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Abstract
We introduce a simple logical inference structure we call a spanoid (generalizing the notion of
a matroid), which captures well-studied problems in several areas. These include combinatorial
geometry (point-line incidences), algebra (arrangements of hypersurfaces and ideals), statistical
physics (bootstrap percolation), network theory (gossip / infection processes) and coding theory.
We initiate a thorough investigation of spanoids, from computational and structural viewpoints,
focusing on parameters relevant to the applications areas above and, in particular, to questions
regarding Locally Correctable Codes (LCCs).

One central parameter we study is the rank of a spanoid, extending the rank of a matroid and
related to the dimension of codes. This leads to one main application of our work, establishing
the first known barrier to improving the nearly 20-year old bound of Katz-Trevisan (KT) on
the dimension of LCCs. On the one hand, we prove that the KT bound (and its more recent
refinements) holds for the much more general setting of spanoid rank. On the other hand we
show that there exist (random) spanoids whose rank matches these bounds. Thus, to significantly
improve the known bounds one must step out of the spanoid framework.

Another parameter we explore is the functional rank of a spanoid, which captures the possi-
bility of turning a given spanoid into an actual code. The question of the relationship between
rank and functional rank is one of the main questions we raise as it may reveal new avenues for
constructing new LCCs (perhaps even matching the KT bound). As a first step, we develop an
entropy relaxation of functional rank to create a small constant gap and amplify it by tensor-
ing to construct a spanoid whose functional rank is smaller than rank by a polynomial factor.
This is evidence that the entropy method we develop can prove polynomially better bounds than
KT-type methods on the dimension of LCCs.

To facilitate the above results we also develop some basic structural results on spanoids
including an equivalent formulation of spanoids as set systems and properties of spanoid products.
We feel that given these initial findings and their motivations, the abstract study of spanoids
merits further investigation. We leave plenty of concrete open problems and directions.
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1 Introduction

This (somewhat long) introduction will be organized as follows. We begin by discussing
Locally Correctable Codes (LCCs) and the main challenges they present as this was the
primary motivation for this work. We proceed to define spanoids as an abstraction of LCCs,
and state some results about their rank which hopefully illuminate the difficulties with
LCCs in a new light. We continue by describing other natural settings in which the spanoid
structure arises in the hope of motivating the questions raised in the context of LCCs and
demonstrating their potential to contribute to research in other areas. We then turn to the
investigation of functional rank of spanoids, which aims to convert them to actual LCCs. We
conclude with describing some of the structural results about spanoids obtained here.

1.1 Locally Correctable Codes
The introduction of locality to coding theory has created a large body of research with
wide-ranging applications and connections, from probabilistically checkable proofs, private
information retrieval, program testing, fault-tolerant storage systems, and many others in
computer science and mathematics. We will not survey these, and the reader may consult
the surveys [27, 10]. Despite much progress, many basic questions regarding local testing,
decoding and correcting of codes remain open. Here we focus on the efficiency of locally
correctable codes, that we now define. Note that the related, locally decodable codes (LDCs),
will not be discussed in this paper, as our framework is not relevant to them (LCCs can be
converted to LDCs with a small loss in parameters).

I Definition 1 (q-LCCs). A code C ⊆ Σn is called a q-query locally correctable code with
error-tolerance δ > 0, if for every i ∈ [n] there is a family (called a q-matching) Mi, of at least
δn disjoint q-subsets of [n], with the following decodability property. For every codeword
c ∈ C, and for every i ∈ [n], the value of ci is determined5 by the values of c in coordinates
S, for every q-subset S in Mi.6

5 Through some function that does not depend on the codeword c.
6 Our definition is a ‘zero-error’ version of the standard definition. By ‘zero-error’ we mean that for any

codeword c, the value of ci can be determined correctly (without error) from the coordinates of c at any
q-subset S in the matching Mi. A more general definition would say that ci can be computed from c|S
with high probability, or even just slightly better than a random guess. Our definition is equivalent to
the more general definition for linear codes, which comprise all of the interesting examples. We still
allow ‘global’ error in the sense that a large (constant) fraction of the coordinates can be corrupted
(this global error tolerance is captured by the parameter δ).

https://doi.org/10.4230/LIPIcs.ITCS.2019.32
https://arxiv.org/abs/1809.10372
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Intuitively, given a vector c′ ∈ Σn which results from corrupting less than (say) εδn
coordinates of a codeword c ∈ C, recovering ci for any given i ∈ [n] is simple. Picking a
random q-subset from Mi and decoding ci according to it will succeed with probability at
least 1− ε, as only an ε-fraction of these q-subsets can be corrupted.

We focus in this paper on the most well-studied and well-motivated regime where both
the “query-complexity” q and the error-tolerance δ are constants. It is not hard to see that
there are no LCCs with q = 1 (unless the dimension is constant) and so we will start with
the first interesting case of q = 2. A canonical example of a 2-query LCC, which will serve
us several times below, is the Hadamard code. Here Σ = F2. Let k be any integer and set
n = 2k − 1. Let A be the k × n matrix whose columns are all non-zero k-bit vectors. The
Hadamard code CH ∈ Fn2 is generated by A, namely H consists of all linear combinations of
rows of A. Since every column of A can be written as a sum of (namely, spanned by) pairs
of other columns in (n− 1)/2 different ways, the matching Mi suggest themselves, and so is
the linear correcting procedure: add the values in coordinates of the random pair S from Mi

to determine the ith coordinate.
A central parameter of codes is their rate, capturing the redundancy between the di-

mension, namely the number of information bits encoded (here k), and the length of the
codeword (here n). As in this paper this k will be a tiny function of n, we will focus on the
dimension itself. Note that in the example above, as in every linear code, this dimension is
also the rank of the generating matrix. In general codes, dimension may be fractional, and is
defined as follows. All logarithms are in base 2 unless otherwise noted.

I Definition 2 (Dimension and rate of a code). For a general, possibly non-linear code C ⊆ Σn,
we define the dimension of C to be dim(C) = log |C|/ log |Σ|. Note that this coincides with
the linear algebraic definition of dimension when C is a subspace. We refer to the ratio
dim(C)/n as the ‘rate’ of the code.

Note that while the Hadamard code (CH) has fantastic local correction (only 2 queries),
its dimension is only k ∼ logn, which is pathetic from a coding theory perspective. However,
no better 2-query LCC can exist, regardless of the alphabet.

I Theorem 3 (2-LCCs). For all large enough n and over any alphabet:
There exists a 2-query LCC of dimension Ω(logn) and constant δ (Folklore: Hadamard
code).
Every 2-query LCC must have dimension at most O(logn) (for any constant δ) [6].

While we know precisely the optimal dimension for 2 queries, for q ≥ 3 the gap between
known upper and lower bounds is huge. The best lower bounds (constructions) are polyloga-
rithmic: they come from Reed-Muller codes (using polynomials over finite fields), and yield
dimension Ω((logn)q−1).

The best LCC upper bounds are only slightly sub-linear, giving dim(C) ≤ Õ(n1− 1
q−1 )

(up to logarithmic factors). This bound, which we will refer to as the Katz-Trevisan (KT)
bound, is actually a slight refinement/improvement over the bound originally appearing in
[19] (which gave n1−1/q). This improvement was implicit in several works (e.g. [9, 25]) and
is explicitly stated in [18]. We should also note that, over constant-size alphabets, Kerenidis
and De-Wolf proved an even stronger bound using quantum information theory [21]. This
exponential gap between the upper and lower bounds, which we formally state below, has
not been narrowed in over two decades.7 Explaining this gap (in the hope of finding ways to
close it) is one major motivation of this work.

7 For LDCs better constructions than Reed-Muller codes are known, through the seminal works of [26, 12],
but as mentioned we will not discuss them here. Still, the upper bounds for LDCs are the same as for

ITCS 2019



32:4 Spanoids – An Abstraction of Spanning Structures, and a Barrier for LCCs

I Theorem 4 (q-LCCs, q ≥ 3). For every fixed q ≥ 3 and all large enough n:
There exists a q-query LCC of dimension Ω((logn)q−1) (with constant δ and alphabet of
size q + 1) (Reed-Muller codes, see e.g. the survey [27]).
Every q-query LCC must have dimension at most Õ(n1− 1

q−1 ) (for any constant δ and
any alphabet) [18].

1.2 Spanoids
We shall now abstract the notion of inference used in LCCs. There, for a collection of pairs
(S, i) with S ⊆ [n] and i ∈ [n], the values of codewords in coordinate positions S, determine
the value of of some other coordinate i. We shall forget (for now) the underlying code
altogether, and abstract this relation by the formal “inference” symbol S → i, to be read “S
spans i”.

I Definition 5 (Spanoid). A spanoid S over [n] is a family of pairs (S, i) with S ⊆ [n] and
i ∈ [n]. The pair (S, i) will sometimes be written as S → i and read as S spans i in the
spanoid S.

One natural way to view a spanoid is as a logical inference system, with the pairs
indicating all inference rules. The elements of [n] indicate some n formal statements, and an
inference S → i of the spanoid means that if we know the truth of the statements in S, we
can infer the truth of the ith statement. With this intuition, we shall adopt the convention
that the inferences i→ i are implicit in any spanoid, and that monotonicity holds: if S → i

then also S′ → i for every S′ ⊇ S. These conventions will be formally stated below when we
define general derivations, which sequentially combine these implicit rules and the stated
rules (pairs) of the spanoid.

A key concept of spanoids is, naturally, the span. Given a subset T ⊂ [n] (which we can
think of as “axioms”), we can explore everything they can span by a sequence of applications
of the inference rules of the spanoid S.

I Definition 6 (Derivation, Span). A derivation in S of i ∈ [n] from T ⊆ [n], written T |=S i,
is a sequence of sets T = T0, T1, . . . , Tr with i ∈ Tr such that for each j ∈ [r], Tj = Tj−1 ∪ ij
for some ij ∈ [n] and there exists S ⊂ Tj−1 such that (S, ij) ∈ S is one of the spanoid rules.

The span (or closure) of T , denoted spanS(T ), is the set of all i for which T |=S i. We
shall remove the subscript S from these notations when no confusion about the underlying
spanoid can arise, and write T |= i and span(T ) for short.

Despite being highly abstract, we will see that spanoids can lead to a rich family of
questions and definitions. The first, and perhaps one of the most central definitions is that of
the rank of a spanoid. We shall see other notions of spanoid rank later on (and will discuss
the relation between them).

I Definition 7 (Rank). The rank of a spanoid S, denoted rank(S), is the size of the smallest
subset T ⊆ [n] such that span(T ) = [n]. Note that by the definition of span we always have
rank(S) ≤ n.

We note that the “rank” of a logical inference system does appear (under different names)
in proof complexity. It is the starting point for expansion-based lower bounds on a variety of
proof systems, as introduced for Resolution proofs in [5], and used for many others e.g. in
[1] and [2]). We shall return to this connection presently.

LCCs, and obtained by the same KT-type argument, so the results in this paper may serve to better
understand the (smaller, but still quite large) gap between upper and lower bounds in LDCs as well.
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We can now define the spanoid analog of q-LCCs as spanoids which only specify the
correction structure (the matchings Mi) without requiring any codewords or alphabet.

I Definition 8 (q-LCS, Locally correctable spanoid). A spanoid S over [n] is a q-LCS with
error-tolerance δ if for every i ∈ [n] there exists a family Mi of at least δn disjoint q-subsets
of [n] such that for each S ∈Mi we have (S, i) ∈ S. Namely, each i ∈ [n] is spanned (in S)
by at least δn disjoint subsets of q-elements.

One can now ask about the highest possible rank of a q-LCS. It is not hard to see that the
existence of a q-LCC (over any alphabet) C ⊂ Σn with dimension dim(C) = d automatically
implies that there exists a q-LCS (namely, the one given by the same matchings used in
C) with rank at least dde. Indeed, otherwise there would be r < d coordinates in [n] that
determine any codeword c ∈ C and this would limit the number of codewords to Σr.

One of our main observations is that, remarkably, in locally correctable spanoids there is
no gap between the upper and lower bounds: we know the precise answer up to logarithmic
factors, and it matches the upper bounds for LCCs! Observe the analogies to the theorems in
the previous subsection, for q = 2 and q ≥ 3.

I Theorem 9 (2-LCSs). For all large enough n:
There exists a 2-LCS over [n] with error-tolerance δ of rank Ω( 1

δ log(δn)).
Every 2-LCS over [n] with error-tolerance δ must have rank at most O

( 1
δ log(n)

)
.8

Here, of course, the inference structure of the Hadamard code proves the first item. To
get the required dependence on δ, one can take 1

δ disjoint copies of such spanoids. The
second item requires a new proof we discuss below, which generalizes (and implies) the one
in Theorem 3. It is quite surprising that, even in this abstract setting, with no need for
codewords or alphabet, one cannot do better than the Hadamard code!

We now state our results for q ≥ 3.

I Theorem 10 (q-LCSs with q ≥ 3). For every fixed q ≥ 3 and all large enough n:
There exist a q-LCS of rank Ω̃(n1− 1

q−1 ) (with constant δ).
Every q-LCS over [n] has rank at most Õ

(
n1− 1

q−1

)
(for any constant δ).

Both parts of this theorem demand discussion. The possibly surprising (and tight) lower
bound follows from a simple probabilistic argument (indeed, one which is repeatedly used to
prove expansion in the proof complexity references cited above), where the matchings Mi are
simply chosen uniformly at random. It seems to reveal how significant a relaxation spanoids
are of LCCs (where probabilistic arguments fail completely). However, the best known LCC
upper bound (Theorem 4) does not rule out the possibility that, at least for large alphabets,
the two (LCC’s dimension and LCS’s rank) have the same behavior! From a more pessimistic
(and perhaps more realistic) perspective, our lower bound shows the limitations of any (upper
bound) proof technique which, in effect, applies also for spanoids. These are proofs in which
the LCC structure is used to show that a small subset spans all the others. We note that
there are several LCC upper bounds which ‘beat’ the n1− 1

q−1 bound for certain very special
cases by using additional structure not present in the corresponding abstract spanoid. One
example is the bound of [21], which uses arguments from quantum information theory to
roughly halve the number of queries, over binary (or small) alphabets. Another example is

8 The results of [6] can be interpreted as an upper bound of O (poly(1/δ) log(n)) on the rank of 2-LCS
with error-tolerance δ.
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x1 x2

x3

x4

x5

Figure 1 The pentagon spanoid Π5 where each coordinate is spanned by the coordinates of the
opposite edge.

the paper [11], which gives an improved upper bound on the dimension for linear 3-LCCs
defined over the real numbers, using specific properties of the Reals such as distance and
volume arguments.

Our proof of the upper bound, is again more general than for LCCs, and interesting in its
own right. We use a simple technique which performs random restrictions and contractions
of graphs and hypergraphs (and originates in [11]). It will be described in Section 3, after we
have formulated an equivalent, set-theoretic formulation of spanoids in Section 2.2.

1.2.1 Functional rank: bridging the gap between LCCs and LCSs
We conclude this section of the introduction with an attempt to understand (and possibly
bridge) the gap between LCCs and their spanoid abstraction. The idea is to start with an
LCS of high rank (which we know is possible), and convert it to an LCC without losing too
much in the parameters. More generally, for a given spanoid S, we would like to investigate
the code C with largest dimension (over any alphabet Σ) which would be consistent with
the inferences of S. This is captured in the notion of functional rank which we now define.

I Definition 11 (Functional rank). Let S be a spanoid over [n]. A code C ⊂ Σn is consistent
with S if for every inference (S, i) in S, and for every codeword c ∈ C, its values of coordinates
S determine its value in coordinate i (by some fixed function, fS,i not depending on c).9

Define the functional rank of S, denoted f-rank(S), to be equal to the supremum of the
dimension dim(C), over all possible finite alphabets Σ and codes C ⊂ Σn which are consistent
with S.

Of course, the strategy of constructing LCCs in two stages as above can only work if
we can bound the gap between rank(S) and f-rank(S). This question, of bounding this gap
or proving it can be large, is perhaps the most interesting one we raise (and leave mostly
open for now). For now, we are able to show an example in which the two are different. The
example providing a gap is depicted in Figure 1, arranging the coordinates as the vertices
of a pentagon, the pair of vertices of each edge span the vertex opposite to it. That is,
{x1, x2} → x4, {x2, x3} → x5 etc.

I Theorem 12 (Constant gap between rank and functional rank). The pentagon spanoid Π5
depicted in Figure 1 has rank(Π5) = 3 but f-rank(Π5) = 2.5.

9 One can think of a code consistent with S also as a ‘representation’ of S in the spirit of matroid theory.
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Seeing that rank(Π5) = 3 is easy by inspection. The lower bound of 2.5 on functional rank
comes from a set-theoretic construction of consistent codes. This comes from a simple linear
programming (LP) relaxation we develop for rank(S) called LPcover(S), but surprisingly
this LP captures the best set-theoretic construction of consistent codes. But even in this
small example, the upper bound on functional rank is nontrivial to determine, as we allow
all possible alphabets and consistent codes. Not surprisingly, Shannon entropy is the key
to proving such a bound. We develop a linear programming relaxation, based on entropy
whose optimum LPentropy(S) upper bounds f-rank(S). In this example, it proves 2.5 to be
the optimum. For the definitions of LPentropy(S), LPcover(S) and the proof of Theorem 12
see the full version. One natural way of amplifying gaps as in the example above, which may
also be useful in creating codes of high functional rank, is the idea of tensoring. We develop
different notions of tensoring spanoids inspired by tensoring of codes. In particular, we define
a product of spanoids called the semi-direct product under which rank is multiplicative and
f-rank is sub-multiplicative. By repeatedly applying this product to Π5, we get a spanoid
with polynomial gap between f-rank and rank. See the full version for details.

I Theorem 13 (Polynomial gap between rank and function rank). There exists a spanoid S
on n elements with rank(S) ≥ ncf-rank(S) where c = log5 3− log5 2.5 ≥ 0.113.

Summarizing, we have the following obvious inequalities between the measures we de-
scribed so far for every spanoid S. We feel that understanding the exact relationships better
is worthy of further study

LPcover(S) ≤ f-rank(S) ≤ LPentropy(S) ≤ rank(S). (1)

1.3 Other motivations and incarnations of spanoids
We return to discuss other structures, combinatorial, geometric and algebraic, in which
the same notions of span and inference naturally occur, leading to a set-theoretic one that
elegantly captures spanoids precisely. These raise further issues, some of which we study in
this paper and some are left for future work. These serves to illustrate the breadth of the
spanoid framework.

1.3.1 Bootstrap percolation and gossip processes
The following general set-up occurs in statistical physics, network theory and probability
theory. Fix an undirected graph G([n], E). In a gossip or infection process, or equivalently
bootstrap percolation, we are give a set of “rules” specifying, for every vertex v ∈ [n], a
family of subsets of its neighbors. The intended meaning of such a rule is that if every
member of one such subset is “infected” at a certain time step, then the vertex v becomes
infected in the next time step. Given a set of initial infected vertices, this defines a process in
which infection spreads, and eventually stabilizes. A well studied special case is the (uniform)
r-bond percolation [7], where the family for each vertex is all r-subsets of its neighbors. Many
variants exist, e.g. one can have a similar process on the edges, rather than vertices of the
graph. An important parameter of such a process is the following: what is the size of the
smallest set of vertices which, if infected, will eventually infect all other vertices10.

10This turns out to be crucial for understanding, at least for certain structured graphs like lattices studied
by physicists, the threshold probability for percolation when initial infections are random.

ITCS 2019
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A moment’s thought will convince the reader that this structure is precisely a spanoid
(where inferring sets are restricted by the graph structure). The infection process is precisely
the inference process defining span in spanoids. Furthermore, the smallest size of an infecting
set is precisely the rank of that spanoid! Much work has been invested to determine that rank
even in very special cases, e.g. for the r-bond percolation above, in e.g. Boolean hypercubes,
where it is known precisely. Interestingly, the paper [16] uses the so-called “polynomial
method” to reprove that bound, which fits even deeper with our framework. In our language,
their method determines the functional rank of this spanoid, and one direction is through
constructing an explicit code that is consistent with the spanoid! The reader is encouraged
to work out the details.

1.3.2 Independence systems and Matroids
An independence system over [n] is a family F of subsets of [n] which is downwards-closed
(if a set is in F , so are all its subsets). The members of F are called independent. While
much of what we say below generalizes to all independence systems, we specify them for the
important special systems called matroids.

A matroid is an independence system in which the independent sets satisfy the so-called
“exchange axiom” (which we will not define here). Matroids abstract linear independence
in subsets of a vector space over a field11, and capture algorithmic problems in which
optimization is possible through the greedy algorithm. Matroids thus come with natural
notions of span and rank, extending the ones in the linear algebraic setting. The rank of a
set is the size of the largest independent set it contains. The span of a set is the maximal
superset of it of the same rank. A matroid can thus be naturally viewed as a spanoid, with
the inference rules F → i for every independent F ∈ F and every i for which F ∪ {i} is not
independent (such minimal dependent sets as F ∪ {i} are called cycles). It is easy to verify
that the notions of span and rank of the matroid and the spanoid it defines coincide. This
also raises the natural question of bounding the gap between f-rank and rank for the special
case of spanoids arising from matroids.

Note that a spanoid resulting from a matroid this way is symmetric: by the exchange
property of matroids, if E ⊂ [n] is a cycle of F , then for every i ∈ E it contains the inference
E \ {i} → i. Symmetric spanoids are interesting, and we note that the pentagon example
witnessing the gap between rank and functional rank is not symmetric, and we do not know
such a gap for symmetric spanoids. We also don’t know if symmetric spanoids can achieve
the lower bound in Theorem 10.

1.3.3 Point-line incidences
Sylvester-Gallai theorem is a celebrated result in combinatorial geometry conjectured by
Sylvester and proved independently by Melchior and Gallai. It states that for any set of n
points in Euclidean space Rd, if the line through any two points passes through a third point,
then they must all be collinear (namely, they span a 1-dimensional affine space). Over the
complex numbers, one can prove a similar theorem but with the conclusion that the points
span a 2-dimensional affine space (and there are in fact two dimensional examples known)
[20]. Over finite fields the conclusion is even weaker, saying that the span has dimension at
most O(log(n)) and this is tight as the example of all points in Fkp with n = pk shows. It

11Matroids are in fact more general than linear independent sets of vectors over a field, for example the
Vámos matroid on eight elements is not representable over any field.
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is not a coincidence that this example reminds one of the Hadamard code described before
as an example of a 2-query LCC. It is in fact true that there is a tight connection between
configurations of points with many collinear triples and linear 2-query LCCs. This was first
noticed in [4, 3] and was used to prove that 2-LCCs do not exist over the characteristic zero
fields (for q ≥ 3 these questions are wide open with even larger gaps than in the finite field
case). LCCs with more than 2 queries naturally correspond to point configurations with
many (q − 2)-dimensional affine spaces containing at least q points.

Given the connections between Sylvester-Gallai type incidence structures and LCCs,
and the insights offered by spanoids for studying LCCs, it is natural that the study of the
spanoid structures can help us get new insights on incidence geometry problems. A dual
way to view these incidences, which we shall presently generalize, is to consider each point
pi : i ∈ [n] as representing a hyperplane Fi through the origin (in the appropriate vector
space) vanishing on the linear function defined by pi. A point pi is spanned by a collection
of points {pj : j ∈ S} iff Fi ⊃ ∩j∈SFj . Therefore the spanning structure of the points
p1, p2, . . . , pn is captured by the spanoid where we would add the inference S → i iff Fi
contains the common intersection of all Fj : j ∈ S.

1.3.4 Systems of polynomial equations

Given the above example, there is no reason to stop at the linear setting. Instead of lines we
can consider n (multivariate) polynomials fi over a field, and again consider Fi to be the zero
set of fi. The spanoid above, having an inference S → i whenever the set Fi contains the
common intersection of all Fj : j ∈ S, is capturing another natural algebraic notion. Namely,
it says that the polynomial fi vanishes on the all the common roots of the polynomials
{fj : j ∈ S}. By the celebrated Hilbert’s Nullstellensatz theorem, over algebraically closed
fields, this implies that fi belongs to the radical of the ideal generated by the fj ’s. Here the
rank function is far from being that of a matroid; the complex spanoid which arises (and in
general is far from understood) plays a role in arithmetic complexity (a beautiful example is
the recent [23] dealing with degree-2 polynomials).

1.3.5 Intersecting set systems

Let us remove all restrictions from the origin or nature of the n sets Fi discussed in the
previous discussion. Assume we are given any such family F of sets (from an arbitrary
universe, say U). As above, a natural spanoid SF will have the inference S → i whenever
the set Fi contains the common intersection of all Fj : j ∈ S. Such situations (and hence,
spanoids) arise in many questions of extremal set theory, for example the study of (weak)
sunflowers, or families with certain forbidden intersection (or union) patterns, e.g. [14, 13, 15].

What is interesting in this more general framework, where the initial family of sets F is
arbitrary, is that it becomes equivalent to spanoids! In other words, every spanoid S arises
as SF of some family of sets F . This possibly surprising fact is not much more than an
observation, but it turns out to be an extremely useful formulation for proving some of the
results in this paper. Let us state it formally (it will be proved in Section 2.2).

I Theorem 14 (Spanoids and intersecting sets). Let S be any spanoid on [n]. Then, there
exists a universe U and a family F of n sets of U , F = {F1, F2, . . . , Fn}, such that S = SF .
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It is convenient to assume that the sets in F have no element in common to all12.

The notions of rank and span are extremely simple in this set-theoretic setting, and do
not require the sequential “derivation” and the implicit ordering which we require to define
these in spanoids. For a family F of n sets and a subset S ⊂ [n], let us denote by ∩S the
subset of U which is the intersection of all {Fj : j ∈ S}. Then the rank of S is the size
of the smallest subset S′ ⊆ S for which ∩S′ = ∩S. Similarly, the span of S is the largest
superset S′′ ⊇ S for which ∩S′′ = ∩S.

These static definitions of rank and span make many things transparent. For example,
the expected fact that testing if the rank of a spanoid (namely the rank of the set [n]) is
at most some given integer k is NP − complete (Claim 22). Complementing the sets Fi
in F , and replacing intersection with union, this is precisely the Set Cover problem. This
connection also underlies the cover-based linear program discussed earlier, as well as proofs
of the main quantitative results Theorem 9 and Theorem 10.

1.3.6 Union-closed families

Spanoids over [n] are equivalent to union-closed families of subsets of [n] i.e. a family of
subsets of [n] such that the union of any two members is again in the family. A closed set of
a spanoid S is a subset A ⊂ [n] such that span(A) = A. The family of all closed sets of a
spanoid S is denoted by CS which is an intersection-closed family. Thus the family of all
open sets which are complements of closed sets is a union-closed family and is denoted by OS .
One can construct all the derivations of the spanoid given its family of open or closed sets.
Conversely, given any union-closed family of subsets of [n], one can define a spanoid whose
open sets are precisely the given family. Thus spanoids on [n] are equivalent to union-closed
families of subsets of [n]. The rank of a spanoid has a very simple interpretation in terms of
its open sets, rank(S) is equal to the size of the smallest hitting set for its family of open sets
OS . Moreover, rank(S) is at most log |OS |. These connections are discussed in Section 2.1.

Union-closed families are interesting combinatorial objects with a rich structure. The
widely open Frankl’s union-closed conjecture states that in every union-closed family of
N sets, there exists an element which is contained in at least N/2 sets. Though this was
proved for various special classes (see survey [8]), the best general bound is Ω(N/ logN) due
to [22, 24]. When seen in the framework of spanoids, this follows immediately from Claim 19
which says that there is a logN sized hitting set for every union-closed family of N sets.
Thus there is an element which should hit at least N/ log2(N) sets. We hope that viewing
union-closed families as spanoids could be of use in understanding them.

1.4 Organization

In Section 2, we will present two alternative ways to represent spanoids that will be very
useful. In Section 3, we show upper bounds on the rank of q-LCSs for q ≥ 2 thus proving the
upper bounds in Theorems 27 and 29. In Section 4, we construct q-LCSs thus proving the
lower bound in Theorem 29.

12 Indeed, otherwise we can remove the common intersection (if non-empty) of all members of F from
each of them, as it does not change the underlying spanoid.
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2 Preliminaries on spanoids

We will now describe two equivalent ways to define spanoids which will turn out to be very
useful.

2.1 Spanoids as union-closed or intersection-closed families
In this subsection, we will define an equivalent and more canonical way of describing
spanoids in terms of intersection closed or union closed families. We have defined spanoids in
Definition 5 by specifying the initial set of derivation rules such as A→ i. But two different
initial set of rules can lead to the same set of derivations and we should consider two spanoids
to be equivalent if they lead to the same set of derivations. We will present an alternative
way to describe spanoids which makes them equivalent to union-closed families of sets or
alternatively intersection-closed families of sets. Moreover this new representation is a more
canonical way to represent spanoids since it will be based only on the set of derivations. For
this, the main new notions we need to define are that of a ‘closed set’ and an ‘open set’.

I Definition 15. (Closed and open sets) Let S be an spanoid on [n]. A closed set13 is
a subset B ⊂ [n] for which span(B) = B. A subset B ⊂ [n] is called an open set if its
complement is a closed set. The family of all closed sets of S is denoted by CS and the family
of all open sets of S by OS (when it is clear from the context, we will drop the subscript S).

I Claim 16. In any spanoid S on [n],
1. the intersection of any number of closed sets is a closed set i.e. CS is an intersection-closed

family,
2. the union of any number of open sets is an open set i.e. OS is a union-closed family and
3. for any set A ⊂ [n], span(A) is equal to the intersection of all closed sets containing A

i.e. span(A) =
⋂
B⊃A,B∈CS B.

Proof.
(1) Let F = F1 ∩ F2 be the intersection of two closed sets. Suppose in contradiction that F

spans some element x ∈ [n] \ F then, by monotonicity, both F1 and F2 have to span x.
Hence, x ∈ span(F1) ∩ span(F2) = F1 ∩ F2 = F in contradiction.

(2) This just follows from (1) by taking complements.
(3) Let F (A) be the intersection of all closed sets containing A. Since span(A) is a closed

set we clearly have F (A) ⊂ span(A). To see the other direction, suppose x ∈ span(A)
and let F be any closed set containing A. Then, by monotonicity, F must also span x
and so we must have x ∈ F . J

I Claim 17. A spanoid is uniquely determined by the set of all its closed (open) sets which is
an intersection-closed (union-closed) family of subsets of [n]. Conversely, every intersection-
closed (union-closed) family of subsets of [n] defines a spanoid whose closed (open) sets are
the given family.

Proof. Given a spanoid S on [n], by Claim 16, we can define span(A) in S using just the
closed sets as:

span(A) =
⋂

B⊃A,B∈CS

B.

13Closed sets are analogous to ‘flats’ or ‘subspaces’ in matroids.

ITCS 2019



32:12 Spanoids – An Abstraction of Spanning Structures, and a Barrier for LCCs

And A |= i in S iff i ∈ span(A). Thus given the set of all closed sets, we can reconstruct all
the derivations of the spanoid.

For the converse, suppose we are given an intersection-closed family of subsets of [n],
say C. We can define spanC(A) =

⋂
B⊃A,B∈C B and define a spanoid SC where A |= i iff

i ∈ spanC(A). It is easy to see that the closed sets of this spanoid SC is exactly C. J

Thus an equivalent way to define a spanoid is to define all its closed (open) sets which
is some intersection (union) closed family. The following claim shows that the rank of a
spanoid has a very natural interpretation in terms of the open sets.

I Claim 18. The rank of a spanoid S is the size of the smallest hitting set for the collection
OS i.e. a set which intersects every open set in OS non-trivially.

Proof. Observe that a subset A ⊂ [n] spans [n] iff it is a hitting set for all the open sets in
OS . This is because if A doesn’t hit some open set B, then A lies in the complement of B i.e.
A ⊂ B̄. Since B̄ is closed, span(A) ⊂ B̄ 6= [n]. Therefore rank(S) is the size of the smallest
hitting set for OS . J

This interpretation of the rank is used to give a linear programming relaxation LPcover which
lower bounds the rank. We can also upper bound the rank of a spanoid in terms of the
number of closed or open sets as the following claim shows.

I Claim 19. Let S be a spanoid, then rank(S) ≤ log2(|CS |) = log2(|OS |).

Proof. Let r = rank(S) and R ⊂ [n] be a set of size |R| = r spanning [n]. Since the rank
of S is r we know that R is independent (not spanned by any proper subset). For each
of the 2r subsets S ∈ 2R we consider the closed set FS = span(S). We claim that all of
these are distinct. Suppose in contradiction that there were two distinct sets S 6= T ∈ 2R
with span(S) = span(T ). W.l.o.g suppose there is an element x ∈ T \ S. Then x ∈ span(S)
and so we get that R \ {x} spans R (by monotonicity) and so spans the entire spanoid in
contradiction. Thus |CS | ≥ 2r. J

2.2 Spanoids as set systems
In this subsection, we will show yet another way of representing spanoids by families of sets.
This representation (which is equivalent to spanoids) will be easier to work with and, in
fact, we will later work almost exclusively with it instead of with the definition given in the
introduction. Recall the notation introduced at the end of the introduction that, for sets
S1, . . . , Sn and for a subset A ⊂ [n] we let ∩A = ∩i∈ASi.

I Definition 20 (Intersection Dimension of a set system). The intersection-dimension of a
family of sets S1, . . . , Sn, denoted idim(S1, . . . , Sn) is the smallest integer d such that there
exist a set A ⊂ [n] of size d such that ∩A = ∩[n].

I Lemma 21 (Set-Representation of spanoids). Let S be a spanoid on [n] with rank(S) = r.
Then there exists a family of sets S1, . . . , Sn such that A |= i in S iff ∩A ⊂ Si. In this case
we say that the set family (S1, S2, . . . , Sn) is a set-representation of S and this implies in
particular that idim(S1, . . . , Sn) = rank(S).

Proof. For i ∈ [n] we define Si ⊂ CS to be the subfamily of closed sets of S containing the
element i ∈ [n]. For the first direction of the proof suppose that A spans x in the spanoid S.
Then, by Claim 16, x belongs to any closed set containing A and so ∩i∈ASi ⊂ Sx. For the
other direction, suppose ∩i∈ASi ⊂ Sx or that any closed set containing A must also contain
x. Hence, x is in the intersection of all closed sets containing A and, by Claim 16 we have
that x ∈ span(A). J
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An alternative way to represent spanoids is by unions. (T1, T2, . . . , Tn) is called a union set-
representation of the spanoid S when, A |= i in S iff Ti ⊂ ∪j∈ATj . Note that if (S1, S2, . . . , Sn)
is an (intersection) set-representation for S as in Lemma 21, then by taking complements,
(S̄1, S̄2, . . . , S̄n) is a union set-representation for S and vice versa. Thus these two notions of
representing a spanoid by sets is equivalent.

I Claim 22. Given a spanoid S and some positive integer k, deciding if the rank of the
spanoid is at most k is NP-complete.

Proof. Given the description of a spanoid and a subset of its elements, we can check in
polynomial time whether the subset has size at most k and spans all the elements. So the
problem is in NP . To prove that it is NP − complete, we reduce Set Cover problem to this.

Given a collection of sets S1, S2, . . . , Sn ⊂ U such that ∪iSi = U and some positive
integer k, the Set Cover problem asks if there are at most k sets in the collection whose union
is U . To reduce it to the spanoid rank problem, we can create a spanoid over [n] elements
where the inference rules are given by A |= i iff ∪j∈ASj ⊃ Si. The rank of this spanoid is at
most k iff there exists k sets in the collection which cover all of U . J

3 Upper bounds on the rank of q-LCSs

In this section we prove the upper bounds on the rank of q-LCSs stated in Theorems 9 and
10. The proofs will rely on the set representation described in Section 2.2 and on random
restriction and contraction arguments given below.

3.1 Graph theoretic lemmas
In this subsection, we will prove a key technical lemma about a random graph process that
will be useful for proving upper bounds on the rank of q-LCSs. We denote by D(n) the set
of simple directed graphs on n vertices. We always assume w.l.o.g that the set of vertices are
the integers between 1 and n.

I Definition 23 ((α, β)-spread distribution). Let µ be a distribution on D(n). We say that µ
is (α, β)-spread if the following conditions are true for a graph G sampled from µ:
1. Each vertex i ∈ [n] has an incoming edge with probability at least α i.e.

∀i PrG∼µ [∃j : (j, i) ∈ E(G)] ≥ α.

2. For every i, j ∈ [n], the probability that (j, i) is an edge is at most β/n i.e.

∀i, j PrG∼µ [(j, i) ∈ E(G)] ≤ β

n
.

For example, one can generate an (k/n, 1)-spread distribution µ on D(n) in the following
way: Fix arbitrary sets S1, . . . , Sn ⊂ [n] of size k each. To sample a graph G from µ, pick
a uniformly random element j ∈ [n] and let G be the directed graph containing the edges
(j, i) for each i such that j ∈ Si. This satisfies the definition since for any fixed i ∈ [n], i has
an incoming edge if j ∈ Si which happens with probability |Si|/n = k/n. And for any fixed
i′, j′ ∈ [n], the probability that (j′, i′) is an edge is at most 1/n since this happens only when
j′ = j and j is chosen uniformly at random from [n]. Note that the sampled edges overall
are highly correlated (they all have j as an endpoint).
We will need following simple observation about (α, β)-spread distributions.
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I Lemma 24. Let µ be an (α, β)-spread distribution on D(n). For every vertex i and every
subset S ⊂ [n] of size at most αn

2β ,

PrG∼µ[∃j /∈ S : (j, i) ∈ E(G)] ≥ α

2 .

Proof. This follows from union bound and properties of (α, β)-spread distributions.

α ≤ PrG∼µ[∃j : (j, i) ∈ E(G)]
≤ Pr[∃j ∈ S : (j, i) ∈ E(G)] + Pr[∃j /∈ S : (j, i) ∈ E(G)]

≤
∑
j∈S

Pr[(j, i) ∈ E(G)] + Pr[∃j /∈ S : (j, i) ∈ E(G)]

≤ αn

2β ·
β

n
+ Pr[∃j /∈ S : (j, i) ∈ E(G)]

= α

2 + Pr[∃j /∈ S : (j, i) ∈ E(G)] J

Given a distribution µ on graphs we would like to study the random process in which we,
at each iteration, sample from µ and ‘add’ the edges we got to the graph obtained so far.
For two graphs G and H on the same set of vertices, we denote by G ∪H their set theoretic
union (as a union of edges).

I Definition 25 (Graph process associated with µ). Let µ be a distribution on D(n). We
define a sequence of random variables Gµt , t = 0, 1, 2, . . . as follows. Gµ0 is the empty graph
on [n] vertices. At each step t ≥ 1 we sample a graph G according to µ (independently from
all previous samples) and set Gt = Gt−1 ∪G.

For a graph G ∈ D(n) and a vertex i ∈ [n] we denote by Rea(i) the set of vertices that are
reachable from i (via walking on directed edges). By convention, a vertex is always reachable
from itself. Similarly, for a set of vertices S ⊂ [n] we denote by Rea(S) = ∪i∈SRea(i) the
set of vertices reachable from some vertex in S. We denote the set of strongly connected
components of G by Γ(G). We denote by C(i) ∈ Γ(G) the strongly connected component
of G containing i. We say that C ∈ Γ(G) is a source if C has no incoming edges from any
vertex not in C.

I Lemma 26. Let µ be an (α, β)-spread distribution on D(n) and let Gµt be its associated
graph process. Then, for all t ≥ 0, there is positive probability that the graph Γ(Gµt ) has at
most

n · (1− α/4)t + 2β
α

sources.

Proof. If C ∈ Γ(G) is a source, we define the weight of C to be the number of vertices
reachable from C (including vertices of C) that are not reachable from any other source of
G. More formally, let

Rea′(C) = {j ∈ Rea(C) | j 6∈ Rea(C ′), for all sources C ′ ∈ Γ(G), C ′ 6= C}.

Then the weight of a source C ∈ Γ(C) is denoted by w(C) = |Rea′(C)| (we do not define
weight for components that are not sources). Let us call a source C ∈ Γ(Gt) ‘light’ if its
weight w(C) is at most k = αn

2β and ‘heavy’ otherwise. By the definition of weight, there
could be at most n/k = 2β/α heavy sources.
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We will argue that, in each step, as we move from Gt to Gt+1, the number of light sources
must decrease by a factor of (1− α/4) with positive probability. For that purpose, suppose
there are mt sources in Gt and among them m′t are light. Fix some light source and pick
a representative vertex i from it. Since i is contained in a light source, |Rea′(C(i))| ≤ αn

2β .
When going to Gt+1 = Gt ∪G, i gets an incoming edge from outside the set Rea′(C(i)) with
probability at least α/2 by Lemma 24. If this happens then in Gt+1, this source will either
stop being a source or merge with another source.

Picking a representative for each light source in Gt, we see that the expected number of
representatives i which get a new incoming edge from outside Rea′(C(i)) is at least (α/2)m′t.
Hence, this quantity is obtained with positive probability. Now, if at least (α/2)m′t light
sources ‘merge’ with another source or stop being a source in Gt+1 then the total number of
light sources must decrease by at least (α/4)m′t (the worst case being that (α/4)m′t disjoint
pairs of light sources merge with each other). Hence, with positive probability we get that
m′t+1 ≤ m′t · (1− α/4). Therefore, since the samples in each step t are independent, there is
also a positive probability that m′t ≤ n · (1− α/4)t and mt ≤ m′t + 2β/α. This completes
the proof. J

3.2 Proof of upper bound from Theorem 9
I Theorem 27 (Rank of 2-LCSs). Let S be a 2-LCS on [n] with error-tolerance δ. Then
rank(S) ≤ O( 1

δ log2 n).

Proof. We will work with the (equivalent) set formulation: let F = {S1, . . . , Sn} be a set
system representing the spanoid S as in Lemma 21.

We start by defining an (α, β)-spread distribution µ on D(n) as follows: To sample a
graph G from µ we first pick ` ∈ [n] uniformly at random. Then we add a directed edge from
j to i for every i, j such that {j, `} ∈ Mi. In this case we have Sj ∩ S` ⊆ Si and so, after
restricting to S` we have Sj ∩ S` ⊆ Si ∩ S`.

I Claim 28. µ is a (2δ, 1)-spread distribution.

Proof. For any fixed i ∈ [n], i will get an incoming edge if `, which is randomly chosen from
[n], belongs to Mi. Since Mi has at least δn edges, this will happen with probability at least
2δ. Now fix any i, j ∈ [n], (j, i) will be an edge iff ` is equal to the the vertex that matches j
in the matching Mi, this happens with probability at most 1/n. If j is not matched in Mi,
the probability is zero. J

Consider the graph process Gµt and let S`1 , . . . , S`t
be the sets chosen in the t iterations of

sampling from µ. If i ∈ Rea(j) in the graph Gµt , this means that, after restricting to the
intersection S = S`1 ∩ . . . ∩ S`t

, the set Sj is contained in Si (i.e., Sj ∩ S ⊆ Si ∩ S). By
Lemma 26, after t = O( 1

δ log2 n) steps, the graph process Gµt will contain r = O(1/δ) sources.
Pick a representative Sa1 , . . . , Sar

from each of these sources. Then, the intersection of the
t + r = O( 1

δ log2 n) sets S`1 , . . . , S`t
and Sa1 , . . . , Sar

is contained in all n sets S1, . . . , Sn.
That is because, when restricted to the intersection of S`1 , . . . , S`t , each set Si contains one
of the sets Saj

, j ∈ [r]. J

3.3 Proof of upper bound from Theorem 10
I Theorem 29 (Rank of q-query LCSs). Let S be a q-LCS with error-tolerance δ and q ≥ 3.
Then

rank(S) ≤ O
(
δ−

1
q−1 · n

q−2
q−1 log2 n

)
.
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Proof. Like the 2-query case, we work with the set representation F = {S1, . . . , Sn} of S as
in Lemma 21. We follow the same strategy as in the proof of the 2-query case. The difference
is that, in this case, we will need to pick many sets to restrict to in each step instead of just
one. The first observation is that, if {j1, . . . , jq} ∈ Mi then, restricted to the intersection
S = Sj1 ∩ . . .∩ Sjq−1 we have Sjq

⊂ Si. The second observation is that, if we choose a subset
J ⊂ [n] of size roughly n

q−2
q−1 then, in expectation, J will contain q − 1 elements in one of the

q-subsets of Mi for a constant fraction of the i’s. Repeating this a logarithmic number of
times and using Lemma 26, as in the proof of Theorem 27 will then complete the proof.

We start by defining an (α, β)-spread distribution µ on D(n). To sample a graph G from
µ we first pick a random set J ⊂ [n] such that each j ∈ [n] is chosen to be in J independently
with probability (δn)−1/(q−1). By Markov’s inequality we have that

Pr
[
|J | ≥ 4 · δ−

1
q−1n

q−2
q−1

]
≤ 1/4. (2)

For each i ∈ [n] and each q-subset T ∈Mi we select q − 1 elements of T arbitrarily and
refer to them as the distinguished (q − 1)-subset of T . We now argue that, for each i ∈ [n],
there is relatively high probability that J will contain the distinguished (q − 1)-subset of at
least one q-subset in Mi.

I Claim 30. Let Ei denote the event that J contains the distinguished (q − 1)-subset from
at least one q-subset in Mi. Then, for each i ∈ [n] we have that Pr[Ei] ≥ 1/2.

Proof. J will contain the distinguished q − 1 elements in a specific q-subset with probability
(δn)−1. Since the δn q-subsets in Mi are disjoint, the probability that J will not contain any
of the distinguished (q − 1)-subsets is at most (1− (1/δn))δn ≤ 1/2. J

We are now ready to define the edges in the graph G sampled by µ. First we check
if |J | ≥ 4 · δ−

1
q−1n

q−2
q−1 . If this is the case then µ outputs the empty graph (by Eq.2 this

happens with probability at most 1/4). Otherwise for each i ∈ [n] we check to see if J
contains the distinguished (q − 1)-subset from one of the q-subsets of Mi. If there is at
least one such q-subset, we pick one of them uniformly at random. Suppose the q-subset we
chose is {j1, . . . , jq} and that the distinguished elements are the first q− 1. Then we add the
directed edge jq → i to the graph G. By the above discussion, we know that, restricted to
the intersection of all sets indexed by J the set Sjq is contained in Si (hence the directed
edge representing set inclusion).

I Claim 31. µ is (1/4, 1/δ)-spread.

Proof. By Claim 30, and since the probability that |J | is too large is at most 1/4 we see that
any fixed i ∈ [n] will get an incoming edge in G with probability at least α = 1/4. For any
fixed i, j ∈ [n], since the distribution of the special q-subset which is contributing an edge to
i is uniform in Mi (conditioned on J containing a q-subset from Mi), we can conclude that
(j, i) ∈ E(G) with probability at most 1/(δn) = β/n. This proves the claim. J

Now, applying Lemma 26, we get that, after t = O(log2 n) steps, the graph process Gµt will
contain at most O(1/δ) sources with positive probability. Let J1, . . . , Jt be the sets chosen
in the different steps of the process and, w.l.o.g, remove any of them that were too big (i.e.,
when the graph sampled by µ was empty). Hence, all of the sets satisfy |Ji| ≤ 4 · δ−

1
q−1n

q−2
q−1 .

Now, let S be the intersection of all sets Sj such that j belongs to at least one of the sets Ji.
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Then, restricted to S, each of the sets Si contains one of the sources in the graph Gµt . Hence,
if we add to our intersection a representative form each of the sources, we will get a set that
is contained in all the sets Sj . The total number of sets we end up intersecting is bounded by

O(1/δ) +
t∑
i=1
|Ji| = O

(
δ−

1
q−1 · n

q−2
q−1 log2 n

)
.

This completes the proof of the theorem. J

4 Constructing q-LCSs with high rank

In this section we prove the lower bound part of Theorem 10 (the lower bound for the 2-query
case follows from the Hadamard code construction). We will in fact generate this spanoid at
random by picking, for each i ∈ [n], a random q-matching Mi on [n] and, for each q-subset
T ∈Mi add the rule T |= i. The resulting spanoid will thus have, by design, the structure of
a q-LCS. The reason why this spanoid should have high rank (with high probability) relies
on the following observation. Suppose A ⊂ [n] is a set that spans [n]. This means that there
is a sequence of derivations Ti |= i with each q-subset Ti in the matching Mi that eventually
generates all of [n]. We can limit ourselves to the first C · |A| such derivations for some large
C. These derivations generate a set A′ of size (C + 1)|A| (including the original A and the
C|A| newly derived elements). Now, the set A′ must contain all of the q-subsets Ti for C|A|
values of i. However, the union of randomly chosen C|A| q-subsets will generally have size
much larger than (C + 1)|A| (closer to q · C|A|).

I Theorem 32 (Existence of high rank q-LCSs). For any integer q ≥ 3 and all sufficiently
large n the following holds. Consider the following distribution generating a spanoid S on
base set [n]. For each i ∈ [n] pick a q-matching Mi of size bn/2qc uniformly at random and
add the rule T |= i for all T ∈Mi. Then, with probability approaching one, rank(S) is larger
than r = cn

q−1
q−2 / log2(n), where 0 < c < 1 is an absolute constant.

Proof. Let m = r · log2(n) = cn
q−1
q−2 . If the rank of S is at most r then there exists a

set A ⊂ [n] of size r that spans (using the rules obtained from the n random matchings
M1, . . . ,Mn) the entire base set [n]. We will upper bound the probability that such a set
exists by bounding the smaller event given by the existence of a set of m rules that can be
applied one after another starting with the original set A. That is, let E denote the event that
there exists a set A of size r on which one can sequentially apply m rules of the form Tji |= ji
with each Tji

belonging to the matching Mji
and for m different values j1, . . . , jm ∈ [n]

arriving at the final set Â = A ∪ {j1, . . . , jm}. If A spans [n] then clearly the event E must
hold and so, it is enough to show that E happens with probability approaching zero.

We will present the event E as the union of (possibly overlapping) smaller events and then
use the union bound, bounding the probability that each one occurs and multiplying by the
number of bad events. Given a set A ⊂ [n] of size r, a tuple of m indices Ĵ = {j1, j2, . . . , jm}
and a family of q-subsets T̂ = {Tj1 , . . . , Tjm} with Tji ∈Mji denote by E(A, Ĵ, T̂ ) the event
in which the set A spans the set Â = A ∪ Ĵ using the rules Tji

|= ji applied in order with i
going from 1 to m. For every fixing of A, Ĵ, T̂ we can bound

Pr[E(A, Ĵ, T̂ )] ≤
m∏
i=1

Pr[Tji
⊂ Â].
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W.l.o.g suppose we sample the random matchings iteratively, picking a new q-subset at
random among the available elements not covered by any previously chosen q-subsets in the
current matching. Since the number of q-subsets in each matching is bn/2qc we have, at
each step, at least n/2 available elements to chose from and so

Pr[Tji ⊂ Â] ≤
(
m+r
q

)(
n/2
q

) ≤ (4m
n

)q
.

Taking the product over all m q-subsets in T̂ we get

Pr[E(A, Ĵ, T̂ )] ≤
(

4m
n

)qm
.

To complete the proof we bound the number of tuples (A, Ĵ, T̂ ) as above by(
n

r

)
·
(
n

m

)
· bn/2qcm ≤ nr · (en/m)m · nm ≤

(
6n2

m

)m
,

where the last inequality used the fact that r/m ≤ 1/ log2(n). Putting these bounds together
we get that

Pr[E ] ≤
(

4m
n

)qm(6n2

m

)m
=
(

6 · 4q ·mq−1

nq−2

)m
which is exponentially decreasing in m for the given choice of m = c · n(q−2)/(q−1) and for c
a sufficiently small constant. J

One could ask for a more explicit construction of an LCS with rank equal to (or even close
to) that stated above. We are not able to give such a construction but can relate this problem
to a longstanding open problem in explicit construction of expander graphs. A bipartite
(balanced) expander of degree q, is a bipartite graph with n left vertices L and n right vertices
R such that the degree of each vertex is q and such that sets A ⊂ L of size ‘not too large’
have many neighbors in R. More specifically, one typically asks that sets with |A| ≤ n/2
have at least (1 + ε)|A| right neighbors for some constant ε > 0. It is quite easy to see that
a random graph of this form will be a good expander with high probability and, by now,
there are also many explicit constructions [17]. One can also consider unbalanced bipartite
expanders in which |L| � |R|. Take, for example, the setting in which |L| = n2, |R| = n and
when the degree of every vertex in L is some constant q. A simple probabilistic argument
shows that sufficiently small sets in L, namely sets of size |A| ≤ nαq with αq < 1 a constant
depending on q and approaching 1 as q grows, have many neighbors in R (say, at least 2|A|).
However, no explicit constructions of such graphs are known (for any constant q and any
αq > 0). The property we needed in our random construction of LCSs can be thought of as
an ‘easier’ variant of the expander construction problem. Given q-matchings M1, . . . ,Mn

each of size δn consider the bipartite graph with L = [n] × [δn] and R = [n]. We identify
each vertex (i, j) ∈ L with the j’th q-subset Tij of Mi and connect it to the q neighbors in R
given by that q-subset. For our proof to work we need the property that there is no small
set containing many q-subsets from different matchings. This corresponds to asking for the
above graph to be an expander for a restricted family of sets, namely to sets that have at
most one vertex (i, j) for a given i (with each subgraph (i, ∗) defining a matching).
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5 Conclusion and open problems

Our work introduces the abstract notion of a spanoid in the hope that further study of its
properties will lead to progress on LCCs and perhaps in other areas. We list below some
concrete directions for future work.
1. We showed that there exist spanoids, called q-LCSs, which “look like” q-LCCs and whose

rank matches the best known upper bounds. Can we bypass this ‘barrier’ by using
additional properties of LCCs? We have at least two examples where this was possible.
One is the result of [21] for LCCs over constant size alphabet and the other is the work
in [11] for linear 3-LCCs over the real numbers. The bounds of [21] crucially depend on
the alphabet having small size and the bounds in [11] exploit properties of real numbers.

2. Understanding the possible gap between functional rank and formal rank of a spanoid
is a very interesting question. We proved that there can be a polynomial gap. The
next challenge is to find a spanoid on n elements whose f-rank is no(1) and rank is nΩ(1).
Naturally, q-LCSs for constant q ≥ 3 are plausible candidates for this. If there are no such
spanoids, then it would imply the existence of q-LCCs of length n and nΩq(1) dimension!1

3. Suppose we start with a functional representation with large alphabet, can we do alphabet
reduction without losing too many codewords?

4. We have seen that one way to go past the rank barrier is to use LPentropy. Can we improve
the existing upper bounds on the dimension of q-LCCs by upper bounding LPentropy of
q-LCSs? Can we use LP duality and construct good feasible solutions to the dual of
LPentropy to prove good upper bounds on LPentropy?

5. What are other connections of spanoids to existing theory of set systems, matroids,
algebraic equations and other problems described in the introduction?
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