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Abstract

We introduce a notion of non-black-box access to computational devices (such as circuits,
formulas, decision trees, and so forth) that we call restriction access. Restrictions are partial
assignments to input variables. Each restriction simplifies the device, and yields a new device for
the restricted function on the unassigned variables. On one extreme, full restrictions (assigning
all variables) correspond to evaluating the device on a complete input, yielding the result of
the computation on that input, which is the same as standard black-box access. On the other
extreme, empty restrictions (assigning no variables) yield a full description of the original device.
We explore the grey-scale of possibilities in the middle.

Focusing on learning theory, we show that restriction access provides a setting in which one
can obtain positive results for problems that have resisted attack in the black-box access model.
We introduce a PAC-learning version of restriction access, and show that one can efficiently
learn both decision trees and DNF formulas in this model. These two classes are not known to
be learnable in the PAC model with black-box access.

Our DNF learning algorithm is obtained by a reduction to a general learning problem we call
population recovery, in which random samples from an unknown distribution become available
only after a random part of each is obliterated. Specifically, assume that every member of an
unknown population is described by a vector of values. The algorithm has access to random
samples, each of which is a random member of the population, whose values are given only on a
random subset of the attributes. Analyzing our efficient algorithm to fully recover the unknown
population calls for understanding another basic problem of independent interest: “robust local
inversion” of matrices. The population recovery algorithm and construction of robust local
inverses for some families of matrices are the main technical contributions of the paper.

We also discuss other possible variants of restriction access, in which the values to restricted
variables, as well as the subset of free (unassigned) variables, are generated deterministically or
randomly, in friendly or adversarial fashions. We discuss how these models may naturally suit
situations in computational learning, computational biology, automated proofs, cryptography
and complexity theory.
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1 Introduction

Situations in which we have access to a computational process and need to understand, model or
imitate its behavior are practically universal. Not surprisingly, this problem has received plenty of
theoretical attention. A modern, natural abstraction of the process is by using a computational
model: hypothesize that a device D is performing the process. It can be a deterministic device
like a circuit, a probabilistic model like a Baysian network, or a generative model like a grammar
of a language. For the purpose of this initial discussion, we restrict ourselves to deterministic
computational devices. For simplicity, assume that the device D computes some unknown boolean
function f on n inputs (the discussion naturally extends to other families of functions).

A crucial issue is how to model the type of access we have to the process D. This is the
main issue we wish to address here. The most common choice is the so-called black-box access,
where we are allowed access to pairs of inputs and outputs of the form (x, f(x)). Black-box access
provides very little information about D’s behavior: one is given only inputs and the results of the
computation. Techniques that only involve such access, therefore, tend to be quite generic.

The generality of black-box access often make it too weak. For example, under standard cryp-
tographic hardness assumptions, black box access is not enough to efficiently learn even relatively
simple models such as constant-depth threshold circuits [KV94]. Can one obtain positive results
with more liberal access?

Furthermore, in many scientific investigations (see examples in Section 2) one can reasonably
assume access to much more information about the computation of the device D than input-output
behavior. Scientists working on such problems actually use this additional information when trying
to understand the process at hand. How can one model such additional information?

1.1 Restriction Access

We introduce a new way to model access to a computational device/process using restrictions.
This new model, which we call restriction access, is an extension of black-box access, and provides
the learner with partial information about the “inner workings” of the device D. There are many
choices that need to be made when defining this model. We wish the formalism of the model to
be both useful and mathematically clean. We start with an informal description of the model, and
then discuss how it may be relevant to various contexts.

We take our cue from the well-studied notion of restriction in computational complexity. This
notion has been very useful. For example it has been used to prove computational hardness results,
starting with the works of Subbotovskaya [Sub61] and Neciporuk [Nec64] in the 60’s, and continuing
in the early 80’s with the works of Ajtai [Ajt83] and Furst et al. [FSS84].

A restriction ρ is a pair ρ = (z, L), where L ⊂ [n] is the set of live variables and z ∈ {0, 1}L is an
assignment to all variables in L = [n] \ L. Given f : {0, 1}n → {0, 1}, the function f |ρ : {0, 1}L →
{0, 1} is the restriction of f obtained by fixing the variables in L to their values in z. Similarly,
given a device D computing f , we can restrict it by fixing its inputs in L to their values in z. For
a device, we can actually do more: we can simplify the device according to some fixed rule (more
on the important simplification step later). The new restricted device D|ρ computes the function
f |ρ, but only contains partial information about D. Restriction access is a strict generalization of
black-box access to D: using any natural simplification rule, if L is the empty set, then D|ρ is f(z).

We illustrate this concept using decision trees. A decision tree is a rooted binary tree whose
leaves are labelled by 0 or 1, and inner nodes are labelled by variables. An input defines a walk in

1



the tree from the root to a leaf, and the label of the leaf reached is the output of the computation.
A restriction can be used to simplify a given decision tree using a natural simplification rule.
After fixing some of the variables, we remove all subtrees that are never reached and contract any
remaining paths (for a formal definition see Section 4). Thus, a restriction of a decision tree is
another decision tree on the unfixed set of variables. Similarly, when dealing with circuits, for
example, we shall ensure that the restriction of a circuit will also be a circuit. Thus, a restriction
provides us with information on the inner workings of the computation without revealing the entire
computation process.

1.2 Structure and Control of Restrictions

An important issue is consistency (or lack of it) of representations of several restrictions of a given
process. Consider the formula ((x∧y)∨ (z∧ (w∨y)))∧y. If we restrict it to the partial assignment
x = 1, w = 1 we obtain

((x ∧ y) ∨ (z ∧ (w ∨ y))) ∧ y → ((1 ∧ y) ∨ (z ∧ (1 ∨ y))) ∧ y → (y ∨ (z ∧ 1)) ∧ y → (y ∨ z) ∧ y.

Should the order of literals in the formula above be respected for all restrictions? All algorithms
we present work without this assumption. One way to formalize this is by letting an adversary
“permute” the representation (e.g. the gates) of the process. In the above example the evaluation
can thus take 6 different option, like y ∧ (y ∨ z) and y ∧ (z ∨ y), and the algorithm would have to
perform well regardless of which of these representations it gets.

Another important issue is control over the set of live variables. The control we have on the
choice of inputs x varies greatly with the process under investigation. In some cases, we have no
control at all, and may assume that it is adversarial. In others, an unknown distribution governs
the inputs. Such cases partially motivated the definition of the PAC-learning model [Val84]. In
other scenarios, we can choose inputs by making our own queries to the system, for example, when
trying to learn how to add integers from a teacher at school. Allowing such “friendly” choices of
inputs is also part of the standard notions of cryptographic security.

The easiest learning scenario is when we are allowed to choose the restrictions adaptively. This
seems too good to be true in most situations, but is certainly relevant to some of the biological
systems for which we have plenty of control over the systems studied. A bit weaker is the access
mentioned below in the section on identity-based encryption, in which the set L is fixed (by the
designer) and the assignment (identities) can be chosen by the users trying to break the system.
In the most pessimistic case, both the set of live variables and the assignment are adversarial.

Our main focus is on situations in which both the set of variables and the assignment are chosen
at random. We assume that that there is one distribution (say ν) on all inputs {0, 1}n, and after
the set of live variables L is chosen, we fix only the remaining variables according to the sample x
from ν, z = xL. The subset L itself is chosen from a distribution (say τ) on subset of [n]. Thus
ν, τ specify a “random restriction.”

1.3 PAC-learning with Restriction Access

Since the formal statements of our technical results require lengthy definitions, we begin with an
informal high-level statement of our learning theory results. We now describe two PAC-learning
algorithms that use restriction access.

2



In the standard PAC (Probably Almost Correct) model, introduced by Valiant [Val84], the learn-
ing algorithm is given access to independent, identically distributed samples of the form (x, f(x)),
where x is sampled from some unknown distribution ν on {0, 1}n and f : {0, 1}n 7→ {0, 1} is a
concept we wish to learn. An algorithm is a PAC-learning algorithm if with high probability, it
outputs a hypothesis h : {0, 1}n 7→ {0, 1} that approximates f with respect to the distribution ν
on inputs. Almost all concept-classes studied in the PAC-learning literature are defined using some
natural computational device family. Here we suggest to “open the box” and give more information
to the learner.

In our version of the PAC model, the learning algorithm receives samples of the form (x, ρ,D|ρ),
where D is some (fixed but unknown) device computing the concept f . The learning algorithm has
access to some of the “inner workings” of the computation of f .

We did not yet specify how the restriction ρ is chosen. For PAC-learning, we choose a model in
which x is sampled according to ν and then a set L is chosen so that each variable is independently
kept “alive” with some probability 0 < µ < 1. The value of z (the assignment to the fixed variables)
is chosen to be the restriction of x to L. This choice of distribution over restrictions is not the only
one possible, but we feel it is general enough (and sufficiently challenging). We will refer to this
distribution on sets as the µ-marginal set distribution.

In this variant of PAC-learning we obtain two main algorithmic results:

1. A PAC-learning algorithm for decision trees from restrictions sampled according to the µ-
marginal set distribution, for all µ > 0.

2. A PAC-learning algorithms for DNF formulas from restrictions sampled according to the
µ-marginal set distribution, for all µ > 0.365.

Both learning algorithms are efficient in that they run in polynomial time in all parameters (in-
cluding 1/µ for decision trees).

Researchers have been trying to find efficient PAC-learning algorithms for decision trees or DNF
formulas ever since Valiant’s original paper but it is still not known whether or not such efficient
learners exist. Restriction access, which generalizes the standard notion of PAC-learning, could
possibly lead to new insights on these open problems. For more on PAC-learning decision trees and
DNF formulas see [EH89, KS04].

PAC-learning DNF formulas from restrictions is substantially more difficult than its decision-
tree counterpart. The learner for DNF formulas uses a reduction to a new learning problem we
call “population recovery.” This problem and its solution (for a certain range of parameters) is our
main technical contribution and is described in Section 6.

1.4 Related Work

In the context of learning theory, various generalizations of black-box access have been considered.
Perhaps most relevant is the work of Goldman, Kwek and Scott [GKS03] that defined UAV learning.
Roughly, UAV learning allows non-black-box access to the objective function f in the form of
querying whether some restriction of f is constant or not. A similar model for learning was already
defined by Valiant in his original paper defining PAC-learning [Val84]. Another related work is
that of Angluin, Hellerstein and Karpinski [AHK93] defining a “projective equivalence” oracle, and
showing how to learn read-once formulas using such an oracle.
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Another non-black-box model was introduced by Angluin et. al. [AACW06] in which access
to a circuit with some fixed assignment is given in the form of Value Injection Queries and the
structure of the circuit is recovered. This model is different than restriction access in two ways.
First, it allows the learner to fix wires internal to the circuit (and not just inputs). Second, the
only value given to the learner is the final output of the circuit and not a “sub-circuit” as is done
in the restriction access case.

1.5 Organization

In Section 2, we motivate restriction access by giving several different examples for possible ap-
plications. In Section 3, we give a formal description of restriction access. Section 4 describes
our PAC-learning algorithm for decision trees, and Section 5 gives the algorithm for learning DNF
formulas. In Section 6 we study the two notions that are the technical heart of the PAC-learning
algorithms: the population recovery problem (PRP) and robust local inverses.

2 Motivation

We now describe several scenarios in which restriction access naturally occurs. In some examples
the model is not perfect, and is some resolving the associated algorithmic problem may not be the
best way to understand the given scenario. Nevertheless, we feel that these examples motivate a
study of the restriction access model.

2.1 Scientific Modeling: Sub-systems as Restrictions

In numerous scientific endeavors, one is trying to understand a system by first understanding its
subsystems and then combine the information to portray a picture of the whole system. By studying
how different parameters of the system interact, while “freezing” other parameters, scientists get
to study a sub-system obtained using restrictions. When a complex system of this type is modeled
by a circuit (and this is often done e.g. [Alo06]), the sub-systems may be viewed as restrictions of
the original circuit.

2.2 Computational Biology: Reconstructing Phylogenetic Trees

Phylogenetic trees capture the hereditary structure of a family of extant structures (e.g. species or
proteins) by viewing them as leaves of a tree. Each internal node in the tree represents the (possibly
extinct) least common ancestor of its sub-tree. An internal node and its direct children depict a
single evolutionary step/choice, such as a mutation. These events may be viewed as variables, and
the tree as a decision tree that computes the species at the leaf from a sequence of evolutionary
choices. Lots of literature is devoted to constructing such trees, and known algorithms for this
problem are still quite slow when the number of leaves is large.

Consider an evolutionary process where different mutations thrive and others become extinct
on different islands due to their different environments. We may want to reconstruct the whole
phylogenetic tree from the ones we reconstruct for each island separately. This problem has been
considered in computational biology [ASSU81, HKW99]. In our context, it can be viewed as a
special case of learning decision trees using restriction access, under some unknown distribution of
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values to the variables (i.e. evolutionary choices). We show that this is efficiently possible, even
when the number of live variables in every subtree is very small.

2.3 Automated Provers: Generalizing Proofs from Special Cases

As in science, mathematics provides numerous examples in which we are trying to generalize from
special cases. Often, mathematicians try to prove a statement for a general case, while knowing
how to prove it for a variety of special cases. For example, while the proof of the graph-minor
theorem of Robertson and Seymour is extremely complex, it started from a few examples relating
minor-free families of graphs and their topological embeddings, a connection which drives the proof.

To formalize the problem of reconstructing proofs from special cases, let us restrict ourselves
to propositional proofs and their proof systems. In such systems, one starts with a contradiction,
namely, an unsatisfiable collection of constraints on a set of boolean variables, and a proof of
the fact that it has no satisfying assignments is a sequence of “proof lines.” Each “line” derived
from previous ones by some simple sound deduction rule, until a blatant contradiction is derived.
Different propositional proof systems capture different types of reasoning (e.g. logical, geometric
or algebraic) and appropriately allow different types of “lines.” See the survey [BP98] for more
information.

Propositional proofs are closed under restrictions: Setting some of the variables yields a re-
stricted contradiction (which may be viewed as a “special case” of the general theorem) and simi-
larly a restricted proof of the same type for that restricted contradiction.

What is especially nice about proofs in our context is that in the black-box model they make
no sense. But with partial assignments, one can interpret the resulting proof as a proof of a special
case of the contradiction.

2.4 Cryptography: Identity-Based Encryption

Cryptography provides a wealth of problems where generalizations of black-box access to computa-
tion are useful. A variety of physical attacks are known in which one can get snap-shots of memory
or computation from credit cards, smart cards, shut off computers and more [Koc96, KJJ99, QS01,
GMO01, ARR03]. It is not clear that the restriction access model fits these. However, restriction
access presents itself more naturally in other forms of attack, for example, when the adversary has
access not only to the decryption of specific chosen messages, but actually to sub-computations of
the decryption algorithm. Indeed, in identity-based encryption [BF01], individual users reveal the
decryption circuit to all cypher-texts whose prefix is that user’s name, say. Now assume a few users
collaborate. Can they break the scheme and impersonate others? Such schemes are known for
tailor-made public-key encryption based on Weil-pairings. It is not known if one can achieve it for
standard CCA secure (namely, that withstand black-box attacks) public key systems, for instance,
ones based on RSA.

2.5 Computational Complexity: Collapse of the Polynomial-Time Hierarchy

A well-known example of the dichotomy between having black-box access and clear access to a
circuit is when we assume access to a small circuit C that solves an NP-complete problem, say SAT.
In this case, the very existence of such C implies the collapse of the polynomial time hierarchy PH to
Σ2∩Π2. This class is (to the best of our knowledge) out of reach for a deterministic polynomial-time
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algorithm having black-box access to C (this model computes “only” PNP ). But given the circuit
C itself, a polynomial-time algorithm can use C to eliminate quantifiers one by one, and compute
all of PH. This motivates the question: At what level of restriction access (size of live-variable-set)
does the phase transition occurs?

3 The Formal Setting

For a set of integers L, we denote by f : {0, 1}L 7→ {0, 1} a boolean function on the |L| variables
{xi | i ∈ L}. We start with the simplest restriction, that of functions.

Definition 3.1 (Restrictions). A restriction ρ is a pair ρ = (z, L), where L ⊂ [n] and z ∈ {0, 1}L

is an assignment to variables outside L. Let f : {0, 1}[n] 7→ {0, 1}. The restricted function f |ρ :
{0, 1}L 7→ {0, 1} is naturally defined by fixing the values of the variables outside L to the values
given by z.

Restriction preserve the “names” of the different variables. For example, fixing x1 = 1 in the
function x1 ∧ x2 does not give the same restricted function as fixing x2 = 1, although in both cases
the function computed is dictatorship.

We use the following, rather general, definition of a computational model. This definition allows
us to define the learning model in a generic way. It is helpful to keep in mind the example of decision
trees, and after each definition we shortly consider the application of that definition to decision
trees.

Definition 3.2 (Computational Model). A computational model M is a collection of finite sets
M = {ML : L ⊂ N, |L| < ∞} such that, for each set L, each element D ∈ ML is associated with
a boolean function fD : {0, 1}L 7→ {0, 1}. We say that fD is the function computed by the device
D. We also assume that the elements of M have some encoding as binary strings. For simplicity
of notation, denote Mn = M[n].

In the decision tree example, ML can be thought of as the set of decision trees over variables
in L of size, say, at most |L|3.

A related notion from the language of learning theory is that of a concept class, which is a
class of functions rather than devices. We use devices instead of functions, as we are “opening” the
black-box.

We now abstractly define restriction of computational devices. The definition does not re-
quire the simplification rule to actually “simplify” the device in any way, although any meaningful
simplification rule should.

Definition 3.3 (Simplification Rule). Let M be a computational model, let D ∈ Mn with fD :
{0, 1}n 7→ {0, 1}. A simplification of D according to a restriction ρ = (z, L) is an element D|ρ ∈ML

such that fD|ρ = (fD)|ρ. A simplification rule on M is a mapping S that, given a device D and a
restriction ρ, produces D|ρ.

Again, consider the decision tree example. Here is a (loose) description of a simplification rule
SDT that gets a tree T and restriction ρ = (z, L), and outputs a tree T |ρ (see Section 4 for a formal
definition). The partial assignment z fixes some variables. The tree T |ρ is obtained from T by
removing sub-trees that are not reachable (e.g. due to a fixed variable at the root), and contracting
any remaining paths
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We now define the type of (random) access a learning algorithm has to a restricted device. This
definition is, of course, not the most general possible.

Definition 3.4 (Restriction Sampler). Let M be a computational model and let D ∈ Mn. Let S
be a simplification rule on M. Let ν be a distribution on {0, 1}n, and let τ be a distribution on
subsets of [n]. The restriction sampler Sampler(S, D, ν, τ) is an oracle that computes its output in
the following way:

1. Sample an element x ∈ {0, 1}n according to ν.

2. Sample a set L ∈ [n] according to τ , independently of x.

3. Set z ∈ {0, 1}L to be the values of x on the set L.

4. Compute the simplification D|ρ with the restriction ρ = (z, L) and the simplification rule S.

5. Return (x, ρ,D|ρ).

In the decision tree case, Sampler(SDT , T, ν, τ) outputs a random sub-decision-tree of T , together
with an input and a restriction.

In most cases of interest, the device D|ρ can be efficiently evaluated on the input x. This
explains why the value fD(x) is omitted from the output of the sampler.

We mainly use the following natural distributions on sets (τ in the definition above).

Definition 3.5 (Distribution on Sets). Let Indn(µ) be the distribution on subsets of [n] which
samples a set by independently picking each element in [n] to be in the set with probability µ ∈ (0, 1).
Let Ind(µ) = {Indn(µ) : n ∈ N}.

We are finally ready to define PAC-learning version that uses restriction access.

Definition 3.6 (PAC-learning with Restriction Access). Let M be a computational model and let
S be a simplification rule on M. Let τ = {τn : n ∈ N} be a collection of distributions, τn is a
distribution on subsets of [n].

An algorithm A is an (ε, δ)-PACRA learning algorithm for M with set distribution τ and sim-
plification rule S if, for every n, every D ∈ Mn and every distribution ν on {0, 1}n, when given
samples from Sampler(S, D, ν, τn) the algorithm A outputs with probability at least 1− δ a function
h : {0, 1}n 7→ {0, 1} (in some representation) such that

Px[h(x) 6= fD(x)] ≤ ε.

The learning algorithm A is proper if the output hypothesis h can be computed in M.

4 Learning Decision Trees

A decision tree is a rooted binary tree where every node is labeled by either an input variable
or a constant. If a node v is labeled by an input variable, then it must have two children, each
corresponding to the value of the input variable labeling v. The tree computes a function by taking
a walk on it according to the input, starting from the root and ending at a constant node. The size
of a decision tree is defined to be the number of nodes in it.

For an increasing function k : N 7→ N we denote by DT(k(n)) the computational model which
includes all decision trees on n variables and of size at most k(n). We now formally define the
natural simplification rule for decision trees described earlier.
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Definition 4.1 (Decision Tree Simplification). Let T be a decision tree and let ρ = (z, L) be a
restriction. The simplification rule SDT is specified by the following procedure: Suppose the root of
the tree is labeled by xi and has two subtrees T0, T1. If i ∈ L, set T |ρ as a new tree with xi at the
root and with subtrees T0|ρ, T1|ρ. Otherwise, define T |ρ as Tzi |ρ recursively. If the root of the tree
is labeled by a constant, we leave it as it is.

After defining simplification for decision trees, we can formally state the learning algorithm.

Theorem 4.2. There is a proper (ε, δ)-PACRA learning algorithm A for the class DT(k(n)) with
simplification rule SDT and set distribution Indµ which runs in time poly(n, k(n), 1/ε, log(1/δ), 1/µ).

The theorem states that we can efficiently PAC-learn decision trees using restrictions, when the
underlying distribution on sets is Indµ. The same is true even if instead of Indµ(n) we use any pair-
wise independent distribution on n-bits and marginal µ. We will prove this theorem below after
the following short section which discusses decision tree reconstruction and serves as a warmup to
the PAC-learning proof.

4.1 Warmup: Reconstruction of Decision Trees

We now show how to reconstruct a decision tree from restrictions that leave only two variables
alive. This easy result demonstrates the versatility of our model and demonstrates certain simple
techniques that can be applied in other cases too. A new notion we need to define is that of a
reconstruction algorithm that uses restrictions. For simplicity we only define this notion only for
decision trees.

Definition 4.3 (Reconstruction Algorithm). We say that an algorithm A has restriction query
access to a decision tree T if A can pick a restriction ρ = (z, L) and obtain T |ρ. An algorithm
A is a width-w reconstruction algorithm for decision trees if, given restriction query access, A
reconstructs T (up to isomorphism) using restriction ρ = (z, L) with |L| = w.

Theorem 4.4. There is a polynomial-time deterministic width-2 reconstruction algorithm for de-
cision trees.

Proof. For every node v in T , there is a directed path γ(v) from the root of T to v. This path
is labeled by a sequence of variables which we denote by X(v) = (X(v)

0 , . . . , X
(v)
dv−1), where X

(v)
0 is

labeling the root of T and dv is the depth of v (the label of v is not part of X(v)). It also corresponds
to a boolean assignment to the variables X(v) which we denote by a(v). The assignment a(v) defines
the walk starting at the root and ending at v. The assignment for the root is empty.

The algorithm builds the (hypothesis) tree by performing breadth-first search on T , extending
each path ending by a variable, until reaching a leaf.

Let v be a node reached in the BFS (starting at root).

We already know X(v) and a(v). (For the root both X(v) and a(v) are empty.) Denote by Tv

the subtree of T rooted at v. (By assigning X(v) to take the values given by a(v), we “get access”
to Tv.) Now,

find `(v), the label of v in T :
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This is done as follows. For every i 6= j in [n], define the restriction ρi,j by: variables in X(v) are
set according to a(v), both xi, xj are alive, and all other variables are set to zero. Let Π be the set
of variables xi not in X(v) so that for all xj not in X(v) ∪ {xi}, the variable xi is labeling the root
of T |ρi,j . Clearly, if `(v) ∈ {0, 1} then Π is empty. On the other hand, if `(v) = xi then xi is in Π.
Furthermore, if `(v) = xi then every xj 6= xi is not in Π as seen by ρi,j . Finally, if Π is empty then
the root of, say, T |ρ1,2 is labelled by `(v).

ut

4.2 Learning Decision Trees

The PAC-learning algorithm will follow the intuition of the reconstruction algorithm above. The
random restrictions will leave (with very high probability) at least two live variables, so in principle
we can use the reconstruction algorithm. The main difference is that the input distribution may
be unlikely to follow some paths in the tree all the way to the leaves, and these parts cannot be
reconstructed. However, for PAC- learning we don’t need to discover them anyway. The formal
details follow.

Proof of Theorem 4.2. We will make repeated use of the Chernoff-Hoeffding bound.

Lemma 4.5. If r1, . . . , rm are independent random variables distributed like r so that almost surely
|r − E r| ≤ B, then for every γ > 0, P

(∣∣∣∑s∈[m] rt/m− E r
∣∣∣ ≥ γ

)
≤ 2 exp(−2γ2m/B2).

When dealing with t-wise independence, we use the following well-known estimate (see, e.g,
[BR94]).

Lemma 4.6. Let m,h ∈ N with h ≥ 4 even. Let z1, . . . , zm be h-wise independent zero-one random
variables, and let z =

∑
`∈[m] z`. Then for every γ > 0, P[|z − E z| ≥ γ] < 2

(
mh
γ2

)h/2.

Let ν be a distribution on {0, 1}n and let µ ∈ (0, 1). Let x be chosen according to ν and ρ
defined using x and Ind(µ) as described above. Our goal is to PAC-learn the decision tree T of size
k given random queries of the form (x, ρ, T |ρ).

The algorithm builds the hypothesis tree h, which with high probability will be a subtree of
T , containing all paths that are followed with probability at least ε/k under the (unknown) input
distribution ν.

For every node v in T , define γ(v), X(v), a(v) as in the reconstruction algorithm above. Perform
breadth-first search on T , extending each path ending by a variable, until reaching a leaf. Let v be
any node in T reached in the search (which starts at the root). For the root both X(v) and a(v) are
empty. So, assume that we already know X(v) and a(v). We first figure out if the node v is useful
in terms of PAC-learning. Define the event

Ev = {x agrees with a(v) on X(v)}.

Call v useful if
Px

[
Ev

]
≥ ε/k.

The root is always useful.

Check whether v is useful,
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using Lemma 4.5 by making poly(k/ε, log(1/δ)) queries. The probability of failing this check is at
most δ.

If v is not useful, set v to be a leaf labeled 0 in the hypothesis h.

If v is useful, we can condition on the event Ev without changing the running time and query
complexity by much.

If v is useful, find out its label according to the following three cases:

Denote by Tv the subtree of T rooted at v. Conditioned on Ev, we can get access to Tv|ρ. Make
S = poly(log(k/δ), 1/µ) queries, conditioned on Ev, and let Rv be the set of variables xj so that
(i) xj appeared as the label of the root of Tv|ρ in at least one of these queries and (ii) whenever xj

appeared it was as the label of the root of Tv|ρ.

(a) If |Rv| = 0, set the label of v to be the value of Tv on the first query made.

We claim that with probability 1−δ, if |Rv| = 0 then Tv computes a constant function, specifically,
it has only one node. To prove this it suffices to show that if v’s label is a variable xj , then the
probability that xj is not in Rv is at most δ. Indeed, if v’s label is xj , then the probability that xj

appears as the root of Tv|ρ is µ. In addition, whenever xj appears in Tv|ρ it appears as v’s label.
Therefore, if xj is v’s label, the probability that |Rv| = 0 is at most (1− µ)S ≤ δ.

(b) If |Rv| > 1, abort and output h ≡ 0.

We claim that this happens with probability at most δ. When v’s label is a constant, the size
of Rv is always zero. We have argued that, otherwise, v’s label is in Rv with high probability.
Assume that v’s label is x(v). By the union bound, it suffices to show that for every xj 6= x(v), the
probability that xj is in Rv is at most δ/k. Indeed, conditioned on {xj is in Tv|ρ}, the probability
that x(v) is in Tv|ρ is µ (here we use pair-wise independence). The probability that xj ∈ Rv is thus
at most (1− µ)S ≤ δ/k.

Finally,

(c) If |Rv| = 1, set v’s label to be the single variable x(v) in Rv.

After finding out v’s label, do the following.

If v is labeled by a constant b, set v to be a leaf of h labeled b,

and

otherwise, set X
(v)
dv

= x(v) and continue the breadth-first search to construct h.

Concluding. By the union bound, the total probability of making a wrong decision is at most
O(δk), so, by rescaling δ, the probability of error is as claimed. Assuming all decisions are correct,
the hypothesis h is an ε-approximation to T . Indeed, denote by V the set of nodes that the
algorithm called not useful. Thus,

Px[h(x) 6= T (x)] ≤
∑
v∈V

Px[Ev] ≤ k · ε/k = ε.

ut
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Comment. The algorithm performs well regardless of the labels at the leaves of the tree.

5 Learning DNF Formulas using Population Recovery

We move on to learning DNF formulas using restriction access. This will be quite a bit more
involved. We start by formally defining the model and the result. In subsection 5.1 we define a new
learning problem, Population Recovery, which will be key to learning DNFs, but is also intersting
in its own right. Then in subsection 5.2 we show how to learn DNFs using the population recovery
solver (to be described in the next section).

A DNF formula is a boolean formula of the form F =
∨

i∈[k] Ti where each term Ti is an AND
of several literals (a variable or its negation). DNF formulas are boolean formulas of depth 2.

In our definition of DNFs, we allow terms to be repeated (for example, T1 may be equal to T2)
although there is no computational importance to this fact. However, the order of the terms is not
given, e.g., T1 is not before nor after T2. In other words, a DNF formula can be thought of as a
multi-set of terms.

For an increasing function k : N 7→ N we denote by DNF(k(n)) the computational model which
includes all DNF formulas with n variables and at most k(n) clauses.

A simplification rule can be defined for DNF formulas in the following way.

Definition 5.1 (DNF Formula Simplification). Let F be a DNF formula and let ρ = (z, L) be a
restriction. The simplification rule SDNF is defined using as follows: Write

F =
∨

i∈[k]

Ti

with every term Ti of the form
Ti =

∧
j∈Si

`i,j ,

where Si ⊆ [n] and every `i,j is a literal. For a restriction ρ = (z, L), define F |ρ as follows. For a
literal ` = xe

j with e ∈ {−1, 1} (−1 denotes negation), define

`|ρ =
{

` if j ∈ L,
ze
j if j /∈ L.

For a term T =
∧

j∈S `j, define

T |ρ =


0 if there exists j ∈ S so that `j |ρ = 0,
1 if for all j ∈ S we have `j |ρ = 1,∧

j∈L `j |ρ otherwise.

Define

F |ρ =


1 if there exists i so that Ti|ρ = 1,
0 if for all i we have Ti|ρ = 0,∨

i:Ti|ρ 6=0 Ti|ρ otherwise.
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Observe that in F |ρ there could be several Ti|ρ that are the same, even if all terms of F are
different. Such terms are provided with repetitions. Also observe that given ρ and F |ρ we can
efficiently compute F (x) where x is the input defining ρ.

The following theorem says that we can learn DNF formulas from restrictions as long as a
(sufficiently large) constant fraction of the variables are “alive.”

Theorem 5.2. For all µ ≥ 0.365, there is a proper (ε, δ)-PACRA learning algorithm A for the class
DNF(k(n)) with simplification rule SDNF and set distribution Indµ which runs in time poly(n, k(n),
1/ε, log(1/δ)).

Similar to the case of decision trees, the algorithm works even when the underlying distribution
on sets is only t-wise independent with t ≥ C log(nk(n)/ε), C > 0 a universal constant.

The proof of the above theorem, which is given below, is by reduction to the population recovery
problem.

5.1 Population Recovery

We start with a rough description of the learning scenario of the population recovery problem
(PRP). There is some unknown population of k individuals numbered 1 to k. Each individual
i ∈ [k] has a set of attributes encoded as a vector of values Mi ∈ Σn, where Σ is some finite
alphabet. There is some (unknown) distribution π on the population. The learner has access to
random and partial samples from the population. Each sample is obtained by choosing a random
individual according to π, and then randomly obliterating some of the attributes of that individual.
The leaner’s goal is to reconstruct the population and all of its attributes.

Definition 5.3 (Population Recovery Sampler). Let M be a k×n matrix over an alphabet Σ. Let
0 < µ < 1 and π be a probability distribution over k. Define SamplerPRP(M,µ, π) as the following
procedure that samples restrictions of M . First, pick a row R of M according to π, namely, R is
row i of M with i distributed according to π. Second, pick J according to Indn(µ). Third, replace all
entries in R whose indices are outside J by the symbol ∗, assumed not to be in Σ. Finally, output
the random vector in (Σ ∪ {∗})n thus obtained.

The problem is formally defined as follows.

Definition 5.4 (Population Recovery Problem). The population recovery problem (PRP) is, given
a noticeability parameter p > 0 and access to samples from SamplerPRP(M,µ, π), without knowing
M,µ, π or even k, output (exactly) all rows i of M for which π(i) ≥ p.

The following theorem states a solution to PRP, for some range of marginals.

Theorem 5.5. For all µ > 0.365, there is an algorithm that runs in time poly(n, k, 1/p, log(1/δ)),
and with probability at least 1− δ solves PRP with noticeability p > 0.

The proof of the theorem actually follows by a reduction to an easier problem, the individual
recovery problem (IRP), we presently define. We mention that the PRP solver actually work when
the underlying distribution on J is only t-wise independent for t roughly log(nk). For more details,
see the proofs below.
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5.2 Learning DNF Formulas

Proof of Theorem 5.2. Let ν be an arbitrary distribution on inputs in {0, 1}n and µ > 0.365. Let
x ∼ ν and ρ ∼ (ν, µ). Our goal is to PAC-learn F given random queries of the form (x, ρ, F |ρ).

To learn F we shall employ the population recovery solver. As we shall see, the reduction to
the population recovery works only when F does not contain short terms, i.e., terms with at most
Q = O(log(k/ε)/µ) literals. To overcome this, we partition the learning procedure to two parts.
Write F = F1 ∨ F2, where F1 consists of all short terms in F (with at most Q literals) and F2

consists of all long terms (with more than Q literals). In the first part we learn F1 by brute force.
This is possible as with non-negligible probability every short term appears in F |ρ. In the second
part, we use the fact that we already learned all short terms to reduce the learning process to that
of learning just F2. We then learn F2 by a simple reduction to the population recovery solver.

Pre-processing. We start with a pre-processing step: understanding whether F is close to being
1 or not. This can be easily done using black-box access. Make q0 = O(log(1/δ)/ε2) queries and
denote by v1, v2, . . . , vq0 ∈ {0, 1} the value of F on these queries. Denote n0 =

∑
j∈[q0] vi/q0. Make

the following decision:

If n0 ≥ 1− ε/2, output the hypothesis h0 ≡ 1.

By Lemma 4.5, if Px[F (x) = 1] ≤ 1− ε, then

P[output h0] = P[n0 < 1− ε/2] ≤ δ.

Similarly, if Px[F (x) = 1] ≥ 1− ε/4, then

P
[
Px[F (x) 6= h0] ≥ ε

]
≤ δ.

For the rest of the proof we can thus assume that we either already output the correct answer or

Px[F (x) = 0] > ε/4 (1)

(this holds with probability at least 1− δ).

Learning short terms. The intuition behind this part of the learning process is that for every
short term T in F , with at least polynomially small probability, all the literals in T are alive (i.e.
in L). Therefore, if we make polynomially many queries, with high probability, every short term
will appear fully. This process may introduce some terms that are not in F , and we need to filter
them out (the extra terms are restrictions of longer terms).

Make q1 = poly(µQ, k, 1/ε, log(2/δ)) queries, and let

I0 be the set of terms of length at most Q that appear in these q1 queries.

The size of I0 is at most q1k. Some of the terms in I0 may not be part of F . We shall filter them
later on. We claim that with very high probability, every term Ti in F of length at most Q is in
I0. The probability that such a term Ti appears in a single query is at least

Px[F (x) = 0] · µQ > (ε/4)µQ.
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The choice of q1 thus implies that the probability that Ti does not appear in any of the q1 queries
is at most (1− (ε/4)µQ)q1 ≤ δ/k. The union bound implies our claim.

We now filter all short terms that should not be in the hypothesis. This is done by black-box
access. Ask another q′1 = poly(q1, k, 1/ε, log(1/δ)) queries. For every T ∈ I0, let NT be the number
of queries among the q′1 asked so that T (x) > F (x) with x from that query. Let I1 be the set of
term T in I0 so that NT = 0, and define the hypothesis h1 as

h1 =
∨

T∈I1

T.

If I1 is empty, set h1 = 0. Intuitively, the hypothesis h1 should be a good approximation to F1. If
a term T ∈ I0 admits Px[T (x) > F (x)] ≥ ε/(2q1k), then

P[T ∈ I1] ≤ (1− ε/(2q1k))q′1 ≤ δ/(q1k).

The union bound hence implies that

P
[
Px[h1(x) > F (x)] ≥ ε/4

]
≤ δ. (2)

Similar to the check whether F is 1 or not, with probability at least 1− δ of success,

check whether Px[h1(x) < F (x)] ≤ ε/2. If this holds output h1.

The correctness in this case follows by (2). Indeed, if Px[h1(x) < F (x)] ≤ ε/2 then with probability
at least 1− 2δ,

Px[h1(x) 6= F (x)] ≤ ε.

For the rest of the proof we can thus assume that

Px[h1(x) < F (x)] > ε/2. (3)

Learning long terms via population recovery. In this part we use the population recovery
solver to learn all long terms in F . As we shall explain, the population recovery solver will work
only as long as all terms in F are long. Intuitively, as we have already learned all short terms in F ,
we will be able to assume that F contains only long terms. This, in turn, will enable us to reduce
the learning task to population recovery. The main helpful observation behind this reduction is
that, with very high probability, all long terms are alive (i.e., have at least one live literal in them).

The matrix M underlying the population recovery consists of encodings of terms in F and a
special row of ⊥ symbols. Recall F =

∨
i∈[k] Ti. For every term Ti in F , there is a row Mi ∈

{−1, 0, 1}n that encodes Ti defined by Mi,j = ei,j if j ∈ Si where Ti =
∧

j∈Si
x

ei,j

j , and Mi,j = 0
otherwise. The row Mk+1 encodes “skip” and is defined as (⊥,⊥, . . . ,⊥).

We now implicitly explain how the probabilities π(1), . . . , π(k + 1) are defined. Let (x, ρ, F |ρ)
be a query. If either h1(x) 6= 0 or F (x) 6= 1, then do not produce any sample to the population
recovery solver. Otherwise, h1(x) = 0 and F (x) = 1. If F |ρ contains a literal (F |ρ 6= 1), then choose
I uniformly at random from all i ∈ [k] so that Ti|ρ 6= 1, and produce as a sample to population
recovery the encoding of TI |ρ, that is, if TI |ρ =

∧
j∈S x

ej

j , then produce the sample v defined by for
all j ∈ [n],

vj =


ej if j ∈ S,
∗ if j 6∈ L,
0 otherwise

(4)
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(observe that L is known from ρ). Otherwise, produce “skip”, that is, the sample v defined by for
all j ∈ [n],

vj =
{
⊥ if j ∈ L,
∗ if j /∈ L.

Summarizing, the queries produced for the population recovery are (roughly) generated by

condition on {h1(x) = 0, F (x) = 1, F |ρ 6= 1} and produce noisy encoding of TI |ρ.

We conditioned on the event

E = {h1(x) = 0, F (x) = 1}.

Inequality (3) tells us that the probability of E is at least ε/2, and so this conditioning does not
affect the running time and query complexity by much.

What are the π(i)’s? Denote by σx the set of terms Ti in F so that Ti(x) = 1. Observe that if
F |ρ 6= 1 for some x that agrees with ρ, then every Ti ∈ σx has a living variables (since otherwise
Ti|ρ = 1 and so F |ρ = 1). For a term Ti in F , we thus have

π(i) =
∑
`∈[k]

1
`

Px,ρ

[
F |ρ 6= 1, |σx| = `, Ti ∈ σx

∣∣E].
This shows that the ∗ entries may not be independent of the choice of the terms we see (since the
event {F |ρ 6= 1} depends on the positions of the ∗’s). Our goal is to show that, nevertheless, the ∗
entries are close to being independent of these terms. If this is the case, the population recovery
algorithm will serve its purpose.

Recall that (with probability 1− δ) h1 contains all clauses of length at most Q in F . For every
fixed x ∈ E , therefore, every term in σx is of length more than Q. So, even for every fixed x ∈ E ,

Pρ

[
F |ρ = 1

∣∣x] ≤ k(1− µ)Q ≤ poly(1/k, ε), (5)

for a small polynomial to be determined (this inequality determines Q). Specifically,∣∣∣∣∣∣π(i)−
∑
`∈[k]

1
`

P
[
|σx| = `, Ti ∈ σx

∣∣E]
∣∣∣∣∣∣ ≤ poly(1/k, ε).

The events {|σx| = `, Ti ∈ σx} and E are measurable with respect to x, and so are independent
of {j : ρj = ∗}. The joint distribution of the row of M chosen and the set {j : ρj = ∗}, is hence
statistically close to being independent. This statistical distance can be chosen to be at most
p/2 := ε/(16k2), for small enough poly(1/k, ε) above.

Run the population recovery solver with noticeability p = ε/(8k2) and probability of error δ.

Theorem 5.5 implies that (with probability at least 1− δ) the PRP solver outputs all rows i of M
with π(i) ≥ p, as long as the distribution of the ∗ entries is independent from the distribution on
rows of M . As discussed above, the ∗ entries are not independent of the row chosen, so the theorem
as stated does not hold in this case. However, the distribution of samples produced to the PRP
solver are statistically close to satisfying the assumptions required for the PRP solver to perform
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well. It can be verified that the population recovery solver performs well, even under this more
general conditions.

Denote by I2 the set of terms the population recovery solver produced as output, and denote

h2 =
∨

T∈I2

T.

If I2 is empty, set h2 = 0.

Output h = h1 ∨ h2.

By correctness of the PRP solver, every term in h2 is also in F , and so h2 < F as functions.
Equation (3) thus implies

Px[h(x) > F (x)] ≤ ε/2.

It remains to show that h is almost always not smaller than F . With probability at least 1 − δ,
every term in F not in I2 satisfies pi < 2p. Every such term thus satisfies, using (5),

2p >
∑
`∈[k]

1
`

Px,ρ

[
Ti ∈ σx, F |ρ 6= 1, |σx| = `

∣∣E]
≥
∑
`∈[k]

1
2k

Px

[
Ti ∈ σx, |σx| = `

∣∣E]
=

1
2k

Px

[
Ti(x) = 1

∣∣E].
In other words, for every such Ti we have

P
[
Ti(x) = 1

∣∣h1(x) < F (x)
]

= P
[
Ti(x) = 1

∣∣E] < ε/(2k).

The union bound thus implies

P
[
h(x) < F (x)

]
≤ P

[
h2(x) < F (x)

∣∣h1(x) < F (x)
]
≤ ε/2.

ut

6 Solving PRP using Robust Local Inverses

In this section we describe the main technical contribution of this work: A solution to a the
population recovery problem (PRP) for some range of parameters. A key ingredient of the proof
is a construction of a robust local inverse for some matrix, as we explain below. The plan of this
section is as follows.

In subsection 6.1 we reduce PRP to a simpler problem, called Individual Recovery (IRP) -
determining the probability of a fixed, known row of the matrix. In subsection 6.2 we define robust
local inverses, and state their existence (and properties) for a certain matrix we will use. These
inverses are used in turn to solve IRP in subsection 6.3. Finally we show how to construct these
robust local inverses in subsection 6.4.
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6.1 Individual Recovery

We now describe a (somewhat) easier version of PRP, which we call individual recovery problem
(IRP). Roughly, IRP just requires to compute the π-probability of a given vector of attributes,
which may or may not be in the underlying database. We consider IRP for two reasons. One is
that PRP can be easily reduced to IRP. The second is that, as IRP is simpler, the IRP solver
explains the main ideas of the PRP solver in a clear way.

Definition 6.1 (Individual Recovery Problem). The individual recovery problem (IRP) is, given
an accuracy parameter p > 0, a vector v ∈ Σn and access to samples from SamplerPRP(M,µ, π),
without knowing M,µ, π, output, up to an additive factor p > 0, the sum P (v) =

∑
i∈[k]:Mi=v π(i).

To solve IRP, that is, to estimate P (v), we would like to just count the average number of times
v occurs. But, because entries are obliterated, this task is not straightforward. Here is a simple
example demonstrating some of the difficulties. Assume that M is an n + 1 × n matrix obtained
by adding to the identity one extra row of zeros (i.e., if 1 ≤ i ≤ n then Mi,j = 1 if i = j and
Mi,j = 0 otherwise, and if i = n + 1 then Mi,j = 0 for all j). The sample (0, ∗, 0, 0, ∗, 0, . . . , 0), for
example, can originate from at least three different rows in M . Assume π is uniform on [n], and
π′ is uniform on [n + 1]. Let S be the output of SamplerPRP(M, 1/2, π) and S′ be the output of
SamplerPRP(M, 1/2, π′). The IRP solver with accuracy 1/n3 and v = 0 easily distinguishes between
S and S′. To do so, it needs to estimate certain statistics of S and S′. The IRP algorithm does
exactly that: it estimate some statistics and then use them to estimate P (v).

Theorem 6.2. For all µ > 0.365, there is an algorithm that runs in time poly(1/p, log(2/δ)), and
with probability at least 1− δ solves IRP with accuracy p > 0.

The IRP solver easily yields the PRP solver, stated in Theorem 5.5.

Proof of Theorem 5.5. The idea is to use IRP iteratively for n times. At each time j ∈ [n], recon-
struct one more column of M .

The algorithm starts with a short pre-processing stage: Estimate Σ by

let Σ̃ ⊆ Σ be the set of all alphabet symbols that appeared in poly(1/p, log(nk/δ)) queries.

For a vector v in Σj for j ∈ [n], denote by P (v) the sum of π(i) over all rows i ∈ [k] that agree
with v on indices in [j]. The algorithm shall construct sets S1, . . . , Sn. Each set Sj will contain,
w.h.p., all prefixes of length j of rows in M .

For j = 1, run the IRP algorithm with noticeability p/4 to estimate P (σ) for all σ in Σ̃, and

set S1 to be all values σ in Σ̃ for which the IRP algorithm says P (σ) > p/2.

For j > 1, we thus obtained a set Sj−1.

Define the set S′
j to be the concatenation of every vector v in Sj−1 and an element of Σ̃.

The size of S′
j is |Sj−1| · |Σ̃| ≤ k2n. Run the IRP algorithm with noticeability p/4 on every v in S′

j

to estimate P (v), and

define Sj to be the set of v in S′
j so that P (v) > p/2.
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Finally,

output Sn.

Running time: The number of applications of the IRP algorithm is at most k2n2 times. So,
the total running time is at most poly(n, k, 1/p, log(1/δ)) as stated.

Probability of error: Error can occur in one of two places: in the pre-processing stage and
in one of the applications of the IRP solver.

The size of Σ̃ is at most nk. For every alphabet symbol σ in Σ that appears in a row i of M with
pi ≥ p, the probability that σ does not appear in all the S queries is at most (1− pµ)S ≤ δ/(nk).
The union bound thus implies that the probability that there is an alphabet symbol that we missed
is at most δ.

At each application of IRP, the probability of making an error is δ. By the union bound, the
total error is thus at most k2n2δ.

By scaling δ appropriately, the total error of PRP is at most δ (and the change in the running
time is too small to matter). ut

An important ingredient of the IRP solver is a robust local inverse of a specific matrix. Before
describing the solution to IRP, we thus define and state the main result concerning robust local
inverses. Later, we describe the IRP solver, and only then prove the results for robust local inverses.

6.2 Robust Local Inverses

Roughly, a robust local inverse of matrix M at the vector v is a vector u so that

• the norm ‖u‖ is not too large, and

• the norm ‖Mu− v‖ is very small, say, at most a given ε.

When all the eigenvalues of M are bounded away from zero (more precisely when the condition
number of M is sufficiently small), M has local inverses at all vectors. In our case M will be the
“binomial” matrix, which has exponentially small eigenvalues, but nevertheless has robust local
inverses at some vectors.

Let µ > 0 and define B = Bn(µ) as the n+1 by n+1 matrix whose (i, j) entry, i, j ∈ {0, 1, . . . , n},
is

Bi,j = µj(1− µ)i−j

(
i

j

)
(where

(
0
0

)
= 1). We call B the µ-binomial matrix. The matrix B is invertible and its eigenvalues

are µi, i ∈ {0, 1, . . . , n}. We consider robust local inverses for B at e0, where (e0)j is 1 if j = 0 and
0 otherwise.

Consider the unique vector w = wn(µ) such that Bw = e0. This vector is

wj = (−1)j((1− µ)/µ)j , (6)

indeed, for every i ∈ {0, 1, . . . , n},

(Bw)i = (1− µ)i
∑

j

(−1)j

(
i

j

)
=
{

1 if i = 0,
0 if i 6= 0.
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For µ ≥ 1/2, the norm of w is polynomial in n, so although B has exponentially small eigen-
values, it also has good robust local inverses at e0. For µ < 1/2, on the other hand, the norm of w
is exponentially large. Nevertheless, we construct good robust local inverses at e0 (for µ ≥ 0.365).

For ε > 0, define

BN(ε;µ, n) = min{‖u‖ : ‖Bu− e0‖ ≤ ε} (7)

where ‖u‖. The minimum is well defined, due to compactness. The discussion above implies that
BN(0;µ, n) is exponential in n for µ < 1/2. The following theorem, proved is Section 6.4 below,
states the existence of good robust local inverses.

Theorem 6.3. For every µ ≥ 0.365, integer n and ε > 0,

BN(ε;µ, n) ≤ poly(1/ε).

In fact, we construct an explicit vector u = u(ε;µ, n) so that ‖Bu − e0‖ ≤ poly(1/ε). This choice
of u has the following two advantages: (1) its norm is Holder continuous in µ, that is, for every
µ′ ≥ µ,

‖u(µ)− u(µ′)‖ ≤ poly(1/ε)
√
|µ′ − µ|,

and (2) it has logarithmic support, namely, {j : uj 6= 0} ⊂ {0, 1, . . . , O(log(2/ε))}.

In general, we expect the degree of the polynomials poly(1/ε) and the size of the support in the
theorem to depend on µ. The reason we do not get a dependency on µ is that µ is bounded away
from zero.

The two extra properties of u are advantages in the following sense. Holder continuity tells us
that even if we do not know µ exactly, but rather have some good estimate µ′ for µ, then u(µ′) will
do as good job as u(µ). Logarithmic support tells us that u in fact “works” for a wider class of
matrices: as long as the first O(log(1/ε)) columns in a matrix B′ are the same as B, we have that
B′u is close to e0 as well.

Observe that by solving a convex program, we can approximate an optimal u given ε, µ, n. For
our purposes this is not enough, and the important part is the asymptotic behavior of BN(ε;µ, n) as
ε tends to zero. So Theorem 6.3 is interesting even without constructing u explicitly. In particular,
just the knowledge of a polynomial upper bound, even without explicit u, yields efficient population
recovery solver. Unfortunately, we do not know how to use this information.

The condition µ ≥ 0.365 is a consequence of our methods, and we do not believe it to be tight.
Our methods, in fact, imply a slightly smaller constant than 0.365, but they do not work for much
smaller marginals.

We now proceed to prove Theorem 6.3. Our goal is, for µ ≥ 0.365 and ε > 0, to construct a
vector u of small norm so that ‖Bu − e0‖ ≤ ε, where B is the µ-binomial matrix. We start with
an example, motivating our construction. Recall the unique vector v so that Bv = e0 given in (6),

vj = (−1)j((1− µ)/µ)j , j ∈ {0, 1, . . . , n}.

This is the only vector in BN(ε;µ, n) for ε = 0. The “problem” with this vector is that for µ < 1/2,
its norm is exponentially large. Our construction will be a carefully chosen “perturbation” of v.
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6.3 IRP Solver

Proof of Theorem 6.2. By moving from PRP to IRP, we are left with the crux of the algorithm:
estimating the contribution of a single individual to the database, that is, estimating

P (v) =
∑

i∈[k]:Mi=v

π(i).

The algorithm consists of three steps: making queries, estimating the marginal µ, and estimating
P (v). Of the three steps, the last is the most important and complicated.

Make queries. The algorithm starts by asking S queries so that whenever it estimates some
quantity it can assume that the estimate is indeed good.

Make S = poly(1/p, log(2/δ)) queries κ(1), κ(2), . . . , κ(S) .

Estimate the marginal. Let α = poly(p) be a small error so that the following holds (specifically,
so that (9) below holds). Estimate µ via the average number of times the symbol ∗ occurs,

µ̃ =
∑

s∈[S] 1{κ(s)1 6=∗}/S.

If µ̃ < 0.365, set µ̃ = 0.365. Lemma 4.5 implies that

P[|µ̃− µ| > α] ≤ δ. (8)

Estimate P (v). As previously described, the algorithm estimate certain natural statistics. Due
to sampling errors, it is not completely straightforward, however, how to use these statistics. This
use will require a robust local inverse for a matrix (which we later describe).

We are interested in the hamming distance from v. For simplicity we make the following abuse
of notation. We think of a vector w with entries in Σ ∪ {∗} also as the subset of [n] of all j ∈ [n]
so that wj 6∈ {vj , ∗}. Specifically, |w| is the number of entries j with wj 6= ∗ in which w and v do
not agree. This definition, of course, depends on the vector v.

The statistics we shall gather will be of the average number of queries that are of distances from
v: For every a ∈ {0, 1, . . . , n}, define Ya as the probability that a query κ (distributed according to
SamplerPRP(M,µ, π)) has distance a from the vector v,

Ya = E1{|κ|=a}.

It is easy to check that P (v) is a linear combination of Y0, . . . , Yn (more details follow). Due to
sampling errors, we shall only have an estimate of the Ya’s, and so to compute P (v) we need to
use a linear combination of small norm. Such a linear combination is available via a robust local
inverse.

In fact, we shall only use the first A + 1 of the Ya’s, where

A = dCA log(2/p)e,

CA > 0 is a universal constant to be determined (CA is universal only since µ is bounded away
from zero). For every a ∈ {0, 1, . . . , A}, compute

Ỹa =
∑
s∈[S]

1{|κ(s)|=a}/S.
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Estimate P (v) using a linear combination of Ỹa: The linear combination is the robust local
inverse ũ = u(ε; µ̃, t) given by Theorem 6.3 above with ε = p/(10(A + 1)) and t = d3A/µ2e.
Estimate P (v) by

output P̃ (v) =
∑

a∈{0,1,...,A} ũaỸa.

The algorithm is thus defined. It remains to prove correctness. The following proposition is
the basic observation behind the choices we made. The proposition says that we can find a vector
u so that the inner product of u and Y is close to P (v). The vector ũ the algorithm uses is an
estimation of the “real” u, since µ̃ is only an estimate of µ.

Proposition 6.4. Let u = u(ε;µ, t) be as given by Theorem 6.3 with ε = p/(10(A + 1)). Then,∣∣∣∣∣∣P (v)−
∑

a∈{0,1,...,A}

uaYa

∣∣∣∣∣∣ ≤ (A + 1)

(
ε +

18
µ2

(
3
4

)A/2
)
≤ p/6.

Before proving the proposition, we show how it completes the proof. Equation (8) says that
|µ̃− µ| is, w.h.p., small. Theorem 6.3 thus implies that ‖u− ũ‖ is, w.h.p., small as well. Formally,
with probability at least 1− δ,∣∣∣∣∣∣

∑
a∈{0,1,...,A}

uaYa −
∑

a∈{0,1,...,A}

ũaYa

∣∣∣∣∣∣ ≤ ‖u− ũ‖ · ‖Y ‖ ≤ poly(1/p)
√
|µ− µ̃|(A + 1) ≤ p/6. (9)

Lemma 4.5 and the union bound (applied to the approximation of Y by Ỹ ) imply that with
probability at least 1− δ,∣∣∣∣∣∣

∑
a∈{0,1,...,A}

ũaYa − P̃ (v)

∣∣∣∣∣∣ ≤ ‖ũ‖ · ‖Y − Ỹ ‖ ≤ poly(1/p)‖Y − Ỹ ‖ ≤ p/6.

Proposition 6.4 and the triangle inequality finally imply that

P
[∣∣P (v)− P̃ (v)

∣∣ > p/3
]
≤ O(δ),

which completes the proof.

Remark 6.5. The algorithm works as long as the obliteration process is t-wise independent with
t = d3A/µ2e.

Proof of Proposition 6.4. Linearity of expectation implies that for every a ∈ {0, 1, . . . , A},

Ya = E1{|κ|=a} =
∑
i∈[k]

pi P[|Mi ∩ J | = a],

where J is the random subset of [n] with marginals µ defining κ (recall that we think of Mi as a
subset of [n] consisting of the entries in which Mi and v do not agree).

As long as J is t-wise independent, for every i with |Mi| = q ≤ t, we have

P[|Mi ∩ J | = a] = µa(1− µ)q−a

(
q

a

)
.
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For other i’s, by Lemma 4.6, it is unlikely that |Mi ∩ J | = a. Write

Ya =
∑

q∈{0,1,...,t}

µa(1− µ)q−a

(
q

a

)
Qq +

∑
r∈{t+1,t+2,...,n}

Rr(a),

where
Qq =

∑
i∈[k]:|Mi|=q

pi and Rr(a) =
∑

i∈[k]:|Mi|=r

pi P[|Mi ∩ J | = a].

Since t ≥ 3A/µ2, we have µr − A ≥ 2µr/3 for every r > t. For all r ∈ {t + 1, t + 2, . . . , n},
Lemma 4.6 with m = r and h = A thus implies that for all i ∈ [k] with |Mi| = r,

P
[∣∣|Mi ∩ J | − µr

∣∣ ≥ µr − a
]
≤ 2

(
9rA

4µ2r2

)A/2

= 2
(

9A

4µ2r

)A/2

.

So ∑
r∈{t+1,t+2,...,n}

Rr(a) ≤ 2
(

9A

4µ2

)A/2 ∞∑
r=t+1

r−A/2

≤ 2
(

9A

4µ2

)A/2 ∫ ∞

ξ=t
ξ−A/2dξ

= 2
(

9A

4µ2

)A/2 1
A/2− 1

t1−A/2

≤ 6A

µ2(A/2− 1)

(
3
4

)A/2

<
18
µ2

(
3
4

)A/2

.

Denote

Za =
∑

q∈{0,1,...,t}

µa(1− µ)q−a

(
q

a

)
Qq.

For every a ∈ {0, 1, . . . , A}, therefore,

|Ya − Za| ≤
18
µ2

(
3
4

)A/2

.

In matrix notation, we can write
Z = BT Q,

where Z = (Z0, Z1, . . . , ZA), Q = (Q0, Q1, . . . , Qt), and B is a t + 1 by A + 1 binomial matrix with
marginal µ. By choice of u, we know that Bu is ε-close to the vector (1, 0, 0, . . . , 0). Recall that
Q0 = P (v). Thus,∣∣∣∣∣∣

∑
a∈{0,1,...,A}

uaZa − P (v)

∣∣∣∣∣∣ = ∣∣uT Z − P (v)
∣∣ = ∣∣uT BT Q− P (v)

∣∣ ≤ ε(A + 1).
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Finally, the triangle inequality implies∣∣∣∣∣∣
∑

a∈{0,1,...,A}

uaYa − P (v)

∣∣∣∣∣∣ ≤ (A + 1)

(
ε +

18
µ2

(
3
4

)A/2
)

.

ut
ut

6.4 Construction of Robust Local Inverses

Proof of Theorem 6.3. Let A = A(ε) be an accuracy parameter to be determined below. Define u
as follows

uj = uj(µ) = (−1)j((1− µ)/µ)jp(j), j ∈ {0, 1, . . . , n}, (10)

where

p(j) = 2−A
∑

`∈{j,j+1,...,n}

(
A

`

)
.

Roughly, the vector u is a “composition” of the “optimal” v from (6) with a 1/2 binomial distri-
bution over a universe of size A.

As u0 = 1, we have (Bu)0 = 1. It thus suffices to prove that for every i ∈ {1, 2, . . . , n},∑
1≤i≤n

(
(Bu)i

)2 ≤ C · cA (11)

with C > 0 and c < 1 universal constants. Indeed, if this inequality holds we can choose

A = dlogc(ε/C)e

so that
‖Bu− e0‖ ≤ C · cA ≤ ε and ‖u‖ ≤ A(1/µ)A ≤ (1/ε)O(log(2/µ)).

Before proving (11), we show that the two advantages of u indeed hold. The mean value theorem
implies that for every ν ≥ µ, there exists µ ≤ σ ≤ ν so that

‖u(µ)− u(ν)‖2 =
d

dν
‖u(µ)− u(ν)‖2

∣∣
ν=σ

· |ν − µ|

=

∑
j∈{0,1,...,A} 2jp(j)((1− µ)/µ)j − ((1− ν)/ν)j

)
((1− ν)/ν)j−1

ν2

∣∣∣∣∣
ν=σ

· |ν − µ|

≤ 2A2(1/µ)2A+2 · |ν − µ|.

The choice of A thus implies that for every µ′ ≥ µ,

‖u(µ)− u(µ′)‖ ≤ (1/ε)O(log(2/µ))
√
|µ′ − µ|.

In addition, the support of u is indeed {0, 1, . . . , A} with A = O(log(2/ε)).
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We now prove (11). Using the identity
∑

j∈{0,1,...,`}(−1)j
(

i
j

)
= (−1)`

(
i−1
`

)
, we have that for

every i ∈ [n],

(Bu)i =
∑

j∈{0,1,...,n}

µj(1− µ)i−j

(
i

j

)
uj

= (1− µ)i
∑

j

(
i

j

)
(−1)j2−A

∑
`∈{j,j+1,...,n}

(
A

`

)

= (1− µ)i
∑

`∈{0,1,...,n}

2−A

(
A

`

) ∑
j∈{0,1,...,`}

(
i

j

)
(−1)j

= (1− µ)i
∑

`

(−1)`2−A

(
A

`

)(
i− 1

`

)
.

We evaluate the sum (11) is three different regions.
Region one: i < A/6. As

(
A
`

)
is monotone increasing in ` for ` ≤ A/6, the triangle inequality

implies

|(Bu)i| =
∣∣∣(1− µ)i

∑
`

(−1)`2−A

(
A

`

)(
i− 1

`

)∣∣∣ ≤∑
`

2−A

(
A

`

)(
i− 1

`

)
≤ 2−A+wA

(
A

w

)

for w = bA/6c. We use well-known properties of the entropy function to upper bound
(
A
w

)
. For

a random variable r taking values in a set X, the entropy function is H(r) = −
∑

x∈X P[r =
x] log P[r = x]. For two random variables r and r′, convexity implies H(r, r′) ≤ H(r) + H(r′). By
standard notation, H(β) is the entropy of a zero-one random variable with expectation 0 ≤ β ≤ 1.
If r = (r1, . . . , rA) ∈ {0, 1}A is random variable distributed uniformly in the set of all vectors with
z ones, then

log
(

A

z

)
= H(r) ≤

∑
i∈[A]

H(ri) ≤ AH(1/6). (12)

Therefore, ∑
0≤i<A/6

(
(Bu)i

)2 ≤ (A/6 + 1)A2−A(5/6−H(1/6)) ≤ C1 · cA,

C1 > 0 a universal constant.
Region two: i > 5.96 ·A. The triangle inequality implies

|(Bu)i| =
∣∣∣(1− µ)i

∑
`

(−1)`2−A

(
A

`

)(
i− 1

`

)∣∣∣ ≤ (1− µ)i
∑

`

2−A

(
A

`

)(
i− 1

`

)
.

Since
∑

` 2−A
(
A
`

)
= 1 and the maximal value of

(
i−1
`

)
for ` ≤ A is attained at ` = A,

|(Bu)i| ≤ (1− µ)i

(
i− 1
A

)
≤ (1− µ)i

(
i

w

)
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with w = bi/5.96c. Entropy arguments, similar to (12), thus imply

|(Bu)i| ≤ (1− µ)i2iH(1/5.96) ≤
(
(1− µ)2H(1/5.96)

)i ≤ ci,

as µ ≥ 0.365. Therefore, ∑
5.96A<i≤n

(
(Bu)i

)2 ≤ ∞∑
i=A

ci ≤ C2 · cA,

C2 > 0 a universal constant.
The hardest case to analyze is case three: A/6 ≤ i ≤ 5.96 ·A. In this case, we use the

following well-known equalities (see, e.g., [AS64]) and the following lemma. Recall Euler’s Gamma
function Γ(z) =

∫∞
0 wz−1e−wdw. It satisfies Γ(z + 1) = z! for every integer z ≥ 1. Stirling’s

approximation: Γ(z) = Θ(e−zzz−1/2), for every real number z ≥ 1.

Lemma 6.6. For every two integers g and h that are at most n,∣∣∣∣∣∣
∑

`∈{0,1,...,n}

(−1)`

(
g

`

)(
h

`

)∣∣∣∣∣∣ ≤ 2g+hB((g + 1)/2, (h + 1)/2),

where B is the Beta function, that is, B(z, w) = Γ(z)Γ(w)/Γ(z + w).

Before proving the lemma, we show how it completes the proof. By Lemma 6.6,

|(Bu)i| = (1− µ)i2−A
∣∣∣∑

`

(−1)`

(
A

`

)(
i− 1

`

)∣∣∣ ≤ (1− µ)i2i−1B((A + 1)/2, i/2). (13)

We use Stirling’s approximation to upper bound the Beta function,

B((A + 1)/2, i/2) ≤ B(A/2, i/2)

≤ O
(
e−A/2(A/2)A/2−1/2e−i/2(i/2)i/2−1/2e(A+i)/2((A + i)/2)−(A+i)/2+1/2

)
≤ O

(
AA/2ii/2(A + i)−(A+i)/2

)
.

Upper bound the square of last quantity,

AAii(A + i)−(A+i) = eA ln A+i ln i−(A+i) ln(A+i) = ei((A/i) ln(A/(A+i))+ln(i/(A+i))).

Thinking of i as i = ξA,

AAii(A + i)−(A+i) = ei((1/ξ) ln(1/(1+ξ))+ln(ξ/(1+ξ))) := eiE(ξ),

where
E(ξ) = (1/ξ) ln(1/(1 + ξ)) + ln(ξ/(1 + ξ)).

The derivative of E(ξ) is positive for ξ > 0, as d
dξE(ξ) = (1/ξ2) log(1 + ξ). Since i ≤ 5.96 · A, we

can thus conclude

AAii(A + i)−(A+i) ≤ eiE(5.96). (14)
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Equations (13) and (14) thus imply

|(Bu)i| ≤ C ·
(
(1− µ)2eE(5.96)/2

)i ≤ C · ci,

as µ ≥ 0.365. Concluding, ∑
A/6≤i≤5.96·A

(
(Bu)i

)2 ≤ C3 · cA,

C3 > 0 a universal constant.

Proof of Lemma 6.6. For simplicity of notation, define

Q =
∑

`

(−1)`

(
g

`

)(
h

`

)
,

the quantity we wish to estimate. As
∫ 1
z=0 e2πiαzdz = 1{α=0} (in words, the integral is one if alpha

is zero, and the integral is zero otherwise), here i =
√
−1,

Q =
∑

x∈{0,1}g ,y∈{0,1}h

(−1)|x|1{|x|=|y|} =
∑

x∈{0,1}g ,y∈{0,1}h

(−1)|x|
∫ 1

z=0
e2πi(|x|−|y|)zdz,

where |x| is the number of ones in x. Changing order of summation,

Q =
∫ 1

z=0

∑
x∈{0,1}g ,y∈{0,1}h

(−1)|x|e2πi(|x|−|y|)zdz.

For every fixed z, the inner sum can be written as a product,

Q =
∫ 1

z=0

∏
`∈[g]

( ∑
x`∈{0,1}

(−1)x`e2πizx`

) ∏
j∈[h]

( ∑
yj∈{0,1}

e−2πizyj

)
dz

=
∫ 1

z=0

(
1− e2πiz

)g(
1 + e−2πiz

)h
dz.

Multiplying and dividing by the same number,

Q =
∫ 1

z=0

(
e−πiz − eπiz

)g(
eπiz + e−πiz

)h
eπiz(g−h)dz

=
∫ 1

z=0

(
− 2i sin(πz)

)g(2 cos(πz)
)h

eπiz(g−h)dz.

Applying the triangle inequality,

|Q| ≤ 2g+h

∫ 1

z=0

(
sin(πz)

)g( cos(πz)
)h

dz.

By symmetry,

|Q| ≤ 2g+h+1

∫ 1/2

z=0

(
sin(πz)

)g( cos(πz)
)h

dz.
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Renaming w = sin2(πz), since dw/dz = 2 sin(πz) cos(πz)π = 2π
√

w(1− w),

|Q| ≤ 2g+h+1

∫ 1

w=0
wg/2(1− w)h/2 dw

2π
√

w(1− w)

≤ 2g+h

∫ 1

w=0
w(g−1)/2(1− w)(h−1)/2dw

= 2g+hB((g + 1)/2, (h + 1)/2).

The last equality is by definition, see [AS64]. ut
ut
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