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ABSTRACT
We study the probability of Boolean functions with small max

influence to become constant under random restrictions. Let 𝑓

be a Boolean function such that the variance of 𝑓 is Ω(1) and all

its individual influences are bounded by 𝜏 . We show that when

restricting all but a 𝜌 = Ω̃((log 1/𝜏)−1) fraction of the coordinates,

the restricted function remains nonconstant with overwhelming

probability. This bound is essentially optimal, as witnessed by the

tribes function TRIBE = AND𝑛/𝐶 log𝑛 ◦ OR𝐶 log𝑛 .

We extend it to an anti-concentration result, showing that the

restricted function has nontrivial variance with probability 1−𝑜 (1).
This gives a sharp version of the “it ain’t over till it’s over” theorem

due to Mossel, O’Donnell, and Oleszkiewicz. Our proof is discrete,

and avoids the use of the invariance principle.

We also show two consequences of our above result: (i) As

a corollary, we prove that for a uniformly random input 𝑥 , the

block sensitivity of 𝑓 at 𝑥 is Ω̃(log 1/𝜏) with probability 1 − 𝑜 (1).
This should be compared with the implication of Kahn, Kalai and

Linial’s result, which implies that the average block sensitivity

of 𝑓 is Ω(log 1/𝜏). (ii) Combining our proof with a well-known

result due to O’Donnell, Saks, Schramm and Servedio, one can also

conclude that: Restricting all but a 𝜌 = Ω̃(1/
√︁

log(1/𝜏)) fraction
of the coordinates of a monotone function 𝑓 , then the restricted

function has decision tree complexity Ω(𝜏−Θ(𝜌 ) ) with probability

Ω(1).
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1 INTRODUCTION
For any Boolean function 𝑓 : {−1, 1}𝑛 → {0, 1}, the individual

influence of the 𝑖th coordinate is the probability of flipping the

value of 𝑓 by flipping 𝑥𝑖 on a random input 𝑥 . Let 𝑥 ⊕ (−1)𝑒𝑖 denote
the string obtained by flipping the 𝑖th coordinate of 𝑥 , then

I𝑖 (𝑓 ) := P
𝑥∈{−1,1}𝑛

[𝑓 (𝑥) ≠ 𝑓 (𝑥 ⊕ (−1)𝑒𝑖 )] .

In this paper, we study Boolean functions with small influences,

hence functions satisfying

I∞ (𝑓 ) := max

𝑖∈[𝑛]
I𝑖 (𝑓 ) = 𝑜 (1).1

LetR𝑝 denote a 𝑝-random restriction, namely, a randomly-chosen

subcube where for each coordinate, one flips a coin and, with

probability 𝑝 one fixes the value of the coordinate to −1 or 1 (with

equal probabilities) and, with probability 1−𝑝 , the coordinate is left
undetermined (alive). Then 𝑓 |R𝑝

is a random sub-function given

by restricting 𝑓 to the subcube.

In this paper, we study Boolean functions with small influences

under random restrictions. Our main goal is to prove a lower bound

for the probability of the function to remain nonconstant under the

restriction. We prove the following near-optimal result:

Theorem 1.1 (A simplified version of Theorem 4.1). Given 𝑓 :

{−1, 1}𝑛 → {0, 1} such that the variance of 𝑓 is Ω(1), and 𝜏 :=

I∞ (𝑓 ) = 𝑜 (1) . Let R1−𝜌 be a random restriction where

𝜌 = Ω

(
log log(1/𝜏)

log(1/𝜏)

)
.

Then for any 𝑞 ≥ I∞ (𝑓 )Θ(𝜌 )
,

P[Var[𝑓 |R1−𝜌 ] ≤ 𝑞
Θ̃

(
1

𝜌

)
] ≤ 𝑞.

The bound on the variance is near-optimal by the majority

function. In particular, if 𝑓 is the majority function, then

P[Var[𝑓 |R1−𝜌 ] ≤ 𝑞
Θ

(
1

𝜌

)
] ≤ 𝑞.

Furthermore, our bound on 𝜌 is optimal up to a log log factor, since

randomly restricting the tribes function with 𝜌 = 𝑂 (1/log(1/𝜏)),
we get a constant function with probability Ω(1). Previously,
Mossel et al. proved a similar result for 𝜌 = Ω(1/

√︁
log(1/𝜏)) using

1
For the rest of the paper, we consider the function 𝑓 as a family of functions. Thus

here by 𝑜 ( ·) , we mean “as 𝑛 goes to infinity.” The bound 𝑜 (1) on the influences is

worse than needed. For illustration, this is good enough as many examples we are

interested in this paper satisfy that their influences are 𝑜 (1) .
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completely different techniques [16]. Prior to Mossel et al.’s work,

the related conjecture, with a very suggestive name “it ain’t over

till it’s over” conjecture, was proposed by Kalai and Friedgut in

studying social indeterminacy [12, 13]. It implies a quantitative

version of the Arrow’s Theorem. We refer the interested readers

to [16] for more discussions.

Next, we discuss a corollary of this theorem to block sensitivity

of functions with small influences. The sensitivity of an input 𝑥 with

respect to Boolean function 𝑓 , denoted s𝑓 (𝑥) :=
∑
𝑖∈[𝑛] [𝑓 (𝑥) ≠

𝑓 (𝑥⊕ (−1)𝑒𝑖 )], is the number of the Hamming neighbors of 𝑥 which

have a different function value. An inequality by Kahn, Kalai and

Linial [11] asserts that

E
𝑥
[𝑠𝑓 (𝑥)] = Ω

(
log

Var[𝑓 ]
I∞ (𝑓 )

)
,

which naturally leads to the question of whether it is also true that

𝑠𝑓 (𝑥) = Ω
(
log

1

I∞ (𝑓 )

)
for a typical point 𝑥 . This is clearly not the

case, as witnessed by the majority function. However, a corollary

to our theorem is that such an estimate does indeed hold true for

most points 𝑥 , if sensitivity is replaced by the related notion of

block sensitivity.

The block sensitivity of an input 𝑥 with respect to function

𝑓 , denoted bs𝑓 (𝑥) is the maximum number of disjoint sets

𝑆1, 𝑆2, . . . , 𝑆𝑚 ⊆ [𝑛], such that for 𝑖 ∈ [𝑚], one has 𝑓 (𝑥) ≠

𝑓 (𝑥⊕(−1)1𝑆𝑖 ), by 𝑥⊕(−1)1𝑆𝑖 wemean flipping the sign of variables

in 𝑆𝑖 . Clearly,
2
one has bs𝑓 (𝑥) ≥ 𝑠𝑓 (𝑥) for all 𝑓 , 𝑥 . Our second result

shows that for functions with small influences, the block sensitivity

is large on almost all points 𝑥 :

Theorem 1.2. For any function 𝑓 : {−1, 1}𝑛 → {0, 1} such that its

variance is Ω(1), and 𝜏 := I∞ (𝑓 ) = 𝑜 (1) . Then

P
𝑥
[bs𝑓 (𝑥) ≥ Ω̃(log 1/𝜏)] = 1 − 𝑜 (1).

Finally, if the function 𝑓 is monotone in addition to having small

influences, our analysis to Theorem 1.1 implies an upper bound on

the influences of 𝑓 under random restrictions. In the work due to

O’Donnell et al. [18], it is proved that every shallow decision tree

must have an influential variable. Combining these facts, one can

also conclude that, for monotone function 𝑓 , the restricted function

will have large decision tree complexity. In particular, let DT(𝑓 )
denote the decision tree complexity of 𝑓 . Then,

Theorem 1.3. For any monotone function 𝑓 : {−1, 1}𝑛 → {0, 1}
with Ω(1) variance, and 𝜏 = I∞ (𝑓 ) = 𝑜 (1). Then for any 𝜌 =

Ω̃(
√︁

1/log(1/𝜏)),

P[DT(𝑓 |R1−𝜌 ) = 𝜏
−Θ(𝜌 ) ] ≥ 1

2

.

The above theorem is, in a sense, a reverse statement to the

Håstad switching lemma, which states that applying the (1 −
𝑂 (1/log𝑛))-random restriction to any polynomial-size DNF/CNF

(or in general any AC
0
circuits), one gets a shallow decision tree

with high probability. Our result, on the contrary, states that random

restrictions with alive probability Ω̃(1/log(I∞ (𝑓 ))) cannot simplify

𝑓 to a too shallow decision tree for monotone functions 𝑓 with low

influences.

2
By taking singleton sets above.

1.1 Context and Related Works
The notion of influences studied in this paper is first introduced

by Ben-Or and Linial [4] in the context of collective coin flipping.

It coincides with the “Banzaf index” studied in game theory. The

class of Boolean functions with small influences have been widely

studied. There are several motivations to study such functions.

First, they arise naturally in social choice theory [12, 13]. For

example, in a voting system of two candidates and 𝑛 voters, each

bit 𝑥𝑖 represents the individual preference of each voter between

the two candidates. When aggregating the social preference, it

is natural to use a function 𝑓 where the potential of any given

individual to determine the final outcome is limited. Second, from

an algorithmic perspective, suppose that we have access to the

input via a limited number of queries. Then, it is natural to query

a variable when its individual influence is large. In many cases,

such variables can be found iteratively and this process leads

to a good approximation of 𝑓 with a small number of queries.

This observation has been applied in different settings [1, 7]. In

computational complexity, to distinguish the dictatorship function

v.s. functions with small individual influences is a key component

of proving optimal NP-hardness for approximations [3, 9, 10, 14].

From an analytic perspective, it has been observed that functions

with small influences exhibit improved concentration inequalities

(e.g., [19]) and often tend to exhibit Gaussian-like behavior [16].

Applying random restrictions and studying the properties of

the restricted functions has been widely studied and has led to

breakthroughs in a variety of areas. For example, it is the key

idea of the exponential lower bounds in circuit complexity [8]

and the dramatic improvements of the sunflower lemma in

combinatorics [2].

The problem of determining whether a function with small

influences becomes constant under random restrictions has

attracted some attention in the context of hardness amplification

within NP for circuits [17].

A sub-optimal version of Theorem 1.1 follows from the “It ain’t

over till it’s over” theorem proven by Mossel, O’Donnell, and

Oleszkiewicz in [16]. Their approach uses the invariance principle,

which at a high level asserts that when feeding a “smooth”
3
function

𝑓 with independent random inputs 𝑋1, 𝑋2, . . . , 𝑋𝑛 from a product

space such that each 𝑋𝑖 has zero mean, unit second moment and

bounded thirdmoment, then the output distribution is “invariant” to

the actual distribution of the inputs. This approach usually studies a

related problem, then translates the result of the related problem to

the Boolean cube. This translation suffers from two drawbacks. First,

it obscures what is actually happening in Boolean cube. Second,

the requirement of 𝑓 being “smooth” normally requires additional

technical treatment, and becomes the main obstacle for obtaining

an optimal result.

1.2 Our Approach
Our approach relies on a control-theory point of view to the

problem combined with ideas from “pathwise-analysis,” using

arguments which are somewhat inspired by [6]. We assume that

the coordinates are revealed in a random order and are randomly

3
By “smooth” here, we mean 𝑓 has low degree. With additional work, the invariance

principle applies to 𝑓 that has its Fourier mass concentrated in low degrees.
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assigned values ±1 one by one. For each coordinate being revealed,

we assume that with probability 𝜌 a player gets an opportunity to

“override” the value that has been assigned to that coordinate.
4
If

the player has the capability of deciding, with high probability, the

value of the function, this implies that restricting all but a 𝜌-fraction

of coordinates leaves the restricted function nonconstant.

To this end, assume that 𝑋 (𝑡) ∈ {−1, 0, 1}𝑛 is the process where

at each step another coordinate is being revealed, where coordinates

whose value is not determined are set to 0. We view our Boolean

function 𝑓 as a function 𝑓 : R𝑛 → R by considering its multilinear

extension. If the player does not override any coordinate, then the

process𝑀 (𝑡) := 𝑓 (𝑋 (𝑡)) is a martingale (where, for 𝑥 ∈ {−1, 0, 1}𝑛 ,
the expression 𝑓 (𝑥) is the value of 𝑓 when taking expectation over

coordinates whose value is set to 0). The player’s ability to override

coordinates effectively allows the player to add a drift to 𝑀 (𝑡),
where the player’s goal is to end up with𝑀 (𝑛) being equal to 1 (or,

by the same argument, to 0 simply by replacing 𝑓 with 1 − 𝑓 ).
At this point, let us assume for simplicity that the increments

of the martingale 𝑀 (𝑡) have a fixed step size [ (in other words,

assume that it is actually a random walk up to the time when it

hits {0, 1}). Moreover assume that 𝑀 (0) is bounded away from

{0, 1}. Suppose that the player has probability 𝜌 to override each

step and is trying to force the process to end up at the value 1

by overriding the increment with the value +[. In this case over 𝑡

steps the process accumulates a variance of [2𝑡 and a drift of size

𝑡𝜌[. Since the process eventually moves a distance of Ω(1), and
hence accumulates a variance of constant order, we have 𝑡 ≍ [−2

. It

follows that in order for the effect of the drift to be more significant

than that of the variance, one arrives at the condition 𝜌 ≫ [. In

other words, the process can be efficiently controlled (meaning that

the player gets to determine its endpoint) as long as the step size

is at most 𝜌 . In fact, we will see that this heuristic is only correct

when𝑀 (𝑡) is not close to the edges, which will create an additional

technical complication.

The step size of the process is, in turn, is controlled by the ℓ∞
norm of the first-order Fourier coefficients of restrictions of the

function 𝑓 , or equivalently by the quantity max𝑖 |𝜕𝑖 𝑓 (𝑋 (𝑡)) |, where
𝑖 is over the coordinates not fixed at time 𝑡 . We need to show that

this quantity remains small along the process, which is where the

fact that the initial influences are small will be used.

The control of the first-order Fourier coefficients relies on a new

hypercontractive inequality for random restrictions. We consider

random restrictions R𝑝 ,R𝑞 , where 0 ≤ 𝑝 ≤ 𝑞 ≤ 1 are the

probabilities of a variable being fixed, and show that for any

multilinear function 𝑓 and any 0 ≤ 𝜖 ≤ 𝑞 − 𝑝,

(E[` (𝑓 |R𝑝
)2+𝜖 ])

1

2+𝜖 ≤ (E[` (𝑓 |R𝑞
)2])

1

2 , (1.1)

where we use ` (𝑓 ) to denote the expected value of 𝑓 over the

uniform measure on {−1, 1}𝑛 .
The hypercontractive inequality will allow us to control the

evolution of the first-order coefficients under the original (namely,

the uncontrolled) martingale. However, we need to control those

4
We note that Lichtenstein-Linial-Saks [15] also study a control theoretic problem,

which in the surface may seem similar. The main difference is that in their model the

player picks which coordinates to influence, whereas in our model these coordinates

are picked randomly, as we will see momentarily. The two models differ drastically in

their nature.

coefficients under the “controlled” process (where the player gets

to override some coordinates). This can be solved by assuming that

the strategy taken by the player tries to mimic yet another process

obtained by conditioning the original martingale𝑀 (𝑡) to end up at

the value 1 (0, respectively). This amounts to a change of measure

over the space of paths of 𝑋 (𝑡) which gives tractable formulas for

the corresponding change of measure of a single step. Equivalently,

this is the strategy which ensures ending up at the desired value

under a change of measure which has the minimal possible relative

entropy to the uncontrolled process.

Finally, we explain how to strengthen the above result to give

a quantitative bound on the variance of the restricted function.

We analyze the Kullback-Leibler divergence between, roughly

speaking, the string 𝑌 (𝑛) generated by the “controlled” process

given the restrictions R1−𝜌 determined by those coordinates

that is not controlled by the player, and a uniformly random

string 𝑋 ∈ {−1, 1}𝑛 . With the Fourier-analytic tool of Level-1

inequality, one can show that the expected KL-divergence over

the random restrictions is about �̃� (1/𝜌). Somewhat surprisingly,

the KL-divergence is, in addition to being small in expectation,

highly concentrated. Recall that 𝑌 (𝑛) is sampled from 𝑓 −1 (1). All
these imply that ` (𝑓 |R1−𝜌 ) ≥ exp(−�̃� (1/𝜌)) with high probability.

The variance bound then follows once we put together with the

other direction that ` (𝑓 |R1−𝜌 ) ≤ 1 − exp(−�̃� (1/𝜌)) by replacing 𝑓

with 1 − 𝑓 .

1.3 Organization
We present the necessary preliminaries in Section 2. Then in

Section 3, we carefully define the uncontrolled and controlled

process discussed in the introduction and we study the properties

of these random processes. With this tool at our disposal, we prove

our main result Theorem 1.1 in Section 4. Then we explain the

applications of this result to the block sensitivity, decision tree

complexity and social choice theory. We leave the technical analysis

to the final section, Section 5, that the Fourier coefficients of the

first order remain small under random restrictions.

2 PRELIMINARIES
2.1 General
We adopt the the shorthand notation [𝑛] for the set {1, 2, . . . , 𝑛}.
For a string 𝑥 ∈ {−1, 1}𝑛 and a set 𝑆 ⊆ {1, 2, . . . , 𝑛}, we let 𝑥 |𝑆
denote the restriction of 𝑥 to the indices in 𝑆. In other words, 𝑥 |𝑆 =

𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖 |𝑆 | , where 𝑖1 < 𝑖2 < · · · < 𝑖 |𝑆 | are the elements of 𝑆.

Analogously, for any function 𝑓 : Ω → R over an arbitrary domain

Ω. Let 𝐴 ⊆ Ω, we adopt the notation 𝑓 |𝐴 for the sub-function of 𝑓

over the domain 𝐴. Namely, 𝑓 |𝐴 (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝐴. Given a set

𝑆 , when the universe𝑈 is clear from the context we use 𝑆 := 𝑈 \ 𝑆
to denote the complement of 𝑆 . The characteristic function of a set

𝑆 is given by

1𝑆 (𝑖) =
{

1 if 𝑖 ∈ 𝑆,
0 otherwise.

For a permutation 𝜋 : 𝑈 → 𝑈 . Let 𝜋𝑆 be the permuted set of 𝑆 , i.e.,

𝜋𝑆 = {𝜋 (𝑖) : 𝑖 ∈ 𝑆}.
The primary interest of this paper is Boolean functions 𝑓 :

{−1, 1}𝑛 → {0, 1}. Note that we use −1, 1 to denote “true” and
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“false” on the domain of 𝑓 , respectively. For example, the logic AND

function and the logic OR function are defined as below,

𝑛∧
𝑖=1

𝑥𝑖 =

{
1 𝑥𝑖 = −1 ∀𝑖 ∈ [𝑛],
0 otherwise,

𝑛∨
𝑖=1

𝑥𝑖 =

{
0 𝑥𝑖 = 1 ∀𝑖 ∈ [𝑛],
1 otherwise.

We abuse the notation 𝑥 ⊕ 𝑦 to denote the entrywise XOR function

for 𝑥,𝑦 ∈ {−1, 1}𝑛 . Thus (𝑥 ⊕ 𝑦)𝑖 = 𝑥𝑖 · 𝑦𝑖 . For any univariate

function ℎ : R → R and 𝑥 ∈ R𝑛, the application of ℎ to 𝑥 means

entrywise application, i.e.,ℎ(𝑥) denotes the vector such that (ℎ(𝑥))𝑖
= ℎ(𝑥𝑖 ). For any 𝑓 : {−1, 1}𝑛 → R, 𝑆 ⊆ {1, 2, . . . , 𝑛} and 𝑦 ∈
{−1, 1}𝑛 , let cube𝑆,𝑦 := {𝑥 ∈ {−1, 1}𝑛 : 𝑥 |𝑆 = 𝑦 |𝑆 } be the subcube
of {−1, 1}𝑛 .We abbreviate 𝑓 | (𝑆,𝑦) = 𝑓 |cube𝑆,𝑦

. The same definition

𝑓 | (𝑆,𝑦) extends to𝑦 ∈ R𝑇 for any𝑇 ⊇ 𝑆 such that𝑦 |𝑆 ⊆ {−1, 1}𝑆 . A
random 𝑝-restriction R𝑝 is a random tuple (𝑆,𝑦) such that for each

𝑖 ∈ [𝑛], 𝑖 ∈ 𝑆 with independent probability 𝑝 , and 𝑦 is a uniformly

random element from {−1, 1}𝑛 .
For a logical condition 𝐶, we use the Iverson bracket

I{𝐶} =
{

1 if 𝐶 holds,

0 otherwise.

Denote |𝑥 | the length of 𝑥 for any vector 𝑥 ∈ R𝑛 , i.e.,

|𝑥 | =
(
𝑛∑︁
𝑖=1

𝑥2

𝑖

)
1/2

.

For two vectors 𝑥,𝑦 ∈ R𝑛, we adopt the following inner product

⟨𝑥,𝑦⟩ =
∑︁
𝑖∈[𝑛]

𝑥𝑖𝑦𝑖 .

The set {𝑒1, 𝑒2, . . . , 𝑒𝑛} forms a standard basis, where 𝑒𝑖 denotes the

vector whose only nonzero coordinate 𝑖 is 1.

Given some discrete space Ω and a probability measure 𝛾 over

Ω. If the random variable 𝑋 is drawn from 𝛾 , we denote it by 𝑋 ∼ 𝛾 .
For any function 𝑓 : Ω → R, we often abbreviate the expectation

of 𝑓 over 𝛾 as 𝛾 (𝑓 ), namely,

𝛾 (𝑓 ) :=
∑︁
𝑥∈Ω

𝑓 (𝑥)𝛾 (𝑥).

We let ln𝑥 and log𝑥 stand for the natural logarithm of 𝑥 and the

logarithm of 𝑥 to base 2, respectively. For any distribution 𝛾 over

some discrete space Ω, the entropy function

𝐻 (𝛾) = E
𝑥∈Ω

𝛾 (𝑥) log

1

𝛾 (𝑥) .

When Ω contains only two elements, we can think of the binary

entropy function 𝐻 : [0, 1] → [0, 1] as given by

𝐻 (𝑥) = 𝑥 log

1

𝑥
+ (1 − 𝑥) log

1

1 − 𝑥 .

Basic calculus reveals that for 𝑥 ∈ [−1, 1],

1 − 𝐻 (𝑥) ≤ 4

(
𝑥 − 1

2

)
2

. (2.1)

Recall that the Kullback-Leibler divergence (KL-divergence)

between two distributions `0, `1 over Ω is defined by the following

formula

KL(`0 ∥ `1) =
∑︁
𝑥∈Ω

`0 (𝑥) log

`0 (𝑥)
`1 (𝑥)

.

The KL-divergence is convex. In particular, let `0, `1, 𝛾0, 𝛾1 be

distributions over the same space. Then for any _ ∈ [0, 1],

KL(_`0 + (1 − _`1) ∥ _𝛾0 + (1 − _𝛾1)
≤ _KL(`0 ∥ 𝛾0) + (1 − _)KL(`1 ∥ 𝛾1).

If two random variables 𝑋0, 𝑋1 obey `0 and `1, respectively, we

also use KL(𝑋0 ∥𝑋1) to denote the KL-divergence between the two

distributions. The KL-divergence satisfies the following chain rule:

KL(𝑋0𝑌0 ∥𝑋1𝑌1) = KL(𝑋0 ∥𝑋1) + E
𝑥∼𝑋0

[
KL

(
𝑌0 | 𝑋0 = 𝑥

𝑌1 | 𝑋1 = 𝑥

)]
.5

The following simple analytical fact will be useful for us.

Fact 2.1. Given 𝑥, 𝑝 ∈ R, then

(i) (1 + 𝑥)𝑝 ≥ 1 + 𝑥𝑝, for any 𝑥 > −1, and 𝑝 ≥ 1.

(ii) (1 + 𝑥)𝑝 ≤ 1 + 𝑥𝑝, for any 𝑥 > −1, and 0 ≤ 𝑝 ≤ 1.

2.2 Discrete Fourier Analysis
Let 𝑓 : {−1, 1}𝑛 → {0, 1} be any Boolean function. We would often

treat 𝑓 as a function 𝑓 : [−1, 1]𝑛 → [0, 1] or 𝑓 : R𝑛 → R by

considering its multilinear extension, i.e.,

𝑓 (𝑥) =
∑︁
𝑆⊆[𝑛]

ˆ𝑓 (𝑆)𝜒𝑆 ,

here 𝜒𝑆 is the abbreviation of

∏
𝑗∈𝑆 𝑥 𝑗 . An important observation

is that under this notation,

𝑓 (0) = E
𝑥∈{−1,1}𝑛

[𝑓 (𝑥)] .

The set {𝜒𝑆 }𝑆⊆[𝑛] is a complete orthogonal basis of the space

R{−1,1}𝑛 . Further,

2
−𝑛 ⟨𝜒𝑆 , 𝜒𝑇 ⟩ =

{
1 𝑆 = 𝑇,

0 𝑆 ≠ 𝑇 .

Thus, for any 𝑓 , 𝑔 : {−1, 1}𝑛 → R, we have the following by

Parseval’s identity and Plancherel Theorem,

2
−𝑛 ⟨𝑓 , 𝑔⟩ =

∑︁
𝑆⊆[𝑛]

ˆ𝑓 (𝑆)𝑔(𝑆) . (2.2)

E
𝑥∈{−1,1}𝑛

[𝑓 2] =
∑︁
𝑆⊆[𝑛]

ˆ𝑓 (𝑆)2 . (2.3)

Adopt the following notations for partial derivatives and the vector

differential operator,

𝜕𝑖 𝑓 (𝑥) =
∑︁
𝑆∋𝑖

ˆ𝑓 (𝑆)𝜒𝑆\{𝑖 } ,

∇𝑓 = (𝜕1 𝑓 , 𝜕2 𝑓 , . . . , 𝜕𝑛 𝑓 ) .

5
Here, we use the fraction-like notation to also denote the KL-divergence for aesthetics,

as we are comparing two conditional distributions. The numerator in the fraction-like

notation corresponds to the first argument in the standard notation.
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For functions on Boolean cubes, by considering their multilinear

extensions it’s easy to see that the above definitions work exactly

as expected: For any 𝛿 ∈ R,

𝑓 (𝑥 + 𝛿𝑒𝑖 ) − 𝑓 (𝑥) = 𝛿 · 𝜕𝑖 𝑓 (𝑥) .

An important fact about the weight of the Fourier coefficients is

the following inequality, often referred to as the Level-1 inequality.

Theorem 2.2 (Level-1 inequality [20]). Let 𝑓 : [−1, 1]𝑛 → {0, 1}
be the multilinear extension of a Boolean function. Then for some

absolute constant 𝐶 , we have

|∇𝑓 (0) |2 ≤ 𝐶𝑓 (0)2
log

𝑒

𝑓 (0) .

We adopt the following standard definitions of the individual

influence and the max influence of function 𝑓 :

I𝑖 (𝑓 ) = E
𝑥∈{−1,1}𝑛

[𝜕𝑖 𝑓 (𝑥)2] .6

I∞ (𝑓 ) = max

𝑖∈[𝑛]
I𝑖 (𝑓 ) .

By Plancherel Theorem,

I𝑖 (𝑓 ) =
∑︁

𝑆⊆[𝑛]: 𝑖∈𝑆
𝑓 (𝑆)2 .

The variance of 𝑓 is the following

Var[𝑓 ] = E
𝑥∈{−1,1}𝑛

[𝑓 2] − E
𝑥∈{−1,1}𝑛

[𝑓 ]2 .

It is clear that

Var[𝑓 ] ≤
𝑛∑︁
𝑖

I𝑖 (𝑓 ) .

Below is a straightforward corollary of the above inequality.

Fact 2.3. If Var[𝑓 ] = 2
−𝑜 (𝑛) , then I∞ (𝑓 ) = 2

−𝑜 (𝑛) .

2.3 Martingales
Recall that a discrete-time martingale is a sequence of random

variables 𝑋0, 𝑋1, 𝑋2, . . . , that satisfies

• For each 𝑛 = 0, 1, 2, . . . , E[|𝑋𝑖 |] < ∞.

• For any𝑚 < 𝑛, E[𝑋𝑚 | 𝑋𝑛] = 𝑋𝑛 .
A continuous-time martingale is a stochastic process (𝑋𝑡 )𝑡≥0 such

that

• For any 𝑡 , E[|𝑋𝑡 |] < ∞.

• For any 𝑠 < 𝑡 , E[𝑋𝑡 | 𝑋𝑠 ] = 𝑋𝑠 .
A submartingale is a stochastic process with the second property

from the above definition replaced by

E[𝑋𝑡 | 𝑋𝑠 ] ≥ 𝑋𝑠 .

Fact 2.4. Let 𝑋𝑡 , 𝑌𝑡 be martingales.

(i) 𝑎𝑋𝑡 + 𝑏𝑌𝑡 and 𝑋𝑡 · 𝑌𝑡 are also martingales for any constant 𝑎, 𝑏.

Hence any multilinear function of martingales is a martingale.

(ii) If 𝑓 : R→ R is a convex function, then the process 𝑓 (𝑋𝑡 ) is a
submartingale.

6
In fact, I𝑖 (𝑓 ) should be E𝑥 ∈{−1,1}𝑛 [4𝜕𝑖 𝑓 (𝑥 )2 ]. But since we are only interested in

functions with small max influence, this constant does not matter to us.

The stopping time 𝜏 of a stochastic process is a random variable

such that the event {𝜏 ≤ 𝑡} is completely determined by 𝑋≤𝑡 .
Given two stopping times 𝜏1, 𝜏2, let 𝜏1 ∧𝜏2 denote the new stopping

time min{𝜏1, 𝜏2}. For martingales, we have the optional stopping

theorem.

Theorem 2.5 (Stopping Theorem). If 𝜏 is almost surely bounded,

then

E[𝑋𝜏 ] = E[𝑋0] .

For submartingales, the equality is replaced by a greater-than

inequality. Finally, the following inequalities will be useful for us.

Theorem 2.6 (Doob’s martingale inequality). Let 𝑋 be a

submartingale taking real values. Then for any constant 𝐶 ≥ 0,

P

[
sup

0≤𝑡≤𝑇
𝑋𝑡 ≥ 𝐶

]
≤ E[max{𝑋𝑇 , 0}]

𝐶
.

Theorem 2.7 (Concentration inequality [5, Theorem 2.21]). Let

𝑋1, 𝑋2, . . . , 𝑋𝑛 be martingales with filtration F , such that for 𝑖 =

1, 2, . . . , 𝑛,

Var[𝑋𝑖 | F𝑖−1] ≤ 𝜎2

𝑖 , 𝑋𝑖 − 𝑋𝑖−1 ≤ 𝑀.

Then

P[𝑋 ≥ _] ≤ exp

(
− _2

2

∑
𝜎2

𝑖
+ 2𝑀_/3

)
.

Finally, we should warn the readers that in this paper, often 𝑋 is

a vector and the subscripts are used for coordinates. In that case, the

random process 𝑋 is denoted 𝑋 (𝑡), and 𝑋𝑖 (𝑡) denotes the evolution
of each individual coordinate.

3 CONTROLLED PROCESS
Fix a function 𝑓 : {−1, 1}𝑛 → {0, 1}, and we view 𝑓 : R𝑛 → R
by considering its multilinear extension. We assume that 𝑓 is not

a constant function. Therefore 𝑓 (0) > 0. In this section, we will

consider three different discrete random processes. The first one

is the uniform process 𝑋 (𝑡) ∈ {−1, 0, 1}𝑛 for 𝑡 ∈ {0, 1, . . . , 𝑛}. It’s
called the uniform process because𝑋 (𝑛) will be a uniformly random

string from {−1, 1}𝑛 . The second process 𝑌 (𝑡) is obtained from

𝑋 (𝑡) by conditioning on 𝑓 (𝑋 (𝑛)) = 1. Therefore, we call 𝑌 (𝑡) the
conditioned process. The third process is in effect the same as the

second process. They have identical distributions. However, we

will take the control theory perspective, and give a player a small

number of random coordinates to control. We show that the player

will be able to alter a process to the conditioned process, which is

otherwise the uniform process. Therefore we sometimes call the

third process the controlled process.

First, we consider the following uniform process 𝑋 (𝑡) for 𝑡 =
0, 1, 2, . . . , 𝑛, such that 𝑋 (𝑡) ∈ {−1, 0, 1}𝑛 , and 𝑋 (0) = 0

𝑛
.

Procedure 1 (To generate the discrete uniform process 𝑋 (𝑡)):
Sample a uniformly random permutation 𝜋 : [𝑛] → [𝑛] .
For time 𝑡 = 1, 2, . . . , 𝑛

• Let 𝑖 = 𝜋 (𝑡) . Set 𝑋𝑖 (𝑡) to be −1 or 1 uniformly at random.

• For all 𝑗 ∈ [𝑛] \ {𝑖}, set 𝑋 𝑗 (𝑡) := 𝑋 𝑗 (𝑡 − 1).

Clearly, the above process is just another way to sample a

random element from {−1, 1}𝑛 . We use the notation 𝑃 to denote
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the probability measure over the paths of the above process. The

subscript 𝑃 will be used to emphasize the underlying process and

the corresponding measure. For example, E𝑃 [𝑓 ], P𝑃 [E] are the

expectation of the function 𝑓 and the probability of the event E,
respectively, both defined over the space of the paths of the above

process 𝑋 (𝑡). A crucial component of our analysis is that all the

partial derivatives of 𝑓 (𝑋 (𝑡)) will be small with high probability

for 𝑡 even very close to 𝑛. We formulate it as the following lemma,

whose proof requires some technical preparations, and is therefore

deferred to Section 5.4.

Lemma 3.1. Let 𝜖 > 0
7
be such that

16

𝜖
ln

4

𝜖
≤ ln

1

I∞ (𝑓 ) .

Then for any \ ∈ (0, 1),

P𝑃

[
max

0≤𝑡≤(1−𝜖 )𝑛
|𝜕𝑖 𝑓 (𝑋 (𝑡)) | ≥ \

]
≤ \−3

I∞ (𝑓 )
𝜖
16 + exp(−𝜖𝑛/8) .

Next, we modify Procedure 1 to generate what we call the

conditioned process. The goal is to guarantee that the new process

ends up being a random element sampled from 𝑓 −1 (1). We use

𝑌 (𝑡) to distinguish this new process from 𝑋 (𝑡). Let 𝑄 be a new

probability measure defined by the equation

P𝑄 [𝑌𝑖 (𝑡) = ±1 | 𝑌 (𝑡 − 1), 𝜋 (𝑡)] :=
1

2

± 𝜕𝑖 𝑓 (𝑌 (𝑡 − 1))
2𝑓 (𝑌 (𝑡 − 1)) . (3.1)

A calculation shows that the Radon-Nykodym derivative of the

two measures satisfies that for any realization𝑦 (1), 𝑦 (2), . . . , 𝑦 (𝑠) ∈
{−1, 0, 1}𝑛 of the process 𝑌 (𝑡) up to time 𝑠 ,

𝑑𝑄
(
(𝑦 (𝑡))1≤𝑡≤𝑠

)
𝑑𝑃

(
(𝑦 (𝑡))1≤𝑡≤𝑠

)
=

𝑠∏
𝑡=1

2P𝑄 [𝑌𝜋 (𝑡 ) (𝑡) = 𝑦𝜋 (𝑡 ) (𝑡) | 𝑌 (𝑡 − 1) = 𝑦 (𝑡 − 1)]

=

𝑠∏
𝑡=1

(
1 + 𝑦𝜋 (𝑡 ) (𝑡)

𝜕𝜋 (𝑡 ) 𝑓 (𝑦 (𝑡 − 1))
𝑓 (𝑦 (𝑡 − 1))

)
=

𝑠∏
𝑡=1

𝑓 (𝑦 (𝑡))
𝑓 (𝑦 (𝑡 − 1)) =

𝑓 (𝑦 (𝑠))
𝑓 (0) . (3.2)

By taking 𝑠 = 𝑛 above, we see that the process 𝑌 (𝑡) according
to 𝑄 is equivalent to the same process 𝑋 (𝑡) according to 𝑃 , only

conditioned on the event that 𝑓 (𝑋 (𝑛)) = 1. In particular, according

to𝑄 ,𝑌 (𝑛) is just a uniformly random element from 𝑓 −1 (1). Further,
if we sample 𝑌 (𝑡) and let R(𝑡) be the restriction induced by 𝑌 (𝑡),
then (𝑓 |R(𝑡 ) )−1 (1) is nonempty for any 𝑡 as long as 𝑓 is not the

constant 0 function. We record this simple but useful observation

that 𝑄 is a mild change of measure of 𝑃 .

Claim 3.2. Let E𝑡 be some event that depends only on the paths of

the randomprocess up to time 𝑡 , e.g.,𝑋 (1), 𝑋 (2), . . . , 𝑋 (𝑡) according
to 𝑃 or 𝑌 (1), 𝑌 (2), . . . , 𝑌 (𝑡) according to 𝑄 . Then for any 𝑡 ∈ [𝑛],

P𝑄 [E𝑡 ] ≤
P𝑃 [E𝑡 ]
𝑓 (0) .

7
Throughout this section, let’s assume that 𝜖𝑛 is a positive integer.

Proof. This is immediate from (3.2),

P𝑄 [E𝑡 ] = E𝑃
[
I{E𝑡 } ·

𝑑𝑄

𝑑𝑃

]
≤ P𝑃 [E𝑡 ]

𝑓 (0) . □

We summarize the distribution of the “conditioned” process 𝑌 (𝑡)
according to 𝑄 :

Procedure 2 (To generate the conditioned process 𝑌 (𝑡)):
Sample a uniformly random permutation 𝜋 : [𝑛] → [𝑛] .
For time 𝑡 = 1, 2, . . . , 𝑛:

• Let 𝑖 = 𝜋 (𝑡). Set𝑌𝑖 (𝑡) according to the following distribution

P[𝑌𝑖 (𝑡) = ±1] = 1

2

± 𝜕𝑖 𝑓 (𝑌 (𝑡 − 1))
2𝑓 (𝑌 (𝑡 − 1)) ,

• For all 𝑗 ∈ [𝑛] \ {𝑖}, set 𝑌𝑗 (𝑡) := 𝑌𝑗 (𝑡 − 1).

3.1 A Control Theory Point of View
The next step will be to consider the above process as a controlled

version of the conditioned process 𝑌 (𝑡). Fix 𝜖 > 0 and consider the

control problem where at each time 𝑡 , with probability 1 − 𝜖 , 𝑌 (𝑡)
does a uniformly random step (according to Procedure 1), and with

probability 𝜖 a player gets to determine the sign of 𝑌𝜋 (𝑡 ) according
to her own choosing.

The key observation of this section is that as long as the

player can control a small fraction of random coordinates, she

can simulate the conditioned process exactly. The motivation to

study this controlled version of𝑌 (𝑡) is the following: The randomly

fixed coordinates out of the player’s control induces a random

restriction of the function 𝑓 . If the player can assign the values to

the coordinates of her control, that is the alive coordinates of the

corresponding random restriction, to end up in 𝑓 −1 (1), this means

the restricted function has a nonempty preimage of 1.

To this end, we consider the following procedure (see Procedure

Π) that generates the conditioned process 𝑌 (𝑡) as well as the

uniform process 𝑋 (𝑡).
The Procedure Π starts with a sampling subroutine as the

preparation stage, then followed by two phases that generate 𝑌 (𝑡)
for time 𝑡 from 0 to 𝑛. The first phase corresponds to that described

in the first paragraph of this section. During this phase the player

needs to cherish her rare opportunity and play “aggressively.” The

second phase starts at a point of time 𝜏 when the aggressive strategy

no longer works. However, we will show that 𝜏 is very close 𝑛 with

high probability. As a result, it would not be a problem to give the

player full control from now on and let her play “safely” till the end.

The process 𝑌 (𝑡) will be the main process with which our analysis

concerns, whereas the process 𝑋 (𝑡) is only defined for the sake of

entropy comparison: We will later argue that the KL-divergence

between the two processes is not too large. It is evident that in

Phase 1 the distribution of 𝑌 (1), 𝑌 (2), ... according to Procedure Π
is identical to its distribution according to measure 𝑄 as long as

|𝜕𝜋 (𝑡 ) 𝑓 (𝑌 (𝑡 − 1)) | ≤ 𝜖 𝑓 (𝑌 (𝑡 − 1)) . (3.3)

858



An Optimal “It Ain’t Over Till It’s Over” Theorem STOC ’23, June 20–23, 2023, Orlando, FL, USA

Indeed, if (3.3) holds, we have

P[𝑌𝜋 (𝑡 ) (𝑡) = ±1]

= (1 − 𝜖) 1

2

+ 𝜖
(

1

2

± 1

2𝜖
·
𝜕𝜋 (𝑡 ) 𝑓 (𝑌 (𝑡 − 1))
𝑓 (𝑌 (𝑡 − 1))

)
=

1

2

±
𝜕𝜋 (𝑡 ) 𝑓 (𝑌 (𝑡 − 1))

2𝑓 (𝑌 (𝑡 − 1)) .

ProcedureΠ (The controlled version of processes𝑌 (𝑡) and𝑋 (𝑡)):

# Sampling Subroutine

• Sample a uniformly random permutation 𝜋 : [𝑛] → [𝑛] .
• Sample a set 𝑇 ⊆ {1, 2, . . . , 𝑛}, such that independently for

each 𝑖 ∈ [𝑛],
P[𝑖 ∈ 𝑇 ] = 𝜖.

𝑇 will be the set of times when the player gets to determine

the value of the coordinate.

• Sample a uniformly random 𝑧 ∈ {−1, 1}𝜋𝑇 , the random

assignment to the variables not controlled by the player.

# Phase 1

Set 𝑌 (0) = 𝑋 (0) = 0
𝑛
.

For time 𝑡 = 1, 2, . . . , 𝑛:

• Let 𝑖 = 𝜋 (𝑡) .
• (Coordinate picked uniformly) If 𝑡 ∉ 𝑇 , set 𝑌𝑖 (𝑡) = 𝑋𝑖 (𝑡) =
𝑧𝑖 .

• (Coordinate determined by player) If 𝑡 ∈ 𝑇 , set 𝑌𝑖 (𝑡) and
𝑋𝑖 (𝑡) according to the following distributions

P[𝑌𝑖 (𝑡) = ±1] = 1

2

± 1

2𝜖
· 𝜕𝑖 𝑓 (𝑌 (𝑡 − 1))
𝑓 (𝑌 (𝑡 − 1)) ,

P[𝑋𝑖 (𝑡) = ±1] = 1

2

.

• For all 𝑗 ∈ [𝑛] \ {𝑖}, set 𝑌𝑗 (𝑡) := 𝑌𝑗 (𝑡 −1),𝑋 𝑗 (𝑡) := 𝑋 𝑗 (𝑡 −1).
• If either of the following holds, exit this loop

max

𝑖∈[𝑛]
|𝜕𝑖 𝑓 (𝑌 (𝑡)) | > 𝜖𝛿, 𝑓 (𝑌 (𝑡)) < 𝛿.

(#breaking condition)

# Phase 2

While 𝑡 < 𝑛:

• 𝑡 = 𝑡 + 1.

• Let 𝑖 = 𝜋 (𝑡) . Set 𝑌𝑖 (𝑡) and 𝑋𝑖 (𝑡) according to the following

distributions

P[𝑌𝑖 (𝑡) = ±1] = 1

2

± 𝜕𝑖 𝑓 (𝑌 (𝑡 − 1))
2𝑓 (𝑌 (𝑡 − 1)) ,

P[𝑋𝑖 (𝑡) = ±1] = 1

2

.

• For all 𝑗 ∈ [𝑛] \ {𝑖}, set 𝑌𝑗 (𝑡) := 𝑌𝑗 (𝑡 −1),𝑋 𝑗 (𝑡) := 𝑋 𝑗 (𝑡 −1).

Output {𝑌 (𝑡)}𝑡 ∈{0,1,...,𝑛} , {𝑋 (𝑡)}𝑡 ∈{0,1,...,𝑛} .

Let time 𝜏 be𝑛+1 if the breaking condition is never hit, otherwise,

let 𝜏 be the time when the breaking condition is hit. The reader

may wonder that a more natural choice of the “breaking” condition

would be the violation of (3.3). Our definition forces that (i) 𝑓 (𝑌 (𝜏 −

1)) is large, in addition to that (ii) all derivatives |𝜕𝑖 𝑓 (𝑌 (𝜏 − 1)) | is
small compared to the magnitude of 𝑓 (𝑌 (𝜏 − 1)). Both facts will be

very useful in later sections. Formally, we summarize our definition

of 𝜏 as below,

𝜏 = 𝜏1 ∧ 𝜏2 ∧ (𝑛 + 1), (3.4)

where

𝜏1 = min{𝑡 : max

𝑖∈[𝑛]
|𝜕𝑖 𝑓 (𝑌 (𝑡)) | > 𝜖𝛿}.

𝜏2 = min{𝑡 : 𝑓 (𝑌 (𝑡)) < 𝛿}.

The values of the parameters 𝜖, 𝛿 will be specified later on. By

definition, the condition (3.3) holds for 𝑡 < 𝜏 . We should think 𝜏 as

a stopping time of Phase 1. After the stopping time 𝜏 , the player

gets to control each coordinate left. She simply assigns the values

according to𝑄 as in Procedure 2. Since in both phases Procedure Π
has the same law as that of𝑄 , the controlled process𝑌 (𝑡) defined in
procedure Π is identical in distribution to the conditioned process

𝑌 (𝑡) defined in Procedure 2. The same is clearly true for the uniform

process 𝑋 (𝑡) in its two versions (Procedure 1 and Procedure Π).
In the preparation stage, Procedure Π samples a random

permutation 𝜋, a set 𝑇 of times controlled by the player and 𝑧 the

random assignment to the variables not controlled by the player.

For every𝑚 ∈ [𝑛], let G𝑚 be the 𝜎-algebra generated by

𝜋 |{1,2,...,𝑚} , 𝑇 ∩ {1, 2, . . . ,𝑚}, and 𝑧 |𝜋 {1,2,...,𝑚} .

Thus, G𝑚 contains all the information in a run of Procedure Π,
excluding the player’s choices, up to time𝑚. Also, G𝑚 induces a

restriction of 𝑇 :8

R = (𝜋 ({1, 2, . . . ,𝑚} \𝑇 )), 𝑧) .

A moment’s thought reveals that if the controlled process 𝑌 (𝑡) in
a run of Procedure Π satisfies that 𝜏 > 𝑚, then 𝑓 |R contains a

nonempty preimage of 1.

Claim 3.3. If P[𝜏 > 𝑚 | G𝑚] > 0, then (𝑓 |R )−1 (1) ≠ ∅.

Therefore, if we can argue that 𝜏 > 𝑚 running Procedure Π on

𝑓 and 1 − 𝑓 with the same G𝑚 , then we actually proved that 𝑓 |R is

nonconstant. To give a quantitative bound on the variance of 𝑓 |R
requires some more work. The above discussion sets two tasks for

the remainder of this section. First, to analyze the stopping time 𝜏

and second, to provide the necessary tools to bound the variance

of the restricted function.

3.2 Stopping Time 𝜏 of the Process 𝑌 (𝑡)
Next, we prove that with high probability 𝜏 > (1 − 𝜖)𝑛 for very

small 𝜖 . Therefore, Phase 2 in Procedure Π can not be too long.

Lemma 3.4 (Stopping time 𝜏 of the process 𝑌 (𝑡)). Let 𝑓 :

{−1, 1}𝑛 → {0, 1} be such that Var[𝑓 ] ≥ 2
−𝑜 (𝑛) . Further, let 𝜖 > 0

and 𝛿 be such that

16

𝜖
ln

4

𝜖
≤ ln

1

I∞ (𝑓 ) ,

𝛿 ≥ I∞ (𝑓 )𝜖/80

𝜖
.

8
We can also consider any restriction R = (𝑆, 𝑧 ) for 𝑆 ⊆ 𝜋 ({1, 2, . . . ,𝑚} \𝑇 ) . We

will use this observation in later sections.
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Then for sufficiently large 𝑛, we have

P𝑄 [𝜏 ≤ (1 − 𝜖)𝑛] ≤ 3𝛿

𝑓 (0) .

Proof. The proof relies on the fact that 𝑄 is a mild change of

measure with respect to 𝑃 . Consider the following two bad events,

E1 : 𝜏1 ≤ (1 − 𝜖)𝑛,
E2 : 𝜏2 ≤ (1 − 𝜖)𝑛.

We first bound P𝑄 [E1]. Note that

P𝑃 [E1] = P𝑃
[

max

0≤𝑠≤(1−𝜖 )𝑛
|𝜕𝑖 𝑓 (𝑋 (𝑠)) | ≥ 𝜖𝛿

]
≤ P𝑃

[
max

0≤𝑠≤(1−𝜖 )𝑛
|𝜕𝑖 𝑓 (𝑋 (𝑠)) | ≥ I∞ (𝑓 )𝜖/60

]
≤ I∞ (𝑓 )𝜖/80 + exp(−𝜖𝑛/8),

where the second step holds as 𝜖𝛿 ≥ I∞ (𝑓 )𝜖/80 ≥ I∞ (𝑓 )𝜖/60
; the

final step applies Lemma 3.1. The above bound in turn by Claim 3.2

implies that

P𝑄 [E1] ≤
P𝑃 [E1]
𝑓 (0) ≤ I∞ (𝑓 )𝜖/80 + exp(−𝜖𝑛/8)

𝑓 (0) . (3.5)

Next we move to bound P𝑄 [E2]. It is immediate from Claim 3.2:

P𝑄 [E2] ≤
𝛿

𝑓 (0) . (3.6)

Apply union bound to (3.5) and (3.6), then for large enough 𝑛,

P𝑄 [𝜏 ≤ (1 − 𝜖)𝑛] = P𝑄 [E1 ∨ E2]

≤ 1

𝑓 (0) ·
(
𝛿 + I∞ (𝑓 )𝜖/80 + exp(−𝜖𝑛/8)

)
≤ 3𝛿

𝑓 (0)
where in the final step we have 𝛿 ≥ I∞ (𝑓 )𝜖/80 = exp(−𝑜 (𝜖𝑛)) by
Fact 2.3. □

3.3 The KL-Divergence Between 𝑌 (𝑡) and 𝑋 (𝑡)
The purpose of this subsection is to show that for any 𝑚 ∈ [𝑛],
𝑌 (𝑛) given G𝑚 is close to uniform with high probability over the

random choices associated with G𝑚 . In particular, we will show

that the KL-divergence between 𝑌 (𝑛) and 𝑋 (𝑛) given G𝑚 is small

with high probability over the random choices associated with G𝑚 .
Recall that the coordinates of 𝑋 (𝑛) not fixed by G𝑚 are uniform.

Lemma 3.5. For any𝑚 ∈ [𝑛], abbreviate
G𝑚 = (𝜋 |{1,2,...,𝑚} ,𝑇 ∩ {1, 2, . . . ,𝑚}, 𝑧 |𝜋 {1,2,...,𝑚} ) .

Then for some universal constant𝐶 , and 𝜖 , 𝛿 in the breaking condition

in Procedure Π,

P
G𝑚

[
KL

(
𝑌 (𝑛) | G𝑚

𝑋 (𝑛) | G𝑚

)
≥ 𝐶

𝜖
ln

𝑒𝑛

𝑛 −𝑚 + 1

log

𝑒

𝛿

]
≤ 𝛿.

Proof. Let 𝜏 ′ = 𝜏 ∧ (𝑚 + 1). By definition of the stopping time

𝜏 (3.4), for 𝑡 < 𝜏 ′,

𝑓 (𝑌 (𝑡)) ≥ 𝛿, (3.7)

|𝜕𝑖 𝑓 (𝑌 (𝑡)) | ≤ 𝜖 𝑓 (𝑌 (𝑡)). (3.8)

We calculate the KL-divergence between 𝑌 (𝑛) | G𝑚 and𝑋 (𝑛) | G𝑚 .

By the chain rule,

KL

(
𝑌 (𝑛) | G𝑚

𝑋 (𝑛) | G𝑚

)
= E

G𝑚


𝜏 ′−1∑︁
𝑡=1

I{𝑡 ∈ 𝑇 }KL
©«
𝑌𝜋 (𝑡 ) (𝑡) | 𝑌 (𝑡 − 1)

𝑋𝜋 (𝑡 )

ª®¬
+KL

©«
𝑌 (𝑛) |𝜋 {𝜏 ′,𝜏 ′+1,...,𝑛} | 𝑌 (𝜏 ′ − 1)

𝑋 (𝑛) |𝜋 {𝜏 ′,𝜏 ′+1,...,𝑛}

ª®¬
 ,

where the equality holds because for any 𝑡 ∈ 𝑇 ,

(𝑌𝜋 (𝑡 ) | 𝑌 (𝑡 − 1)) = (𝑌𝜋 (𝑡 ) | 𝑌 (𝑡 − 1),G𝑚),

namely, any variable 𝑌𝜋 (𝑡 ) (𝑡) controlled by the player is

independent of the variables in the future that she has no control

of; and all coordinates in 𝑋 (𝑛) are independent.
Next, using formula (3.2), combined with (3.7), it follows that for

any 𝑡 ≤ 𝜏 ′,

KL

©«
(
𝑌 (𝑛) |𝜋 {𝑡,𝑡+1,...,𝑛}

) ���𝑌 (𝑡 − 1)

𝑋 (𝑛) |𝜋 {𝑡,𝑡+1,...,𝑛}

ª®®®¬
= log

𝑑𝑄 ((𝑌 (𝑖))𝑡≤𝑖≤𝑛)
𝑑𝑃 ((𝑋 (𝑖))𝑡≤𝑖≤𝑛)

= log

1

𝑓 (𝑌 (𝑡 − 1)) ≤ log

1

𝛿
. (3.9)

Combining the above two displays,

KL

(
𝑌 (𝑛) | G𝑚

𝑋 (𝑛) | G𝑚

)
− log

1

𝛿

≤
𝑛∑︁
𝑡=1

E
𝑌 (𝑡−1) | G𝑚

I{𝑡 ∈ 𝑇 }I{𝑡 < 𝜏 ′}KL
©«
𝑌𝜋 (𝑡 ) (𝑡) | 𝑌 (𝑡 − 1)

𝑋𝜋 (𝑡 ) (𝑡)
ª®¬


=

𝑛∑︁
𝑡=1

E

[
I{𝑡 ∈ 𝑇 }I{𝑡 < 𝜏 ′}

(
1 − 𝐻

(
1

2

+
𝜕𝜋 (𝑡 ) 𝑓 (𝑌 (𝑡 − 1))

2𝜖 𝑓 (𝑌 (𝑡 − 1))

))]
≤

𝑛∑︁
𝑡=1

E

[
I{𝑡 ∈ 𝑇 }I{𝑡 < 𝜏 ′} 1

𝜖2

(
𝜕𝜋 (𝑡 ) 𝑓 (𝑌 (𝑡 − 1))
𝑓 (𝑌 (𝑡 − 1))

)2

]
,

where the second step is by the definition of the KL-divergence;

and the final step is due to (2.1). Abbreviate

𝑍𝑡 := I{𝑡 ∈ 𝑇 }I{𝑡 < 𝜏 ′}
(
𝜕𝜋 (𝑡 ) 𝑓 (𝑌 (𝑡 − 1))
𝑓 (𝑌 (𝑡 − 1))

)2

.

Claim 3.6. There is some universal constant 𝐶 ≥ 1, such that for

any 𝑡 < 𝜏 ′,

𝑍𝑡 | 𝑌 (𝑡 − 1) ∈ [0, 𝜖2], (3.10)

E[𝑍𝑡 | 𝑌 (𝑡 − 1)] ≤ 𝐶𝜖

𝑛 − 𝑡 + 1

log

𝑒

𝛿
, (3.11)

Var[𝑍𝑡 | 𝑌 (𝑡 − 1)] ≤ 𝜖2 E[𝑍𝑡 | 𝑌 (𝑡 − 1)] . (3.12)

Proof. (3.10) follows from (3.8). Let

𝑣 (𝑡) :=
(∇𝑓 (𝑌 (𝑡 − 1))) |𝜋 {𝑡,𝑡+1,...,𝑛}

𝑓 (𝑌 (𝑡 − 1)) .
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Then,

E[𝑍𝑡 | 𝑌 (𝑡 − 1)] = E
𝜋 (𝑡 )

[𝜖𝑣 (𝑡)2

𝜋 (𝑡 ) | 𝑌 (𝑡 − 1)]

=
𝜖 |𝑣 (𝑡) |2
𝑛 − 𝑡 + 1

≤ 𝐶𝜖

𝑛 − 𝑡 + 1

log

𝑒

𝑓 (𝑌 (𝑡 − 1))

≤ 𝐶𝜖

𝑛 − 𝑡 + 1

log

𝑒

𝛿
,

where the first step holds as 𝑡 ∈ 𝑇 with probability 𝜖 ; in the second

step, 𝜋 (𝑡) is random within the 𝑛 − 𝑡 + 1 alive coordinates given

𝑌 (𝑡−1); the third step follows the Level-1 inequality of Theorem 2.2;

and the final step is due to (3.7).

The variance of 𝑍𝑡 | 𝑌 (𝑡 − 1) can be bounded as follows:

(𝜖2 − E[𝑍𝑡 ]) E[𝑍𝑡 ] − Var[𝑍𝑡 ] = E[(𝜖2 − 𝑍𝑡 )𝑍𝑡 ] ≥ 0.

We comment that such a bound is sometimes referred to as the

Bhatia-Davis inequality. □

By (3.11)-(3.12), the definition that 𝜏 ′ ≤ 𝑚 + 1, and the following

elementary fact that

ln(𝑛 + 1) ≤
𝑛∑︁
𝑖=1

1

𝑛
≤ ln 𝑒𝑛,

we have

𝑛∑︁
𝑡=1

E[𝑍𝑡 | 𝑌 (𝑡 − 1)] ≤ _, (3.13)

𝑛∑︁
𝑡=1

Var[𝑍𝑡 | 𝑌 (𝑡 − 1)] ≤ 𝜖2_, (3.14)

where

_ = 𝐶𝜖 ln

𝑒𝑛

𝑛 −𝑚 + 1

log

𝑒

𝛿
.

The lemma is concluded by estimating,

P

[
KL

(
𝑌 (𝑛) | G𝑚

𝑋 (𝑛) | G𝑚

)
≥ 3_

𝜖2
+ log

1

𝛿

]
≤ P

[
𝑛∑︁
𝑡=1

𝑍𝑡 | 𝑌 (𝑡 − 1) ≥ 3_

]
≤ exp

(
− (2_)2

2𝜖2_ + 4𝜖2_/3

)
≤ exp

(
−𝐶
𝜖

ln

𝑒𝑛

𝑛 −𝑚 + 1

log

𝑒

𝛿

)
≤ 𝛿,

where the second step invokes the concentration inequality of

Theorem 2.7 since 𝑍𝑡 −E[𝑍𝑡 | 𝑌 (𝑡 −1)] is a martingale with respect

to 𝑌 (0), 𝑌 (1), . . . , 𝑌 (𝑡 − 1). This finishes our proof to Lemma 3.5

with a change of the constant 𝐶 . □

4 PROOFS OF THE MAIN RESULTS
In this section, we prove a sharp “it ain’t over till it’s over” theorem,

i.e., the nonasymptotic version of Theorem 1.1. Then we comment

on its optimality, and discuss its applications to block sensitivity

and decision tree complexity.

Theorem 4.1 (“It ain’t over till it’s over”). There are absolute

constant𝐶 > 1. Given 𝑓 : {−1, 1}𝑛 → {0, 1}, such that I∞ (𝑓 ) < 1/𝐶
andVar[𝑓 ] = 2

−𝑜 (𝑛)
. LetR be a random restriction that keeps exactly

⌈𝜌𝑛⌉ variables alive, where
𝐶

Var[𝑓 ] · ln ln(1/I∞ (𝑓 ))
ln(1/I∞ (𝑓 )) ≤ 𝜌 ≤ 1.

Let 𝑝 be such that

8I∞ (𝑓 )𝜌/𝐶
𝜌Var[𝑓 ] ≤ 𝑝 ≤ 1. (4.1)

Then for large enough 𝑛,

P

[
Var[𝑓 |R ] ≤ exp

(
−𝐶
𝜌

ln

𝑒

𝜌
· log

8𝑒

𝑝Var[𝑓 ]

)]
≤ 𝑝. (4.2)

Before proving the above theorem, we record the following

simple fact.

Proposition 4.2. Let 𝑓 : {−1, 1}𝑛 → {0, 1} be a Boolean function.

Let ` be the uniform distribution and 𝛾 be some arbitrary distribution

over {−1, 1}𝑛 . If
𝛾 (𝑓 ) ≥ 𝛿, KL(𝛾 ∥ `) ≤ 𝐾.

Then

` (𝑓 ) ≥ 2
−(𝐾+𝐻 (𝛿 ) )/𝛿 .

In particular, if 𝛾 (𝑓 ) = 1, then

` (𝑓 ) ≥ 2
−𝐾 .

Proof. Assume that 𝛾 (𝑓 ) = 𝛿, and KL(𝛾 ∥ `) = 𝐾. This is

without loss of generality because 2
−(𝐾+𝐻 (𝛿 ) )/𝛿

is decreasing in

𝐾 and increasing in 𝛿 by elementary calculus. Let 𝛾0, 𝛾1 be the

uniform distributions over 𝑓 −1 (0) and 𝑓 −1 (1), respectively. Note
𝛿𝛾1 + (1 − 𝛿)𝛾0 = E𝜋 [𝛾 ◦ 𝜋], where 𝜋 is taken over the product of

permutations on 𝑓 −1 (0) and 𝑓 −1 (1) . Thus by convexity,

KL(𝛿𝛾1 + (1 − 𝛿)𝛾0 ∥ `) ≤ KL(𝛾 ∥ `) .
Consequently, let [ = ` (𝑓 ), then

𝛿 log

𝛿

[
+ (1 − 𝛿) log

1 − 𝛿
1 − [ ≤ 𝐾

=⇒ 𝛿 log

1

[
+ (1 − 𝛿) log

1

1 − [ ≤ 𝐾 + 𝐻 (𝛿)

=⇒ 𝛿 log

1

[
≤ 𝐾 + 𝐻 (𝛿)

=⇒ [ ≥ 2
−(𝐾+𝐻 (𝛿 ) )/𝛿 . □

Next, we set forth to prove Theorem 4.1. Set

𝜖 = max

{
[ : [ ≤ 𝜌

3

, [𝑛 is an integer

}
, (4.3)

𝛿 = 𝑝Var[𝑓 ]/8. (4.4)

It’s straightforward to verify that for large enough 𝑛, and large

enough constant 𝐶 , we have

16

𝜖
ln

4

𝜖
≤ ln

1

I∞ (𝑓 ) , (4.5)

𝛿 ≥ I∞ (𝑓 )𝜖/80

𝜖
. (4.6)

We will run Procedure Π described in Section 3.3 with the above

setting of parameters 𝜖 and 𝛿 . Recall that Procedure Π first samples
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the random permutation 𝜋 , the set 𝑇 of times controlled by the

player and 𝑧 ∈ {−1, 1}𝜋𝑇 is the random assignment for 𝑡 ∉ 𝑇 in

Phase 1. Let 𝑚 = (1 − 𝜖)𝑛, 𝑈 = {1, 2, . . . ,𝑚} \ 𝑇 . Note that by a

Chernoff bound, the probability that |𝑈 | is less than ⌊(1 − 𝜌)𝑛⌋ is
at most exp(−𝜖𝑛/2). Conditioning on that |𝑈 | ≥ ⌊(1 − 𝜌)𝑛⌋, we
randomly sample a set 𝑆 of ⌊(1 − 𝜌)𝑛⌋ elements from𝑈 .

Consider the following event

E := {𝜏 > 𝑚} ∩ {|𝑈 | ≥ ⌊(1 − 𝜌)𝑛⌋}.
The first event in this intersection can be bounded by Lemma 3.4.

Hence, by union bound,

P[¬E] ≤ 3𝛿

𝑓 (0) + exp(−𝜖𝑛/2), ≤ 4𝛿

𝑓 (0) , (4.7)

where the second step applies Fact 2.3 with (4.6). Conditioning on E,
R = (𝑆,𝑌 (𝑛)) is distributed as a random restriction that keeps ⌈𝜌𝑛⌉
variables alive. Furthermore, the restricted function 𝑓 |R satisfies

that its mean is bounded away from 0 with high probability.

Claim 4.3. For some universal constant 𝐶′ > 1,

P[` (𝑓 |R ) < 2
−𝐾 | E] ≤ 2𝛿

P[E] , (4.8)

where

𝐾 =
𝐶′

𝜖
ln

𝑒

𝜖
log

𝑒

𝛿
. (4.9)

Our theorem follows immediately from the above claim. Indeed,

if E′
is defined analogously to E where 𝑓 is replaced by 1 − 𝑓 , we

have

P[Var[𝑓 |R ] < 2
−𝐾−1]

≤ P[¬E ∨ ¬E′] + P[` (𝑓 |R ) < 2
−𝐾 | E] + P[` (𝑓 |R ) > 1 − 2

−𝐾 | E′]

≤ 4𝛿

𝑓 (0) +
4𝛿

1 − 𝑓 (0) +
2𝛿

P[E] +
2𝛿

P[E′]

≤ 8𝛿

Var[𝑓 ] ,

where in the first step, note that 2
−𝐾 < 1/2; the second step plugs

in (4.7)-(4.8); in the final step, note that by (4.4),

P[E], P[E′] ≥ 1 − 4𝛿

Var[𝑓 ] = 1 − 𝑝

2

≥ 1

2

> Var[𝑓 ] .

In view of (4.2) and (4.9), the proof to Theorem 4.1 is finished. It

remains to prove Claim 4.3.

Proof of Claim 4.3. Recall that 𝑚 = (1 − 𝜖)𝑛 and 𝑈 =

{1, 2, . . . ,𝑚} \𝑇 . Abbreviate
G𝑚 = (𝜋 |{1,2,...,𝑚} ,𝑇 ∩ {1, 2, . . . ,𝑚}, 𝑧 |𝜋 {1,2,...,𝑚} ),

the information of the random process generated by Procedure Π
excluding the player’s choices up to time𝑚. Further, let 𝛾 be the

distribution of 𝑌 (𝑛) |𝜋𝑈 given G𝑚 . Then by definition of Procedure

Π running with with respect to function 𝑓 , 𝛾 (𝑓 | (𝜋𝑈 ,𝑧 ) ) = 1. Hence,

P
[
` (𝑓 | (𝜋𝑈 ,𝑧 ) ) < 2

−𝐾 | E
]

≤ P
[
KL

(
𝑌 (𝑛) | G𝑚

𝑋 (𝑛) | G𝑚

)
> 𝐾

����� E
]

≤ 𝛿

P[E] ,

where the first step is due to Proposition 4.2; the second step follows

Lemma 3.5 for a suitable constant 𝐶′
in (4.9). Now for any

𝑆 ∈
(
{1, 2, . . . ,𝑚}
⌊(1 − 𝜌)𝑛⌋

)
, and 𝑦 ∈ {−1, 1}𝜋𝑆 ,

let Z (𝑆,𝑦) be the distribution of (𝑈 , 𝑧) | {(𝑆 ⊆ 𝑈 ) ∧ (𝑧 |𝜋𝑆 = 𝑦)}.
Then

` (𝑓 | (𝜋𝑆,𝑦) ) = E
(𝑈 ,𝑧 )∼Z (𝑆,𝑦)

[` (𝑓 | (𝜋𝑈 ,𝑧 ) )] .

Thus, by Markov’s inequality ` (𝑓 | (𝜋𝑆,𝑦) ) < 2
−𝐾−1

implies that

P
(𝑈 ,𝑧 )∼Z (𝑆,𝑦)

[
` (𝑓 | (𝜋𝑈 ,𝑧 ) ) < 2

−𝐾
]
>

1

2

.

Consequently,

1

2

P
𝜋,𝑆,𝑦

[` (𝑓 | (𝜋𝑆,𝑦) ) < 2
−𝐾−1]

≤ P
𝜋,𝑆,𝑦,(𝑈 ,𝑧 )∼Z (𝑆,𝑦)

[
` (𝑓 | (𝜋𝑈 ,𝑧 ) ) < 2

−𝐾
]

= P
𝜋,𝑇 ,𝑧

[
` (𝑓 | (𝜋𝑈 ,𝑧 ) ) < 2

−𝐾
��� {|𝑈 | ≥ ⌊(1 − 𝜌)𝑛⌋}

]
≤ 𝛿

P[E] .

In view of (4.8), we are done. □

Remark 4.4. If we consider the random restriction that keeps each

variable alive independently with probability 𝜌 , the same statement

holds with a slight modification on the proof to the corresponding

version of Claim 4.3.

4.1 Optimality of Our Result
Our Theorem 4.1 is essentially optimal with respect to 𝑝 and 𝜌 .

Consider the (1 − 𝜌)-random restriction R1−𝜌 . First, we check the

optimality in the regime when 𝜌 = Ω((log(1/I∞ (𝑓 )))−1). Consider
the majority function MAJ𝑛 : {−1, 1}𝑛 → {0, 1},

MAJ𝑛 (𝑥) =
{

0

∑
𝑖∈𝑛 𝑥𝑖 > 0,

1 otherwise.

It’s well-known that I∞ (MAJ𝑛) = Θ(1/
√
𝑛). For 𝜌 = Ω(1/log𝑛),

let R1−𝜌 = (𝑆, 𝑋 ) be the random restriction. Say |𝑆 | = 𝑛 − 𝑘.With

probability at least 1− exp(−Θ(𝜌𝑛)), 𝑘 ∈ (0.5𝜌𝑛, 2𝜌𝑛). Then by the

Berry-Esseen Theorem, for _ = 𝑂 (
√︁
(𝑛 − 𝑘) log(𝑛 − 𝑘)),

P

[�����∑︁
𝑖∈𝑆

𝑋𝑖

����� ≥ _

]
= exp

(
−Θ

(
_2

𝑛 − 𝑘

))
,

Var

[
MAJ𝑛 |R1−𝜌

�����
{�����∑︁
𝑖∈𝑆

𝑋𝑖

����� ≥ _

}]
≤ exp

(
−Θ

(
_2

𝑘

))
.

Thus for 𝑝 = Ω(1/
√
𝑛 − 𝑘),

P

[
Var[MAJ𝑛 |R1−𝜌 ] ≤ 𝑝

Θ
(

1

𝜌

) ]
= 𝑝.

Our bound on the variance is tight up to a log(1/𝜌) factor in the

exponent with respect to 𝜌 .
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Second, we check the optimality in the regime when 𝜌 =

𝑂 ((log(1/I∞ (𝑓 )))−1) . Consider the tribes function TRIBE𝑛 :

{−1, 1}𝑛 → {0, 1},

TRIBE𝑛 : 𝑥 ↦→ AND𝑛/𝑤
©«· · · ,

𝑤∨
𝑗=1

𝑥𝑖 𝑗 , · · · ª®¬ ,
where for any positive integer𝑤 , 𝑛 is the smallest integral multiple

of 𝑤 such that P[TRIBE𝑛 (𝑥) = 1] ≤ 1/2; AND𝑛/𝑤 : {0, 1}𝑛/𝑤 →
{0, 1} is the standard logic and function. In particular,𝑛 ≈ ln 2·𝑤2

𝑤 ,

𝑤 = log𝑛 − log ln𝑛 + 𝑜 (1). Then I∞ (TRIBE𝑛) = Θ(log𝑛/𝑛), and
` (TRIBE𝑛) = Θ(1).Apply random restrictionR that fixes a variable

with probability 1−1/𝑤 = 1−Θ(log 1/I∞ (TRIBE𝑛)). Then for large
enough 𝑛,

P[TRIBE𝑛 |R ≡ 1] =
(
1 −

(
1

2

+ 1

2𝑤

)𝑤 )𝑛/𝑤
= Ω(1) .

Therefore, in this regime with constant probability, there is no

variance left under random restrictions for the tribes function. Our

bound is tight up to a log log factor in the sense that it gives a bound

up to the minimum 𝜌 where there is still some variance left after

the random restriction.

4.2 Block Sensitivity Is Large Almost
Everywhere

We now move on to our second theorem, concerning block

sensitivity. The following is a nonasymptotic version of

Theorem 1.2.

Theorem 4.5. There are absolute constant 𝐶 > 1. For any Boolean

function 𝑓 : {−1, 1}𝑛 → {0, 1}, let 𝜏 = I∞ (𝑓 ) < 1/𝐶 , Var[𝑓 ] =

2
−𝑜 (𝑛) . Then for large enough 𝑛,

P
𝑥

[
bs𝑓 (𝑥) ≥

Var[𝑓 ] ln 1/𝜏
𝐶 ln ln 1/𝜏

]
≥ 1 − exp

(
−Θ

(
1

Var[𝑓 ] ln ln

1

𝜏

))
.

Proof. Let

𝑀 =

⌈
2Var[𝑓 ] ln 1/𝜏
𝐶 ln ln 1/𝜏

⌉
.

Let 𝑋 ∈ {−1, 1}𝑛 be random. Randomly partition [𝑛] into 𝑀 sets,

𝑆1, 𝑆2, . . . , 𝑆𝑀 , each of size ⌊𝑛/𝑀⌋ with maybe a small number

of remaining indices. Note that for any 𝑖 ∈ [𝑀], R = (𝑆𝑖 , 𝑋 )
is a random restriction of fixed size. Then by Theorem 4.1, with

probability at least 1− exp(−Θ(log log(1/𝜏)/Var[𝑓 ])), Var[𝑓 |R ] >
0. In that case, exists𝑇𝑖 ⊆ 𝑆𝑖 , such that 𝑓 (𝑋 ⊕ (−1)1𝑇𝑖 ) ≠ 𝑓 (𝑋 ). The
statement thus holds by the following double-counting principle,

1

2

P
𝑥
[bs𝑓 (𝑥) < 𝑀/2] ≤ P

R
[𝑓 |R is constant] . □

4.3 Decision Tree Complexity of Random
Restriction to Monotone Functions

We record another application of our main result regarding the

decision tree complexity of the restricted function, which is in

some sense a reverse statement to the famous Håstad’s switching

lemma. LetDT(𝑓 ) denote the deterministic decision tree complexity

of 𝑓 .9

Theorem 4.6 (Decision tree complexity of random restrictions).
There are absolute constant 𝐶 > 1. For any monotone function 𝑓 :

{−1, 1}𝑛 → {0, 1}, such that

log

(
1

I∞ (𝑓 )

)
≥ 𝐶 log

(
1

Var[𝑓 ]

)
. (4.10)

Let R be a random restriction that keeps exactly ⌈𝜌𝑛⌉ variables alive,
where

𝜌 = Ω

(√︄
log Var[𝑓 ]
log I∞ (𝑓 ) log

log I∞ (𝑓 )
log Var[𝑓 ]

)
.

Then for large enough 𝑛,

P
[
DT(𝑓 |R ) ≥ I∞ (𝑓 )−Θ(𝜌 )

]
≥ 1

2

. (4.11)

4.4 Social Choice and Condorcet Winner
In social choice theory, the basic question is how to aggregate a

group of𝑛 voters’ preferences to elect one winner from𝑘 candidates.

Denote the preference of voter 𝑖 by 𝑥
(𝑎,𝑏 )
𝑖

between two candidates

𝑎, 𝑏 ∈ [𝑘]. To be precise, 𝑥
(𝑎,𝑏 )
𝑖

= 1 means that the voter 𝑖 prefers 𝑎

than 𝑏, and 𝑥
(𝑎,𝑏 )
𝑖

= 0 indicates the other case. For any voter, we

assume that her preference on the 𝑘 candidates is a total order.

Condorcet suggested the following method to aggregate the

social opinions: Let 𝑓 : {0, 1}𝑛 → {0, 1} denote some voting rule,

that aggregates the voters’ preferences over two candidates; Apply

𝑓 to all possible pairs of candidates 𝑎 and 𝑏. Then 𝑓 (𝑥 (𝑎,𝑏 ) ) = 1

will decide that the society prefers 𝑎 to 𝑏, and 𝑓 (𝑥 (𝑎,𝑏 ) ) = 0 the

other way. A Condorcet winner exists, if the society prefers some

candidate 𝑎 than any other candidate. The Condorset profile is the

social preferences on all pairs of candidates 𝑓 (𝑎,𝑏 ) .
The Condorcet profile is not necessarily a total order and there is

not always a Condorcet winner. The famous Arrow’s theorem is a

statement about this phenomenon. In particular, Arrow’s theorem

shows that for any voting rule 𝑓 , assume that 𝑓 satisfies unanimity,

i.e, 𝑓 (0𝑛) = 0, 𝑓 (1𝑛) = 1, then there is always a Condorcet winner

among 3 candidates only if 𝑓 is a dictator function.

Kakai was the first to introduce the Boolean function analysis

tools to the study of Arrow’s theorem [12], using which Kalai

extended the theorem to a more quantitative version.

To discuss a quantitative version of Arrow’s theorem, we need

a few more assumptions on the voting rule as well as the voters.

In particular, we assume the voting rule 𝑓 does not have strong

bias towards any candidate, i.e., Var[𝑓 ] = Ω(1). For the voters, we
assume the impartial culture assumption, i.e., their preferences are

independent and uniformly random from all possible total orders

on [𝑘].
Our main result implies that any Condorcet profile can happen

with a non-negligible probability for any 𝑘 not too large. This

connection between Condorcet profile and “it ain’t over till it’s

over” theorem is pointed out by Friedgut and Kalai. The proof

9
Although the theorem is stated with respect to the deterministic decision tree

complexity, one can replace the deterministic decision tree complexity by many other

complexity measures, for example, the randomized decision tree complexity, as they

are polynomially related for total functions.
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appears to be in an unpublished manuscript, so we include our

proof here for completeness.

Theorem 4.7. Let there be 𝑘 ≥ 3 candidates and 𝑓 some voting rules

satisfies the assumptions discussed above. Suppose that for 𝜏 = I∞ (𝑓 ),

𝑘 ≤ 𝑂
(

log 1/𝜏
log log 1/𝜏

)
1/3

.

Then any Condorset profile appears with probability at least

exp(−Θ(𝑘5
log

2 𝑘)).

Proof. Randomly partition the 𝑛 voters into
(𝑘
2

)
random subsets

𝑉 (1,2) ,𝑉 (1,3) , . . . ,𝑉 (𝑘−1,𝑘 ) . Fix two candidates, say candidates 1

and 2. Note that for any voter 𝑖 , conditioning on her preference on

all other pairs of candidates other than that between 1 and 2, then

𝑥
(1,2)
𝑖

is not fixed with probability

2(𝑘 − 1)!
𝑘!

=
2

𝑘
.

For any (𝑎, 𝑏) ∈
([𝑘 ]

2

)
, let 𝑆 (𝑎,𝑏 ) be the set of voters 𝑖 ∈ 𝑉 (𝑎,𝑏 ) ,

whose preference between candidates 𝑎 and 𝑏 cannot be deduced

from her preferences on all other pairs. Consider the restriction

R (𝑎,𝑏 )
on 𝑥 (𝑎,𝑏 ) that fixes all other coordinates but those in 𝑆 (𝑎,𝑏 ) .

Then this corresponds to a (1− 𝜌)-restriction for 𝜌 = 4/(𝑘2 (𝑘 − 1)).
Thus we can apply Theorem 4.1 by setting 𝑝 = 1/(𝑘 (𝑘 − 1)), and
conclude that for with probability at least 1/2, for all (𝑎, 𝑏) ∈

([𝑘 ]
2

)
,

Var

[
𝑓 |R (𝑎,𝑏)

]
≥ exp(−Θ(𝑘3

log
2 𝑘)) .

In other words, any profile can happen with probability at least

(exp(−Θ(𝑘3
log

2 𝑘))) (
𝑘
2
) = exp(−Θ(𝑘5

log
2 𝑘)) . □

5 RANDOM RESTRICTIONS AND
HYPERCONTRACTIVITY

In this section, we consider the continuous random process

revealing information about the inputs 𝑋 ∈ {−1, 1}𝑛 gradually in a

bit by bit manner.We establish a hypercontractivity theorem for this

“operator,” and then use the newhypercontractivity theorem to show

that the first-order Fourier coefficients remain small under random

restriction given that the original function has small individual

influences.

5.1 A Martingale Setup for Random Restrictions
Consider the following random process. Let 𝑥 ∈ {−1, 1}𝑛 be

a uniformly random element. Let (𝜏𝑖 )𝑖∈[𝑛] be random variables

uniformly distributed in the interval [0, 1]. 𝜏 induces a permutation

on [𝑛]. This is essentially the only relevant information. For

technical reasons we prefer this continuous description in this

section. Define 𝑆 (𝑡) = {𝑖 : 𝜏𝑖 ≤ 𝑡}, and define process 𝑋 (𝑡) ∈
[−1, 1]𝑛 as follows

𝑋𝑖 (𝑡) =
{

0 𝜏𝑖 > 𝑡,

𝑥𝑖 𝜏𝑖 ≤ 𝑡 .

In another word, a random ±1 variable is revealed with probability 𝑡

at time 𝑡 . This random process induces a random restriction R(𝑡) =
(𝑆 (𝑡), 𝑌 ) of function 𝑓 , that all the variables in 𝑆 (𝑡) is set according

to 𝑌 while the other variables are left alive. Below, we collect some

properties of a function 𝑓 with respect to the above process.

Proposition 5.1. For any multilinear function 𝑓 : [−1, 1]𝑛 → R
and any 𝑡 ≥ 0,

(i) E[|∇𝑓 (𝑋 (𝑡)) |2] ≤ ∥ 𝑓 ∥2

∞/(1 − 𝑡),
(ii) E[𝜕𝑖 𝑓 (𝑋 (𝑡))2] ≤ I𝑖 [𝑓 ], for 𝑖 = 1, 2, . . . , 𝑛.

5.2 A Hypercontractive Inequality for Random
Restrictions

As the time 𝑡 increases, the process 𝑋 (𝑡) reveals more information

about the location of 𝑋 (1). Thus, for 0 ≤ 𝑡 ≤ 𝑇 ≤ 1, we

may view 𝑓 (𝑋 (𝑡)) as a “noisy” version of 𝑓 (𝑋 (𝑇 )). It is therefore
expected that some hypercontractive inequality holds for those two

expressions. This intuition can be made concrete by the following

theorem.

Theorem 5.2 (A hypercontractive inequality). For any 0 ≤ 𝑡 ≤
𝑇 ≤ 1, and any multilinear 𝑓 : [−1, 1]𝑛 → R,we have for the random
process 𝑋 defined in the previous section,(

E |𝑓 (𝑋 (𝑡)) |2+𝜖
) 1

2+𝜖 ≤
(
E |𝑓 (𝑋 (𝑇 )) |2

)
1/2

, (5.1)

where

𝜖 = 𝑇 − 𝑡 .

Proof. The proof is by induction on 𝑛. Once we establish the

base case, the inductive step follows from a standard argument. We

omit the inductive step which is standard. Interested readers can

find it in the full version of the paper.

Base case. For the base case we consider two scenarios separately.

(i) 𝑓 is nonnegative (or, nonpositive) function. Let 𝑓 : [−1, 1] →
[0,∞), say 𝑓 = 𝑎𝑥 + 𝑏. It suffices to consider the special case when

𝑓 = 𝑎𝑥 + 1 for some 0 < 𝑎 < 1 after normalization. The reason is as

follows: Since 𝑓 is nonnegative, 0 ≤ |𝑎 | ≤ 𝑏. Thus, we can assume

𝑎 ≥ 0, this assumption does not change E[|𝑓 (𝑋 (𝑡)) |𝑝 ]. For 𝑏 = 0,

there is nothing to prove. So we can assume 𝑏 = 1 by normalization.

For 𝑎 = 0, 𝑓 is constant function. The statement is clearly true.

Finally, for the case 𝑎 = 1, it follows from continuity. After the

above simplification, we make the actual analysis.

E[(𝑎𝑋 (𝑡) + 1)2+𝜖 ] = (1 − 𝑡) + 𝑡

2

((1 + 𝑎)2+𝜖 + (1 − 𝑎)2+𝜖 )

= 1 − 𝑡 + 𝑡
∑︁
𝑘≥0

𝑎2𝑘

(
2 + 𝜖
2𝑘

)
,

= 1 + 𝑡
∑︁
𝑘>0

𝑎2𝑘

(
2 + 𝜖
2𝑘

)
,

where the second step uses Taylor expansion of (1+𝑥)𝑝 for |𝑥 | < 1.

Note that for 𝜖 ∈ [0, 1] and any 𝑘 ≥ 2,(
2 + 𝜖
2𝑘

)
≤ 0.

Hence,

E[(𝑎𝑋 (𝑡) + 1)2+𝜖 ] ≤ 1 + 𝑡 (1 + 𝜖/2) (1 + 𝜖)𝑎2 . (5.2)
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On the other hand,

E[(𝑎𝑋 (𝑇 ) + 1)2]
2+𝜖

2 = (1 +𝑇𝑎2)
2+𝜖

2

≥ 1 + (1 + 𝜖/2)𝑇𝑎2, (5.3)

where the last step follows from Fact 2.1. Compare (5.2) and (5.3),

we get that

E[(𝑎𝑋 (𝑡) + 1)2+𝜖 ] ≤ E[(𝑎𝑋 (𝑇 ) + 1)2]1+𝜖/2

as long as

𝜖 ≤ 𝑇 − 𝑡
𝑡

and𝜖 ∈ [0, 1] (5.4)

(ii) 𝑓 takes both positive and negative values, say 𝑓 = 𝑎𝑥 + 𝑏.
This time it suffices to consider the special case when 𝑓 = 𝑥 +𝑏, for
0 < 𝑏 < 1. Since if 𝑎 is not 1, we can consider the function 𝑓 /𝑎. In
addition, changing 𝑏 to |𝑏 | does not affect E[|𝑓 |𝑝 ]. Then

E[|𝑋 (𝑡) + 𝑏 |2+𝜖 ]
= (1 − 𝑡)𝑏2+𝜖 + 𝑡/2((1 + 𝑏)2+𝜖 + (1 − 𝑏)2+𝜖 )

= (1 − 𝑡)𝑏2+𝜖 + 𝑡
∑︁
𝑘≥0

𝑏2𝑘

(
2 + 𝜖
2𝑘

)
≤ (1 − 𝑡)𝑏2 + 𝑡 (1 + 𝑏2 (1 + 𝜖/2) (1 + 𝜖))
= 1 + (1 − 𝑡) (𝑏2 − 1) + 𝑡 (1 + 𝜖/2) (1 + 𝜖)𝑏2, (5.5)

where the third step uses the facts that

(
2+𝜖
2𝑘

)
≤ 0 for 𝑘 ≥ 2 and

𝜖 ∈ [0, 1], and that 𝑏𝑥 is decreasing on 𝑥 for 0 < 𝑏 < 1. On the

other hand,

(E[(𝑋 (𝑇 ) + 𝑏)2])
2+𝜖

2

= (𝑇 + 𝑏2)1+𝜖/2

= (1 + 𝑏2)1+𝜖/2

(
1 − 1 −𝑇

1 + 𝑏2

)
1+𝜖/2

≥ (1 + (1 + 𝜖/2)𝑏2)
(
1 − (1 + 𝜖/2) 1 −𝑇

1 + 𝑏2

)
= 1 + (1 + 𝜖/2)𝑏2 − (1 + 𝜖/2) (1 + 𝑏2 + 𝜖𝑏2/2) 1 −𝑇

1 + 𝑏2

≥ 1 + (1 + 𝜖/2)𝑏2 − (1 + 𝜖/2) (1 −𝑇 ) − (1 + 𝜖/2)𝑏2𝜖 (1 −𝑇 )/2,

(5.6)

where the third step invokes Fact 2.1 twice. Let 𝑅, 𝐿 denote (5.6)

and (5.5), respectively. Further, let 𝐵 = 𝑏2, then 𝑅 − 𝐿 is a linear

function in 𝐵. To verify that 𝑅 ≥ 𝐿, one only needs verify the cases

when 𝐵 = 0 and 𝐵 = 1. Recall that 𝜖 = 𝑇 − 𝑡, therefore for 𝐵 = 0 :

𝑅 − 𝐿 = 1 − (1 + 𝜖/2) (1 −𝑇 ) − 𝑡
= 𝜖 − (1 −𝑇 )𝜖/2

= 𝜖 (1 +𝑇 )/2

≥ 0,

and for 𝐵 = 1 :

𝑅 − 𝐿 = (1 + 𝜖/2) (𝑇 − (1 −𝑇 )𝜖/2 − 𝑡 (1 + 𝜖))
= (1 + 𝜖/2) (𝜖/2 +𝑇𝜖/2 − 𝜖𝑡)
= (1 + 𝜖/2)𝜖/2(1 +𝑇 − 2𝑡)
≥ 0.

This concludes our proof. □

Remark 5.3. One can also prove a hypercontractive inequality of

the 𝑝-norm vs. 2-norm for 1 < 𝑝 < 2. The proof is analogous.

5.3 ℓ∞-Fourier Mass of 𝑓 |R(𝑡 ) of the First Order
A key quantity in our analysis is the ℓ∞-Fourier mass of 𝑓 |R(𝑡 ) of
the first order. Namely,

𝛽∗ (𝑡) = max

𝑖∉𝑆 (𝑡 )
|𝜕𝑖 𝑓 (𝑋 (𝑡)) |. (5.7)

In some sense, 𝛽∗ (𝑡) represents the maximal influence of 𝑓 |R(𝑡 ) .
In particular, for the special case when 𝑓 is a monotone Boolean

function, 𝛽∗ (𝑡) is exactly I∞ (𝑓 |R(𝑡 ) ). Next, we show that with high

probability 𝛽∗ (𝑡) remains small for 𝑡 even very close to 1. In fact,

what we will show is that

𝛽 = max

𝑖∈[𝑛]
|𝜕𝑖 𝑓 (𝑋 (𝑡)) |

remains small with high probability. In particular, we establish the

following lemma using the hypercontractive inequality from the

last section.

Lemma 5.4 (“influence” remains small under random restriction).
Given 𝑓 : {−1, 1}𝑛 → [−1, 1] . For any 0 ≤ 𝑡 < 1 such that

8

1 − 𝑡 ln

2

1 − 𝑡 ≤ ln

1

I∞ (𝑓 ) . (5.8)

Then for any \ ∈ (0, 1),

P

[
sup

0≤𝑠≤𝑡
𝛽 (𝑠) ≥ \

]
≤ \−3

I∞ (𝑓 )
1−𝑡

8 .

Proof. Take 𝑇 = (1 + 𝑡)/2 and let

𝜖 = 𝑇 − 𝑡 . (5.9)

Then

P

[
sup

0≤𝑠≤𝑡
𝛽 (𝑠) ≥ \

]
≤ P

[
sup

0≤𝑠≤𝑡

𝑛∑︁
𝑖=1

|𝜕𝑖 𝑓 (𝑋 (𝑠)) |2+𝜖 ≥ \2+𝜖
]

(i)
≤ \−2−𝜖

∑︁
𝑖

E[|𝜕𝑖 𝑓 (𝑋 (𝑡)) |2+𝜖 ]

(ii)
≤ \−2−𝜖

∑︁
𝑖

(E[𝜕𝑖 𝑓 (𝑋 (𝑇 ))2])1+𝜖/2

(iii)
≤ \−2−𝜖

∑︁
𝑖

I𝑖 (𝑓 )𝜖/2 E[𝜕𝑖 𝑓 (𝑋 (𝑇 ))2]

(iv)
≤ \−2−𝜖 I∞ (𝑓 )𝜖/2

1 −𝑇
(v)
≤ \−2−𝜖

I∞ (𝑓 )𝜖/4
(5.10)

where (i) is true due to Fact 2.4 and Theorem 2.6; (ii) follows from

Theorem 5.2, (iii) follows from Proposition 5.1 (ii) , (iv) follows from

Proposition 5.1 (i) and (v) follows by our choice of 𝑇 , and (5.8). □

865



STOC ’23, June 20–23, 2023, Orlando, FL, USA Ronen Eldan, Avi Wigderson, and Pei Wu

5.4 Proof of Lemma 3.1
At this point, we have almost proved Lemma 3.1 except that in

the previous section we proved the version with the continuous

random process instead of the discrete one. Next, we show that

the continuous random process and the corresponding probability

measure 𝑃 used in Lemma 5.4 is close to the discrete uniform

process generated by Procedure 1 in Section 3 with measure 𝑃

in the following sense.

Claim 5.5. Let E𝑡 be some event that depends only on 𝑋 (𝑡). Then
for any 𝜖 ∈ (0, 1),

P𝑃


∨

0≤𝑡≤(1−𝜖 )𝑛
E𝑡

 ≤ P
𝑃


∨

0≤𝑡≤(1−𝜖/2)
E𝑡

 + exp(−𝜖𝑛/8) .

Proof. We couple the two processes in the obvious way. Recall

that (𝜏𝑖 )𝑖∈[𝑛] is the random variables uniformly distributed in the

interval [0, 1] in the continuous process. 𝜏 induces a permutation 𝜋

on [𝑛]. As time 𝑡 goes from 0 to 1 in 𝑃 , whenever a variable is set to

value 𝑣 ∈ {−1, 1}, the corresponding variable in the discrete process

is also set to 𝑣 . Recall that we denote the set of fixed variables at

time 𝑡 in 𝑃 by 𝑆 (𝑡) . Then at time 𝑡 = (1 − 𝜖/2), by Chernoff bound,

P
𝑃
[|𝑆 (𝑡) | < (1 − 𝜖)𝑛] ≤ exp(−𝜖𝑛/8) .

Conditioning on |𝑆 (𝑡) | ≥ (1 − 𝜖)𝑛,
∨

0≤𝑡≤(1−𝜖 )𝑛
E𝑡

𝑃 ⇐=


∨

0≤𝑡≤(1−𝜖/2)
E𝑡

𝑃 .
The claim follows. □

Now, Lemma 3.1 is an immediate corollary of Lemma 5.4 and

Claim 5.5.

Corollary 5.6 (Restatement of Lemma 3.1). Let 𝜖 > 0 be such that

16

𝜖
ln

4

𝜖
≤ ln

1

I∞ (𝑓 ) .

Then for any \ ∈ (0, 1),

P𝑃

[
max

0≤𝑡≤(1−𝜖 )𝑛
|𝜕𝑖 𝑓 (𝑋 (𝑡)) | ≥ \

]
≤ \−3

I∞ (𝑓 )
𝜖
16 + exp(−𝜖𝑛/8) .

Proof. Let 𝑡 = (1 − 𝜖/2). The choice of 𝜖 guarantees that we
can apply Lemma 5.4. In view of Claim 5.5, we are done. □
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