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SPANOIDS---AN ABSTRACTION OF SPANNING STRUCTURES,
AND A BARRIER FOR LCCS\ast 

ZEEV DVIR\dagger , SIVAKANTH GOPI\ddagger , YUZHOU GU\S , AND AVI WIGDERSON\P 

Abstract. We introduce a simple logical inference structure we call a ``spanoid"" (generaliz-
ing the notion of a matroid), which captures well-studied problems in several areas. These include
combinatorial geometry (point-line incidences), algebra (arrangements of hypersurfaces and ideals),
statistical physics (bootstrap percolation), network theory (gossip/infection processes) and coding
theory. We initiate a thorough investigation of spanoids, from computational and structural view-
points, focusing on parameters relevant to the applications areas above and, in particular, to ques-
tions regarding locally correctable codes (LCCs). One central parameter we study is the ``rank"" of
a spanoid, extending the rank of a matroid and related to the dimension of codes. This leads to one
main application of our work, establishing the first known barrier to improving the nearly 20-year old
bound of Katz--Trevisan (KT) on the dimension of LCCs. On the one hand, we prove that the KT
bound (and its more recent refinements) holds for the much more general setting of spanoid rank.
On the other hand we show that there exist (random) spanoids whose rank matches these bounds.
Thus, to significantly improve the known bounds one must step out of the spanoid framework. An-
other parameter we explore is the ``functional rank"" of a spanoid, which captures the possibility of
turning a given spanoid into an actual code. The question of the relationship between rank and
functional rank is one of the main questions we raise as it may reveal new avenues for constructing
new LCCs (perhaps even matching the KT bound). As a first step, we develop an entropy relaxation
of functional rank to create a small constant gap and amplify it by tensoring to construct a spanoid
whose functional rank is smaller than rank by a polynomial factor. This is evidence that the entropy
method we develop can prove polynomially better bounds than KT-type methods on the dimension
of LCCs. To facilitate the above results we also develop some basic structural results on spanoids
including an equivalent formulation of spanoids as set systems and properties of spanoid products.
We feel that given these initial findings and their motivations, the abstract study of spanoids merits
further investigation. We leave plenty of concrete open problems and directions.
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1. Introduction. This (somewhat long) introduction will be organized as fol-
lows. We begin by discussing locally correctable codes (LCCs) and the main challenges
they present as this was the primary motivation for this work. We proceed to define
spanoids as an abstraction of LCCs, and state some results about their rank which
hopefully illuminates the difficulties with LCCs in a new light. We continue by de-
scribing other natural settings in which the spanoid structure arises in the hope of
motivating the questions raised in the context of LCCs and demonstrating their po-
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tential to contribute to research in other areas. We then turn to the investigation of
functional rank of spanoids, which aims to convert them to actual LCCs. We conclude
with describing some of the structural results about spanoids obtained here.

1.1. Locally correctable codes. The introduction of locality to coding theory
has created a large body of research with wide-ranging applications and connections,
from probabilistically checkable proofs, private information retrieval, program testing,
fault-tolerant storage systems, and many others in computer science and mathematics.
We will not survey these, and the reader may consult the surveys [Yek12, Dvi12].
Despite much progress, many basic questions regarding local testing, decoding and
correcting of codes remain open. Here we focus on the efficiency of locally correctable
codes, that we now define. Note that the related, locally decodable codes (LDCs), will
not be discussed in this paper, as our framework is not relevant to them (LCCs can
be converted to LDCs with a small loss in parameters).

Definition 1.1 (q-LCCs). A code C \subseteq \Sigma n is called a q-query LCC with error-
tolerance \delta > 0 if for every i \in [n] there is a family (called a q-matching) Mi, of at
least \delta n disjoint q-subsets of [n], with the following decodability property. For every
codeword c \in C, and for every i \in [n], the value of ci is determined1 by the values of
c in coordinates S, for every q-subset S in Mi.

2

Intuitively, given a vector c\prime \in \Sigma n which results from corrupting less than (say)
\epsilon \delta n coordinates of a codeword c \in C, recovering ci for any given i \in [n] is simple.
Picking a random q-subset from Mi and decoding ci according to it will succeed with
probability at least 1 - \epsilon , as only an \epsilon -fraction of these q-subsets can be corrupted.

In this paper we focus on the most well-studied and well-motivated regime where
both the ``query-complexity"" q and the error-tolerance \delta are constants. It is not hard
to see that there are no LCCs with q = 1 (unless the dimension is constant) and
so we will start with the first interesting case of q = 2. A canonical example of a
2-query LCC, which will serve us several times below, is the Hadamard code. Here
\Sigma = \BbbF 2. Let k be any integer and set n = 2k  - 1. Let A be the k \times n matrix whose
columns are all nonzero k-bit vectors. The Hadamard code CH \in \BbbF n

2 is generated by
A, namely H consists of all linear combinations of rows of A. Since every column of
A can be written as a sum of (namely, spanned by) pairs of other columns in (n - 1)/2
different ways, the matchings Mi suggest themselves, and so does the linear correcting
procedure: Add the values in coordinates of the random pair S from Mi to determine
the ith coordinate.

A central parameter of codes is their rate, capturing the redundancy between the
dimension, namely the number of information bits encoded (here k), and the length
of the codeword (here n). As in this paper this k will be a tiny function of n, we
will focus on the dimension itself. Note that in the example above, as in every linear
code, this dimension is also the rank of the generating matrix. In general codes,
dimension may be fractional, and is defined as follows. All logarithms are in base 2
unless otherwise noted.

1Through some function that does not depend on the codeword c.
2Our definition is a ``zero-error"" version of the standard definition. By ``zero-error"" we mean that

for any codeword c, the value of ci can be determined correctly (without error) from the coordinates
of c at any q-subset S in the matching Mi. A more general definition would say that ci can be
computed from c| S with high probability, or even just slightly better than a random guess. Our
definition is equivalent to the more general definition for linear codes, which comprise all of the
interesting examples. We still allow ``global"" error in the sense that a large (constant) fraction of the
coordinates can be corrupted (this global error tolerance is captured by the parameter \delta ).
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Definition 1.2 (dimension and rate of a code). For a general, possibly non-linear
code C \subseteq \Sigma n, we define the dimension of C to be dim(C) = log | C| / log | \Sigma | . Note that
this coincides with the linear algebraic definition of dimension when C is a subspace.
We refer to the ratio dim(C)/n as the ``rate"" of the code.

Note that while the Hadamard code (CH) has fantastic local correction (only two
queries), its dimension is only k \sim log n, which is quite bad from a coding theory
perspective. However, no better 2-query LCC can exist, regardless of the alphabet.

Theorem 1.3 (2-LCCs). For all large enough n and over any alphabet,
\bullet There exists a 2-query LCC of length n and dimension \Omega (log n) with some
constant error tolerance \delta (Folklore: Hadamard code).

\bullet Every 2-query LCC of length n and error tolerance \delta must have dimension at
most O\delta (log n) (for any constant \delta ) [BGT17].

While we know precisely the optimal dimension for two queries, for q \geq 3 the gap
between known upper and lower bounds is huge. The best lower bounds (construc-
tions) are polylogarithmic: they come from Reed--Muller codes (using polynomials
over finite fields), and yield dimension \Omega ((log n)q - 1).

The best LCC upper bounds are only slightly sublinear, giving dim(C) \leq \widetilde O
(n1 - 1

q - 1 ) (up to logarithmic factors). This bound, which we will refer to as the Katz--
Trevisan (KT) bound, is actually a slight refinement/improvement over the bound
originally appearing in [KT00] (which gave n1 - 1/q). This improvement was implicit
in several works (e.g., [DK11, Woo07]) and is explicitly stated in [IS18]. We should
also note that, over constant-size alphabets, Kerenidis and De Wolf proved an even
stronger bound using quantum information theory [KW04].3 This exponential gap
between the upper and lower bounds, which we formally state below, has not been
narrowed in over two decades.4 Explaining this gap (in the hope of finding ways to
close it) is one major motivation of this work.

Theorem 1.4 (q-LCCs, q \geq 3). For every fixed q \geq 3 and all large enough n,
\bullet There exists a q-query LCC of length n and dimension \Omega ((log n)q - 1) (with
some constant tolerance \delta and alphabet of size q+1) (Reed--Muller codes; see,
e.g., the survey [Yek12]).

\bullet Every q-query LCC of length n and error tolerance \delta must have dimension at

most \widetilde O\delta (n
1 - 1

q - 1 ) (for any constant \delta and any alphabet) [IS18].

1.2. Spanoids. We shall now abstract the notion of inference used in LCCs.
There, for a collection of pairs (T, i) with T \subseteq [n] and i \in [n], the values of codewords
in coordinate positions T , determine the value of some other coordinate i. We shall
forget (for now) the underlying code altogether, and abstract this relation by the
formal ``inference"" symbol T \rightarrow i, to be read ``T spans i.""

Definition 1.5 (spanoid). A spanoid \scrS over [n] is a family of pairs (T, i) with
T \subseteq [n] and i \in [n]. The pair (T, i) will sometimes be written as T \rightarrow i and read as

3Over constant size alphabet, the best known upper bound on the dimension of a q-query LCC

(also LDC) is \~O\delta 

\bigl( 
n
1 - 1

\lceil q/2\rceil 
\bigr) 
[KW04]. This is better than the upper bound in Theorem 1.4 for q \geq 4.

But for growing alphabet, Theorem 1.4 gives the best known upper bound.
4For LDCs, better constructions than Reed--Muller codes are known, through the seminal works

of [Yek08, Efr09]. They construct 3-query LDCs of dimension (logn)
\~\Omega (log logn). Still, the upper

bounds for LDCs are the same as for LCCs, and obtained by the same KT-type argument, so the
results in this paper may serve to better understand the (smaller, but still quite large) gap between
upper and lower bounds in LDCs as well.
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T spans i in the spanoid \scrS .

One natural way to view a spanoid is as a logical inference system, with the pairs
indicating all inference rules. The elements of [n] indicate some n formal statements,
and an inference T \rightarrow i of the spanoid means that if we know the truth of the
statements in T , we can infer the truth of the ith statement. With this intuition,
we shall adopt the convention that the inferences i \rightarrow i are implicit in any spanoid,
and that monotonicity holds: If T \rightarrow i, then also T \prime \rightarrow i for every T \prime \supseteq T . These
conventions will be formally stated below when we define general derivations, which
sequentially combine these implicit rules and the stated rules (pairs) of the spanoid.

A key concept of spanoids is, naturally, the span. Given a subset T \subset [n] (which
we can think of as ``axioms""), we can explore everything they can span by a sequence
of applications of the inference rules of the spanoid \scrS .

Definition 1.6 (derivation, span). A derivation in \scrS of i \in [n] from T \subseteq [n],
written T | =\scrS i, is a sequence of sets T = T0, T1, . . . , Tr with i \in Tr such that for
each j \in [r], Tj = Tj - 1 \cup ij for some ij \in [n] and there exists A \subset Tj - 1 such that
(A, ij) \in \scrS is one of the spanoid rules.

The span (or closure) of T , denoted span\scrS (T ), is the set of all i for which T | =\scrS i.
We shall remove the subscript \scrS from these notations when no confusion about the
underlying spanoid can arise, and write T | = i and span(T ) for short.

Despite being highly abstract, we will see that spanoids can lead to a rich family
of questions and definitions. The first, and perhaps one of the most central definitions,
is that of the rank of a spanoid. We shall see other notions of spanoid rank later on
(and will discuss the relation between them).

Definition 1.7 (rank). The rank of a spanoid \scrS , denoted rank(\scrS ), is the size of
the smallest subset T \subseteq [n] such that span(T ) = [n]. Note that by the definition of
span we always have rank(\scrS ) \leq n.

We note that the ``rank"" of a logical inference system does appear (under different
names) in proof complexity. It is the starting point for expansion-based lower bounds
on a variety of proof systems, as introduced for resolution proofs in [BW01], and used
for many others, e.g., in [ABRW04] and [AR01]). We shall return to this connection
presently.

We can now define the spanoid analog of q-LCCs as spanoids which only spec-
ify the correction structure (the matchings Mi) without requiring any codewords or
alphabet.

Definition 1.8 (q-LCS, locally correctable spanoid). A spanoid \scrS over [n] is a
q-LCS with error-tolerance \delta if for every i \in [n] there exists a family Mi of at least
\delta n disjoint q-subsets of [n] such that for each S \in Mi we have (S, i) \in \scrS . Namely,
each i \in [n] is spanned (in \scrS ) by at least \delta n disjoint subsets of q-elements.

One can now ask about the highest possible rank of a q-LCS. It is not hard to see
that the existence of a q-LCC (over any alphabet) C \subset \Sigma n with dimension dim(C) = d
automatically implies that there exists a q-LCS (namely, the one given by the same
matchings used in C) with rank at least \lceil d\rceil . Indeed, otherwise there would be r < d
coordinates in [n] that determine any codeword c \in C and this would limit the number
of codewords to \Sigma r.

One of our main observations is that, remarkably, in locally correctable spanoids
there is no gap between the upper and lower bounds: We know the precise answer
up to logarithmic factors, and it matches the upper bounds for LCCs! Observe the
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analogies to the theorems in the previous subsection, for q = 2 and q \geq 3.

Theorem 1.9 (2-LCSs). For all large enough n,
\bullet There exists a 2-LCS over [n] with error-tolerance \delta of rank \Omega ( 1\delta log(\delta n)).
\bullet Every 2-LCS over [n] with error-tolerance \delta must have rank at most
O
\bigl( 
1
\delta log(n)

\bigr) 
.5

Here, of course, the inference structure of the Hadamard code proves the first item.
To get the required dependence on \delta , one can take 1

\delta disjoint copies of such spanoids.
The second item requires a new proof we discuss below, which generalizes (and implies)
the one in Theorem 1.3. It is quite surprising that, even in this abstract setting, with
no need for codewords or alphabet, one cannot do better than the Hadamard code!

We now state our results for q \geq 3.

Theorem 1.10 (q-LCSs with q \geq 3). For every fixed q \geq 3 and all large enough
n,

\bullet There exist a q-LCS of rank \~\Omega (n1 - 1
q - 1 ) (with constant \delta ).

\bullet Every q-LCS over [n] has rank at most \~O\delta 

\bigl( 
n1 - 1

q - 1
\bigr) 
(for any constant \delta ).

Both parts of this theorem demand discussion. The possibly surprising (and
tight) lower bound follows from a simple probabilistic argument (indeed, one which is
repeatedly used to prove expansion in the proof complexity references cited above),
where the matchings Mi are simply chosen uniformly at random. It seems to reveal
how significant a relaxation spanoids are of LCCs (where probabilistic arguments fail
completely). However, the best known LCC upper bound (Theorem 1.4) does not
rule out the possibility that, at least for large alphabets, the two (LCC's dimension
and LCS's rank) have the same behavior! From a more pessimistic (and perhaps more
realistic) perspective, our lower bound shows the limitations of any (upper bound)
proof technique which, in effect, applies also for spanoids. These are proofs in which
the LCC structure is used to show that a small subset spans all the others. We note

that there are several LCC upper bounds which ``beat"" the n1 - 1
q - 1 bound for certain

very special cases by using additional structure not present in the corresponding
abstract spanoid. One example is the bound of [KW04], which uses arguments from
quantum information theory to roughly halve the number of queries, over binary (or
small) alphabets. Another example is the paper [DSW14], which gives an improved
upper bound on the dimension for linear 3-LCCs defined over the real numbers, using
specific properties of the Reals such as distance and volume arguments.

Our proof of the upper bound, is again more general than for LCCs, and interest-
ing in its own right. We use a simple technique which performs random restrictions
and contractions of graphs and hypergraphs (and originates in [DSW14]). It will
be described in section 3, after we have formulated an equivalent, set-theoretic for-
mulation of spanoids in section 2.2. Though the underlying idea of using random
restrictions to prove our upper bounds for q-LCSs is similar to prior work on upper
bounds for q-LCCs, our proofs are simpler and give better dependence on \delta . In other
words, we are proving more general theorems with simpler proofs. For example, the
O\delta (log n) upper bound for 2-LCCs in [BGT17] is proved by showing that there is a
subset of O\delta (log n) coordinates from which can infer the entire codeword. Our proof
of Theorem 1.9 also shows this, but in a much more direct and simpler way. The

proof of \~O\delta 

\bigl( 
n1 - 1

q - 1
\bigr) 
upper bound for q-LCCs in [IS18] is proved by a reduction to

5[BGT17] prove an upper bound of O (poly(1/\delta ) log(n)) on the rank of a 2-LCC with error-
tolerance \delta . But their proof also works for 2-LCSs.
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the 2-LCC upper bound (using random restrictions). The article [IS18] also proves
the O\delta (log n) upper bound for 2-LCCs in a completely different way, but their proof
only applies to linear 2-LCCs.

1.2.1. Functional rank: Bridging the gap between LCCs and LCSs. We
conclude this section of the introduction with an attempt to understand (and possibly
bridge) the gap between LCCs and their spanoid abstraction. The idea is to start
with an LCS of high rank (which we know is possible), and convert it to an LCC
without losing too much in the parameters. More generally, for a given spanoid \scrS ,
we would like to investigate the code C with largest dimension (over any alphabet \Sigma )
which would be consistent with the inferences of \scrS . This is captured in the notion of
functional rank which we now define.

Definition 1.11 (functional rank). Let \scrS be a spanoid over [n]. A code C \subset \Sigma n

is consistent with \scrS if for every inference (S, i) in \scrS , and for every codeword c \in C,
its values of coordinates S determine its value in coordinate i (by some fixed function,
fS,i not depending on c).6

Define the functional rank of \scrS , denoted f-rank(\scrS ), to be equal to the supremum
of the dimension dim(C), over all possible finite alphabets \Sigma and codes C \subset \Sigma n which
are consistent with \scrS .

Of course, the strategy of constructing LCCs in two stages as above can only work
if we can bound the gap between rank(\scrS ) and f-rank(\scrS ). This question, of bounding
this gap or proving it can be large, is perhaps the most interesting one we raise (and
leave mostly open for now). For now, we are able to show an example in which the
two are different. The example providing a gap is depicted in Figure 1, arranging the
coordinates as the vertices of a pentagon, the pair of vertices of each edge span the
vertex opposite to it. That is, \{ x1, x2\} \rightarrow x4, \{ x2, x3\} \rightarrow x5, etc.

x1 x2

x3

x4

x5

Fig. 1. The pentagon spanoid \Pi 5 where each coordinate is spanned by the coordinates of the
opposite edge.

Theorem 1.12 (constant gap between rank and functional rank). The pentagon
spanoid \Pi 5 depicted in Figure 1 has rank(\Pi 5) = 3 but f-rank(\Pi 5) = 2.5.

Seeing that rank(\Pi 5) = 3 is easy by inspection. The lower bound of 2.5 on
functional rank comes from a set-theoretic construction of consistent codes we will
describe (in more generality) in section 5.2, where we develop a linear programming
(LP) relaxation for rank(\scrS ) called LPcover(\scrS ), but surprisingly this LP captures the

6One can think of a code consistent with \scrS also as a ``representation"" of \scrS in the spirit of matroid
theory.
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best set-theoretic construction of consistent codes. But even in this small example, the
upper bound on functional rank is nontrivial to determine, as we allow all possible
alphabets and consistent codes. Not surprisingly, Shannon entropy is the key to
proving such a bound. In section 5.1, we develop an LP relaxation, based on entropy
whose optimum LPentropy(\scrS ) upper bounds f-rank(\scrS ). In this example, it proves 2.5
is the optimum.

One natural way of amplifying gaps as in the example above, which may also be
useful in creating codes of high functional rank, is the idea of tensoring. In section
6, we develop different notions of tensoring spanoids inspired by tensoring of codes.
In particular, we define a product of spanoids called the semi-direct product under
which rank is multiplicative and f-rank is sub-multiplicative. By repeatedly applying
this product to \Pi 5, we get a spanoid with polynomial gap between f-rank and rank.

Theorem 1.13 (polynomial gap between rank and function rank). There exists
a spanoid \scrS on n elements with rank(\scrS ) \geq ncf-rank(\scrS ) where c = log5 3  - log5 2.5 \geq 
0.113.

Summarizing, we have the following obvious inequalities between the measures
we described so far for every spanoid \scrS . We feel that understanding the exact rela-
tionships better is worthy of further study

(1.1) LPcover(\scrS ) \leq f-rank(\scrS ) \leq LPentropy(\scrS ) \leq rank(\scrS ).

1.3. Other motivations and incarnations of spanoids. We return to discuss
other structures: combinatorial, geometric, and algebraic, in which the same notions
of span and inference naturally occur, leading to a set-theoretic one that elegantly
captures spanoids precisely. These raise further issues, some of which we study in this
paper and some are left for future work. These serve to illustrate the breadth of the
spanoid framework.

1.3.1. Bootstrap percolation and gossip processes. The following general
set-up occurs in statistical physics, network theory, and probability theory. Fix an
undirected graph G([n], E). In a gossip or infection process, or equivalently bootstrap
percolation, we are given a set of ``rules"" specifying, for every vertex v \in [n], a family of
subsets of its neighbors. The intended meaning of such a rule is that if every member
of one such subset is ``infected"" at a certain time step, then the vertex v becomes
infected in the next time step. Given a set of initial infected vertices, this defines a
process in which infection spreads, and eventually stabilizes. A well-studied special
case is the (uniform) r-bond percolation [Bol68], where the family for each vertex is
all r-subsets of its neighbors. Many variants exist, e.g., one can have a similar process
on the edges, rather than vertices of the graph. An important parameter of such
a process is the following: What is the size of the smallest set of vertices which, if
infected, will eventually infect all other vertices.7

A moment's thought will convince the reader that this structure is precisely a
spanoid (where inferring sets are restricted by the graph structure). The infection
process is precisely the inference process defining span in spanoids. Furthermore, the
smallest size of an infecting set is precisely the rank of that spanoid! Much work has
been invested to determine that rank even in very special cases, e.g., for the r-bond
percolation above, in, e.g., Boolean hypercubes, where it is known precisely. Inter-
estingly, the paper [HHQ17] uses the so-called ``polynomial method"" to reprove that

7This turns out to be crucial for understanding, at least for certain structured graphs like lattices
studied by physicists, the threshold probability for percolation when initial infections are random.
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bound, which fits even deeper with our framework. In our language, their method
determines the functional rank of this spanoid, and one direction is through construct-
ing an explicit code that is consistent with the spanoid! The reader is encouraged to
work out the details.

1.3.2. Independence systems and matroids. An independence system over
[n] is a family \scrF of subsets of [n] which is downwards-closed (if a set is in \scrF , so are
all its subsets). The members of \scrF are called independent. While much of what we
say below generalizes to all independence systems, we specify them for the important
special systems called matroids.

A matroid is an independence system in which the independent sets satisfy the
so-called ``exchange axiom"" (which we will not define here). Matroids abstract linear
independence in subsets of a vector space over a field,8 and capture algorithmic prob-
lems in which optimization is possible through the greedy algorithm. Matroids thus
come with natural notions of span and rank, extending the ones in the linear algebraic
setting. The rank of a set is the size of the largest independent set it contains. The
span of a set is the maximal superset of it of the same rank. A matroid can thus be
naturally viewed as a spanoid, with the inference rules F \rightarrow i for every independent
F \in \scrF and every i for which F \cup \{ i\} is not independent (such minimal dependent sets
as F \cup \{ i\} are called cycles). It is easy to verify that the notions of span and rank of
the matroid and the spanoid it defines coincide. This also raises the natural question
of bounding the gap between f-rank and rank for the special case of spanoids arising
from matroids.

Note that a spanoid resulting from a matroid this way is symmetric: By the
exchange property of matroids, if E \subset [n] is a cycle of \scrF , then for every i \in E it
contains the inference E \setminus \{ i\} \rightarrow i. Symmetric spanoids are interesting, and we note
that the pentagon example witnessing the gap between rank and functional rank is
not symmetric, and we do not know such a gap for symmetric spanoids. We also don't
know if symmetric spanoids can achieve the lower bound in Theorem 1.10.

1.3.3. Point-line incidences. Sylvester--Gallai theorem is a celebrated result
in combinatorial geometry conjectured by Sylvester and proved independently by
Melchior and Gallai. It states that for any set of n points in Euclidean space \BbbR d, if
the line through any two points passes through a third point, then they must all be
collinear (namely, they span a 1-dimensional affine space). Over the complex numbers,
one can prove a similar theorem but with the conclusion that the points span a 2-
dimensional affine space (and there are in fact 2-dimensional examples known) [Kel86].
Over finite fields the conclusion is even weaker, saying that the span has dimension
at most O(log(n)) [BDSS11] and this is tight as the example of all points in \BbbF k

p with

n = pk shows. It is not a coincidence that this example reminds one of the Hadamard
code described before as an example of a 2-query LCC. It is in fact true that there
is a tight connection between configurations of points with many collinear triples and
linear 2-query LCCs. This was first noticed in [BDYW11, BDWY12] and was used
to prove that 2-LCCs do not exist over the characteristic zero fields (for q \geq 3 these
questions are wide open with even larger gaps than in the finite field case). LCCs
with more than two queries naturally correspond to point configurations with many
(q  - 1)-dimensional affine spaces containing at least q + 1 points.

Given the connections between Sylvester--Gallai type incidence structures and

8Matroids are in fact more general than linear independent sets of vectors over a field; for example,
the V\'amos matroid on eight elements is not representable over any field.
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LCCs, and the insights offered by spanoids for studying LCCs, it is natural that the
study of the spanoid structures can help us get new insights on incidence geometry
problems. A dual way to view these incidences, which we shall presently generalize, is
to consider each point pi : i \in [n] as representing a hyperplane Fi through the origin
(in the appropriate vector space) vanishing on the linear function defined by pi. A
point pi is spanned by a collection of points \{ pj : j \in S\} iff Fi \supset \cap j\in SFj . Therefore,
the spanning structure of the points p1, p2, . . . , pn is captured by the spanoid where
we would add the inference S \rightarrow i iff Fi contains the common intersection of all
Fj : j \in S.

1.3.4. Systems of polynomial equations. Given the above example, there is
no reason to stop at the linear setting. Instead of lines we can consider n (multivari-
ate) polynomials fi over a field, and again consider Fi to be the zero set of fi. The
spanoid above, having an inference S \rightarrow i whenever the set Fi contains the common
intersection of all Fj : j \in S, is capturing another natural algebraic notion. Namely,
it says that the polynomial fi vanishes on all of the common roots of the polynomials
\{ fj : j \in S\} . By the celebrated Hilbert's Nullstellensatz theorem, over algebraically
closed fields, this implies that fi belongs to the radical of the ideal generated by the
fj 's. Here the rank function is far from being that of a matroid; the complex spanoid
which arises (and in general is far from understood) plays a role in arithmetic com-
plexity (a beautiful example is the recent [Shp18] dealing with degree-2 polynomials).

1.3.5. Intersecting set systems. Let us remove all restrictions from the origin
or nature of the n sets Fi discussed in the previous discussion. Assume we are given
any such family \scrF of sets (from an arbitrary universe, say U). As above, a natural
spanoid \scrS \scrF will have the inference S \rightarrow i whenever the set Fi contains the common
intersection of all Fj : j \in S. Such situations (and hence, spanoids) arise in many
questions of extremal set theory; for example, the study of (weak) sunflowers, or
families with certain forbidden intersection (or union) patterns, e.g., [FLS12, EFF85,
F\"96].

What is interesting in this more general framework, where the initial family of
sets \scrF is arbitrary, is that it becomes equivalent to spanoids! In other words, every
spanoid \scrS arises as \scrS \scrF of some family of sets \scrF . This possibly surprising fact is not
much more than an observation, but it turns out to be an extremely useful formulation
for proving some of the results in this paper. Let us state it formally (it will be proved
in section 2.2).

Theorem 1.14 (spanoids and intersecting sets). Let \scrS be any spanoid on [n].
Then, there exists a universe U and a family \scrF of n sets of U , \scrF = \{ F1, F2, . . . , Fn\} ,
such that \scrS = \scrS \scrF .

It is convenient to assume that the sets in \scrF have no element in common to all.9

The notions of rank and span are extremely simple in this set-theoretic setting,
and do not require the sequential ``derivation"" and the implicit ordering which we
require to define these in spanoids. For a family \scrF of n sets and a subset S \subset [n], let
us denote by \cap S the subset of U which is the intersection of all \{ Fj : j \in S\} . Then
the rank of S is the size of the smallest subset S\prime \subseteq S for which \cap S\prime = \cap S. Similarly,
the span of S is the largest superset S\prime \prime \supseteq S for which \cap S\prime \prime = \cap S.

These static definitions of rank and span make many things transparent. For
example, the expected fact that testing if the rank of a spanoid (namely the rank of the

9Indeed, otherwise we can remove the common intersection (if nonempty) of all members of \scrF 
from each of them, as it does not change the underlying spanoid.
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set [n]) is at most some given integer k is NP -complete (Claim 2.8). Complementing
the sets Fi in \scrF , and replacing intersection with union, is precisely the set cover
problem. This connection also underlies the cover-based linear program discussed
earlier, as well as proofs of the main quantitative results, Theorems 1.9 and 1.10.

1.3.6. Union-closed families. Spanoids over [n] are equivalent to union-closed
families of subsets of [n] i.e., a family of subsets of [n] such that the union of any
two members is again in the family. A closed set of a spanoid \scrS is a subset A \subset [n]
such that span(A) = A. The family of all closed sets of a spanoid \scrS is denoted by
\scrC \scrS which is an intersection-closed family. Thus the family of all open sets which are
complements of closed sets is a union-closed family and is denoted by \scrO \scrS . One can
construct all the derivations of the spanoid given its family of open or closed sets.
Conversely, given any union-closed family of subsets of [n], one can define a spanoid
whose open sets are precisely the given family. Thus spanoids on [n] are equivalent
to union-closed families of subsets of [n]. The rank of a spanoid has a very simple
interpretation in terms of its open sets, rank(\scrS ) is equal to the size of the smallest
hitting set for its family of open sets \scrO \scrS . Moreover, rank(\scrS ) is at most log | \scrO S | . These
connections are discussed in section 2.1.

Union-closed families are interesting combinatorial objects with a rich structure.
The widely open Frankl's union-closed conjecture states that in every union-closed
family of N sets, there exists an element which is contained in at least N/2 sets.
Though this was proved for various special classes (see survey [BS15]), the best general
bound is \Omega (N/ logN) due to [Kni94, W\'oj99]. When seen in the framework of spanoids,
this follows immediately from Claim 2.5 which says that there is a logN sized hitting
set for every union-closed family of N sets. Thus there is an element which should
hit at least N/ log2(N) sets. We hope that viewing union-closed families as spanoids
could be of use in understanding them.

1.4. Organization. In section 2, we will present two alternative ways to rep-
resent spanoids that will be very useful. In section 3, we show upper bounds on the
rank of q-LCSs for q \geq 2 thus proving the upper bounds in Theorems 3.5 and 3.7. In
section 4, we construct q-LCSs thus proving the lower bound in Theorem 3.7. In sec-
tion 5, we explore the relation between rank and f-rank of a spanoid. Specifically, we
define the linear programs for LPentropy and LPcover which provide upper and lower
bounds on the f-rank, respectively. We will also calculate the rank and f-rank of the
Pentagon spanoid defined in the introduction (Figure 1) and thus proving that f-rank
can be strictly smaller. In section 6, we study products of spanoids which we use to
amplify the gap between f-rank and rank from constant to polynomial.

2. Preliminaries on spanoids. We will now describe two equivalent ways to
define spanoids which will turn out to be very useful.

2.1. Spanoids as union-closed or intersection-closed families. In this sub-
section, we will define an equivalent and more canonical way of describing spanoids
in terms of intersection closed or union closed families. We have defined spanoids in
Definition 1.5 by specifying the initial set of derivation rules such as A \rightarrow i. But two
different initial sets of rules can lead to the same set of derivations and we should
consider two spanoids to be equivalent if they lead to the same set of derivations. We
will present an alternative way to describe spanoids which makes them equivalent to
union-closed families of sets or alternatively intersection-closed families of sets. More-
over, this new representation is a more canonical way to represent spanoids since it
will be based only on the set of derivations. For this, the main new notions we need
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to define are that of a ``closed set"" and an ``open set.""

Definition 2.1 (closed and open sets). Let \scrS be an spanoid on [n]. A closed
set10 is a subset B \subset [n] for which span(B) = B. A subset B \subset [n] is called an open
set if its complement is a closed set. The family of all closed sets of \scrS is denoted by
\scrC \scrS and the family of all open sets of \scrS by \scrO \scrS (when it is clear from the context, we
will drop the subscript \scrS ).

Claim 2.2. In any spanoid \scrS on [n],
1. the intersection of any number of closed sets is a closed set, i.e., \scrC \scrS is an

intersection-closed family,
2. the union of any number of open sets is an open set, i.e., \scrO \scrS is a union-closed

family and
3. for any set A \subset [n], span(A) is equal to the intersection of all closed sets

containing A, i.e., span(A) =
\bigcap 

B\supset A,B\in \scrC \scrS 
B.

Proof. (1) Let F = F1 \cap F2 be the intersection of two closed sets. Suppose in
contradiction that F spans some element x \in [n] \setminus F, then, by monotonicity, both F1

and F2 have to span x. Hence, x \in span(F1)\cap span(F2) = F1\cap F2 = F in contradiction.
(2) This just follows from (1) by taking complements.
(3) Let F (A) be the intersection of all closed sets containing A. Since span(A)

is a closed set we clearly have F (A) \subset span(A). To see the other direction, suppose
x \in span(A), and let F be any closed set containing A. Then, by monotonicity, F
must also span x and so we must have x \in F .

Claim 2.3. A spanoid is uniquely determined by the set of all its closed (open) sets
which is an intersection-closed (union-closed) family of subsets of [n]. Conversely, ev-
ery intersection-closed (union-closed) family of subsets of [n] defines a spanoid whose
closed (open) sets are the given family.

Proof. Given a spanoid \scrS on [n], by Claim 2.2, we can define span(A) in \scrS using
just the closed sets as

span(A) =
\bigcap 

B\supset A,B\in \scrC \scrS 

B.

And A | = i in \scrS iff i \in span(A). Thus given the set of all closed sets, we can reconstruct
all the derivations of the spanoid.

For the converse, suppose we are given an intersection-closed family of subsets of
[n], say \scrC . We can define span\scrC (A) =

\bigcap 
B\supset A,B\in \scrC B and define a spanoid \scrS \scrC where

A | = i iff i \in span\scrC (A). It is easy to see that the closed sets of this spanoid \scrS \scrC is
exactly \scrC .

Thus an equivalent way to define a spanoid is to define all its closed (open) sets
which is some intersection (union) closed family. The following claim shows that the
rank of a spanoid has a very natural interpretation in terms of the open sets.

Claim 2.4. The rank of a spanoid \scrS is the size of the smallest hitting set for
the collection \scrO \scrS \setminus \{ \phi \} , i.e., a set which intersects every nonempty open set in \scrO \scrS 
nontrivially.

Proof. Observe that a subset A \subset [n] spans [n] iff it is a hitting set for all the
nonempty open sets in \scrO \scrS . This is because if A doesn't hit some non-empty open
set B, then A lies in the complement of B, i.e., A \subset \=B. Since \=B is closed, span(A) \subset 
\=B \not = [n]. Conversely, if A hits every nonempty open set, then A should intersect

10Closed sets are analogous to ``flats"" or ``subspaces"" in matroids.
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[n] \setminus span(A) nontrivially or span(A) = [n]. Since A \subset span(A), we should have
span(A) = [n]. Therefore, rank(\scrS ) is the size of the smallest hitting set for \scrO \scrS .

This interpretation of the rank is used in section 5.2 to give an LP relaxation
LPcover which lower bounds the rank. We can also upper bound the rank of a spanoid
in terms of the number of closed or open sets as the following claim shows.

Claim 2.5. Let \scrS be a spanoid, then rank(\scrS ) \leq log2(| \scrC \scrS | ) = log2(| \scrO \scrS | ).
Proof. Let r = rank(\scrS ) and R \subset [n] be a set of size | R| = r spanning [n]. Since the

rank of \scrS is r we know that R is independent (not spanned by any proper subset). For
each of the 2r subsets S \in 2R we consider the closed set FS = span(S). We claim that
all of these are distinct. Suppose in contradiction that there were two distinct sets
S \not = T \in 2R with span(S) = span(T ). Without loss of generality (w.l.o.g.) suppose
there is an element x \in T \setminus S. Then x \in span(S) and so we get that R \setminus \{ x\} spans R
(by monotonicity) and so spans the entire spanoid in contradiction. Thus | \scrC \scrS | \geq 2r.

2.2. Spanoids as set systems. In this subsection, we will show yet another way
of representing spanoids by families of sets. This representation (which is equivalent to
spanoids) will be easier to work with and, in fact, we will later work almost exclusively
with it instead of with the definition given in the introduction. Recall the notation
introduced at the end of the introduction that, for sets S1, . . . , Sn and for a subset
A \subset [n] we let \cap A = \cap i\in ASi.

Definition 2.6 (intersection dimension of a set system). The intersection-dimen-
sion of a family of sets S1, . . . , Sn, denoted idim(S1, . . . , Sn) is the smallest integer d
such that there exist a set A \subset [n] of size d such that \cap A = \cap [n].

Lemma 2.7 (set-representation of spanoids). Let \scrS be a spanoid on [n] with
rank(\scrS ) = r. Then there exists a family of sets S1, . . . , Sn such that A | = i in \scrS iff
\cap A \subset Si. In this case we say that the set family (S1, S2, . . . , Sn) is a set-representation
of \scrS and this implies in particular that idim(S1, . . . , Sn) = rank(\scrS ).

Proof. For i \in [n] we define Si \subset \scrC \scrS to be the subfamily of closed sets of \scrS 
containing the element i \in [n]. For the first direction of the proof suppose that A
spans x in the spanoid \scrS . Then, by Claim 2.2, x belongs to any closed set containing
A and so \cap i\in ASi \subset Sx. For the other direction, suppose \cap i\in ASi \subset Sx or that any
closed set containing A must also contain x. Hence, x is in the intersection of all
closed sets containing A and, by Claim 2.2 we have that x \in span(A).

An alternative way to represent spanoids is by unions. (T1, T2, . . . , Tn) is called
a union set-representation of the spanoid \scrS when, A | = i in \scrS iff Ti \subset \cup j\in ATj . Note
that if (S1, S2, . . . , Sn) is an (intersection) set-representation for \scrS as in Lemma 2.7,
then by taking complements, ( \=S1, \=S2, . . . , \=Sn) is a union set-representation for \scrS and
vice versa. Thus these two notions of representing a spanoid by sets are equivalent.

Claim 2.8. Given a spanoid \scrS explicitly as a family of pairs T \rightarrow i and some
positive integer k, deciding if the rank of the spanoid is at most k is NP-complete.

Proof. If we are given some subset A of size k along with derivations A | = i for
every element i of the spanoid, then we can check using basic rules that all of the
derivations are correct. Note that the derivations are of polynomial length. Therefore,
this problem is in NP.

To prove that it is NP-complete, we reduce set cover problem to this. Given a
collection of sets S1, S2, . . . , Sn \subset U such that \cup iSi = U and some positive integer k,
the set cover problem asks if there are at most k sets in the collection whose union is
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U . To reduce it to the spanoid rank problem, we can create a spanoid \scrS over [n] \sqcup U
where the basic inference rules are given by the following:11

1. \{ i\} \rightarrow a for all a \in Si and i \in [n],
2. Si \rightarrow i for all i \in [n].

Note that this spanoid has a polynomial length description in terms of the basic rules.
We claim that the rank of this spanoid is equal to the smallest number of sets in the
collection S1, S2, . . . , Sn which cover all of U . Let B be a subset of [n] \sqcup U of size
rank(\scrS ) which spans all of [n] \sqcup U . Without loss of generality, we can assume that
B \subset [n]. This is because if a \in B for some a \in U, we can swap a \in B with some
i \in [n] such that Si \ni a. Now \cup i\in BSi = U because span(B) = [n] \sqcup U. Conversely, if
\cup i\in BSi = U for some subset B \subset [n], then span(B) = U \sqcup [n]. This completes the
reduction.

3. Upper bounds on the rank of \bfitq -LCSs. In this section we prove the upper
bounds on the rank of q-LCSs stated in Theorems 1.9 and 1.10. The proofs will rely
on the set representation described in section 2.2 and on random restriction and
contraction arguments given below.

3.1. Graph theoretic lemmas. In this subsection, we will prove a key technical
lemma about a random graph process that will be useful for proving upper bounds
on the rank of q-LCSs. We denote by \scrD (n) the set of simple directed graphs on n
vertices. We always assume w.l.o.g. that the set of vertices are the integers between
1 and n.

Definition 3.1 ((\alpha , \beta )-spread distribution). Let \mu be a distribution on \scrD (n).
We say that \mu is (\alpha , \beta )-spread if the following conditions are true for a graph G
sampled from \mu :

1. Each vertex i \in [n] has an incoming edge with probability at least \alpha , i.e.,

\forall i PrG\sim \mu [\exists j : (j, i) \in E(G)] \geq \alpha .

2. For every i, j \in [n], the probability that (j, i) is an edge is at most \beta /n, i.e.,

\forall i, j PrG\sim \mu [(j, i) \in E(G)] \leq \beta 

n
.

For example, one can generate an (k/n, 1)-spread distribution \mu on \scrD (n) in the
following way: Fix arbitrary sets S1, . . . , Sn \subset [n] of size k each. To sample a graph
G from \mu , pick a uniformly random element j \in [n], and let G be the directed graph
containing the edges (j, i) for each i such that j \in Si. This satisfies the definition since
for any fixed i \in [n], i has an incoming edge if j \in Si which happens with probability
| Si| /n = k/n. And for any fixed i\prime , j\prime \in [n], the probability that (j\prime , i\prime ) is an edge is
at most 1/n since this happens only when j\prime = j and j is chosen uniformly at random
from [n]. Note that the sampled edges overall are highly correlated (they all have j
as an endpoint).

We will need following simple observation about (\alpha , \beta )-spread distributions.

Lemma 3.2. Let \mu be an (\alpha , \beta )-spread distribution on \scrD (n). For every vertex i
and every subset S \subset [n] of size at most \alpha n

2\beta ,

PrG\sim \mu [\exists j /\in S : (j, i) \in E(G)] \geq \alpha 

2
.

11U and [n] are considered disjoint.
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Proof. The proof follows from union bound and properties of (\alpha , \beta )-spread dis-
tributions:

\alpha \leq PrG\sim \mu [\exists j : (j, i) \in E(G)]

\leq Pr[\exists j \in S : (j, i) \in E(G)] +Pr[\exists j /\in S : (j, i) \in E(G)]

\leq 
\sum 
j\in S

Pr[(j, i) \in E(G)] +Pr[\exists j /\in S : (j, i) \in E(G)]

\leq \alpha n

2\beta 
\cdot \beta 
n
+Pr[\exists j /\in S : (j, i) \in E(G)]

=
\alpha 

2
+Pr[\exists j /\in S : (j, i) \in E(G)].

Given a distribution \mu on graphs we would like to study the random process in
which we, at each iteration, sample from \mu and ``add"" the edges we got to the graph
obtained so far. For two graphs G and H on the same set of vertices, we denote by
G \cup H their set theoretic union (as a union of edges).

Definition 3.3 (graph process associated with \mu ). Let \mu be a distribution on
\scrD (n). We define a sequence of random variables G\mu 

t , t = 0, 1, 2, . . . , as follows: G\mu 
0

is the empty graph on [n] vertices. At each step t \geq 1 we sample a graph G according
to \mu (independently from all previous samples) and set Gt = Gt - 1 \cup G.

For a graph G \in \scrD (n) and a vertex i \in [n] we denote by Rea(i) the set of vertices
that are reachable from i (via walking on directed edges). By convention, a vertex
is always reachable from itself. Similarly, for a set of vertices S \subset [n] we denote by
Rea(S) = \cup i\in SRea(i) the set of vertices reachable from some vertex in S. We denote
the set of strongly connected components of G by \Gamma (G). We denote by C(i) \in \Gamma (G)
the strongly connected component of G containing i. We say that C \in \Gamma (G) is a
source if C has no incoming edges from any vertex not in C.

Lemma 3.4. Let \mu be an (\alpha , \beta )-spread distribution on \scrD (n), and let G\mu 
t be its

associated graph process. Then, for all t \geq 0, there is positive probability that the
graph \Gamma (G\mu 

t ) has at most

n \cdot (1 - \alpha /4)t +
2\beta 

\alpha 
sources.

Proof. If C \in \Gamma (G) is a source, we define the weight of C to be the number of
vertices reachable from C (including vertices of C) that are not reachable from any
other source of G. More formally, let

Rea\prime (C) = \{ j \in Rea(C) | j \not \in Rea(C \prime ) \forall sources C \prime \in \Gamma (G), C \prime \not = C\} .

Then the weight of a source C \in \Gamma (C) is denoted by w(C) = | Rea\prime (C)| (we do not
define weight for components that are not sources). Let us call a source C \in \Gamma (Gt)
``light"" if its weight w(C) is at most k = \alpha n

2\beta and ``heavy"" otherwise. By the definition

of weight, there could be at most n/k = 2\beta /\alpha heavy sources.
We will argue that, in each step, as we move from Gt to Gt+1, the number of

light sources must decrease by a factor of (1  - \alpha /4) with positive probability. For
that purpose, suppose there are mt sources in Gt and among them m\prime 

t are light. Fix
some light source and pick a representative vertex i from it. Since i is contained in a
light source, | Rea\prime (C(i))| \leq \alpha n

2\beta . When going to Gt+1 = Gt \cup G, i gets an incoming

edge from outside the set Rea\prime (C(i)) with probability at least \alpha /2 by Lemma 3.2. If
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this happens then in Gt+1, this source will either stop being a source or merge with
another source.

Picking a representative for each light source in Gt, we see that the expected
number of representatives i which get a new incoming edge from outside Rea\prime (C(i)) is
at least (\alpha /2)m\prime 

t. Hence, this quantity is obtained with positive probability. Now, if
at least (\alpha /2)m\prime 

t light sources ``merge"" with another source or stop being a source in
Gt+1, then the total number of light sources must decrease by at least (\alpha /4)m\prime 

t (the
worst case being that (\alpha /4)m\prime 

t disjoint pairs of light sources merge with each other).
Hence, with positive probability we get that m\prime 

t+1 \leq m\prime 
t \cdot (1 - \alpha /4). Therefore, since

the samples in each step t are independent, there is also a positive probability that
m\prime 

t \leq n \cdot (1 - \alpha /4)t and mt \leq m\prime 
t + 2\beta /\alpha . This completes the proof.

3.2. Proof of upper bound from Theorem 1.9.

Theorem 3.5 (rank of 2-LCSs). Let \scrS be a 2-LCS on [n] with error-tolerance
\delta . Then rank(\scrS ) \leq O( 1\delta log2 n).

Proof. We will work with the (equivalent) set formulation: Let \scrF = \{ S1, . . . , Sn\} 
be a set system representing the spanoid \scrS as in Lemma 2.7.

We start by defining an (\alpha , \beta )-spread distribution \mu on \scrD (n) as follows: To sample
a graph G from \mu we first pick \ell \in [n] uniformly at random. Then we add a directed
edge from j to i for every i, j such that \{ j, \ell \} \in Mi. In this case we have Sj \cap S\ell \subseteq Si

and so, after restricting to S\ell we have Sj \cap S\ell \subseteq Si \cap S\ell .

Claim 3.6. \mu is a (2\delta , 1)-spread distribution.

Proof. For any fixed i \in [n], i will get an incoming edge if \ell , which is randomly
chosen from [n], belongs to Mi. Since Mi has at least \delta n edges, this will happen with
probability at least 2\delta . Now fix any i, j \in [n], (j, i) will be an edge iff \ell is equal to the
the vertex that matches j in the matching Mi, this happens with probability at most
1/n. If j is not matched in Mi, the probability is zero.

Consider the graph process G\mu 
t and let S\ell 1 , . . . , S\ell t be the sets chosen in the t

iterations of sampling from \mu . If i \in Rea(j) in the graph G\mu 
t , this means that, after

restricting to the intersection S = S\ell 1 \cap \cdot \cdot \cdot \cap S\ell t , the set Sj is contained in Si (i.e.,
Sj \cap S \subseteq Si \cap S). By Lemma 3.4, after t = O( 1\delta log2 n) steps, the graph process
G\mu 

t will contain r = O(1/\delta ) sources. Pick a representative Sa1
, . . . , Sar

from each of
these sources. Then, the intersection of the t + r = O( 1\delta log2 n) sets S\ell 1 , . . . , S\ell t and
Sa1 , . . . , Sar is contained in all n sets S1, . . . , Sn. That is because, when restricted to
the intersection of S\ell 1 , . . . , S\ell t , each set Si contains one of the sets Saj , j \in [r].

3.3. Proof of upper bound from Theorem 1.10.

Theorem 3.7 (rank of q-query LCSs). Let \scrS be a q-LCS with error-tolerance \delta 
and q \geq 3. Then

rank(\scrS ) \leq O
\Bigl( 
\delta  - 

1
q - 1 \cdot n

q - 2
q - 1 log2 n

\Bigr) 
.

Proof. Like the 2-query case, we work with the set representation \scrF = \{ S1, . . . , Sn\} 
of \scrS as in Lemma 2.7. We follow the same strategy as in the proof of the 2-query case.
The difference is that, in this case, we will need to pick many sets to restrict to in
each step instead of just one. The first observation is that, if \{ j1, . . . , jq\} \in Mi, then,
restricted to the intersection S = Sj1\cap \cdot \cdot \cdot \cap Sjq - 1

we have Sjq \subset Si. The second obser-

vation is that, if we choose a subset J \subset [n] of size roughly n
q - 2
q - 1 , then, in expectation,

J will contain q  - 1 elements in one of the q-subsets of Mi for a constant fraction of
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the i's. Repeating this a logarithmic number of times and using Lemma 3.4, as in the
proof of Theorem 3.5 will then complete the proof.

We start by defining an (\alpha , \beta )-spread distribution \mu on \scrD (n). To sample a graph
G from \mu we first pick a random set J \subset [n] such that each j \in [n] is chosen to be in
J independently with probability (\delta n) - 1/(q - 1). By Markov's inequality we have that

(3.1) Pr
\Bigl[ 
| J | \geq 4 \cdot \delta  - 

1
q - 1n

q - 2
q - 1

\Bigr] 
\leq 1/4.

For each i \in [n] and each q-subset T \in Mi we select q - 1 elements of T arbitrarily
and refer to them as the distinguished (q  - 1)-subset of T . We now argue that, for
each i \in [n], there is relatively high probability that J will contain the distinguished
(q  - 1)-subset of at least one q-subset in Mi.

Claim 3.8. Let Ei denote the event that J contains the distinguished (q - 1)-subset
from at least one q-subset in Mi. Then, for each i \in [n] we have that Pr[Ei] \geq 1/2.

Proof. J will contain the distinguished q  - 1 elements in a specific q-subset with
probability (\delta n) - 1. Since the \delta n q-subsets in Mi are disjoint, the probability that J
will not contain any of the distinguished (q  - 1)-subsets is at most (1 - (1/\delta n))\delta n \leq 
1/2.

We are now ready to define the edges in the graph G sampled by \mu . First, we

check if | J | \geq 4 \cdot \delta  - 
1

q - 1n
q - 2
q - 1 . If this is the case, then \mu outputs the empty graph

(by (3.1) this happens with probability at most 1/4). Otherwise, for each i \in [n] we
check to see if J contains the distinguished (q - 1)-subset from one of the q-subsets of
Mi. If there is at least one such q-subset, we pick one of them uniformly at random.
Suppose the q-subset we chose is \{ j1, . . . , jq\} and that the distinguished elements are
the first q  - 1. Then we add the directed edge jq \rightarrow i to the graph G. By the above
discussion, we know that, restricted to the intersection of all sets indexed by J the
set Sjq is contained in Si (hence the directed edge representing set inclusion).

Claim 3.9. \mu is (1/4, 1/\delta )-spread.

Proof. By Claim 3.8, and since the probability that | J | is too large is at most 1/4
we see that any fixed i \in [n] will get an incoming edge in G with probability at least
\alpha = 1/4. For any fixed i, j \in [n], since the distribution of the special q-subset, which
is contributing an edge to i is uniform in Mi (conditioned on J containing a q-subset
from Mi), we can conclude that (j, i) \in E(G) with probability at most 1/(\delta n) = \beta /n.
This proves the claim.

Now, applying Lemma 3.4, we get that, after t = O(log2 n) steps, the graph
processG\mu 

t will contain at mostO(1/\delta ) sources with positive probability. Let J1, . . . , Jt
be the sets chosen in the different steps of the process and, w.l.o.g., remove any of
them that were too big (i.e., when the graph sampled by \mu was empty). Hence, all of

the sets satisfy | Ji| \leq 4 \cdot \delta  - 
1

q - 1n
q - 2
q - 1 . Now, let S be the intersection of all sets Sj such

that j belongs to at least one of the sets Ji. Then, restricted to S, each of the sets
Si contains one of the sources in the graph G\mu 

t . Hence, if we add to our intersection
a representative from each of the sources, we will get a set that is contained in all of
the sets Sj . The total number of sets we end up intersecting is bounded by

O(1/\delta ) +

t\sum 
i=1

| Ji| = O
\Bigl( 
\delta  - 

1
q - 1 \cdot n

q - 2
q - 1 log2 n

\Bigr) 
.

This completes the proof of the theorem.
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4. Constructing \bfitq -LCSs with high rank. In this section we prove the lower
bound part of Theorem 1.10 (the lower bound for the 2-query case follows from the
Hadamard code construction). We will in fact generate this spanoid at random by
picking, for each i \in [n], a random q-matchingMi on [n] and, for each q-subset T \in Mi

add the rule T \rightarrow i. The resulting spanoid will thus have, by design, the structure of
a q-LCS. The reason why this spanoid should have high rank (with high probability)
relies on the following observation. Suppose A \subset [n] is a set that spans [n]. This
means that there is a sequence of derivations Ti \rightarrow i with each q-subset Ti in the
matching Mi that eventually generates all of [n]. We can limit ourselves to the first
C \cdot | A| such derivations for C = \Theta (log n). These derivations generate a set A\prime of size
(C +1)| A| (including the original A and the C| A| newly derived elements). Now, the
set A\prime must contain all of the q-subsets Ti for C| A| values of i. However, the union of
randomly chosen C| A| q-subsets will generally have size much larger than (C + 1)| A| 
(closer to q \cdot C| A| ).

Theorem 4.1 (existence of high rank q-LCSs). For any integer q \geq 3 and all
sufficiently large n the following holds. Consider the following distribution generating
a spanoid \scrS on base set [n]. For each i \in [n] pick a q-matching Mi of size \lfloor n/q\rfloor 
uniformly at random and add the rule T \rightarrow i for all T \in Mi. Then, with probability

approaching one, rank(\scrS ) is larger than r = cn
q - 2
q - 1 / log2(n), where 0 < c < 1 is an

absolute constant.

Proof. Let m = r \cdot log2(n) = cn
q - 2
q - 1 . If the rank of \scrS is at most r, then there

exists a set A \subset [n] of size r that spans (using the rules obtained from the n random
matchings M1, . . . ,Mn) the entire base set [n]. We will upper bound the probability
that such a set exists by bounding the bigger event given by the existence of a set of m
rules that can be applied one after another starting with the original set A. That is,
let \scrE denote the event that there exists a set A of size r on which one can sequentially
apply m rules of the form Tji \rightarrow ji with each Tji belonging to the matching Mji and

for m different values j1, . . . , jm \in [n] arriving at the final set \^A = A \cup \{ j1, . . . , jm\} .
If A spans [n], then clearly the event \scrE must hold and so, it is enough to show that \scrE 
happens with probability approaching zero.

We will present the event \scrE as the union of (possibly overlapping) smaller events
and then use the union bound, bounding the probability that each one occurs and
multiplying by the number of bad events. For a matchingMi (with some fixed ordering
on its edges) and \ell \in \lfloor n/q\rfloor , let Mj(\ell ) be the \ell th edge in the matching Mj . Note that
the marginal distribution of Mj(\ell ) for a fixed j, \ell is uniformly distributed among all q-
subsets of [n]. Given a set A \subset [n] of size r, a subset of m indices J = \{ j1, j2, . . . , jm :
j1 < j2 < \cdot \cdot \cdot < jm\} \subset [n] and a sequence L = (\ell 1, \ell 2, . . . , \ell m) \in (\lfloor n/q\rfloor )m, denote
by \scrE (A, J, L) the event in which the set A spans the set \^A = A \cup J using the rules
Mji(\ell i) | = ji applied in some order. In particular this implies that Mji(\ell i) \subset \^A for
i \in [m]. Therefore, for every fixing of A, J, L, we can bound

Pr[\scrE (A, J, L)] \leq Pr[\forall i \in [m] Mji(\ell i) \subset \^A] =

m\prod 
i=1

Pr[Mji(\ell i) \subset \^A],

where we used the independence of M1,M2, . . . ,Mn. Since the marginal distribution
of Mji(\ell i) is uniform over all q-sized subsets,

Pr[Mji(\ell i) \subset \^A] \leq 
\bigl( 
m+r
q

\bigr) \bigl( 
n
q

\bigr) \leq 
\biggl( 
4m

n

\biggr) q

.
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Taking the product over all i \in [m], we get

Pr[\scrE (A, J, L)] \leq 
\biggl( 
4m

n

\biggr) qm

.

To complete the proof we can upper bound the number of tuples (A, J, L) as above
by \biggl( 

n

r

\biggr) 
\cdot 
\biggl( 
n

m

\biggr) 
\cdot 
\biggl\lfloor 
n

q

\biggr\rfloor m

\leq nr \cdot 
\Bigl( en
m

\Bigr) m

\cdot nm \leq 
\biggl( 
6n2

m

\biggr) m

,

where the last inequality used the fact that r/m \leq 1/ log2(n). Putting these bounds
together we get that

Pr[\scrE ] \leq 
\biggl( 
4m

n

\biggr) qm \biggl( 
6n2

m

\biggr) m

=

\biggl( 
6 \cdot 4q \cdot mq - 1

nq - 2

\biggr) m

which is exponentially decreasing in m for the given choice of m = c \cdot n(q - 2)/(q - 1) and
for c a sufficiently small constant.

Explicit q-LCSs. One could ask for a more explicit construction of a q-LCS with
rank equal to (or even close to) that stated above. We are not able to give such a
construction but can relate this problem to a longstanding open problem in explicit
construction of expander graphs. A bipartite (balanced) expander of degree q is a
bipartite graph with n left vertices L and n right vertices R such that the degree
of each vertex is q and such that sets A \subset L of size ``not too large"" have many
neighbors in R. More specifically, one typically asks that sets with | A| \leq n/2 have
at least (1 + \epsilon )| A| right neighbors for some constant \epsilon > 0. It is quite easy to see
that a random graph of this form will be a good expander with high probability and,
by now, there are also many explicit constructions [HLW06]. One can also consider
unbalanced bipartite expanders in which | L| \gg | R| . Take, for example, the setting in
which | L| = n2, | R| = n, and when the degree of every vertex in L is some constant q.
A simple probabilistic argument shows that sufficiently small sets in L, namely sets of
size | A| \leq n\alpha q with \alpha q < 1 a constant depending on q and approaching 1 as q grows,
have many neighbors in R (say, at least 2| A| ). However, no explicit constructions
of such graphs are known (for any constant q and any \alpha q > 0). The property we
needed in our random construction of LCSs can be thought of as an ``easier"" variant
of the expander construction problem. Given q-matchings M1, . . . ,Mn each of size \delta n
consider the bipartite graph with L = [n]\times [\delta n] and R = [n]. We identify each vertex
(i, j) \in L with the jth q-subset Tij of Mi and connect it to the q neighbors in R given
by that q-subset. For our proof to work we need the property that there is no small
set containing many q-subsets from different matchings. This corresponds to asking
for the above graph to be an expander for a restricted family of sets, namely to sets
that have at most one vertex (i, j) for a given i (with each subgraph (i, \ast ) defining a
matching).

5. Functional rank versus spanoid rank. In this section we analyze the
five element spanoid \Pi 5 described in the introduction (Figure 1) and show that its
rank is strictly larger than its functional rank. Along the way we formulate the LP
relaxation LPcover(\scrS ) which lower bounds the functional rank in general and another
linear program LPentropy(\scrS ) which upper bounds the functional rank.

First, we give the lower bound by constructing a consistent code over an alphabet
of size 4 with 32 = 42.5 codewords.
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Claim 5.1. Let \Pi 5 be the pentagon spanoid defined in Figure 1. Then, f-rank(\scrM 5)
\geq 2.5.

Proof. We will construct a consistent code over the alphabet \Sigma = \{ 0, 1\} 2. Each
codeword will be indexed by an element of \{ 0, 1\} 5. The codeword w(x) \in \Sigma 5 corre-
sponding to (x1, x2, x3, x4, x5) \in \{ 0, 1\} 5 will be ((x5, x2), (x1, x3), (x2, x4), (x3, x5), (x4,
x1)) as shown in Figure 2. In other words, we place the bits x1, . . . , x5 on the vertices
of the cycle and then assign to each vertex the symbol of \Sigma = \{ 0, 1\} 2 comprised of
the bits of its two neighbors on the cycle. It is now straight forward to verify that
one can compute the coordinate wi, i \in [5] from the two coordinates spanning it in
\Pi 5. For example, the span rule \{ 1, 2\} \rightarrow 4 requires us to compute w4 = (x3, x5) from
w1 = (x5, x2) and w2 = (x1, x3), which can be easily done (by symmetry, this is the
situation in all of the other rules).

w1 = (x5, x2) w2 = (x1, x3)

w3 = (x2, x4)

w4 = (x3, x5)

w5 = (x4, x1)

Fig. 2. A consistent code for \Pi 5; each coordinate can be recovered from the coordinates of the
opposite edge.

5.1. An upper bound on functional rank via LP\bfite \bfitn \bfitt \bfitr \bfito \bfitp \bfity . In this section,
we will give an LP upper bound for f-rank(\scrS ) using properties of Shannon entropy.
We will show that this upper bound matches the lower bound of 2.5 for f-rank(\Pi 5)
shown in Claim 5.1, thus proving that f-rank(\Pi 5) = 2.5. We will begin by recollecting
some properties of Shannon entropy.

Given a random variable X supported on some domain A, its (Shannon) entropy
is defined as

H(X) =  - 
\sum 
a\in A

Pr[X = a] log(Pr[X = a]).

The Shannon entropy of a random variable measures its information content. The
conditional entropy of X given an other random variable Y is defined as H(X| Y ) =
H(X,Y ) - H(Y ). And the conditional mutual information between X and Y given a
third random variable Z is defined as I(X : Y | Z) = H(X| Z) +H(Y | Z) - H(XY | Z).
Equivalently, I(X : Y | Z) = H(X,Z) + H(Y,Z)  - H(X,Y, Z)  - H(Z). Shannon
proved that conditional entropy and conditional mutual information are always non-
negative [CT91]. These are called basic information inequalities.

Let X = (X1, X2, . . . , Xn) be a random variable made up of n coordinates. Define
a function f : 2[n] \rightarrow \BbbR \geq 0 as f(S) = H(XS), where XS = (Xi)i\in S . Note that f is a
monotone increasing function because

f(A \cup B) - f(A) = H(XA\cup B) - H(XA) = H(XA, XB) - H(XB) = H(XA| XB) \geq 0.
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Moreover, f is a submodular function, i.e., for every A,B \subset [n], f(A\cup B)+f(A\cap B) \leq 
f(A) + f(B). This is because

0 \leq I(XA\setminus B : XB\setminus A| XA\cap B)

= H(XA\setminus B , XA\cap B) +H(XB\setminus A, XA\cap B) - H(XA\setminus B , XB\setminus A, XA\cap B) - H(XA\cap B)

= H(XA) +H(XB) - H(XA\cup B) - H(XA\cap B)

= f(A) + f(B) - f(A \cup B) - f(A \cap B).

In fact, the monotone increasing submodular property of f captures all of the in-
equalities that can be obtained by using the basic information inequalities. But when
n \geq 4, the entropies H(XS) satisfy some extra linear inequalities that are not cap-
tured by the basic information inequalities. These mysterious inequalities are called
non-Shannon type inequalities and a few such inequalities are known [ZY98], but they
are not well understood. The set

\Gamma \ast 
n = \{ (H(XS))S\subset [n],S \not =\phi : X = (X1, X2, . . . , Xn) r.v.\} ,

where X ranges over all n jointly distributed random variables, is called the entropic
region for n random variables. \Gamma \ast 

n is a convex cone, but neither \Gamma \ast 
n nor its closure \Gamma \ast 

n

are polyhedral for n \geq 4 [Mat07], i.e., they are not defined by a finite number of linear
inequalities. See [Yeu08] for more information about non-Shannon type information
inequalities and the entropic region.

We are now ready to set up the linear program for upper bounding the functional
rank of a spanoid. Let \scrS be a spanoid on [n], and let C \subset \Sigma n be a code over some
alphabet \Sigma which is consistent with the spanoid \scrS , i.e., whenever A \rightarrow i in the spanoid,
for every codeword c \in C, ci is determined by c| S . Let X = (X1, X2, . . . , Xn) be a
random variable with uniform distribution over C. Then A \rightarrow i in \scrS implies that
H(XA\cup \{ i\} ) = H(XA). The dimension of the code C is

k =
log | C| 
log | \Sigma | 

=
H(X)

log | \Sigma | 
.

So upper bounding the functional rank of \scrS is equivalent to upper boundingH(X1, X2,
. . . , Xn) where X is a random variable distributed over \Sigma n such that H(XA\cup \{ i\} ) =

H(XA) whenever A \rightarrow i in \scrS . Define f : 2[n] \rightarrow \BbbR by

f(S) =
H(XS)

log | \Sigma | 
.

Clearly f(\phi ) = 0 and f(\{ i\} ) \leq 1 for all i \in [n]. The basic information inequalities
are equivalent to saying that f is a monotone increasing submodular function, i.e., for
every subsets A,B \subset [n],

f(A \cup B) + f(A \cap B) \leq f(A) + f(B)

and if A \subset B, then f(A) \leq f(B). Thus the best upper bound we can derive on H(X)
using the basic information inequalities is captured by the following linear program:
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(5.1)

LPentropy(\scrS ) =max f([n]),

f(\phi ) = 0,

f(\{ i\} ) \leq 1 \forall i \in [n],

f(A \cup B) + f(A \cap B) \leq f(A) + f(B) \forall A,B \subset [n],

f(A) \leq f(B) \forall A \subset B \subset [n],

f(A \cup \{ i\} ) = f(A) whenever A | = i in \scrS .

Note that LPentropy(\scrS ) is always at most rank(\scrS ). This is because, if A \subset [n] is
such that span(A) = [n], then any feasible f in the LP (5.1) should satisfy f([n]) \leq | A| .
The following claim formally states that LPentropy(\scrS ) upper bounds the functional
rank of the spanoid \scrS and lower bounds rank(\scrS ), the proof of which follows immedi-
ately from the above discussion.

Claim 5.2. For any spanoid \scrS , f-rank(\scrS ) \leq LPentropy(\scrS ) \leq rank(\scrS ).
Note that the functional rank could be smaller than LPentropy(\scrS ) (though we do

not know of an explicit example). This is because the basic information inequalities do
not characterize the entropic region of more than three random variables. It might be
possible to obtain better upper bounds on the functional rank by using non-Shannon
type information inequalities. But in the case of the pentagon spanoid \Pi 5 defined in
Figure 1, we will show that LPentropy(\scrS ) gives the tight upper bound.

Claim 5.3. f-rank(\Pi 5) = LPentropy(\Pi 5) = 2.5 < 3 = rank(\Pi 5).

Proof. We will show that value of the LP in (5.1) is at most 2.5. By the spanoid
rules, we know that f(\{ i, i+ 2, i+ 3\} ) = f(\{ i+ 2, i+ 3\} ) for every i \in [5] where the
addition is modulo 5. We want to upper bound f([5]). By submodularity of f ,

f(\{ 1, 3, 4\} ) + f(\{ 1, 2, 4\} ) \geq f(\{ 1, 4\} ) + f(\{ 1, 2, 3, 4\} )

f(\{ 1, 4\} ) + f(\{ 1, 5\} ) \geq f(\{ 1\} ) + f(\{ 1, 4, 5\} ).
By the inference rules, f(\{ 1, 3, 4\} ) = f(\{ 3, 4\} ), f(\{ 1, 2, 4\} ) = f(\{ 1, 2\} ) and f(\{ 1, 2, 3, 4\} )
= f(\{ 1, 4, 5\} ) = f(\{ 1, 2, 3, 4, 5\} ). Therefore, the above two inequalities imply

f(\{ 1, 2\} ) + f(\{ 1, 5\} ) + f(\{ 3, 4\} ) \geq f(\{ 1\} ) + 2f(\{ 1, 2, 3, 4, 5\} ).

By rotational symmetry, we can obtain five inequalities of this form. Summing them,
and observing that every adjacent pair of vertices is counted three times on the left
hand side, we get

3
\sum 
i

f(\{ i, i+ 1\} ) \geq 
\sum 
i

f(\{ i\} ) + 10f(\{ 1, 2, 3, 4, 5\} ).

Upper bounding f(\{ i, j\} ) by f(\{ i\} ) + f(\{ j\} ), we get

6
\sum 
i

f(\{ i\} ) \geq 
\sum 
i

f(\{ i\} ) + 10f(\{ 1, 2, 3, 4, 5\} )

\Rightarrow f(\{ 1, 2, 3, 4, 5\} ) \leq 1

2

\sum 
i

f(\{ i\} ) \leq 5

2
.

Therefore, by Claim 5.2, f-rank(\Pi 5) \leq LPentropy(\Pi 5) \leq 2.5. By Claim 5.1, f-rank(\Pi 5)
\geq 2.5. This implies the required claim.
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5.2. A lower bound on functional rank via LP\bfitc \bfito \bfitv \bfite \bfitr . In this section, we
will prove lower bounds on functional rank by constructing consistent codes. And the
best code one can construct in this way is captured by a very natural LP relaxation of
the spanoid rank called LPcover. The code constructed in Claim 5.1 for the pentagon
spanoid \Pi 5 can be viewed as an instance of a more general scheme based on a union
set-representation of a spanoid.

Construction 5.4. Let (S1, S2, . . . , Sn) be a union set-representation for the
spanoid \scrS where S1, . . . , Sn are subsets of a universe U = \cup iSi and each Si is of size
at most \ell . So whenever T | = i in \scrS , Si \subset \cup t\in TSt. Such a representation can be used to
define a consistent code C of dimension | U | /\ell as follows. The codewords are images
of the map C : \{ 0, 1\} U \rightarrow \Sigma n, where \Sigma = \{ 0, 1\} \ell given by C(x)i = (xu)u\in Si

. It is
easy to check that this indeed gives a code consistent with \scrS and the dimension of the
code is | U | /\ell .

We will now show that the best consistent code (i.e., of highest dimension) based
on this approach can be characterized by an LP. Note that by Claim 2.4, the rank of
a spanoid \scrS , is the size of the smallest hitting set for \scrO , the set of all open sets of \scrS .
We can write an LP relaxation for the smallest hitting set for \scrO . Let \scrO \ast \subset \scrO be the
set of minimal open sets, it is enough to hit every set in \scrO \ast .

(5.2)

LPcover(\scrS ) = min

n\sum 
i=1

xi,

xi \geq 0,\sum 
i\in S

xi \geq 1 \forall S \in \scrO \ast .

Since the LP is a relaxation,

rank(\scrS ) \geq LPcover(\scrS ).

We can round an LP solution to get an integral hitting set by losing a factor of
O(VC-dim(\scrO \ast )\cdot log(LPcover(\scrS ))) where VC-dim(\scrO \ast ) is the VC-dimension of\scrO \ast [ERS05,
BG95]. Therefore,

1 \leq rank(\scrS )
LPcover(\scrS )

\lesssim VC-dim(\scrO \ast ) \cdot log(LPcover(\scrS )).

Note that VC-dim(\scrO \ast ) \leq log | \scrO \ast | always. By LP duality, we can write a dual LP for
LPcover(\scrS ) with a dual variable \lambda S for every S \in \scrO \ast ,

(5.3)

LPcover(\scrS ) = max
\sum 
S\in \scrO \ast 

\lambda S ,

\lambda S \geq 0,\sum 
S\ni i

\lambda S \leq 1 \forall i \in [n].

The following lemma shows that LPcover(\scrS ) is the largest dimension of a consistent
code one can obtain using union set-representation of a spanoid as shown in Construc-
tion 5.4. Since the construction of a consistent code for the pentagon spanoid \Pi 5 in
Claim 5.1 is obtained by Construction 5.4 and since we know that f-rank(\Pi 5) = 2.5,
it turns out that LPcover(\Pi 5) = 2.5.
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Lemma 5.5. Let C be a code consistent with \scrS obtained by using Construction 5.4,
then dim(C) \leq LPcover(\scrS ). Moreover, there exists a code C obtained by using Con-
struction 5.4 giving equality and so

f-rank(\scrS ) \geq LPcover(\scrS ).

Proof. We will first show that one can get a code whose rank is at least LPcover(\scrS ).
Let \scrS be a spanoid on n elements with minimal open sets \scrO \ast . Let \lambda S be the optimal
solution to the dual LP (5.3) for LPcover(\scrS ). Since \lambda S are rational numbers, let N
be least common multiple of all the \lambda S . We will form a multiset H of minimal open
sets in \scrO \ast where each open set S \in \scrO \ast appears in H for \lambda SN number of times. Let
m = | H| =

\sum 
S \lambda SN = NLPcover(\scrS ). Let \Sigma = \{ 0, 1\} N .

If we write H = \{ F1, . . . , Fm\} , then a codeword will be indexed by a tuple of bits
x = (x1, . . . , xm) \in \{ 0, 1\} m. To construct the corresponding codeword w(x) \in \Sigma n

we need to specify the value of w(x)i \in \Sigma = \{ 0, 1\} N for each i = 1, 2, . . . , n. We set
that value to be w(x)i = (xj | i \in Fj) (ordered in increasing order of j). That is, we
associate a bit with each open set in H, and assign the value of a coordinate i to be
the list of bits for all sets in H containing i. Note that the alphabet size is bounded
by N because | \{ j : i \in Fj\} | =

\sum 
S\ni i \lambda SN \leq N .

We now need to show that if T | = i is a rule of \scrS , then one can recover w(x)i from
(w(x)t)t\in T . Suppose Fj is an open set containing i so that xj appears in the symbol
w(x)i. Then, there must be an element t \in T so that Fj contains t (otherwise, Fj

cannot contain i). Thus, the value xj can be computed from w(x)t. Since this holds
for any xj appearing in w(x)i we are done.

We will now show that the dimension of a code obtained using Construction 5.4
cannot be better than LPcover(\scrS ). Let S1, . . . , Sn be the subsets of size at most \ell 
from some universe U obtained from Construction 5.4 such that whenever T | = i in
\scrS , Si \subset \cup j\in TSj . Such a set system gives a code with dimension | U | /\ell . We will show
that such a code also gives a feasible solution to the dual LP (see (5.3)). For u \in U ,
let Fu = \{ i : u \in Si\} . The complement of Fu is closed since the union of sets which
don't have u cannot contain any set which has u; therefore, Fu is an open set in \scrS .
Let F \ast 

u be a minimal open set contained in Fu. For a minimal open set F \in \scrO \ast , set

\lambda F =
1

\ell 
| \{ u \in U : F \ast 

u = F\} | .

Let i \in [n], then \sum 
F\in \scrO \ast ,F\ni i

\lambda F =
\sum 

F\in \scrO \ast ,F\ni i

1

\ell 

\sum 
u\in U

1(F \ast 
u = F )

=
\sum 
u\in U

\sum 
F\in \scrO \ast ,F\ni i

1

\ell 
1(F \ast 

u = F )

=
\sum 
u\in U

1

\ell 
1(i \in F \ast 

u )

\leq 
\sum 
u\in U

1

\ell 
1(i \in Fu) =

| Si| 
\ell 

= 1.

Thus this assignment is a feasible solution to the dual LP (see (5.3)) with objective
value \sum 

F\in \scrO \ast 

\lambda F =
\sum 

F\in \scrO \ast 

\sum 
u\in U

1

\ell 
1(F \ast 

u = F ) =
\sum 
u\in U

\sum 
F\in \scrO \ast 

1

\ell 
1(F \ast 

u = F ) =
\sum 
u\in U

1

\ell 
=

| U | 
\ell 

.
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This implies that LPcover(\scrS ) \geq | U | /\ell .
The code construction based on sets achieving dimension equal to LPcover(\scrS )

constructed in the above above lemma needed very large alphabet. The following
lemma shows that by using random sampling, one can get very small alphabet and
still achieve dimension close to LPcover(\scrS ).

Lemma 5.6. Let \scrS be a spanoid on [n], then there exists a code C \subset \Sigma n consistent
with \scrS , obtained as in Construction 5.4 of dimension r over an alphabet \Sigma such that
log | \Sigma | \lesssim log n/ log log n and

r \gtrsim 
log log n

log n
\cdot LPcover(\scrS ).

Proof. Let us assume that LPcover(\scrS ) \geq log n/ log log n, since otherwise the bound
is trivial. Form a random subset H \subset \scrO \ast by sampling each set S \in \scrO \ast with probabil-
ity \lambda S where \lambda S is the optimal solution to the dual LP (5.3). Let ZS be the random
variable that S is included in H:

\BbbE [| H| ] = \BbbE 

\Biggl[ \sum 
S\in \scrO \ast 

ZS

\Biggr] 
=

\sum 
S\in \scrO \ast 

\lambda S = LPcover(\scrS ),

Pr

\biggl[ 
| H| \leq 1

2
\BbbE | H| 

\biggr] 
\leq exp ( - \Omega (\BbbE | H| )) = o(1).

Let \Delta (H) be the maximum number of sets in H that an element of \scrS belongs to.
We want to show that \Delta (H) is small with good probability. Fix some i \in [n]. The
number of subsets in H which contain i is

\sum 
S\ni i ZS . By Chernoff bound,12

Pr

\Biggl[ \sum 
S\ni i

ZS \geq t

\Biggr] 
\leq 

\biggl( 
e\BbbE [

\sum 
S\ni i ZS ]

t

\biggr) t

=

\biggl( 
e
\sum 

S\ni i \lambda S

t

\biggr) t

\leq 
\Bigl( e
t

\Bigr) t

.

By union bound,

Pr[\Delta (H) \geq t] = Pr

\Biggl[ 
\exists i \in [n] :

\sum 
S\ni i

ZS \geq t

\Biggr] 
\leq n

\Bigl( e
t

\Bigr) t

= o(1)

if t = e log n/ log log n. Therefore, there exists anH \subset \scrO \ast such that | H| \geq LPcover(\scrS )/2
and \Delta (H) \leq e log n/ log log n. By imitating the proof of Lemma 5.5 using this H, we
get the required result.

Gaps between LPcover and functional rank. Any code that is obtained by
using Construction 5.4 from a q-LCS with error-tolerance \delta will have dimension at
most O(q/\delta ). Indeed, suppose S1, . . . , Sn \subset U are the sets used in the construction.
Then each set Si is contained in at least (\delta /q)n disjoint q-subsets of sets in \{ Sj : j \not = i\} 
such that Si \subset \cup j\in TSj for each q-subset T . Therefore, each element of U occurs in at
least (\delta /q) fraction of sets in S1, . . . , Sn. Therefore, a typical set in S1, . . . , Sn contains
at least (\delta /q) fraction of elements from U . Therefore, the dimension of such a code
can be at most q/\delta . This also implies that the LPcover of a q-LCS is O(q/\delta ). Since

the rank of a q-LCS (with some constant \delta ) can be \~\Omega (n1 - 1
q - 1 ) (Theorem 1.10), this

12If X1, X2, . . . , Xn are Bernoulli random variables with \mu = \BbbE [
\sum 

i Xi]. Then Pr[
\sum 

i Xi \geq t\mu ] \leq 
(et - 1/tt)\mu .
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shows that LPcover can be much smaller than the rank of a spanoid. In fact LPcover

can be much smaller than the functional rank (f-rank) of a spanoid. exp( \~O(
\surd 
log n))-

query LCCs (for some constant \delta ) of length n and dimension \Omega (n) are known to
exist [KMRS17]. This implies that functional rank of the corresponding spanoid is
\Omega (n) whereas LPcover is at most exp( \~O(

\surd 
log n)).

6. Products of spanoids. We have shown that functional rank can be strictly
smaller than the rank of a spanoid (Claim 5.3), but it was only a constant factor gap.
Can we construct spanoids whose rank(\scrS ) and f-rank(\scrS ) have a polynomial gap? One
way to achieve this is by constructing product operations on spanoids which amplify
the gap between rank and f-rank. Suppose that given two spanoids \scrS 1 and \scrS 2 on [n1]
and [n2], respectively, we can construct a product spanoid \scrS 1\times \scrS 2 on [n1]\times [n2], such
that rank(\scrS 1 \times \scrS 2) \geq rank(\scrS 1) \cdot rank(\scrS 2) and f-rank(\scrS 1 \times \scrS 2) \leq f-rank(\scrS 1) \cdot f-rank(\scrS 2).
Then by starting with the pentagon spanoid and taking the above product several
times, one can get a spanoid on n elements with n\Omega (1) gap between rank and f-rank.
With this motivation, we study a few natural ways to define products of spanoids
and study how various notions of rank we defined behave under these products. The
following lemma will be useful to compare the rank measures of two spanoids. It shows
that a spanoid with more open sets has higher rank, f-rank, LPcover, and LPentropy.
Intuitively, this is because in the spanoid with more open (closed) sets, you can make
fewer inferences.

Lemma 6.1. If \scrS ,\scrS \prime are two spanoids on X with open sets \scrO \scrS ,\scrO \scrS \prime , respectively.
If \scrO \scrS \subset \scrO \scrS \prime then

rank(\scrS ) \leq rank(\scrS \prime ),

LPcover(\scrS ) \leq LPcover(\scrS \prime ),

f-rank(\scrS ) \leq f-rank(\scrS \prime ),

LPentropy(\scrS ) \leq LPentropy(\scrS \prime ).

Proof. Since rank(\scrS ) is the smallest hitting set for \scrO \scrS and LPcover(\scrS ) is the
smallest fractional hitting set for \scrO \scrS and \scrO \scrS \subset \scrO \prime 

\scrS \prime , the first two inequalities easily
follow. To show the inequality for functional ranks, we will show that if A | = \scrS \prime i, then
A | = \scrS i, i.e., \scrS has more inference rules than \scrS \prime . Thus any code consistent with \scrS 
is also consistent with \scrS \prime . This also implies the inequality for LPentropy because the
corresponding maximization LP for \scrS has more constraints than for \scrS \prime and so the
maximum is smaller.

The closed sets \scrC \scrS and \scrC \scrS \prime of \scrS and \scrS \prime also satisfy \scrC \scrS \subset \scrC \scrS \prime . A | = \scrS i iff i \in 
span\scrS (A). By Claim 2.3, span\scrS (A) =

\bigcap 
\{ B:B\in \scrC \scrS ,B\supset A\} B and so span\scrS (A) \supset span\scrS \prime (A).

So if A | = \scrS \prime i, then A | = \scrS i.

6.1. Product \bfscrS \bfone \odot \bfscrS \bftwo . In this subsection, we will define a natural product
operation where the open sets in the product S1 \odot S2 are products of open sets and
their unions.

Definition 6.2. Given two spanoids \scrS 1,\scrS 2 on sets X1, X2 with collection of open
sets \scrO 1,\scrO 2, respectively, the product spanoid \scrS 1 \odot \scrS 2 is a spanoid on X1 \times X2 with
open sets given by unions of sets A\times B where A \in \scrO 1, B \in \scrO 2.

We will now show that under this product, LPcover is multiplicative.

Lemma 6.3. LPcover(\scrS 1 \odot \scrS 2) = LPcover(\scrS 1) \cdot LPcover(\scrS 2).
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Proof. Let \scrS = \scrS 1 \odot \scrS 2. The minimal open sets in \scrS are Cartesian products of
minimal open sets in \scrS 1 and \scrS 2, i.e.,

\scrO \ast 
\scrS =

\bigl\{ 
A\times B : A \in \scrO \ast 

\scrS 1
, B \in \scrO \ast 

\scrS 2

\bigr\} 
.

(6.1)

LPcover(\scrS ) = min

n\sum 
i,j=1

zij ,

zij \geq 0,\sum 
(i,j)\in A\times B

zij \geq 1 \forall A \in \scrO \ast 
\scrS 1
, B \in \scrO \ast 

\scrS 2
.

Let x, y be the optimal solutions to the LPs (of the form (5.2)) corresponding to
LPcover(\scrS 1) and LPcover(\scrS 2), respectively. Then z = x \otimes y (i.e., zij = xiyj) is a
feasible solution to the above LP for LPcover(\scrS ). Therefore,

LPcover(\scrS ) \leq LPcover(\scrS 1) \cdot LPcover(\scrS 2).

We can also write the dual LP for LPcover(\scrS ).

(6.2)

LPcover(\scrS ) = max
\sum 

A\in \scrO \ast 
\scrS 1

,B\in \scrO \ast 
\scrS 2

\lambda ST

\lambda AB \geq 0\sum 
A\ni i,B\ni j

\lambda AB \leq 1 \forall i, j \in [n].

This completes the proof.

Let \alpha , \beta be the optimal solutions to the dual LPs (of the form (5.3)) corresponding
to LPcover(\scrS 1) and LPcover(\scrS 2), respectively. Then \lambda = \alpha \otimes \beta (i.e., \lambda AB = \alpha A\beta B) is
a feasible solution to the above dual LP for LPcover(\scrS ). Therefore,

LPcover(\scrS ) \geq LPcover(\scrS 1) \cdot LPcover(\scrS 2).

6.2. Product \bfscrS \bfone \otimes \bfscrS \bftwo . We will now define a different product operation inspired
by the following tensor product operation on codes.

Definition 6.4. Given two codes C1 \subset \Sigma n1 and C2 \subset \Sigma n2 , the tensor code
C1 \otimes C2 \subset \Sigma n1\times n2 is defined as the set of all n1 \times n2 matrices over \Sigma where each
column is a codeword in C1 and each row is a codeword in C2.

If C1 and C2 are linear codes over some field \BbbF , i.e., they are linear subspaces
of \BbbF n1 and \BbbF n2 , respectively, then the tensor code C1 \otimes C2 \subset \BbbF n1\times n2 is exactly the
tensor product of the subspaces C1 \otimes C2.

We will now define a product operation on spanoids which mimics the above
operation on codes.

Definition 6.5. Let \scrS 1 and \scrS 2 be spanoids on X1, X2, respectively. The product
\scrS 1 \otimes \scrS 2 is a spanoid on X1 \times X2 generated by the following inference rules:

1. For A \subset X1, i \in X1, if A | = i in \scrS 1, then for every j \in X2, A\times \{ j\} | =(i, j).
2. For B \subset X2, j \in X2, if B | = j in \scrS 2, then for every i \in X1, \{ i\} \times B | =(i, j).
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The following claim follows easily from the above definitions.

Claim 6.6. Let C1, C2 be codes consistent with \scrS 1, \scrS 2, respectively. Then C1\otimes C2

is consistent with \scrS 1 \otimes \scrS 2.

How does \scrS 1\otimes \scrS 2 compare with \scrS 1\odot \scrS 2? The following claim shows that \scrS 1\otimes \scrS 2

has more open sets (or closed sets) than \scrS 1 \odot \scrS 2. This shows that all of the rank
measures are smaller for \scrS 1 \odot \scrS 2 than for \scrS 1 \otimes \scrS 2.

Claim 6.7. \scrO \scrS 1\odot \scrS 2 \subset \scrO \scrS 1\otimes \scrS 2 .

Proof. It is enough to show that if A \in \scrO \scrS 1
and B \in \scrO \scrS 2

, then A\times B \in \scrO \scrS 1\otimes \scrS 2
.

This is equivalent to showing (A \times Bc) \cup (Ac \times B) being closed in \scrS 1 \otimes \scrS 2, which is
easy to see given the inference rules.

6.3. Product \bfscrS \bfone \ltimes \bfscrS \bftwo . In this subsection, we define a product operation called
the semidirect product, denoted by \scrS 1\ltimes \scrS 2. Under this product we will show that rank
is multiplicative and f-rank is submultiplicative. Thus by taking repeated semidirect
product of the pentagon spanoid \Pi 5 with itself, we create a spanoid with polynomial
gap between its rank and f-rank which proves Theorem 1.13. Additionally, we also show
that LPentropy is submultiplicative under this product, which gives a spanoid with a
polynomial gap between LPentropy and rank. We begin with the formal definition of
semidirect product.

Definition 6.8 (semidirect product of spanoids). Let \scrS 1, \scrS 2 be two spanoids
on X1, X2, respectively. Define \scrS 1 \ltimes \scrS 2 to be the spanoid on X1 \times X2 generated by
the following rules.

(1.) For A \subset X1, i \in X1, if A | = i in \scrS 1, then for every j \in X2, A\times X2 | = (i, j).
(2.) For B \subset X2, j \in X2, if B | = j in \scrS 2, then for every i \in X1, \{ i\} \times B | = (i, j).

Note how \scrS 1 \ltimes \scrS 2 differs from \scrS 1 \otimes \scrS 2 in (1). The semidirect product is not a
symmetric product, i.e., \scrS 1 \ltimes \scrS 2 may not be isomorphic to \scrS 2 \ltimes \scrS 1. We first show
that rank is multiplicative under this product.

Lemma 6.9. rank(\scrS 1 \ltimes \scrS 2) = rank(\scrS 1)rank(\scrS 2).

Proof. If U1 is a generating set for \scrS 1, and U2 is a generating set for \scrS 2, then
U1 \times U2 is a generating set for \scrS 1 \times \scrS 2. So rank(\scrS 1 \ltimes \scrS 2) \leq rank(\scrS 1)rank(\scrS 2). We
need only prove that rank(\scrS 1 \ltimes \scrS 2) \geq rank(\scrS 1)rank(\scrS 2). The intuition behind this is
that, in \scrS 1 \ltimes \scrS 2, we can w.l.o.g. assume that all the \scrS 2-derivations (i.e., rule (2) in
Definition 6.8) are done before all the \scrS 1-derivations (i.e., rule (1) in Definition 6.8).
We will write this more formally below.

Let T be a generating set for \scrS 1 \times \scrS 2. We would like to prove that | T | \geq 
rank(\scrS 1)rank(\scrS 2). Let T0 = T, T1, . . . , Tr = T1 \times T2, and A1, . . . , Ar be such that
for all k \in [r], we have Tk - 1 \subsetneq Tk, Ak \subset Tk - 1, and one of the following is true:

1. Tk = Tk - 1 \cup (\{ i\} \times X2) for some i \in X1, Ak = A\times X2 for some A \subset X1, and
A | = i in \scrS 1.

2. We are not in case (1), and Tk = Tk - 1 \cup \{ (i, j)\} for some (i, j) \in X1 \times X2,
Ak = \{ i\} \times B for some B \subset X2, and B | = j in \scrS 2.

If case (1) is true, we say step k is a \scrS 1-derivation. If case (2) is true, we say step k
is a \scrS 2-derivation.

Claim 6.10. We can choose T0, . . . , Tr, A1, . . . , Ar such that there exists an in-
teger l for which

1. for all k \leq l, step k is a \scrS 2-derivation;
2. for all k \geq l + 1, step k is a \scrS 1-derivation.
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Proof. Suppose there exists some k such that step k is a \scrS 1-derivation and step
k+1 is a \scrS 2-derivation. It is not hard to see that we can swap step k and step k+1.
Repeatedly applying this until no such k exists, and we get the desired sequences.

Now we return to the proof of | T | \geq rank(\scrS 1)rank(\scrS 2). Let l be the integer in the
above claim. Because steps k \geq l + 1 are all of type (1), we have

| \{ i : \{ i\} \times X2 \subset Tl\} | \geq rank(\scrS 1).

Because steps k \leq l are all of type (2), for each i such that \{ i\} \times X2 \subset Tl, we have

| T \cap (\{ i\} \times X2)| \geq rank(\scrS 2).

Combining the two inequalities we get | T | \geq rank(\scrS 1)rank(\scrS 2).

We now show that f-rank is submultiplicative under semidirect product.

Lemma 6.11. f-rank(\scrS 1 \ltimes \scrS 2) \leq f-rank(\scrS 1)f-rank(\scrS 2).

Proof. Let \scrC \in \Sigma X1\times X2 be a code consistent with \scrS 1 \ltimes \scrS 2. For i \in X1, define
code \scrC i

2 \subset \Sigma X2 as \scrC i
2 = \{ c\{ i\} \times X2

: c \in \scrC \} . Because \scrC i
2 is consistent with \scrS 2, we have

log | \scrC i
2| /log | \Sigma | \leq f-rank(\scrS 2). Let N = maxi\in X1

| \scrC i
2| and for each i \in X1, choose an

injection \phi i : \scrC i
2 \lhook \rightarrow [N ]. Clearly, we have

logN

log | \Sigma | 
\leq f-rank(\scrS 2).

Define \scrC 1 \subset [N ]X1 as \scrC 1 = \{ (\phi i(c\{ i\} \times X2
))i\in X1

: c \in \scrC \} . Then | \scrC 1| = | \scrC | and \scrC 1 is a
code consistent with \scrS 1. So we have

log | \scrC 1| 
logN

\leq f-rank(\scrS 1).

Combining the inequalities, we get

log | \scrC | 
log | \Sigma | 

\leq f-rank(\scrS 1)f-rank(\scrS 2).

We can now prove Theorem 1.13.

Proof of Theorem 1.13. Define \scrS 1 = \Pi 5, and \scrS i = \Pi 5 \ltimes \scrS i - 1 for i \geq 2. Then \scrS n

is a spanoid on 5n elements. By Lemma 6.11,

f-rank(\scrS n) \leq f-rank(\Pi 5)
n = 2.5n.

By Lemma 6.9,
rank(\scrS n) = rank(\Pi 5)

n = 3n.

So
rank(\scrS n) \geq (5n)log5 3 - log5 2.5f-rank(\scrS n).

We also show that LPentropy is submultiplicative under semidirect product.

Lemma 6.12. LPentropy(\scrS 1 \ltimes \scrS 2) \leq LPentropy(\scrS 1)LP
entropy(\scrS 2).

Proof. Recall the linear program in (5.1) that defines LPentropy. Let f : 2X1\times X2 \rightarrow 
\BbbR \geq 0 be the optimal solution of the linear program which computes LPentropy(\scrS 1\ltimes \scrS 2),
and so f(X1 \times X2) = LPentropy(\scrS 1 \ltimes \scrS 2). Define f1 : 2X1 \rightarrow \BbbR \geq 0 as

f1(A) =
f(A\times X2)

LPentropy(\scrS 2)
.
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We claim that f1 satisfies the linear program for \scrS 1. We will check all the feasibility
conditions of the LP given in (5.1):

1. f1(\emptyset ) = f(\emptyset )
LPentropy(\scrS 2)

= 0.

2. For all i \in X1, the function f i
2 : 2X2 \rightarrow \BbbR \geq 0, defined as f i

2(B) = f(\{ i\} \times B),
is a feasible solution for the LP which computes LPentropy(\scrS 2), which is a
maximization LP. So

f1(\{ i\} ) =
f i
2(X2)

LPentropy(\scrS 2)
\leq 1.

3. For all A,B \subset X1, we have

f1(A \cup B) + f1(A \cap B)

=
1

LPentropy(\scrS 2)
(f((A \cup B)\times X2) + f((A \cap B)\times X2))

=
1

LPentropy(\scrS 2)
(f((A\times X2) \cup (B \times X2)) + f((A\times X2) \cap (B \times X2)))

\leq 1

LPentropy(\scrS 2)
(f(A\times X2) + f(B \times X2))

(submodularity of f)

= f1(A) + f1(B).

4. For A \subset B \subset X1, we have

f1(A) =
f(A\times X2)

LPentropy(\scrS 2)
\leq f(B \times X2)

LPentropy(\scrS 2)
= f1(B).

5. Let A | = i in \scrS 1. Then A\times X2 | = (i, j) for all j \in X2. So

f1(A \cup \{ i\} ) = 1

LPentropy(\scrS 2)
f((A \cup \{ i\} )\times X2)

=
1

LPentropy(\scrS 2)
f((A\times X2) \cup (\{ i\} \times X2))

=
1

LPentropy(\scrS 2)
f(A\times X2)

= f1(A).

So f1 is a feasible solution for the linear program which computes LPentropy(\scrS 1),
which is a maximization LP. Therefore, f1(X1) \leq LPentropy(\scrS 1). So

LPentropy(\scrS 1\ltimes \scrS 2) = f(X1\times X2) = f1(X1)LP
entropy(\scrS 2) \leq LPentropy(\scrS 1)LP

entropy(\scrS 2).

Thus by repeatedly taking semidirect product of the pentagon spanoid \Pi 5 with
itself, we can obtain a polynomial gap between LPentropy and rank, which is a stronger
statement than Theorem 1.13 because f-rank(\scrS ) \leq LPentropy(\scrS ).

Corollary 6.13. There exists a spanoid \scrS on n elements with rank(\scrS ) \geq nc

LPentropy(\scrS ), where c = log5 3 - log5 2.5 \geq 0.113.

Because \scrS 1 \ltimes \scrS 2 has fewer inferences than \scrS 1 \otimes \scrS 2, every closed set in \scrS 1 \otimes \scrS 2

is also closed in \scrS 1 \ltimes \scrS 2 i.e., \scrO \scrS 1\otimes \scrS 2
\subset \scrO \scrS 1\ltimes \scrS 2

. Therefore, we have the following
relationship between the different products we constructed:

(6.3) \scrO \scrS 1\odot \scrS 2
\subset \scrO \scrS 1\otimes \scrS 2

\subset \scrO \scrS 1\ltimes \scrS 2
.
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By Lemma 6.1, all of the rank measures should follow the same order. Therefore, we
have the following corollary.

Corollary 6.14. For any two spanoids \scrS 1 and \scrS 2,

rank(\scrS 1 \odot \scrS 2) \leq rank(\scrS 1 \otimes \scrS 2) \leq rank(\scrS 1 \ltimes \scrS 2) = rank(\scrS 1) \cdot rank(\scrS 2)

LPentropy(\scrS 1 \odot \scrS 2) \leq LPentropy(\scrS 1 \otimes \scrS 2) \leq LPentropy(\scrS 1 \ltimes \scrS 2)

\leq LPentropy(\scrS 1) \cdot LPentropy(\scrS 2)

f-rank(\scrS 1 \odot \scrS 2) \leq f-rank(\scrS 1 \otimes \scrS 2) \leq f-rank(\scrS 1 \ltimes \scrS 2) \leq f-rank(\scrS 1) \cdot f-rank(\scrS 2)

LPcover(\scrS 1) \cdot LPcover(\scrS 2) = LPcover(\scrS 1 \odot \scrS 2) \leq LPcover(\scrS 1 \otimes \scrS 2) \leq LPcover(\scrS 1 \ltimes \scrS 2).

Thus LPcover is supermultiplicative under semidirect product, while rank is mul-
tiplicative and the other two are submultiplicative.

Example 6.15. In contrast to the semidirect product, rank is not multiplicative
under \scrS 1 \odot \scrS 2 and \scrS 1 \otimes \scrS 2.

\bullet This example is found by Xu [Xu18]. Let \scrS be the spanoid on a four ele-
ment set \{ 1, 2, 3, 4\} with the following closed sets (using the equivalence with
intersection closed families):

\emptyset , \{ 1\} , \{ 4\} , \{ 2, 4\} , \{ 3, 4\} , \{ 1, 2, 3, 4\} .

Clearly, rank(\scrS ) = 2. On the other hand, the set \{ (1, 1), (2, 3), (3, 2)\} gener-
ates \scrS 1 \otimes \scrS 2. So rank(\scrS 1 \otimes \scrS 2) \leq 3 < 4 = rank(\scrS )2.

\bullet In fact, the spanoid \Pi 5 \otimes \Pi 5 admits a generating set of size 8, and therefore,
rank(\Pi 5 \otimes \Pi 5) \leq 8 < 9 = rank(\Pi 5)

2. One such generating set is

\{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (5, 5)\} .

7. Conclusion and open problems. Our work introduces the abstract notion
of a spanoid in the hope that further study of its properties will lead to progress on
LCCs and perhaps in other areas. We list below some concrete directions for future
work.

1. We showed that there exist spanoids, called q-LCSs, which ``look like"" q-LCCs
and whose rank matches the best known upper bounds. Can we bypass this
``barrier"" by using additional properties of LCCs? We have at least two
examples where this was possible. One is the result of [KW04] for LCCs
over constant size alphabet and the other is the work in [DSW14] for linear
3-LCCs over the real numbers. The bounds of [KW04] crucially depend on
the alphabet having small size and the bounds in [DSW14] exploit properties
of real numbers.

2. Understanding the possible gap between functional rank and formal rank of
a spanoid is a very interesting question. We proved that there can be a
polynomial gap. The next challenge is to find a spanoid on n elements whose
f-rank is no(1) and rank is n\Omega (1). Naturally, q-LCSs for constant q \geq 3 are
plausible candidates for this. If there are no such spanoids, then it would
imply the existence of q-LCCs of length n and n\Omega q(1) dimension!13

3. Are there general methods (in the spirit of Construction 5.4, which we show
is limited) to achieve high functional rank?

13Possibly over a large alphabet.
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4. We have constructed spanoid products under which rank is multiplicative or
LPcover is multiplicative. Can we construct a spanoid product under which
f-rank is multiplicative?

5. Suppose we start with a functional representation with large alphabet, can
we do alphabet reduction without losing too many codewords?

6. We have seen that one way to go past the rank barrier is to use LPentropy.
Can we improve the existing upper bounds on the dimension of q-LCCs by
upper bounding LPentropy of q-LCSs? Can we use LP duality and construct
good feasible solutions to the dual of LPentropy to prove good upper bounds
on LPentropy?

7. For a spanoid \scrS arising from a matroid, LPentropy(\scrS ) = rank(\scrS ). This is
because the rank function of a matroid is a feasible solution to the LP (5.1).
Can we separate rank and f-rank for spanoids arising from matroids? One
possibility is to use non-Shannon type information inequalities.

8. What are other connections of spanoids to existing theory of set systems,
matroids, algebraic equations, and other problems described in the introduc-
tion?

Acknowledgments. The second author would like to thank Sumegha Garg for
helpful discussions. The third author would like to thank Yury Polyanskiy for helpful
discussions.

REFERENCES

[ABRW04] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson, Pseudoran-
dom generators in propositional proof complexity, SIAM J. Comput., 34 (2004),
pp. 67--88.

[AR01] M. Alekhnovich and A. A. Razborov, Lower bounds for polynomial calculus: Non-
binomial case, in Proceedings of the 42nd IEEE Symposium on Foundations of
Computer Science, 2001, IEEE, 2001, pp. 190--199.

[BDSS11] A. Bhattacharyya, Z. Dvir, A. Shpilka, and S. Saraf, Tight lower bounds for
2-query lccs over finite fields, in Proceedings of the 2011 IEEE 52nd Annual Sym-
posium on Foundations of Computer Science. IEEE, 2011, pp. 638--647.

[BDWY12] B. Barak, Z. Dvir, A. Wigderson, and A. Yehudayoff, Fractional Sylvester-Gallai
theorems, Proceedings of the National Academy of Sciences, 2012.

[BDYW11] B. Barak, Z. Dvir, A. Yehudayoff, and A. Wigderson, Rank bounds for design
matrices with applications to combinatorial geometry and locally correctable codes,
in Proceedings of the Forty-Third Annual ACM Symposium on Theory of Com-
puting, ACM, 2011, pp. 519--528.

[BG95] H. Br\"onnimann and M. T. Goodrich, Almost optimal set covers in finite vc-
dimension, Discrete Computat. Geom., 14 (1995), pp. 463--479.

[BGT17] A. Bhattacharyya, S. Gopi, and A. Tal, Lower bounds for 2-query LCCs over large
alphabet, in Proceedings of the Approximation, Randomization, and Combinato-
rial Optimization, Algorithms and Techniques, APPROX/RANDOM 2017, 2017,
Berkeley, CA, 2017, pp. 30:1--30:20.

[Bol68] B. Bollob\'as, Weakly k-saturated graphs, Beitr\"age zur Graphentheorie (Kolloquium,
Manebach, 1967), Teubner, Leipzig, 1968, pp. 25--31.

[BS15] H. Bruhn and O. Schaudt, The journey of the union-closed sets conjecture, Graphs
Combin., 31 (2015), pp. 2043--2074 .

[BW01] E. Ben-Sasson and A. Wigderson, Short proofs are narrow--resolution made simple,
J. ACM, 48 (2001), pp. 149--169.

[CT91] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in
Telecommunications. John Wiley and Sons, New York, 1991.

[DK11] I. Dinur and T. Kaufman, Dense locally testable codes cannot have constant rate
and distance, in Proceedings of the Approximation, Randomization, and Combi-
natorial Optimization, Algorithms and Techniques Springer, 2011, pp. 507--518.

[DSW14] Z. Dvir, S. Saraf, and A. Wigderson, Breaking the quadratic barrier for 3-LCC's



496 Z. DVIR, S. GOPI, Y. GU, AND A. WIGDERSON

over the reals, in Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, ACM, 2014, pp. 784--793.

[Dvi12] Z. Dvir, Incidence theorems and their applications, Found. Trends Theor. Comput.
Sci., 6(2012), pp. 257--393.

[EFF85] P. Erd\"os, P. Frankl, and Z. F\"uredi, Families of finite sets in which no set is
covered by the union OFR others, Israel J. Math., 51 (1985), pp. 79--89.

[Efr09] K. Efremenko, 3-query locally decodable codes of subexponential length, in Proceed-
ings of the 2009 ACM International Symposium on Theory of Computing, ACM!`
New York, 2009, pp. 39--44.

[ERS05] G. Even, D. Rawitz, and S. M. Shahar, Hitting sets when the vc-dimension is small,
Inform. Process. Lett., 95 (2005), pp. 358--362.

[F\"96] Z. F\"uredi, ONR-cover-free families, J. Combin. Theory Ser. A, 73 (1996), pp. 172--
173.

[FLS12] J. Fox, C. Lee, and B. Sudakov, Maximum union-free subfamilies, Israel J. Math.,
191 (2012), pp. 959--971.

[HHQ17] L. Hambardzumyan, H. Hatami, and Y. Qian, Polynomial Method and Graph Boot-
strap Percolation, preprint, https://arxiv.org/abs/1708.04640, 2017.

[HLW06] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications,
Bull. Amer. Math. Soc. (N.S.), 43 (2006), pp. 439--561.

[IS18] E. Iceland and A. Samorodnitsky, On Coset Leader Graphs of Structured Linear
Codes, preprint, https://arxiv.org/abs/1802.01184, 2018.

[Kel86] L. M. Kelly, A resolution of the Sylvester-Gallai problem of J.-P. Serre, Discrete
Comput. Geom., 1 (1986), pp. 101--104.

[KMRS17] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf, High-rate locally correctable and
locally testable codes with sub-polynomial query complexity, J. ACM, 64 (2017),
11.

[Kni94] E. Knill, Graph Generated Union-closed Families of Sets, preprint, https://arxiv.
org/abs/math/9409215, 1994.

[KT00] J, Katz and L, Trevisan, On the efficiency of local decoding procedures for error-
correcting codes, in Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing (STOC 2000), ACM, 2000, pp. 80--86.

[KW04] I. Kerenidis and R. de Wolf, Exponential lower bound for 2-query locally decodable
codes via a quantum argument, J. Comput. System Sci., 69 (2004), pp. 395--420,
preliminary version appeared in STOC'03.

[Mat07] F. Matus, Infinitely many information inequalities, in Proceedings of the IEEE In-
ternational Symposium on Information Theory, 2007, ISIT 2007, IEEE, 2007, pp.
41--44.

[Shp18] A. Shpilka, Sylvester-Gallai Type Theorems for Quadratic Polynomials, private com-
munication, 2018.

[W\'oj99] P. W\'ojcik, Union-closed families of sets, Discrete Math., 199 (1999), pp. 173--182.
[Woo07] D. Woodruff, New lower bounds for general locally decodable codes, in Electronic

Colloquium on Computational Complexity (ECCC), 14, 2007, TR07-006.
[Xu18] Y. Xu, private communication, 2018.
[Yek08] S. Yekhanin, Towards 3-query locally decodable codes of subexponential length, J.

ACM, 55 (2008), 1.
[Yek12] S. Yekhanin, Locally decodable codes, Found. Trends Theor. Comput. Sci., 6 (2012),

pp. 139--255.
[Yeu08] R. W. Yeung, Information Theory and Network Coding, Springer-Verlag, New York,

2008.
[ZY98] Z. Zhang and R. W. Yeung, On characterization of entropy function via information

inequalities, IEEE Trans. Inform. Theory, 44 (1998), pp. 1440--1452.

https://arxiv.org/abs/1708.04640
https://arxiv.org/abs/1802.01184
https://arxiv.org/abs/math/9409215
https://arxiv.org/abs/math/9409215

	Introduction
	Locally correctable codes
	Spanoids
	Functional rank: Bridging the gap between LCCs and LCSs

	Other motivations and incarnations of spanoids
	Bootstrap percolation and gossip processes
	Independence systems and matroids
	Point-line incidences
	Systems of polynomial equations
	Intersecting set systems
	Union-closed families

	Organization

	Preliminaries on spanoids
	Spanoids as union-closed or intersection-closed families
	Spanoids as set systems

	Upper bounds on the rank of q-LCSs
	Graph theoretic lemmas
	Proof of upper bound from Theorem 1.9
	Proof of upper bound from Theorem 1.10

	Constructing q-LCSs with high rank
	Functional rank versus spanoid rank
	An upper bound on functional rank via LPentropy
	A lower bound on functional rank via LPcover

	Products of spanoids
	Product S1S2
	Product S1S2
	Product S1S2

	Conclusion and open problems
	References

