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Abstract—Symbolic matrices in non-commuting variables, and
the related structural and algorithmic questions, have a re-
markable number of diverse origins and motivations. They arise
independently in (commutative) invariant theory and represen-
tation theory, linear algebra, optimization, linear system theory,
quantum information theory, and naturally in non-commutative
algebra.

In this paper we present a deterministic polynomial time
algorithm for testing if a symbolic matrix in non-commuting
variables over Q is invertible or not. The analogous question for
commuting variables is the celebrated polynomial identity testing
(PIT) for symbolic determinants. In contrast to the commutative
case, which has an efficient probabilistic algorithm, the best
previous algorithm for the non-commutative setting required
exponential time [1] (whether or not randomization is allowed).

The main (simple!) technical contribution of this paper is
an analysis of an existing “operator scaling” algorithm due
to Gurvits [2], which solved some special cases of the same
problem we do (these already include optimization problems
like matroid intersection). This analysis of the running time of
Gurvits’ algorithm combines results from some of these different
fields. It lower bounds a parameter of quantum maps called
capacity, via degree bounds from algebraic geometry on the Left-
Right group action, which in turn is relevant due to certain
characterization of the free skew (non-commutative) field.

Via the known connections above, our algorithm efficiently
solves several problems in different areas which had only
exponential-time algorithms prior to this work. These include the
“word problem” for the free skew field (namely identity testing
for rational expressions over non-commuting variables), testing if
a quantum operator is “rank decreasing”, and the membership
problem in the null-cone of a natural group action arising in
Geometric Complexity Theory (GCT). Moreover, extending our
algorithm to actually compute the non-commutative rank of a
symbolic matrix, yields an efficient factor-2 approximation to
the standard commutative rank. This naturally suggests the chal-
lenge to improve this approximation factor, noting that a fully-
polynomial approximation scheme may lead to a deterministic
PIT algorithm. Finally, our algorithm may also be viewed as
efficiently solving a family of structured systems of quadratic
equations, which seem general enough to encode interesting

decision and optimization problems 1.

Keywords-Non-commutative computation; Rational identity
testing; Derandomization; Optimization;

I. INTRODUCTION

The main object of study in this paper are symbolic ma-
trices whose entries are linear functions in variables x =
{x1, x2, . . . , xm} over a field2 F. Any such matrix can be
expressed as a linear combination of the variables with matrix
coefficients

L = x1A1 + x2A2 + · · ·+ xmAm

where A1, A2 . . . , Am are n× n matrices3 over F.
The main computational problem we will be concerned with

in this paper is determining whether such a symbolic matrix is
invertible or not. This problem has a dual life, depending on
whether the variables commute or do not commute. In both
cases inversion is over the appropriate field of rational func-
tions in the variables: the familiar one F(x) in the commutative
case, and the free skew field F ( x ) (which we will define and
discuss) in the non-commutative case4.

In the commutative case this problem has an illustrious
history and significance. It was first explicitly stated by Ed-
monds [3], and shown to have a randomized polynomial time

1This is an extended abstract. For the full version, we refer the reader to
https://arxiv.org/abs/1511.03730

2Our main results are for the rationals Q (and hold for the Reals and
Complex numbers as well). However many of the questions are interesting
for any field, and some results we mention hold for finite fields.

3For all purposes we may assume that the matrices Ai are linearly
independent, namely span a space of matrices of dimension exactly m.

4For intuition the reader can view this field as the home of all expressions
in the variables and constants from F formed by all arithmetic operations:
addition, multiplication and inversion. We only caution that while the same
definition works in the commutative case, here the resulting objects cannot
in general be simplified to ratios of polynomials. Luckily, as we will see,
the problem SINGULAR can also be defined without reference to this field;
indeed, it has purely commutative formulations.
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algorithm by Lovasz [4]. The completeness of determinant
for arithmetic formulas by Valiant [5] means that singularity
captures the celebrated Polynomial5 Identity Testing (PIT)
problem, and so in this commutative setting we will refer to it
as PIT. Derandomizing Lovasz’ probabilistic algorithm for PIT
(namely, proving PIT ∈ P) became all-important overnight
when Kabanets and Impagliazzo [6] showed it would imply
nontrivial arithmetic or Boolean lower bounds well beyond
current reach. Thus, finding a deterministic polynomial time
algorithm for PIT has been the object of intensive study in
the past decade, and most results provide such algorithms for
polynomials defined by restricted classes of formulae. While
this paper makes no direct progress on PIT, it suggests a
different type of attack on it through the non-commutative
angle.

The non-commutative case turns out to be significant to
an even larger and more diverse set of areas. Any algorithm
for the singularity problem in non-commuting variables (a
problem we will call SINGULAR) also solves the following
problems, via known reductions and equivalences (which are
of central importance to our results). We will define them and
discuss their history below.

1) (Non-Commutative Algebra) Solving the Word Problem
for the free skew field6.

2) (Invariant Theory) Testing membership in the null-cone
of the Left-Right group action 7

3) (Quantum Information Theory) Deciding if a completely
positive quantum map is rank-decreasing.

4) (Algebraic Complexity) Computing a factor-2 approxi-
mation of the commutative rank of a symbolic matrix8.

5) (Combinatorial Optimization) Solving certain structured
families of quadratic equations9.

With so many implications, what is the complexity of the
best algorithm for SINGULAR? Unlike the commutative PIT,
it is not even clear from its definition that SINGULAR is
decidable. Indeed, its decidability proof requires some very
nontrivial characterizations, and other important results in
both commutative and non-commutative algebra, starting with
Cohn [7]. The best results yield a deterministic exponential
time upper bound on its complexity (see two very different
proofs in [1], [8]), the best known before this work. No sub-
exponential algorithm was known even allowing randomness.

The main result of this paper is a deterministic polynomial
time algorithm for this problem, for F = Q! As obvious
corollaries, the five problems listed above are in P as well. We
note that exciting subsequent work extends our result below to
all fields of sufficiently high characteristic, via a very different

5And rational functions, which in the commutative case are simply ratios
of polynomials.

6Namely, the identity testing problem for rational functions over non-
commutative variables.

7The most basic special case of the orbit-closure intersection problem: are
two sets of linear operators equivalent if we allow a change of basis in both
their domain and range.

8To solve PIT we must compute this rank exactly.
9A special case is solving geometric matroid intersection in the dark, a

notion invented by Gurvits [2] in which the two matroids are given implicitly.

algorithm [9]. We now formally state our result, followed by
an elementary, commutative definition of the problem it solves.

Theorem I.1. For non-commutative variables over Q, SIN-
GULAR ∈ P . More specifically, there is a deterministic
algorithm which, given m n× n integer matrices A1, . . . Am
with entries of bit-size b, decides in time poly(n,m, b) if the
matrix L =

∑m
i=1 xiAi is invertible over the free skew field.

One of the many equivalent formulations alluded to above of
the problem SINGULAR is the following. A symbolic matrix
L =

∑m
i=1 xiAi over a field F is singular if and only if all

the following (infinitely many) polynomials defined by the Ai
vanish identically for all integers d:

Det(
∑

Xi ⊗Ai) = 0 (1)

where X1, X2, . . . Xm are d × d matrices whose entries are
distinct commuting variables, and Det is the commutative
determinant polynomial (on dn× dn matrices).

The alert reader will have noticed that in the commutative
PIT problem, singularity is captured by a single polynomial
identity, namely the case d = 1 above! Somehow, testing if a
given tuple of matrices satisfies the infinite system of identities
above seems now easier than testing the single one. The same
reader will have asked if an infinite system is needed, or does
a finite subset of them suffices. The answer (spoiler alert),
which we will reach at the end of this introduction, is that a
finite, exponential upper bound exp(poly(n)) on the largest d
to consider was known, and that this bound was key to our
polynomial upper bound on the running time of the algorithm.
Subsequent to our work (Section I-F) this upper bound on d
was dramatically improved to linear O(n), which does not
affect our analysis much, but has lead to the different algorithm
mentioned above.

We now begin our journey explaining the many origins and
incarnations of the problem SINGULAR, and the algorithm
we use to solve it, all of which were known! The main
(and simple) contribution of this work is showing that the
combination of the connections of equivalences, and known
results in the respective areas can be combined to (1) explain
what that algorithm actually computes, and (2) to analyze its
running time. We will also generalize it to compute the non-
commutative rank of a symbolic matrix. A peculiar point to
make already at this point is that while the problem at hand
is purely algebraic, the algorithm solving it is purely analytic.

Due to the multiple cross connections of the different areas
involved, there are probably many ways to weave this long and
meandering story, describing past work, evolution of ideas, and
the many consequences of the algorithm (some accounts of
subsets of these connections appear also e.g. in [1], [2], [10]).
The algorithm itself, its (interesting) origins and our analysis
of it are described on subsection I-D.

A. Word problems, identity tests and the free skew field

Word problems and their complexity are central throughout
mathematics, arising whenever mathematical objects in a cer-
tain class have several representations. In such cases, a basic
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problem is whether two such representations describe the same
object. Often, indeed, some problems of this form have served
as early examples of decidable and undecidable problems10.

For us, the objects in question are polynomials and rational
functions in commuting and non-commuting variables. Their
standard representations will be arithmetic formulas (which
we focus on here) and circuits, which take the variables (and
constants in F) as inputs, and use plus, times and inverse
gates. An excellent exposition of arithmetic complexity models
and the state-of-art in the subject is [13], which discusses at
length the polynomial identity testing problem in both settings
(without inversion). The study of this problem in the non-
commutative setting when inversion is allowed11 was initiated
in [10]. This study requires the algebraic framework of the
free skew field, in which the resulting objects live.

The first to construct the (universal) free skew field
F ( x ) was Amitsur [14], a structure which contains all non-
commutative polynomials (namely the algebra F〈x〉), is closed
under all arithmetic operations, and is universal in a sense we
will not define here. This field contains as formal objects all
formulas φ(x) as above (namely using plus, times and inverse
over the variables x and constants from F), like x−1+y−1+1,
(x+ xy−1x)−1 + (x+ y)−1 − x−1, etc., under the following
equivalence relation. Two such rational expressions on the
same set of variables are equivalent if for every d, and every
way of substituting d × d matrices for the variables, if both
are defined12 then they compute the same matrix13. The reader
may observe the similarity (which will recur) of this dimension
“blow-up” of variables to matrices as in equation (1). The
elements of the free skew field are thus the equivalence classes
of formulae defined above.

A very different construction of F ( x ) was given by
Cohn [15]. Its essence is that formulas can be computed by the
inverse of an appropriate symbolic matrix. This is the analog
of Valiant’s completeness theorem for the determinant [16]
in the commutative case. A simple consequence is that in
the non-commutative setting SINGULAR captures polynomial
and rational function identity testing for formulae over the free
skew field.

Theorem I.2 ( [15] ). There is an efficient algorithm which
converts every arithmetic formula φ(x) in non-commuting
variables x of size s to a symbolic matrix Lφ of size poly(s),
such that the rational expression computed by φ is identically
zero if and only if Lφ ∈ SINGULAR.

The structure of the free skew field is so complex that unlike
the commutative case, even decidability of SINGULAR (and
thus rational identity testing) is far from obvious. The first
to prove decidability was Cohn in [7], [17]. The first explicit

10E.g. deciding if two knots diagrams describe the same knot was proved
decidable by Haken [11], and deciding if two presentations with generators
and relations describe the same group was proved undecidable by Rabin [12]

11Inversion is not an issue in the commutative setting as every commutative
rational function is a ratio of two polynomials.

12Namely, neither attempts to invert a singular matrix.
13As it happens, the 2nd expression above is equivalent to zero; this is the

famous Hua’s identity.

bound on time was given by Cohn and Reutenauer in [8],
reducing it to a system of commutative polynomial equations,
which puts it in PSPACE , and thus in exponential time.
Two different exponential time algorithms follow from [1], [8].
From our Theorem I.1 we conclude (using Cohn’s complete-
ness theorem above) a deterministic, polynomial time rational
identity test for non-commuting rational expressions.

Corollary I.3. The non-commutative rational identity testing
problem is in P . Namely, there is an algorithm which for any
non-commutative formula over Q of size s and bit complexity
b determines in poly(s, b) steps if it is identically zero.

When division is not allowed, efficient deterministic identity
tests of non-commutative polynomials were known [18], not
only for formula but also for the stronger model of arith-
metic branching programs (ABPs). However, as this model
is efficiently simulated by matrix inversion (see Theorem
6.5 in [10]), our algorithm provides an alternative (and very
different) proof of the following theorem, at least over Q.

Theorem I.4 ( [18]). There is a deterministic polynomial time
rational identity testing algorithm for non-commutative ABPs.

B. Commutative and non-commutative rank of symbolic ma-
trices

There are many mathematical sources, motivations and
results regarding the rank of commutative symbolic matrices,
which are much older than the complexity theory interest
in the PIT problem (which of course is the special case of
determining if the commutative rank is full). Some of the
many references to this body of work can be found in the
papers [19], [20]. In some of these works, the non-commutative
rank (often implicitly via different characterizations) is used
to give upper bound on the commutative rank, and their
relationship becomes of interest.

We focus on this connection here, and explain how our main
result implies a deterministic approximation algorithm to the
commutative rank. We will use the same notation L for both a
symbolic matrix, as well as the subspace of matrices spanned
by it (when fixing the variables to constants in the field).
We also define and elaborate on what is known regarding
the commutative and non-commutative ranks, from now on
denoted by rank(L) and nc-rank(L).

Fact I.5. Given a commutative symbolic matrix L(x), its rank
over F(x) is r, denoted by rank(L(x)) = r, iff r is the maximal
rank of any matrix in the subspace L over F, spanned by the
Ai. Equivalently, rank(L(x)) is the smallest r such that there
exists a factorization L = KM such that K has r columns,
M has r rows, and the entries of both K,M are rational
functions in F(x).

While the characterization above is simple, the two given
in the theorem below are very substantial, mostly developed
by Cohn for his construction of the free skew field. The
first characterization we present here is due to Fortin and
Reutenauer [19] who heavily use Cohn’s techniques. The
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second was used by Cohn for proving decidability of the word
problem over the free skew field.

Theorem I.6. Given a non-commutative symbolic matrix
L(x), its rank over F ( x ) is r, denoted by nc-rank(L(x)) =
r, iff the space L is r-decomposable. Namely, r is the minimal
number such that there exist invertible matrices B,C over
F such that BLC has a minor of zeros of size i × j with
i+ j = 2n− r (note that this may be viewed as an algebraic
analog of the Hall condition for maximum bipartite matching).
Equivalently, nc-rank(L(x)) is the smallest r such that there
exists a factorization L = KM such that K has r columns,
M has r rows, and the entries of both K,M having entries
which are polynomials in F〈x〉, of degree at most one.14

We can extend our main Theorem I.1 from testing singu-
larity to efficiently computing the non-commutative rank over
Q.

Theorem I.7. There is a deterministic algorithm which, given
m n × n integer matrices A1, . . . Am with entries of bit-
size b, computes nc-rank(L) in time poly(n,m, b) (where
L =

∑m
i=1 xiAi).

It is not hard to see from the definitions that for every L we
have rank(L) ≤ nc-rank(L). These two ranks can be different,
as it is the case for the 3× 3 skew symmetric matrix, whose
rank is 2 but non-commutative rank is 3. Taking many copies
of this matrix we see that there can be a factor 3/2 gap between
the two: for any r there are matrices L with rank(L) = 2r
and nc-rank(L) = 3r. However, Fortin and Reutenauer [19]
proved that this gap is never more than a factor of 2, so
our main result implies an efficient factor-2 approximation of
commutative rank.

Theorem I.8 ( [19]). For every L we have nc-rank(L) ≤
2rank(L).

Corollary I.9. There is a polynomial time algorithm which
for every symbolic matrix in commuting variables over Q
approximates rank(L) to within a factor of 2.

We find the question of efficiently obtaining a better ap-
proximation ratio (indeed, even an approximation scheme) a
very interesting problem. It is a different relaxation of the
commutative PIT problem that as far as we are aware of has
not been studied until now.

Another interesting corollary of our main theorem (as
well as Valiant’s determinant completeness proof15) is that it
reduces the commutative PIT problem to a seemingly much

14Note the striking difference to the commutative case, which may also hint
to why the non-commutative case may be easier in a sense. The “rigidity” of
non-commutative polynomials affords such a simple factorization if and only
if it exists with rational function entries from F ( x ) . It is not hard to see
using this definition that computing nc-rank(L) thus reduces to a system of
quadratic equations in the (commutative) coefficients (in F) of the entries of
the factors, and so can be solved e.g. using the Gröbner basis algorithm. Our
algorithm determines solvability of such systems in polynomial time!

15Observing that the reduction generates matrices which are nearly upper
triangular, except having 1’s rather than 0’s just below the diagonal.

simpler restriction of it. Call an n × n symbolic matrix L
extreme if rank(L) ≥ n− 1 and nc-rank(L) = n.

Corollary I.10. There is a deterministic polynomial time
reduction from the general PIT problem to the PIT problem
for extreme matrices.

C. Compression spaces, optimization and Gurvits’ algorithm
G

This subsection describes the origin and motivation of the
algorithm underlying our main theorem.

An important class of spaces of matrices, studied e.g.
in [20]–[25] for different motivations in algebra and geometry,
is the class of compression spaces. These are simply all linear
spaces L for which rank(L) = nc-rank(L).

A deterministic polynomial time algorithm solving the
commutative PIT for compression spaces L (over Q) was
discovered by Gurvits [2], a paper which serves as the starting
point for this work. Indeed, it solves the following slightly
more general problem.

Theorem I.11 ( [2]). There is a deterministic polynomial
time algorithm, algorithm G, which for every n and ev-
ery n × n matrix L given by a set of integer matrices
(A1, A2, . . . , Am), outputs “singular” or “invertible”, and its
output is guaranteed to be correct16 when either rank(L) = n
or nc-rank(L) < n over Q.

In particular, note that the algorithm always gives the correct
answer for compression spaces. Gurvits motivates his algo-
rithm primarily by suggesting a completely different approach
to the commutative PIT problem (on which we elaborated
above), which solves it efficiently for this interesting family of
symbolic matrices. Indeed, he notes that a few general families
of matrix spaces are compression spaces, including those
spanned by PSD matrices, or by upper triangular matrices, or
by rank-1 matrices. Gurvits notes that, as his algorithm does
not depend on the actual given generators Ai, but only on the
space L they span, it can solve some optimization problems
(including geometric matroid intersection) “in the dark” (see
details in [2]).

Gurvits’ paper deviates from most recent progress on de-
terministic PIT algorithms (e.g. [26]–[30] among many oth-
ers) which focus on polynomials computed by a variety of
restricted classes of arithmetic circuits. Gurvits’ algorithm G
solves PIT in cases which we do not know how to classify
in arithmetic complexity terms, but rather via structural prop-
erties of the symbolic matrix L as above (e.g. compression
spaces). Very few examples of approaching deterministic PIT
from this direction are known, and include the algebraic algo-
rithms for perfect matching and rank completion of [31]–[33],
nearly all being special cases of compression spaces. Making
progress on PIT by relaxing these structural constraints and
solving it outside compression spaces would be extremely
interesting. We note that Corollary I.10 above shows that the

16For both the commutative and non-commutative definitions.
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commutative PIT problem reduces to the question of deter-
mining whether a given symbolic matrix L is a compression
space (over Q).

Yet another interesting direction (taken here) is to better
understand what algorithm G actually does. Our main contri-
bution in this paper is (1) observing that despite its focus on
the commutative PIT problem, Gurvits’ algorithm G actually
solves the non-commutative SINGULAR problem, and (2)
analyzing the algorithm to show that it does so in polynomial
time. To understand both, we now turn to describe algorithm
G.

D. Permanents, quantum operators, origins and analysis of
algorithm G

Here we give only an intuitive informal description (with
imprecise parameters), which makes it easy to explain its
origins and nature, as well as its analysis. We already men-
tioned one peculiar property of algorithm G, namely that
while the problem SINGULAR it solves in Theorem I.1 is
purely algebraic, the algorithm itself is purely analytic; it
generates from the input a sequence of matrices and tests if
it is convergent. Another interesting property is that algorithm
G arises as a “quantum analog” of another analytic algorithm
with very different motivation that we now discuss. This is
algorithm S of Sinkhorn [34], designed to solve the matrix
scaling problem defined below. We note that this problem
(besides being the “classical version” of the problem we solve)
is interesting in its own right; it was initially developed for
applications in numerical analysis, and has since found many
other applications (see survey and references in [35], who used
it as a basis for their deterministic algorithm for approximating
the permanent of non-negative matrices).

The matrix scaling problem (over R) gets as input a single
non-negative matrix A, and attempts to find if it can be
“scaled” to a doubly-stochastic one (namely, having the entries
in every row and column sum to 1). Here “scaling” refers to
multiplying rows and columns by positive constants. Thus we
seek positive diagonal matrices B,C (called scaling factors)
such that BAC is (nearly) doubly stochastic, or determine that
no such scaling is possible.

Two different analyses of Sinkhorn’s algorithm S, one
of [35] and the other in the unpublished [36] inspire algorithm
G and its analysis in [2].

We now describe algorithm S. We set up notation which
will be later easy to generalize for describing algorithm G.
For a non-negative matrix A, let R(A) denote the diagonal
matrix whose (i, i)-entry is the inverse of the L1 norm of row
i (which here is simply the sum of its entries as A is non-
negative). Similarly C(A) is defined for the columns17.

Algorithm S gets as input a non-negative integer matrix A.
For a fixed polynomial (in the input size) number of iterations
it repeats the following two steps
• Normalize rows: A← R(A) ·A
• Normalize columns: A← A · C(A)

17A “non-triviality” assumption is that no row or column in A is all zero.

We describe the [35] analysis for algorithm S.
What does this algorithm do? It is clear that in alternate

steps either R(A) = I or C(A) = I , where I is the identity
matrix. Thus A itself alternates18 being row-stochastic and
column-stochastic. The question is whether both converge to
I together, namely, if this process converts A to a doubly
stochastic matrix.

In [35] it is proved that this happens if and only if Per(A) >
0, where Per is the permanent polynomial. Moreover, conver-
gence (in the limit) is easy to detect after very few iterations! If
we define ds(A) = ||R(A)−I||2+||C(A)−I||2 as a notion of
distance between A and the doubly stochastic matrices, then
the convergence test is simply whether ds(A) < 1/n2. If it
is that small at the end of the algorithm, then Per(A) > 0,
and otherwise Per(A) = 0 (in particular, this 2-line algorithm
solves in particular the bipartite perfect matching problem!)

The analysis of convergence of algorithm S in [35] is
extremely simple, using the permanent itself as a “progress
measure” on the sequence of matrices produced S. It has three
parts:

1) Initially, Per(A) is inverse exponentially large, (specifi-
cally, if A is row-stochastic with rational entries of bit-
length b, then Per(A) > 1/(bn)O(n)),

2) The arithmetic-geometric mean inequality guarantees that
iterations never decrease the permanent, and increase it
by a factor of 1 + 1/n2 when ds(A) > 1/n2 for the
current A,

3) The permanent of any row-stochastic or column stochas-
tic matrix is upper bounded by 1.

This 3-step analysis clearly implies that after polynomially
many iterations we can tell if the sequence ever converges or
not.

Now lets move to describing Gurvits’ algorithm G, which
introduces into our story quantum information theory! As it
happens, algorithm G is best viewed as a quantum analog of
algorithm S! Informally, in quantum analogs of classical situ-
ations two things typically happen: diagonal matrices (which
commute) become general matrices (which do not), and the
L1 norm is replaced by L2. This happens here as well, and
we do so almost syntactically, referring the reader to [2] for
the quantum information theoretic intuition and meaning of
all notions we mention.

The input to algorithm G is a symbolic matrix
L =

∑
i xiAi, given by the n × n integer matrices

(A1, A2, . . . , Am). Briefly, L is viewed as a completely posi-
tive (quantum) operator, or map, on PSD matrices, mapping
such a (complex valued) matrix P to L(P ) =

∑
iAiPA

†
i

(P is typically a “density matrix” describing a quantum state,
namely a PSD matrix with unit trace, and the operator L
will typically preserve trace or at least not increase it). The
dual operator L∗ acts by L∗(P ) =

∑
iA
†
iPAi. These maps

provide us with quantum analog notions of what it means for

18This algorithm may indeed be viewed as a special case of a heuristic
called “alternate minimization” in convex optimization.
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an operator L to be row-stochastic (if L(I) = I) and column-
stochastic (if L∗(I) = I)19.

We now turn to generalized scaling. Instead of positive di-
agonal matrices, we now allow any complex non-singular ma-
trices B,C. Thus, given L, we ask if if there are such “scaling
factors” B,C such that BLC (interpreted as mapping the tuple
(A1, A2, . . . , Am) to the tuple (BA1C,BA2C, . . . , BAmC))
is (nearly) doubly stochastic in the sense above.

As in the classical case, it is easy to satisfy one of
these conditions by appropriate left or right basis change
of all Ai. Given L let R(L) and C(L) be defined20 by
R(L) = (

∑
iAiA

†
i )
− 1

2 , and C(L) = (
∑
iA
†
iAi)

− 1
2 . Note

that R(L) = L(I)−
1
2 and C(L) = L∗(I)−

1
2 .

With this notation, Gurvits’ algorithm G essentially mim-
ics its classical sibling algorithm S above. On input
(A1, A2, . . . , Am) algorithm G repeats, for a fixed polyno-
mial (in the input size) number of iterations, the following
analogous two steps
• Normalize rows: L← R(L) · L
• Normalize columns: L← L · C(L)
So again, analogs of row and column scalings are performed

alternately, simultaneously on all matrices Ai. It is clear, as
above, that after each step either R(L) = I or C(L) = I . It
is natural to wonder under what conditions does this sequence
converges to a doubly stochastic operator, namely both R(L)
and C(L) simultaneously approach I .

One can similarly define in an analogous way to the classical
setting a “distance from double stochastic” by ds(L) =
||R(L)−I||2+ ||C(L)−I||2, and and test (after polynomially
many iterations) if ds < 1/n2. This is precisely what algorithm
G does. It is not hard to see that if L (with non-commuting
variables) is singular (or equivalently, if L is rank-decreasing),
then there is no convergence, and the test above fails.

To study convergence Gurvits [2] introduces an alternative
progress measure, a function on completely positive maps L
he calls capacity which we now define. Let cap(L) be the
infimum of Det(L(P )) over all PSD matrices P of determinant
1. This measure is chosen, like the Permanent above, to easily
reflect the changes after each step. It turns out the steps (2), (3)
of the 3-part analysis above (replacing permanent by capacity
and A by L) follow by the same simple proofs of the classical
case. The problem is proving an exponential lower bound for
the initial input L. Unable to prove a lower bound in general,
Gurvits proved the following conditional lower bound.

Lemma I.12. Let L be a row-stochastic operator of dimension
n and rational entries with bit-length b. If Det(L) 6≡ 0 (L
is non-singular over commutative variables), then cap(L) ≥
1/(bn)O(n).

This clearly suffices for proving Theorem I.11 which han-
dles compression spaces. The next two paragraphs contain the
main technical contribution of the paper.

19This condition is equivalent to having the original map L to be “trace
preserving”, namely satisfy trL(P ) = tr(P ).

20Again using a “non-triviality” assumption these matrices are invertible.

We now explain how we handle the general case, in which
Det(L) ≡ 0 (so L is commutatively singular), but with non-
commuting variables L is not singular. Recall that we need
an inverse exponentially large lower bound on the capacity of
L. The idea is to use Lemma I.12 above, but for a different
operator. The source of this new operator is the equation (1),
arising from Amitsur’s and Cohn’s characterizations of the
free skew field, which expresses SINGULAR in terms of the
vanishing of all blow ups of L by d × d variable matrices
Xi. We can deduce from it, that as our initial L is not
singular in Q ( x ) , there must be some finite d such that
Det(

∑
iXi ⊗ Ai) 6≡ 0. By Schwartz-Zippel [37], [38], there

must be m d × d constant matrices Di (with integers entries
of bit-length at most bdn) such that Det(

∑
iDi ⊗ Ai) 6= 0.

Associating with the matrices Di a completely positive map
M = (D1, D2, . . . , Dm) acting on d× d matrices, and using
the natural tensor product of quantum maps, we obtain a new
operator M ⊗ L defined by the set (Di ⊗Aj)mi,j=1 that acts
on dn × dn matrices. For this new composite operator the
condition of Lemma I.12 holds by the choice of Di, and we
immediately get from it

cap(M ⊗ L) ≥ 1/(bdn)O(nd).

This is nice, but we need a bound on the capacity of the
original operator L. This follows from a very easy lemma,
which essentially says that the normalized capacity is sub-
multiplicative under tensor products.

Lemma I.13. Let M and L be completely positive maps on
dimensions d, n respectively. Then

cap(M ⊗ L)1/dn ≤ cap(M)1/d ˙cap(L)1/n.

Using the bound above on cap(M ⊗ L), and the fact that
capacity never exceeds 1, we obtain

cap(L) ≥ cap(M ⊗ L)1/d ≥ 1/(bdn)O(n).

Thus, we now see that to have an inverse exponential lower
bound on cap(L) it suffices to have an exponential upper
bound on the blow-up dimension d as a function of n. We
turn now to explore the source of this upper bound.

E. Invariant theory, the left-right group action, and blow-up
dimension bounds

Invariant theory21 deals with understanding the symmetries
of mathematical objects, namely transformations of the under-
lying space which leave an object unchanged or invariant.
Such a set of transformations always form a group (and
every group arises this way). One major question in this
field is, given a group acting on a space, characterize the
objects left invariant under all elements of the group. Here
we will only discuss very specific space and actions: poly-
nomials (with commuting variables!) that are left invariant
under certain linear transformations of the variables. The

21The books [39]–[41] provide expositions on the general theory. More
focused discussions towards our applications appear in the appendix of [10]
and Section 1.2 of [42].
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invariant polynomials under such action are clearly closed
under addition and multiplication, and thus form a ring (called
the invariant ring). The null-cone of the action is simply the
set of all assignments to variables which make all non-constant
homogenous invariant polynomials vanish.

A general, important theorem of Hilbert [43] assures us that
the invariant rings under such linear actions there is always
a finite generating set of polynomials (and hence we have
a finite upper bound on their maximum degree). Obtaining
upper bounds on the degree of generating sets, and finding
descriptions of minimal generating sets for natural actions
are the classical goals of this area. More modern one22 is
obtaining succinct descriptions and efficient computation of
these invariants (e.g. see [42], [44]).

What we consider here is the left-right action on m
n × n matrices, where a pair (B,C) ∈ SLn(F)2 takes
(Y1, Y2, . . . , Ym) to (BY1C,BY2C, . . . , BYmC). The study of
the invariant ring of polynomials (in the mn2 variables sitting
in the entries of these matrices) for this action was done23 by
[48]–[51]. Magically, it will look very familiar to equation (1)
used above.24

Theorem I.14 ( [48]–[51]). Over algebraically closed fields of
characteristic 0, the invariant ring of polynomials of the left-
right action above is generated by all polynomials of the form
Det (

∑
iDi ⊗ Yi), for all integers d and all d × d matrices

Di.

It is probably worthwhile to stress the connection forged
between the commutative and non-commutative worlds by this
theorem when combined with Amitsur’s and Cohn’s construc-
tions of the skew field. A set of matrices (A1, A2, . . . , Am)
is in the null-cone of the left-right action if and only if the
symbolic matrix L =

∑
i xiAi is singular in the free skew

field! In other words, the non-commutative SINGULAR prob-
lem (and thus rational identity testing, and the word problem
in the skew field) arises completely naturally in commutative
algebra and invariant theory. Of course, SINGULARITY itself
is invariant under the left-right action (indeed, even by any
invertible matrices B,C, not necessarily of determinant 1),
so one expects a connection, and hope now that algebraic
geometric tools will aid in solving these non-commutative
problems. And indeed they do!

The required bound on the minimal blow-up dimension d =
d(n) of testing membership in the null cone of the left-right
action (needed in the previous section) follows directly from
upper bounds on the degree of generators for the invariant ring
of this action. The first explicit (doubly exponential) bound
was proved by Popov [52], followed by a singly exponential
bound by Derksen [53], that was sharpened in [1]:

Theorem I.15 ( [1]). d(n) ≤ (n+ 1)!

22Arising in particular in the GCT program of Mulmuley and Sohoni
23We note that this is part of the larger project of understanding quiver

representations, started by the works of Procesi, Razmysolov, and Formanek
[45]–[47].

24Note though that the roles of which matrices in the tensor product are
variable, and which are constant, has switched!

Plugging in this exponential bound, the best known prior
to our work, in the bound for cap(L) of the previous section
completes the proof of Theorem I.1!

The question of obtaining polynomial degree upper bounds
(known for other group actions, e.g. the simultaneous conjuga-
tion of a tuple of matrices) remained a challenging open prob-
lem (both from the original algebraic geometric motivations,
as well as more recent ones, including the complexity theoretic
problems raised in [10] on the question of division elimination
in non-commutative formulae computing polynomials, and
lower bounds on such formulae. Luckily for us, the existing
exponential bound was sufficient for a polynomial running
time proof.

F. Subsequent work

Only weeks after we published our work, major develop-
ments happened which further improved our understanding of
the issues discussed in this paper.

First, Derksen and Makam [54], using a concavity argument
and the regularity lemma of [1], proved that the minimal
blow-up dimension d(n) for matrix invariants is actually upper
bounded by d(n) ≤ n+ 1, which is an exponential improve-
ment over Theorem I.15 (which was open for over a decade).
This answers open problems in [10] division elimination and
lower bounds for non-commutative formulae with division.

Then, a few weeks later, [9] simplified the proof of [54]
and proved that SINGULAR ∈ P for large enough fields,
generalizing our result. Moreover, they solve not only the
decision problem (of whether a matrix L is singular), but
also the search problem of finding a factorization L = KM
where K,M are linear matrices over F〈x〉. Their algorithm
is essentially combinatorial and is completely different then
ours.

G. Discussion and open problems

The main result of this paper is that a natural, simple
iterative algorithm converges exponentially fast, and solves in
polynomial time an array of problems in very different com-
putational and mathematical areas (due to the many equivalent
formulations of non-commutative rank of a symbolic matrix).
We thus feel that, as an algorithmic technique its power
is far from fully revealed as yet. Three particular exciting
directions we believe are worth exploring are the following.
First, understand the families of systems of quadratic equations
solved efficiently by this algorithm, and find applications
of optimization problems which can be reduced to such a
system25. Second, determine to what extent it can be useful
to resolve or approach the formidable commutative PIT prob-
lem26. Third, our application to computing membership in the
null-come of the Left-Right group action is a special case
of the more interesting problem of orbit-closure intersection,

25We have noted that geometric matroid intersection is one such problem.
26We have noted that a seemingly simple form of PIT is already as general

as the whole problem in Corollary I.10 and it can approximate commutative
rank in Corollary I.9.
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which is more basic in invariant theory and more relevant to
GCT - can one solve it with these techniques.

More abstractly, this work further strengthens the connec-
tions of the different areas (and the people working in them)
that bear upon this special problem. The recent rapid progress
mentioned above will hopefully lead to better understanding
and more applications, in both math and CS.

ACKNOWLEDGEMENTS

We would like to thank Harm Derksen, Pavel Hrubes, Louis
Rowen and K. V. Subrahmanyam for helpful discussions.

Ankit Garg’s research partially supported by NSF grant
CCF-1149888, Simons Collaboration on Algorithms and Ge-
ometry, Simons Fellowship in Theoretical Computer Science
and Siebel Scholarship. Rafael Oliveira’s research was par-
tially supported by NSF Career award (1451191) and by
CCF-1523816 award. Avi Wigderson’s research was partially
supported by NSF grant CCF-1412958.

REFERENCES

[1] G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam, “Non-
commutative edmonds’ problem and matrix semi-invariants,”
http://arxiv.org/abs/1508.00690, August 2015.

[2] L. Gurvits, “Classical complexity and quantum entanglement,” Journal
of Computer and System Sciences, vol. 69, no. 3, pp. 448–484, 2004.

[3] J. Edmonds, “Systems of distinct representatives and linear algebra,”
Journal of research of the National Bureau of Standards, vol. 71, no.
241-245, 1967.

[4] L. Lovasz, “On determinants, matchings, and random algorithms,”
Fundamentals of Computation Theory, pp. 565–574, 1979.

[5] L. Valiant, “The complexity of computing the permanent,” Theoretical
Computer Science, vol. 8, pp. 189–201, 1979.

[6] V. Kabanets and R. Impagliazzo, “Derandomizing polynomial identity
tests means proving circuit lower bounds,” Computational Complexity,
vol. 13, pp. 1–46, 2004.

[7] P. M. Cohn, “The word problem for free fields.” The Journal of Symbolic
Logic, vol. 38, no. 2, pp. 309–314, 1973.

[8] P. M. Cohn and C. Reutenauer, “On the construction of the free field,”
International journal of Algebra and Computation, vol. 9, no. 3, pp.
307–323, 1999.

[9] G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam, “Constructive noncom-
mutative rank computation in deterministic polynomial time over fields
of arbitrary characteristics,” arXiv preprint arXiv:1512.03531, December
2015.

[10] P. Hrubes and A. Wigderson, “Non-commutative arithmetic circuits with
division,” ITCS, 2014.

[11] W. Haken, “Theorie der normalflachen,” Acta Math, vol. 105, pp. 245–
375, 1961.

[12] M. O. Rabin, “Recursive unsolvability of group theoretic problems,”
Annals of Mathematics, vol. 67, no. 172-194, 1958.

[13] A. Shpilka and A. Yehudayoff, Arithmetic Circuits: A Survey of Recent
Results and Open Questions. NOW, Foundations and Trends in
Theoretical Computer Science, 2010, vol. 5, no. 3-4.

[14] S. Amitsur, “Rational identities and applications to algebra and geome-
try,” Journal of Algebra, vol. 3, pp. 304–359, 1966.

[15] P. M. Cohn, “The embedding of firs in skew fields,” Proceedings of the
London Mathematical Society, vol. 23, pp. 193–213, 1971.

[16] L. G. Valiant, “Completeness classes in algebra,” in Proceedings of the
eleventh annual ACM symposium on Theory of computing. ACM, 1979,
pp. 249–261.

[17] P. M. Cohn, “The word problem for free fields: A correction and an
addendum,” Journal of Symbolic Logic, vol. 40, no. 1, pp. 69–74, 1975.

[18] R. Raz and A. Shpilka, “Deterministic polynomial identity testing in
non commutative models,” Computational Complexity, vol. 14, pp. 1–
19, 2005.

[19] M. Fortin and C. Reutenauer, “Commutative/noncommutative rank of
linear matrices and subspaces of matrices of low rank,” 2004.

[20] B. Gelbord and R. Meshulam, “Spaces of singular matrices and matroid
parity,” European Journal of Combinatorics, vol. 23, no. 4, pp. 389–397,
2002.
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