “inner code” in
the concatenation step, and the tree code that will be used as
the “outer code” in the concatenation step.

Lemma 5 (Inner Code): For every sufficiently small con-
stant � > 0 there exists a deterministic interactive coding
scheme � that simulates any noiseless protocol π of length n
with rate 1−O

(√
H (�)

)

in the presence of up to a fraction � of
adversarial errors. Furthermore, � has running time poly(n)
and can be constructed in time 2O(n).
We prove the above lemma in Section V.

Lemma 6 (Outer Code): There exists an absolute constant
δ0 > 0 such that the following holds for every sufficiently
small constant � > 0 and every sufficiently large n such
that � > �(log n)

n . There exists a systematic F2-linear tree
code : �n

in → �n
out with �in = {0, 1}(log n)/� , �out =

{0, 1}(log n)/�+log n, rate 1
1+� and relative tree distance at

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6551

least δ0·�
log n . Furthermore, can be encoded and decoded from

up to a fraction δ0·�
2 log n of errors in time poly(n).

We prove the above lemma in Section VI. We can now prove
our main Theorem 1 based on the above Lemmas 4, 5 and 6.

Proof of Theorem 1: Given any constant � > 0 and a
sufficiently large length n, let be the tree code guaranteed by
Lemma 6 for � and integer n such that n = n((log n)/�−
2)(1 − �) (so n = �(�n/ log n)). In particular, satisfies
the outer code requirement of Lemma 4 with s = (log n)/�,
r = log n, ρ = 1

1+� , δ = δ0·�
2 log n , and T = nO(1).

Now let � be the coding scheme guaranteed by Lemma 5
for a δ� = 2� fraction of errors simulating protocols of
length n� = s + (2r + 1) = �((log n)/�) with rate ρ� =
1− O(

√
H (�)) and construction time T = 2n� = nO(�). This

� satisfies the inner code requirement of Lemma 4. For γ = �,
Lemma 4 now proves Theorem 1. In particular, the coding
scheme �� simulates any noiseless protocol of length n over
BSCδ�/2 = BSC� with failure probability

exp

[

−�

(

n

(

δ
36 · s+2(r+1)

ρ�
· δ2

�
4 · γ − H

(

δ
36 · γ

)

))]

= exp
[−�

(

�4 n/ log n
)]

,

a running time of

O(n · (T + T�)) = O(O(n) · (nO(1) + nO(1/�))) = nO(1/�)

and rate
ρ

2− ρ + 4/(s − 2)
· ρ� · (1− γ)

=
1

1+�

2− 1
1+� + 4/((log n)/� − 2)

·
(

1−O(
√

H (�))
)

· (1− �)

= 1− O(
√

H (�)).

�

IV. THE CONCATENATION LEMMA: PROOF OF LEMMA 4

The coding scheme �� is similar to the tree code based
scheme of [32], where we replace each input symbol to the tree
code with an inner code simulation (treated as a single symbol
over large alphabet). We stress again that this is possible since
the tree code is systematic, and so one can view each input
symbol obtained by the inner code simulation as the prefix of
the corresponding output symbol.

We start with a high-level description of the coding
scheme ��. We describe below the coding scheme �� for
Alice; the coding scheme for Bob is symmetric.

Throughout the execution of the coding scheme
Alice (respectively, Bob) maintains a string T A that
represents Alice’s current guess for the transcript of the
simulated protocol π � communicated so far. Alice also
maintains a string T̂ B that represents Alice’s current guess
for the corresponding string T B of Bob. When the execution
of the coding scheme �� is completed the outputs of Alice
and Bob are T A and T B , respectively.

The coding scheme �� is executed for n iterations, where
at iteration i Alice and Bob use the inner coding scheme � to
communicate the next block Xi of length s−2 of π � (assuming

that the transcript of π � communicated so far is T A and T B ,
respectively), as well as a pair of position strings pA

i−1, pB
i−1 ∈

{0, 1}2, and a pair of hash strings h A
i−1, h B

i−1 ∈ {0, 1}r .
Alice (respectively, Bob) then performs, one of three actions

according to the output of the simulation via the inner coding
scheme �: she either appends her noisy version X A

i of Xi to
T A , or she leaves T A unchanged, or she erases the last block
of length s − 2 from T A. These actions correspond to the
case where a seemingly correct simulation of Xi has occurred,
a seemingly incorrect simulation has occurred, or it seems that
the prefix T A is incorrect, respectively. She then records her
action in the i -th position string pA

i (since there are only three
possible actions those could be recorded using 2 bits).

Lastly, Alice views the string (δin)
A
i := (pA

i , X A
i) ∈ {0, 1}s

as the systematic part of the i -th output symbol of the tree code
 and lets (δout)

A
i be the corresponding i -th output symbol

of the tree code. The i -th hash string h A
i ∈ {0, 1}r is set to be

the redundant part of (δout)
A
i . As described above, both the

strings pA
i and h A

i will be communicated by Alice in iteration
i + 1. Note that for every i , the string ((δin)

A
1 , . . . , (δin)

A
i)

records all the actions of Alice on T A till iteration i and so,
if decoded correctly by Bob, then Bob can extract the value of
T A at iteration i from this string (same goes for Alice). The
formal definition of the coding scheme �� appears below.

A. The Coding Scheme ��

Coding scheme (��)A for Alice:
Initialize: T A := ∅, T̂ B := ∅.
For i = 1, . . . , n iterations:

1) Recall that pA
i−1 denotes the first 2 bits of (δout)

A
i−1

and let h A
i−1 denote the last r bits of (δout)

A
i−1 (for

i = 1 let (δout)
A
0 := 0s+r).

2) Simulate the protocol π A
(|T A|, (T A, 0n(s−2)−|T A |),

pA
i−1, h A

i−1

)

below using the inner coding scheme
�. Let the sequence (pA

i−1, p̂B
i−1, h A

i−1, ĥ B
i−1, X A

i)
denote the output of the simulation where
pA

i−1, p̂B
i−1 ∈ {0, 1}2, h A

i−1, ĥ B
i−1 ∈ {0, 1}r and

X A
i ∈ {0, 1}s−2.

3) Let (̂δout)
B
i−1 :=

(

p̂B
i−1, X A

i−1, ĥ B
i−1

)

. Decode the

sequence ((̂δout)
B
1 , . . . , (̂δout)

B
i−1) using the decod-

ing algorithm for . Let ((̂δin)
B
1 , . . . , (̂δin)

B
i−1) be

the decoded message and let T̂ B be the transcript
represented by this string (if i = 1 then set T̂B = ∅).

4) If T A = T̂ B append X A
i to T A and set pA

i := 01.
5) Otherwise, if T A �= T̂ B and |T A| < |T̂ B | set pA

i :=
00.

6) Otherwise, if T A �= T̂ B and |T A| ≥ |T̂ B | erase the
last s − 2 bits from T A and set pA

i := 10.
7) Let (δin)

A
i := (pA

i , X A
i) and let (δout)

A
i be the i -th

symbol of ((δin)
A
1 , . . . , (δin)

A
i). Note that since

 is systematic it holds that (δin)
A
i is a prefix of

(δout)
A
i .

The output of the coding scheme is the prefix of T A of
length n · (s − 2) · (1− γ).

6552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

Next we describe the protocol π . This protocol is simulated
by the inner coding scheme � at Step 2 of the coding scheme
��. The protocol π receives as input an integer 1 ≤ t ≤ n

(s − 2), a transcript string T ∈ {0, 1}n(s−2), a position string
p ∈ {0, 1}2 and a hash string h ∈ {0, 1}r . The description of π
for Alice’s side, denoted π A, is the following.

Protocol π A(t , T , p, h) for Alice:
1) Send p, h and receive p̂, ĥ (this is done bit by bit).
2) Communicate bits [t + 1, . . . , t + (s − 2)] of the

protocol π � assuming that the first t bits of π �
communicated so far are the first t bits of T .

B. Analysis
1) Rate and Running Time: The coding scheme �� runs

for n iterations and at each iteration the number of bits
communicated is ((s − 2)+ 2(r + 2))/ρ�. Recall that ρλ =

s
s+r . Consequently, the rate of the coding scheme �� is

|π �|
|��| =

n · (s − 2) · (1− γ)

n · ((s − 2)+ 2(r + 2)) /ρ�

= s − 2

2(s + r)− (s − 2)
· ρ� · (1− γ)

= s − 2

2(s − 2)/ρ + 4/ρ − (s − 2)
· ρ� · (1− γ)

= ρ

2+ 4/(s − 2)− ρ
· ρ� · (1− γ). (1)

To analyze the running time note that the running time of each
iteration is O(T + T�) and therefore the total running time
is O(n · (T + T�)).

2) Decoding Guarantees: To analyze the decoding guaran-
tees we define a potential function � as follows. Let t+ be the
number of blocks of length s−2 contained in the longest prefix
on which T A and T B agree, and let t− = |T A|+|T B |

s−2 −2t+. Let
� = t+− t−. Note that if at the end of the simulation it holds
that � ≥ n · (1−γ), then the simulation must be successful.
The reason is that in this case t+ ≥ n · (1 − γ) and so a
prefix of length at least n · (s − 2) · (1 − γ) is correct in
both T A and T B , which means the entire transcript π � was
correctly simulated.

To bound the potential we shall use the notion of a good
iteration.

Definition 7: We say that an iteration i is good if the
following pair of conditions hold:

1) At Step 2 of iteration i , the simulation of π via the inner
coding scheme � is successful.

2) At Step 3 of iteration i , it holds that T A = T̂ A and
T B = T̂ B.

Claim 8: The potential � decreases by at most 3 after any
iteration. Furthermore, after any good iteration the potential
increases by at least 1.

Proof: At any single iteration, a party either leaves its tran-
script unchanged, erases the last block of its transcript, or adds
a new block to its transcript. Therefore t+ can change by at
most 1 and t− can change by at most 2 at each iteration, and
so the total potential change at each iteration is at most 3.

Next observe that if iteration i is good, then both parties
know the transcript of the other side at the beginning of
iteration; they also learn the correct value of the block Xi .
Therefore, if T A = T B at the beginning of iteration i , then
both parties add Xi to their transcript, t+ increases by 1 and t−
remains zero. Otherwise, if T A �= T B and |T A| = |T B |, then
both parties erase the last block of their transcript, thus t+ does
not change and t− decreases by 2. Finally, if |T A| �= |T B |,
then the party with the longer transcript erases the last block
of its transcript and so t+ does not change while t− decreases
by 1. We conclude that the total potential change at a good
iteration is at least 1.

Claim 8 above implies that the simulation of π � via ��
succeeds as long as the number of bad iterations throughout
the execution of �� is at most nγ/4.

For our next claim we use a simple lemma whose statement
and proof we take from [32].

Lemma 9 (Lemma 7 in [6]): In any finite set of intervals
on the real line whose union J is of total length s there is a
subset of disjoint intervals whose union is of total length at
least s/2.

Proof: We show that J can be written as the union of
two sequences of disjoint intervals. The question reduces to
the case in which the intervals of the family are closed and
their union J is an interval. In the first step put into the first
sequence that interval which reaches the left endpoint of J ,
and which extends furthest to the right. In each successive
step, select the interval which intersects the union of those
selected so far, and which extends furthest to the right; adjoin
the new interval to one of the sequences in alternation.

Next we show that we can bound the number of bad
iterations by bounding the number of iterations in which the
first condition in Definition 7 does not hold.

Claim 10: If the first condition of Definition 7 does not hold
in at most m iterations, then the number of bad iterations is
at most 9m/δ.

Proof: By symmetry, it suffices to show that in addition
to the m iteration where the first condition does not hold, there
are at most 4m/δ iterations in which TB �= T̂B at Step 3.

Fix an iteration i + 1 in which TB �= T̂B at Step 3 and
let ((̂δin)

B
1 , . . . , (̂δin)

B
i) be the decoded message at this step.

By the decoding guarantee of there exists t (i) ∈ [i] such
that in at least δ fraction of the iterations j ∈ [t (i), i] the
simulation at Step 2 failed in either iteration j or iteration
j+1 (since X j is transmitted on iteration j but p j and h j are
transmitted only on iteration j + 1). This implies in turn that
in at least δ/2 fraction of the iterations j ∈ [t (i), i + 1] the
simulation at Step 2 failed in iteration j . In particular, if the
simulation fails at Step 2 in the segment [t (i), i + 1] at most
m times, then |[t (i), i+1]| < 2m/δ. However, we must take
care of overlapping segments [t (i), i + 1].

Let

I =
{

[t (i), i + 1] | TB �= T̂B at Step 3 of iteration i + 1
}

,

and define
⋃

I = ⋃

I∈I I . Since for each iteration i + 1 in
which T B �= T̂ B it holds that i + 1 ∈⋃

I, it suffices to show
that

∣

∣

⋃

I
∣

∣ ≤ 4m/δ. Lemma 9 shows that there exists a subset

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6553

I � ⊆ I of disjoint intervals such that
∣

∣

⋃

I �
∣

∣ ≥ ∣

∣

⋃

I
∣

∣ /2.
The proof is completed by noting that if the simulation at
Step 2 failed in at most m iterations, then it must be that
∣

∣

⋃

I �
∣

∣ ≤ 2m/δ, and so
∣

∣

⋃

I
∣

∣ ≤ 4m/δ.
Using the above Claim 10, the simulation of �� is successful

as long as the number of iterations in which the simulation at
Step 2 failed is at most δnγ/36. Over BSCδ�/2, since the
inner coding scheme � can handle δ� fraction of adversarial
errors, the probability that the simulation at Step 2 fails is at
most

exp

(

−�

(

(

δ�

2

)2

· s + 2(r + 1)

ρ�

))

,

independently for each iteration. Therefore the probability of
having more than δnγ/36 iterations in which the simulation
at Step 2 fails is at most

∑n
k=δnγ/36

(n
k

)

exp

(

−�

(

δ2
�
4 · s+2(r+1)

ρ�
· k

))

= exp

[

−�

(

n

(

δ
36 · s+2(r+1)

ρ�
· δ2

�
4 · γ − H

(

δ
36 · γ

)

))]

.

V. THE INNER CODE: PROOF OF LEMMA 5

The inner code is obtained via a derandomization of a
randomized interactive coding scheme due to Haeupler [21,
Algorithm 3]. We show how to devise a deterministic variant
of the coding scheme of [21], in which we fix the randomness,
and show that there exists a fixing that is “good” for all
possible runs, namely, the amount of hash collisions that can
occur for that fixing is low enough to complete the simulation
correctly.

Concretely, we prove Lemma 5 in two steps. In the first step
we slightly modify the original scheme of [21], specifically,
by carefully modifying the way the hash comparisons are
performed, and slightly increasing the output length of the
hash functions, as outlined in the introduction. In the second
step we derandomize this coding scheme. The two steps are
given in Sections V-A and V-B below, respectively. The proof
and detailed analysis below builds modularly on the analysis
of [21]; we only change the hashing part of the protocols and
reprove in detail that our hashing scheme satisfies the exact
properties needed for the correctness of coding scheme. In the
following all the references (lemma numbers, line numbers,
variable names, etc.) correspond to the full version [22]
of [21].

A. The Modified Scheme ˜�

In this section we slightly modify the hashing scheme in
the randomized coding scheme given by [22, Algorithm 3] to
obtain a randomized coding scheme ˜� that is more suitable
for derandomization, and state some properties of the coding
scheme ˜� that we shall use for the derandomization step.
We start by describing ˜� and give its full pseudo-code in
Algorithm 1, which keeps the line numbering the same as
in [22, Algorithm 3].

Algorithm 1 The Coding Scheme ˜�

1: �← n-round protocol to be simulated+ final confirmation
steps

2: hash,�hash ← inner product hash family with o =
�(log 1/�) and s = �(n log n)

3: Initialize Parameters: rc ← �(log(1/�)); r ← �
√

rc
� �;

Rtotal ← �n/r + 65 n��; T← ∅; N(·)← ∅
4: Reset Status: k,E,v1,v2← 0

5: R ← Random string of length Rtotal · s (can be con-
structed by exchanging �

(√

� log(1/�)
)

n random bits
and expanding them to a δ-bias string of the needed
length using [3], [28], with bias δ = 2−�(n

r o))

6: for Rtotal iterations do
� Verification Phase

7: k ← k + 1; k̃ ← 2�log2 k�; MP1 ← k̃r� |T|
k̃r
�; MP2 ←

MP1− k̃r
8: S← s new preshared random bits from R
9: Send (hashS(k),�hashS(T),�hashS(T[1,MP1]),

�hashS(T[1,MP2]))
10: Receive (H �k, H �T, H �MP1, H �MP2);
11: (Hk, HT, HMP1, HMP2) ← (hashS(k),�hashS(T),

�hashS(T[1,MP1]),�hashS(T[1,MP2]))
12: if Hk �= H �k then
13: E← E+ 1
14: else
15: if HMP1 ∈ {H �MP1, H �MP2} then
16: v1← v1+ 1
17: else if HMP2 ∈ {H �MP1, H �MP2} then
18: v2← v2+ 1

19: if k = 1 and HT = H �T and E = 0 then
� Computation Phase

20: continue computation and transcript T for r
steps (update N(i) to indicate the round number
in which the i -th bit of T was set.)

21: Reset Status: k,E,v1,v2← 0
22: else
23: do r dummy communications

24: if 2E ≥ k then � Transition Phase
25: Reset Status: k,E,v1,v2← 0
26: else if k = k̃ and v1 ≥ 0.4 · k̃ then
27: rollback computation and transcript T to position

MP1 (update N(·) accordingly)
28: Reset Status: k,E,v1,v2← 0
29: else if k = k̃ and v2 ≥ 0.4 · k̃ then
30: rollback computation and transcript T to position

MP2 (update N(·) accordingly)
31: Reset Status: k,E,v1,v2← 0
32: else if k = k̃ then
33: v1,v2← 0
34: Output the outcome of � corresponding to transcript T

1) Modified Scheme: Let ˜� be the coding scheme described
in Algorithm 1 that is obtained from [22, Algorithm 3] via the
following modifications.

6554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

1) (Output length of hash functions) The output length o of
the hash functions is increased from �(1) to c� ·log(1/�)
for sufficiently large constant c� to be determined later
on. Consequently, the number rc of check bits per itera-
tion is also increased from �(1) to �(log(1/�)). These
changes imply that the length of the blocks r = √rc/�
increases from �

(√
1/�

)

to �
(√

log(1/�)/�
)

, and the
number of iterations Rtotal decreases to

�n/r + 65�n� = �
(
√

�/ log(1/�)
)

n + 65�n.

2) (Seed length) Our modified hash comparisons described
below apply hash functions to strings of length
�(n log n), as opposed to length �(n) as is done
in [22, Algorithm 3]. To this end, we increase the
seed length s of the hash functions per iteration from
�(n) to �(n log n). Note that in this case the ran-
dom string R at Line 5 can still be obtained by
exchanging �

(√

� log(1/�)
)

n random bits sampled from
a δ-biased distribution with bias δ = 2−�(no/r) =
2−�

(√
� log(1/�)

)

n .
3) (Position string N(T)) To make hash collisions

depend (roughly) only on the noise pattern and the
randomness string, the parties maintain throughout the
execution of the coding scheme ˜� a position string
N(T) ∈ [Rtotal]Rtotal·r whose i -th coordinate equals
the iteration in which the i -th bit of T was added
to T , or is empty in the case where the i -th bit of T
is empty. We denote by N �(T) ∈ {0, 1}Rtotal·r ·log(Rtotal)

the binary string obtained from N(T) by replacing each
coordinate of N(T) with its binary representation of
length log(Rtotal) (we pad with zeros if the length is
shorter than log(Rtotal)).

4) (Hash comparisons) Roughly speaking, our new hash
comparisons will apply an F2-linear hash func-
tion (specifically, the inner product function) to both
the transcript T and the vector N �(T) that encodes the
iterations in which each of the bits in T were added
to T . Specifically, in Line 9 we replace

hashS(k), hashS(T),

hashS(T [1, MP1]), hashS(T [1, MP2])
with

hashS(k), �hashS
(

T
)

,

�hashS
(

T [1, MP1]), �hashS
(

T [1, MP2]),
where the function hashS is as defined in [22] and the
function �hashS is defined as follows.
For integers m, o and a seed S ∈ {0, 1}m·o let hS :
{0, 1}≤m → {0, 1}o be the F2-linear hash function that
satisfies, for every x ∈ {0, 1}≤m and i ∈ [o], that

(

hS(x)
)

i =
〈

x, S[(i − 1) · m + 1, im]〉,
where �a, b� =∑m

i=1 ai ·bi (mod 2) is the inner product
mod 2 of a, b ∈ {0, 1}m (if |x | < m then we assume that
x is padded with zeroes to the right up to length m).
We note that for every seed S the function hS is

F2-linear, i.e., for any two strings x, y ∈ {0, 1}m it holds
that hS(x ⊕ y) = hS(x)⊕ hS(y).
Finally, for m = Rtotal · r · log(Rtotal) = �(n log n),
o = c� log(1/�) and a seed S ∈ {0, 1}m·o we let

�hashS : {0, 1}≤Rtotal·r → {0, 1}3o

be the hash function that satisfies

�hashS(T) =
(

hS(T), hS(|T |), hS(N �(T))

)

for every partial transcript T ∈ {0, 1}≤Rtotal·r and its
position string N �(T).

2) Properties of the Modified Scheme: Next we state some
properties of the coding scheme ˜� that are inherited from the
protocol in [22]. We start with the following lemma which
says that the simulation is successful as long as at most �n
iterations suffer from a hash collision. This is the only proof
we borrow without any modifications from [22], due to it being
exactly the same for the original coding scheme � and our
slightly modified version ˜�.

Lemma 11: Let R ∈ {0, 1}Rtotal·s be an arbitrary string (not
necessarily coming from a δ-biased distribution), and let � be
a run of ˜� that uses the string R as the random string sampled
at Line 5, and simulates a noiseless protocol π on inputs
(x, y) in the presence of up to � fraction of adversarial errors.
Suppose furthermore that at most �n iterations in � suffer
from a hash collision. Then the output of � is π(x, y),that is,
the simulation performed by � is successful.

It is instructive to summarize the correctness proof of
the coding scheme from [22], which is the same as ours
except for the hashes used: In order to prove correctness
of the coding scheme � of [22] a potential � is defined.
[22, Lemmas 7.3 and 7.4] show that any iteration of the algo-
rithm decreases this potential at most by a constant and every
iteration in which no error or hash collision occurs increases
the potential by at least one. The proof of the main theorem
in [22], namely, Lemma 7.1, then shows that if at most O(n�)
hash collisions occur then the potential is so high that it a suc-
cessful simulation is implied. [22, Lemmas 7.6, 7.7, and 7.8]
show that for the various settings considered and their corre-
sponding hashing schemes this bound of O(n�) hash collisions
is satisfied. These are the parts which we prove for our hashing
scheme in detail below. Lemma 11 on the other hand exactly
summarizes the part of the correctness proof of � in [22]
which applies, verbatim and without any modifications, to our
coding scheme ˜�, namely, that it works correctly as long as the
hashing guarantees that no more than O(n�) hash collisions
occur.

We will also use the following claim which follows from
Lemma 11 and states that if at most �n iterations suffer from
a hash collision up to some iteration t ∈ [Rtotal], then in most
iterations i ∈ [t] a new block was added to both TA and TB .

Claim 12: Let R ∈ {0, 1}Rtotal·s be an arbitrary string (not
necessarily coming from a δ-biased distribution), and let �
be a run of ˜� that uses the string R as the random string
sampled at Line 5, and simulates a noiseless protocol π on
inputs (x, y) in the presence of up to � fraction of adversarial
errors. Let t ∈ [Rtotal] be some iteration and suppose that at

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6555

most �n iterations i ∈ [t] in � suffer from a hash collision.
Then there are at most 65�n iterations i ∈ [t] in which no
block was added to TA and at most 65�n iterations i ∈ [t] in
which no block was added to TB.

Proof: Suppose in contradiction that there are more than
65�n iterations i ∈ [t] in which no block was added to
TA or more than 65�n iterations i ∈ [t] in which no block
was added to TB . By symmetry we may assume that there are
more than 65�n iterations i ∈ [t] in which no block was added
to TA. To arrive at a contradiction we shall modify the string
R to obtain a string R� such that when the string R in the run
� is replaced with the string R� then on one hand, at most �n
iterations in � suffer from a hash collision and on the other
hand, the simulation performed by � is unsuccessful which
contradicts Lemma 11 above.

Specifically, let R� ∈ {0, 1}Rtotal·s be the string which agrees
with R on the first t · s bits and the last (Rtotal− t) · s bits are
chosen such that no hash collision occurs after iteration t when
the string R in the run � is replaced with the string R�. Such
a choice exists since the output length of the hash functions
is o = c� log (1/�) and the coding scheme is performing
only a constant number of hash comparisons per iteration.
Consequently, the probability that a uniform random seed
in {0, 1}s causes a hash collision at some iteration is at most
exp(−�(c� log(1/�))), and in particular there exists a seed
in {0, 1}s that does not cause a hash collision at this iteration.

Let �� be the run of the coding scheme ˜� obtained from �
by replacing the string R with the string R�. On one hand,
we have that at most �n iterations in �� suffer from a hash
collision. On the other hand, since �� and � behave the same
on the first t iterations there are more than 65�n iterations in
�� in which no block was added to TA. But since ˜� is run for
n/r + 65�n iterations and since in each iteration at most one
block is added to TA, we have that at the end of the run ��
less than n/r blocks of length r are present in TA, and so the
simulation is unsuccessful. This contradicts Lemma 11.

B. Derandomization

In order to derandomize the coding scheme ˜� defined
above we proceed according to the program outlined in the
introduction. Specifically, we observe that as long as each
block in TA was added at the same iteration in which the
corresponding block in TB was added (that is, N(TA) =
N(TB)) then TA and TB differ only by the noise pattern
corresponding to the iterations in which the blocks in TA and
TB were added. Since the hash function hS we use is F2-linear,
in this case we have that hash collisions, when comparing TA

and TB , depend only on the noise pattern and the seed S used
in these iterations. However, when N(TA) �= N(TB), hash
collisions may not depend entirely on the noise pattern and
the random seed, and this creates further complications in our
proof.

To cope with the above situation we replace in our analysis
noise patterns with behavior patterns which include the noise
pattern as well as some extra information on some of the
transitions made during the execution of ˜�. We also replace
hash collisions with hash mismatches which are a notion of

inconsistency of hash functions that includes hash collisions
as a special case. The advantage of these notions is that now
hash mismatches depend entirely on the behavior pattern and
the randomness string.

We focus on a certain subset of behavior patterns we name
typical behavior patterns; those are a subset of the behavior
patterns that can occur when the adversary is limited to � frac-
tion of errors. We then show that there are at most 2O(H(�)n) =
2O(log(1/�)�n) different typical behavior patterns, and that for
each typical behavior pattern, at least a 1 − 2−�(c� log(1/�)�n)

fraction of the randomness strings lead to at most �n hash
mismatches. This implies in turn that for a large enough
constant c� there must exist a single good randomness string
that leads to at most �n hash mismatches (and thus, at most �n
hash collisions) for all typical behavior patterns. So this good
randomness string leads to a successful simulation whenever
the adversary is limited to flipping at most a fraction � of the
bits. Details follow.

1) Behavior Patterns and Hash Mismatches: We start by
formally defining the notions of behavior patterns and hash
mismatches and proving that hash mismatches depend only
on the behavior pattern and the randomness string.

Definition 13 (Behavior pattern): Let � be a (possibly par-
tial) run of the coding scheme ˜� (determined by the ran-
domness string, the simulated noiseless protocol π , the inputs
(x, y) of the parties and the noise pattern). The behavior
pattern P of � consists of the following information:

1) The number of iterations in �.
2) The noise pattern in � (that is, the communication

rounds in � in which the channel flipped a bit).
3) The iterations in � in which no block was added to TA

and the iterations in � in which no block was added
to TB.

4) For each of the iterations in � in which no block
was added to TA, a bit saying whether Alice made
a transition on Line 25, a bit saying whether Alice
returned to MP1 on Line 27 and a bit saying whether
Alice returned to MP2 on Line 30. Similarly, for each of
the iterations in � in which no block was added to TB,
a bit saying whether Bob made a transition on Line 25, a
bit saying whether Bob returned to MP1 on Line 27 and
a bit saying whether Bob returned to MP2 on Line 30.

Definition 14 (Hash mismatch): Let i ∈ [Rtotal] be some
iteration, let S be the seed used at iteration i , and let
kA, |TA|, N �(TA), MP1A and MP2A (respectively, kB, |TB |,
N �(TB), MP1B and MP2B) be the values of the variables of
Alice (respectively, Bob) at the beginning of iteration i . Let
e ∈ {0, 1}|TA| be the vector that indicates the locations of
the adversarial errors in the communication rounds in which
the bits of TA were transmitted. We say that a hash mismatch
occurred at iteration i if at least one of the following occurred
at iteration i .

1) kA �= kB but hashS(kA) = hashS(kB).
2) e �= 0 but hS(e) = 0.
3) |TA| �= |TB | but hS(|TA|) = hS(|TB |).
4) N �(TA) �= N �(TB) but hS(N �(TA)) = hS(N �(TB)).
5) There exists b ∈ {1, 2} such that e[1, MPbA] �= 0 but

hS(e[1, MPbA]) = 0.

6556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

6) There exist b, b� ∈ {1, 2} such that MPbA �= MPb�B but
hS(MPbA) = hS(MPb�B).

7) There exist b, b� ∈ {1, 2} such that N �(TA[1, MPbA]) �=
N �(TB[1, MPb�B]) but
hS(N �(TA[1, MPbA])) = hS(N �(TB[1, MPb�B])).

The following claim says that if some iteration does not
suffer from a hash mismatch then it does not suffer from a
hash collision either.

Claim 15: If an iteration of ˜� does not suffer from a hash
mismatch then it does not suffer from a hash collision.

Proof: By Condition 1 of Definition 14 we readily have
that if kA �= kB then hashS(kA) �= hashS(kB). Next we show
that if TA �= TB then �hashS(TA) �= �hashS(TB). If |TA| �=
|TB | or N �(TA) �= N �(TB) then by Conditions 3 and 4 of Def-
inition 14 we have that �hashS(TA) �= �hashS(TB). Otherwise,
if |TA| = |TB | and N �(TA) = N �(TB), then we have that TA⊕
TB = e. Due to the linearity of hS Condition 2 of Definition 14
implies that in this case �hashS(TA) �= �hashS(TB). A similar
argument using Conditions 5, 6 and 7 of Definition 14 shows
that if TA[1, MPbA] �= TB [1, MPb�B], for some b, b� ∈ {1, 2},
then �hashS(TA[1, MPbA]) �=�hashS(TB[1, MPb�B]).

Finally, we show that hash mismatches depend only on the
behavior pattern and the randomness string.

Claim 16: Given a string R ∈ {0, 1}Rtotal·s and a behavior
pattern P of a (possibly partial) run � that uses the string R
as the random string sampled at Line 5, one can efficiently
determine the iterations in � in which a hash mismatch
occurred. In particular, whether a hash mismatch occurred
at some iteration in � depends entirely on the string R and
the behavior pattern P .

Proof: By definition it holds that whether a hash mismatch
occurred at some iteration in � depends only on the string R,
the noise pattern in � and the values of the variables k, |T |,
N �(T), MP1 and MP2 for both parties at the beginning of this
iteration. The noise pattern is included in the description of P ,
and it can be verified by induction on the number of iterations
that the values of the variables k, |T |, N �(T), MP1 and MP2
for both parties depend only on the behavior pattern P and
can be efficiently computed given P .

2) Existence of Good Randomness String: In this section
we show the existence of a good random string R∗ that can
be used to derandomize the coding scheme ˜�. For this we
shall use the notion of a typical behavior pattern defined as
follows.

Definition 17 (Typical behavior pattern): We say that a
behavior pattern P is typical if the number of bit flips in the
noise pattern of P is at most 2�n, the number of iterations in
P in which no block was added to TA is at most 100�n, and
the number of iterations in P in which no block was added
TB is at most 100�n.

The following claim bounds the number of typical behavior
patterns.

Claim 18: There are at most 2900 H(�)n different typical
behavior patterns.

Proof: First note that there are at most Rtotal ≤ n possible
values for the number of iterations in P , and that there are
at most Rtotal · (r + rc) ≤ 2n communication rounds in P .

Next observe that since the noise pattern has at most 2�n bit
flips, then the number of different noise patterns is at most

2�n
∑

i=0

(

2n

i

)

≤ 2�n ·
(

2n

2�n

)

≤ 22H(�)n.

Furthermore, since there are at most 100�n iterations in which
no block was added to TA, the number of different sets of such
iterations is at most

100�n
∑

i=0

(

Rtotal

i

)

≤ 100�n ·
(

n

100�n

)

≤ 2100 H(�)n.

Finally, for each iteration in which no block was added to TA

we keep 3 bits of information and so the number of different
possibilities for the values of these bits is at most 2300�n.

Concluding, we have that the number of different typical
behavior patterns is at most

n · 22H(�)n ·
(

2100H(�)n
)2 ·

(

2300�n
)2 ≤ 2900H(�)n.

Next we show that for every behavior pattern most random-
ness strings lead to at most �n hash mismatches.

Claim 19: Let P be any behavior pattern. According to
Claim 16 one can determine how many iterations suffered from
hash mismatches in a (partial) run with behavior pattern P
and a given randomness string R by looking at P and R
alone. If R is a random string sampled as in Line 5 then with
probability at least 1 − 2−�(c� log(1/�)�n) the number of such
iterations, as determined by P and R, is at most �n.

Proof: Suppose first that R is a uniform random binary
string in {0, 1}Rtotal·s . In this case, since the output length
of the hash functions is o = c� log (1/�) and since there
are only constant number of conditions in Definition 14,
the probability that a hash mismatch occurs at some iteration i
is at most 2−�(c� log(1/�)). Consequently, the probability that
more than �n iterations suffer from a hash mismatch is at
most

(

n

�n

)

· 2−�(c� log(1/�)�n)

≤ 2−�(c� log(1/�)�n),

where the inequality holds for sufficiently large constant c�.
In our case R is sampled from a δ-biased distribution for

δ = 2−�(no/r) and consequently the probability that more than
�n iterations suffer from a hash mismatch is at most

2−�(c�� log(1/�)n) + 2−�(no/r)

= 2−�(c� log(1/�)�n) + 2−�
(√

log(1/�)�n
)

= 2−�(c�� log(1/�)n).

Claims 18 and 19 above imply the existence of a single
random string R∗ that leads to at most �n hash mismatches
for all typical behavior patterns.

Corollary 20: For sufficiently large constant c�, there is a
string R∗ ∈ {0, 1}Rtotal·s such that for every typical behavior

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6557

pattern P the number of iterations suffering from hash mis-
matches determined by P and R∗ is at most �n.

Finally, we show that when the coding scheme ˜� is run
with the random string R∗ guaranteed by the above corollary
then the number of iterations suffering from hash collisions is
at most �n.

Claim 21: Let R∗ ∈ {0, 1}Rtotal·s be a string such that for
every typical behavior pattern P the number of iterations
suffering from hash mismatches determined by P and R∗ is at
most �n. Let � be a run of ˜� that uses the string R∗ as the
random string sampled at Line 5 and has at most � fraction
of adversarial errors. Then at most �n iterations in � suffer
from a hash collision.

Proof: If � has a typical behavior pattern then by our
assumption we have that R∗ leads to at most �n iterations in
� suffering from hash mismatches. By Claim 15 this implies
in turn that at most �n iterations in � suffer from a hash
collision. Therefore it suffices to show that � has a typical
behavior pattern.

Suppose in contradiction that � has a non-typical behavior
pattern P . Let t ∈ [Rtotal] be the first iteration in � such that
the number of iterations i ∈ [t] in which no block was added
to TA is more than 65�n or the number of iterations i ∈ [t] in
which no block was added to TB is more than 65�n. Let P �
be the (partial) behavior pattern obtained by restricting P to
the first t iterations. Then P � is a typical behavior pattern and
consequently by our assumption we have that the number of
iterations suffering from hash mismatches determined by P �
and R∗ is at most �n. Furthermore, since P and P � agree on the
first t iterations we have that the number of iterations suffering
from hash mismatches determined by P and R∗ among the
first t iterations is at most �n. By Claim 15 this implies in
turn that at most �n iterations i ∈ [t] in � suffer from a hash
collision which contradicts Claim 12.

3) Completing the Proof of Lemma 5: We are now ready to
complete the proof of the main result in this section.

Proof of Lemma 5: Corollary 20 and Claim 21 guarantee
the existence of a string R∗ ∈ {0, 1}Rtotal·s such that in any
run of the coding scheme ˜� that uses the string R∗ as the
random string sampled at Line 5 and has at most � fraction
of adversarial errors, the number of iterations suffering from
a hash collision is at most �n. By Lemma 11 this implies
in turn that any run of the coding scheme ˜� that uses R∗
as the random string sampled at Line 5 and has at most
� fraction of adversarial errors successfully simulates the
noiseless protocol π .

To show that ˜� has the required rate note that the total
number of bits communicated during the execution of ˜� is

Rtotal ·
(

r + rc
) =

(

n
r +�(n�)

)

· r ·
(

1+ rc
r

)

= n ·
(

1+�(r�)

)

·
(

1+ rc
r

)

= n ·
(

1+�

(

r� + rc
r

))

.

Due to our choice of r = �
(√

log(1/�)/�
)

and rc =
�(log (1/�)) the above implies in turn that the number of

Fig. 1. An illustration of the tree code’s encoding.

bits communicated in the coding scheme ˜� is

n · (1+�(
√

� log (1/�))
)

.

So the rate of ˜� is

1− O
(
√

� log (1/�)
) = 1− O

(
√

H (�)
)

.

Finally, observe that one can find the string R∗ by going
over all pairs (P, R) where P is a typical behavior pattern
and R ∈ {0, 1}Rtotal·s is in the support of the δ-biased dis-
tribution for δ = 2−�(no/r) which requires �

(√

� log(1/�)
)

n
random bits. Therefore, the number of possible strings R is
at most 2O(n). Furthermore, by Claim 18 there are at most
2O(n) different typical behavior patterns P . Therefore the total
number of pairs (P, R) one needs to check is at most 2O(n).
Finally, Claim 16 shows that for each such pair it takes poly(n)
time to verify whether the number of iterations suffering from
a hash mismatch determined by this pair is at most �n, and we
conclude that the total time this process takes is at most 2O(n).

�

VI. THE OUTER CODE: PROOF OF LEMMA 6

A. The Tree Code Construction

The high-level idea of the tree code construction is as
follows. For every integer t such that �(log log n) ≤ t ≤ log n
we partition the message to blocks of size 2t . Each such block
is separately encoded via a standard (one-way) systematic
error-correcting code with relative distance �(1/ log n) and
rate 1 − O(1/ log n). This yields a redundant part R(t) of 2t

bits which are layered across the next block, i.e., across the
encodings of the next 2t levels, so that every level gets 1 bit.
This layering amortizes the redundancy across the tree, which
helps keeping the rate approaching 1 while still providing the
required relative distance guarantee of �(1/ log n), yet only
over the next 2t levels. See Figure 1 for an illustration of the
construction.

In more detail, the main ingredient in our tree code con-
struction is the following lemma showing the existence of
a systematic error-correcting code C : �k

in → �k
out with

appropriate parameters. Specifically, this lemma shows that
for any integers k, n that satisfy �((log n)/�) ≤ k ≤ n,
there exists a systematic code C : �k

in → �k
out with |�in| =

poly(n), |�out| = poly(n), rate 1 − O(�
log n) and relative

distance �(�
log n). The lemma follows by an application of

Facts 2 and 3, and we defer its proof to Section VI-D.

6558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

Lemma 22: There exists an absolute constant k0 ∈ N such
that the following holds for every � > 0 and integers k, n ∈ N

such that k0 · (log n)/� ≤ k ≤ n. There exists a systematic F2-
linear code C : �k

in → �k
out with �in = {0, 1}(log n)/� , �out =

{0, 1}(log n)/�+1, rate ρ� := 1
1+�/ logn and relative distance at

least δ� := 1
2(log n)/�+1 . Furthermore, C can be encoded and

decoded from up to a fraction δ�/2 of errors in time poly(n).
The construction of the tree code is as follows. Let m :=

k0 · (log n)/�, for simplicity assume that both m and n are
powers of 2. The encoding (x) of a message x ∈ �n

in is the
pointwise concatenation of the message string x with log n −
log m + 1 binary strings x (log m), . . . , x (log n) ∈ {0, 1}n , where
for log m ≤ t ≤ log n the string x (t) ∈ {0, 1}n is defined as
follows. Let C(t) : �2t

in → �2t

out be the systematic code given
by Lemma 22 for a constant � and message length k = 2t , and
let R(t) : �2t

in → {0, 1}2t
be the redundant part of C(t). Divide

the string x into n/2t blocks z1, . . . , zn/2t of length 2t each,
and let x (t) = (02t

, R(t)(z1), . . . , R(t)(zn/2t−1)). See Figure 2.
We clearly have that can be encoded in time poly(n).

Note furthermore that is systematic and F2-linear and that
the input alphabet size of is 2log n/� and the output alphabet
size of is 2log n/� · 2log n−log m+1 ≤ 2log n/�+log n . The rate of
 is then at least

(log n)/�

(log n)/� + log n
= 1

1+ �
.

It remains to analyze the distance and decoding guarantee
of .

B. Distance

The distance guarantee of the tree code stems from the fact
that as long as we look at two different messages x, y that
differ in their suffixes of length ≥ 2m, then the encoding
at these suffixes completely includes a pair of codewords
C(t)(x �) �= C(t)(y �) for some log m ≤ t ≤ log n. Below,
we show that either the suffix is shorter than 2m and then
the required distance trivially holds, or we find the maximal
value of t for which the above holds and then the required
distance follows from the distance guarantee of the code C(t).

Claim 23: Let x, y ∈ �n
in be a pair of distinct messages

and let i ∈ [n] be the first coordinate on which x and y differ.
For any j ∈ [i, n] it holds that

dist

(

(x)[i, j],(y)[i, j]
)

≥ min

{

�

2 k0 log n
,

1

16(log n)/� + 8

}

.

Lemma 6 then holds as a corollary of the above claim by
setting δ0 := 1/(32 k0).

Proof: If j − i < 2m then

dist

(

(x)[i, j],(y)[i, j]
)

≥ 1

j − i + 1

≥ 1

2m

= �

2 k0 log n
,

where the first inequality follows since ((x))i �= ((y))i

due to our assumption that xi �= yi and the tree code being
systematic.

Next assume that j − i ≥ 2m. Let t be the maximal integer
such that 2 ·2t ≤ j− i and let i0 :=

⌊ i−1
2t

⌋ ·2t be i−1 rounded
down to the nearest multiple of 2t . Note that

i0 + 1 ≤ i < i0 + 1+ 2t < i0 + 2 · 2t ≤ j

and

j − i < 4 · 2t ,

due to the maximality of t .
Note that (x)[i0+ 1, i0+ 2t] contains x[i0+ 1, i0+ 2t] as

the systematic parts of C(t)(x[i0 + 1, i0 + 2t]). Also note that
by our construction, (x)[i0 + 1 + 2t , i0 + 2 · 2t] contains
the redundant part R(t)(x[i0 + 1, i0 + 2t]) of C(t)(x[i0 +
1, i0 + 2t]). In a symmetric way, the same holds for (y)
and y.

Furthermore, the assumption that xi �= yi implies that
x[i0 + 1, i0 + 2t] �= y[i0 + 1, i0 + 2t] and so by the
distance guarantee of C(t) (as given by Lemma 22) we have
that

dist

(

C(t)(x[i0 + 1, i0 + 2t]), C(t)(y[i0 + 1, i0 + 2t])
)

≥ δ�.

(2)

Equation (2) implies that either

dist

(

x[i0 + 1, i0 + 2t], y[i0 + 1, i0 + 2t]
)

≥ δ�

2
or

dist

(

R(t)(x[i0 + 1, i0 + 2t]), R(t)(y[i0 + 1, i0 + 2t])
)

≥ δ�

2
.

Finally, note that in either case we get that

dist

(

(x)[i, j],(y)[i, j]
)

≥ (δ�/2) · 2t

j − i + 1
≥ (δ�/2) · 2t

4 · 2t
= δ�

8
,

where the first inequality is due to the fact that i0 + 1 ≤ i <
i0 + 1 + 2t < i0 + 2 · 2t ≤ j and i is the first coordinate
on which x and y differ, and the second inequality is due to
the fact that j − i < 4 · 2t . Recall that δ� = 1

2(log n)/�+1 to
complete the proof.

C. Decoding

Recall that the decoding procedure is given a word w ∈
�

j
out for some 1 ≤ j ≤ n and is required to output a vector

y ∈ �
j
in such that y = x whenever x ∈ �

j
in is such that

distsfx((x),w) ≤ δ0·�
2 log n .

For a given word w ∈ �
j
out, the decoded word y ∈ �

j
in

is obtained as follows. We decode w in parts according to
its partitioning into blocks corresponding to the codes C(t).
Specifically, we start from the largest t for which a code-
word C(t) is fully contained in the prefix of w. We then
move on to decode the remaining suffix in an iterative manner.
We proceed this way until the interval at hand is shorter
than 2 m, in which case we simply set y in this interval as
the systematic part of w in the corresponding interval.

GELLES et al.: EXPLICIT CAPACITY APPROACHING CODING FOR INTERACTIVE COMMUNICATION 6559

Fig. 2. An illustration of the first 80 indices of (x), the encoding of x ∈ �n
in using our tree code.

The formal description of the decoding procedure follows.

Decoding procedure on input w ∈ �
j
out :

0) Initialize:
 := 1 // Left index of current interval
1) If j −
 < 2 m, set y[
, j] to be the systematic part

of w[
, j] and output y.
2) Otherwise, let t be the maximal integer such that

2 · 2t ≤ j −
.
3) Decode the part of w[
,
 − 1 + 2 · 2t] that corre-

sponds to the encoding of the code C(t) using the
decoding procedure for C(t), and set y[
,
−1+2t]
to be the result of the decoding.

4) Set
 :=
+ 2t and return to Step 1.

Let us give an example of the decoding process of w ∈ �75
out.

(Recall Figure 2.) For this example, let us assume that m =
8 = 23. We begin by decoding y[1, 32]; this is done by
decoding the code C(5) whose systematic part lies in w[1, 32]
and redundant part R(5)(x[1, 32]) lies in w[33, 64]. Note that
we could not use the code C(6) since its redundant part would
be in the interval [65, 128] which is beyond the range of w.
After we set y[1, 32], we move on to the next interval. We
cannot decode y[33, 64] using the next C(5) since its redundant
part lies beyond the range of w, and we need to reduce the
scale to t = 4. Hence, the next part we decode is y[33, 48],
which is obtained using the code C(4) whose systematic
part lies in w[33, 48] and redundant part R(4)(x[33, 48]) lies
in w[49, 64]. The next C(4) is again beyond the currently
decoded w and we reduce the scale to t = 3. Using the
code C(3) we decode y[49, 56], and also y[57, 64]. Finally,
we are left with the interval [65, 75] whose length is 11 < 2m;
we assume that there are no errors in this interval and simply
set y[65, 75] to be the systematic part of w[65, 75].

We clearly have that the decoding procedure runs in time
poly(n). To show that the decoding procedure satisfies the
required decoding guarantee we observe that our assumption—
that the distance of w from (x) is small on every suffix—
implies that at each iteration the part of w[
,
−1+2 ·2t] that
corresponds to the encoding of C(t) is close to C(t)(x[
,
−
1+2t]). Consequently, the decoding guarantee of C(t) implies
that y[
,
− 1 + 2t] = x[
,
− 1 + 2t] for every iteration in
which j −
 ≥ 2m.

In more detail, suppose that x ∈ �
j
in is such that

distsfx((x),w) ≤ δ0·�
2 log n . We shall show that at each iteration

the coordinates of y are set to the corresponding coordinates
of x and so y = x .

If j −
 < 2m at some iteration then we have that

dist

(

(x)[
, j], w[
, j]
)

≤ δ0 · �
2 log n

= 1

64m
<

1

j −
+ 1
,

where the equality follows due to our choice of m =
k0(log n)/� and δ0 = 1/(32 k0). This implies in turn that
w[
, j] = (x)[
, j] and so the systematic part of w[
, j]
equals x[
, j] and consequently y[
, j] = x[
, j].

Next assume that j−
 ≥ 2m. To show the required decoding
guarantee in this case note that our assumption implies that

dist

(

(x)[
, j], w[
, j]
)

≤ δ0 · �
2 log n

.

Furthermore, due to maximality of t we have that j−
 < 4·2t ,
and consequently it holds that

dist

(

(x)[
,
− 1+ 2t], w[
,
− 1+ 2t]
)

≤ 4 · 2t · (δ0 · �)/(2 log n)

2t

= 2 · δ0 · �
log n

≤ δ�

4
,

and similarly

dist

(

(x)[
+ 2t ,
− 1+ 2 · 2t], w[
+ 2t ,
− 1+ 2 · 2t]
)

≤ δ�

4
.

This implies in turn that the part of w[
,
 − 1 + 2 · 2t] that
corresponds to the encoding of C(t) is of relative distance at
most δ�/2 from C(t)(x[
,
− 1+ 2t]), and so by the decoding
guarantee of C(t) it holds that y[
,
−1+2t] = x[
,
−1+2t].
D. Proof of Lemma 22

We now complete the proof of Lemma 6 by proving
Lemma 22. Lemma 22 follows by substituting ρ = 1/2,
s = (log n)/� and r = log n in the following lemma which
shows the existence of a systematic error-correcting code with
good rate and distance.

Lemma 24: For every 0 < ρ < 1 there exist δ > 0 and
integer k0 ∈ N such that the following holds for any integers
k, s, r ∈ N that satisfy k · ρr

s ≥ k0 and s ≥ log(k(1 + ρr
s)).

There exists a systematic F2-linear code C : �k
in → �k

out
with �in = {0, 1}s , �out = {0, 1}s+r , rate s

s+r and relative

distance at least δ� := min
{

δ, 1− s/ρ
s/ρ+r

}

. Furthermore, C

6560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

can be encoded and decoded from up to δ�/2 fraction of errors
in time poly

(

k, s, r
)

.
Proof: Since C is systematic it suffices to define the redun-

dant part R of C . Roughly speaking, R(x) is obtained by first
encoding the message x via a systematic Reed-Solomon code,
then encoding the redundant part of the resulting codeword
with an asymptotically good binary code, and finally spreading
the resulting bits evenly between the k coordinates of R(x).

Formally, let δ and k0 be the constants guaranteed by Fact 3
for rate ρ, and let B be the asymptotically good binary code
guaranteed by this fact for rate ρ and message length k · ρr

s
(recall that we assume k · ρr

s ≥ k0). Let RS be the Reed-
Solomon code guaranteed by Fact 2 for message length k
and block length k(1 + ρr

s) over a field F of size 2s , and
note that our assumptions imply that 2s ≥ k(1 + ρr

s). By
performing Guassian elimination, we may assume without loss
of generality that the code RS is systematic, that is, for every
x ∈ F

k it holds that RS(x) = (x, R�(x)) for some string
R�(x) ∈ F

kρr/s .
Next we define the redundant part R of C . To this end, fix

a string x ∈ �k
in = F

k and let R�(x) ∈ F
kρr/s be the redundant

part of the encoding of x via the Reed-Solomon code RS.
Next view R�(x) as a binary string in {0, 1}kρr via the usual
F2-linear isomorphism and encode this binary string via the
asymptotically good binary code B , let zx ∈ {0, 1}kr denote
the resulting string. Finally, divide the string zx into k blocks
of size r , and for every 1 ≤ i ≤ k let (R(x))i ∈ {0, 1}r be the
i -th block of zx .

Next we analyze the properties of C . It can be verified that
C has the required rate s

s+r . To see that the relative distance
of C is at least δ�, let x �= y ∈ �k

in be a pair of strings. If

dist(x, y) ≥ 1− k

k(1+ ρr/s)
= 1− s/ρ

s/ρ + r

then we are done due to C being systematic. Otherwise,
due to the distance guarantee of the code RS we must have
that R�(x) �= R�(y), and consequently the distance guarantee
of the code B implies that dist(zx , zy) ≥ δ. Finally, note
that grouping the coordinates of zx and zy cannot decrease
the relative distance between the pair of strings, and so we
must have that dist(R(x), R(y)) ≥ δ as well. The decoding
guarantees of C follow from similar considerations, based on
the decoding guarantees of the codes RS and B .

REFERENCES

[1] S. Agrawal, R. Gelles, and A. Sahai, “Adaptive protocols for interactive
communication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,
pp. 595–599.

[2] N. Alon, M. Braverman, K. Efremenko, R. Gelles, and B. Haeupler,
“Reliable communication over highly connected noisy networks,” in
Proc. ACM Symp. Principles Distrib. Comput., 2016, pp. 165–173.

[3] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple construc-
tions of almost k-wise independent random variables,” Random Struct.
Algorithms, vol. 3, no. 3, pp. 289–304, 1992.

[4] Z. Brakerski, Y. T. Kalai, and M. Naor, “Fast interactive coding against
adversarial noise,” J. ACM, vol. 61, no. 6, pp. 35:1–35:30, Dec. 2014.

[5] M. Braverman, “Towards deterministic tree code constructions,” in Proc.
3rd Innov. Theor. Comput. Sci. Conf., 2012, pp. 161–167.

[6] M. Braverman and K. Efremenko, “List and unique coding for interactive
communication in the presence of adversarial noise,” SIAM J. Comput.,
vol. 46, no. 1, pp. 388–428, 2017.

[7] M. Braverman, K. Efremenko, R. Gelles, and B. Haeupler, “Constant-
rate coding for multiparty interactive communication is impossible,”
J. ACM, vol. 65, no. 1, 2017, Art. no. 4.

[8] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky, “Coding for
interactive communication correcting insertions and deletions,” IEEE
Trans. Inf. Theory, vol. 63, no. 10, pp. 6256–6270, Oct. 2017.

[9] M. Braverman and A. Rao, “Toward coding for maximum errors in
interactive communication,” IEEE Trans. Inf. Theory, vol. 60, no. 11,
pp. 7248–7255, Nov. 2014.

[10] K. Censor-Hillel, R. Gelles, and B. Haeupler, “Making asynchronous
distributed computations robust to channel noise,” in Proc. 9th Innov.
Theor. Comput. Sci. Conf. (ITCS), vol. 94. 2018, pp. 50:1–50:20.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2018/8318,
doi: 10.4230/LIPIcs.ITCS.2018.50.

[11] G. Cohen, B. Haeupler, and L. Schulman, “Explicit binary tree codes
with polylogarithmic size alphabet,” in Proc. 50th Annu. ACM Symp.
Theory Comput., 2018, pp. 1–25.

[12] U. Feige and J. Kilian, “Finding OR in a noisy broadcast network,” Inf.
Process. Lett., vol. 73, nos. 1–2, pp. 69–75, 2000.

[13] G. D. Forney, Jr., “Concatenated codes,” Massachusetts Inst. Technol.,
Res. Lab. Electron., Cambridge, MA, USA, Tech. Rep. 440, 1965.

[14] M. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman, “Optimal
coding for streaming authentication and interactive communication,”
IEEE Trans. Inf. Theory, vol. 61, no. 1, pp. 133–145, Jan. 2015.

[15] R. Gelles, “Coding for interactive communication: A survey,” Found.
Trends Theor. Comput. Sci., vol. 13, nos. 1–2, pp. 1–157, 2017.

[16] R. Gelles, A. Moitra, and A. Sahai, “Efficient coding for inter-
active communication,” IEEE Trans. Inf. Theory, vol. 60, no. 3,
pp. 1899–1913, Mar. 2014.

[17] R. Gelles and Y. T. Kalai, “Constant-rate interactive coding is impos-
sible, even in constant-degree networks,” in Proc. Leibniz Int. Inform.,
vol. 67. 2017, pp. 1–13.

[18] M. Ghaffari and B. Haeupler, “Optimal error rates for interactive coding
II: Efficiency and list decoding,” in Proc. IEEE 55th Symp. Found.
Comput. Sci., Oct. 2014, pp. 394–403.

[19] M. Ghaffari, B. Haeupler, and M. Sudan, “Optimal error rates for
interactive coding I: Adaptivity and other settings,” in Proc. 46th Annu.
ACM Symp. Theory Comput., 2014, pp. 794–803.

[20] E. N. Gilbert, “A comparison of signalling alphabets,” Bell Syst. Tech.
J., vol. 31, no. 3, pp. 504–522, 1952.

[21] B. Haeupler, “Interactive channel capacity revisited,” in Proc. IEEE 55th
Symp. Found. Comput. Sci., Oct. 2014, pp. 226–235.

[22] B. Haeupler. (Nov. 2014). “Interactive channel capacity revisited.”
[Online]. Available: https://arxiv.org/abs/1408.1467

[23] B. Haeupler and A. Shahrasbi, “Synchronization strings: Codes for
insertions and deletions approaching the Singleton bound,” in Proc. 49th
Annu. ACM SIGACT Symp. Theory Comput., 2017, pp. 33–46.

[24] B. Haeupler, A. Shahrasbi, and E. Vitercik. (2017). “Synchronization
strings: Channel simulations and interactive coding for insertions and
deletions.” [Online]. Available: https://arxiv.org/abs/1707.04233

[25] B. Haeupler and A. Velingker, “Bridging the capacity gap between
interactive and one-way communication,” in Proc. 28th Annu. ACM-
SIAM Symp. Discrete Algorithms, 2017, pp. 2123–2142.

[26] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[27] G. Kol and R. Raz, “Interactive channel capacity,” in Proc. 45th Annu.
ACM Symp. Theory Comput., 2013, pp. 715–724.

[28] J. Naor and M. Naor, “Small-bias probability spaces: Efficient construc-
tions and applications,” SIAM J. Comput., vol. 22, no. 4, pp. 838–856,
Aug. 1993.

[29] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[30] L. J. Schulman, “Communication on noisy channels: A coding theorem
for computation,” in Proc. IEEE Symp. Found. Comput. Sci., Annu.,
Oct. 1992, pp. 724–733.

[31] L. J. Schulman, “Deterministic coding for interactive communication,”
in Proc. 25th Annu. ACM Symp. Theory Comput., 1993, pp. 747–756.

[32] L. J. Schulman, “Coding for interactive communication,” IEEE Trans.
Inf. Theory, vol. 42, no. 6, pp. 1745–1756, Nov. 1996.

[33] L. J. Schulman. (2003). A Postcript to ‘Coding for Interactive Com-
munication’. [Online]. Available: http://www.cs.caltech.edu/~schulman/
Papers/intercodingpostscript.txt

[34] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423 and 623–656, 1948.

[35] R. R. Varshamov, “Estimate of the number of signals in error correcting
codes,” Doklady Akademii Nauk SSSR, vol. 117, no. 5, pp. 739–741,
1957.

[36] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting(preliminary report),” in Proc. 11th Annu. ACM Symp. Theory
Comput., 1979, pp. 209–213.

Authors’ biographies not available at the time of publication.

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.50

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

