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Abstract—We present a polynomial time algorithm
to approximately scale tensors of any format to arbi-
trary prescribed marginals (whenever possible). This
unifies and generalizes a sequence of past works on
matrix, operator and tensor scaling. Our algorithm
provides an efficient weak membership oracle for
the associated moment polytopes, an important family
of implicitly-defined convex polytopes with exponen-
tially many facets and a wide range of applications.
These include the entanglement polytopes from quan-
tum information theory (in particular, we obtain an
efficient solution to the notorious one-body quantum
marginal problem) and the Kronecker polytopes from
representation theory (which capture the asymptotic
support of Kronecker coefficients). Our algorithm can
be applied to succinct descriptions of the input tensor
whenever the marginals can be efficiently computed, as
in the important case of matrix product states or tensor-
train decompositions, widely used in computational
physics and numerical mathematics.

Beyond these applications, the algorithm enriches
the arsenal of numerical methods for classical prob-
lems in invariant theory that are significantly faster
than symbolic methods which explicitly compute in-
variants or covariants of the relevant action. We stress
that (like almost all past algorithms) our convergence
rate is polynomial in the approximation parameter; it is
an intriguing question to achieve exponential conver-
gence rate, beating symbolic algorithms exponentially,
and providing strong membership and separation ora-
cles for the problems above.

We strengthen and generalize the alternating mini-
mization approach of previous papers by introducing
the theory of highest weight vectors from represen-
tation theory into the numerical optimization frame-
work. We show that highest weight vectors are natural

∗PB is partially supported by DFG grant BU 1371 2-2. CF is
supported in part by Simons Foundation award 332622. MW
acknowledges support by the NWO through Veni grant no. 680-
47-459. AW is partially supported by NSF grant CCF-1412958.

potential functions for scaling algorithms and prove
new bounds on their evaluations to obtain polynomial-
time convergence. Our techniques are general and
we believe that they will be instrumental to obtain
efficient algorithms for moment polytopes beyond
the ones consider here, and more broadly, for other
optimization problems possessing natural symmetries.
This is an extended abstract. Please see the full version
of the paper [1] for technical details.

Keywords-Tensor scaling; quantum marginal prob-
lem; moment polytopes; invariant theory

I. Introduction

A. Moment polytopes

As this paper is quite technical and contains some
non-standard material for computer scientists, we
begin with motivating the main object we study,
as it is extremely natural from an optimization
perspective: the moment polytope. Consider first the
following diverse set of problems, trying to pick
up common features among them (besides the
obvious guess that they all are special cases of
the framework we consider in this paper).

1) The Schur-Horn Theorem: Can a given Her-
mitian matrix be conjugated by unitary ma-
trices to achieve a given diagonal?

2) Eigenvalues of sums of Hermitian matrices:

Do there exist Hermitian n ˆ n matrices A,
B, C with prescribed eigenvalues such that
A`B “ C?

3) Optimization: Can a given non-negative ma-
trix be converted to another with prescribed
row and column sums, by only reweighing
its rows and columns?
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4) Quantum information: Can multiple parties,
each holding a particle of a pure quantum
state, locally transform their particles so that
each particle is maximally entangled with the
others?

5) Analytic inequalities: Given m linear maps
Ai : R

n Ñ R
ni and p1, . . . , pm ě 0, does

there exist a finite constant C such that for all
integrable functions fi : R

ni Ñ R` we have
ż
xPRn

mź
i“1

fipAixqdx ď C
mź
i“1

‖fi‖1{pi
?

An important special case of such framework1

is Cauchy-Schwarz, with p1 “ p2 “ 1{2,m “
2, n “ n1 “ n2 “ 1, C “ 1, Ai “ 1.

6) Algebraic complexity: Given an arithmetic
formula (with inversion gates) in non-
commuting variables, is it non-zero?

7) Polynomial support: Given oracle access to a
homogeneous polynomial pwith non-negative
integer coefficients on n variables, is a spec-
ified monomial (given as integer vector of
exponents) in the Newton polytope2 of p?

Some of the problems above are in P and for
others, there are sufficient hints that they are in
P (see [2–7]). While they may seem non-linear in
their inputs, convexity plays an important role in
each of them, as they all reduce to solving linear
programs (implicitly defined with large number
of facets). More specifically, each input to each
problem defines a point and a polytope, and the
answer is yes iff the point is in the polytope. These
polytopes turn out to be special cases of moment
polytopes.
This appearance of linearity and convexity is

quite surprising, in some settings more so than
others. Indeed, moment polytopes arise (and are
used to understand problems) in many diverse
settings such as symplectic geometry, algebraic
geometry, lattice theory and others [8, 9]. The snag
is that these polytopes are often defined by a huge
number of inequalities (e.g. see [2]); typically the
number is exponential or larger in the dimension

1These inequalities are the celebrated Brascamp-Lieb inequal-
ities, which capture many more important inequalities such as
Hölder’s, Loomis-Whitney, and many others. See for instance [2]
for a more detailed discussion.
2Given a polynomial ppx1, . . . , xnq, define its support as the

set of monomials whose coefficient in p is nonzero. The Newton
polytope of ppx1, . . . , xnq is given by the convex hull of the
exponent vectors of these monomials.

of the input.3 This motivates our efforts to develop
efficient algorithms for them.
In order to explain the appearance of convex poly-

topes in these settings, we need to notice another
common aspect of all problems above: their answers
remain invariant under some group action! This is
easy to see in some of the examples, which explicitly
specify the groups. In the first, for matrices of
size n, it is Upnq, the group of transformations
conjugating the input. In the second, each of the
three matrices may be conjugated by a unitary. In
the 3rd, it is the product TpnqˆTpnq of two (positive)
diagonal invertible matrices which scale (resp.) the
rows and columns. In the 4th problem, as each
party is allowed to perform quantum measurements
with post selection, the group representing each
party’s operations is GLpnq if its particle has n
states, and so the full group is a direct product
of these GLpnq’s. The 5th problem is invariant to
basis changes in the host space Rn and the other
m spaces. The 6th is much harder to guess without
Cohn’s characterization of the free skew field, but
turns out to be GLpnqˆGLpnq acting on a different
representation of the formulas. In the 7th, though
it may not seem useful at first sight, Tpnq acts by
simply scaling every variable of the polynomial by
a nonzero constant factor.
Having mentioned the two common features of

the problems above (convexity and the invariance
under a group action) we will now illustrate how
one can use the structure of the group action in
order to obtain moment polytopes. Let G be a
“nice" 4 group acting linearly and continuously on
a complex inner product space V and let v be a
point in V . The orbit of a point v P V is the set of
all vectors obtained by the action of G on v. The
orbit closure of v is simply the closure of its orbit in
the topology induced by the norm. As the previous
paragraph observed, all of the problems above are
questions about the orbit closures, which suggests
understanding orbit closures is a fundamental task
with many applications. A natural approach to
study such orbit closures is by looking at the
infinitesimal action of the group on every point

3However, in many of these areas even finiteness provides
progress, as even decidability may not be obvious.
4The technical definition requires the group to be reductive

(i.e. G is algebraic and every representation of G decomposes
into a direct sum of irreducibles), connected, and that the inner
product on V is an inner product that is invariant under the
maximal compact subgroup of G. For the purpose of this paper,
one can think of groups like GLpnq, Tpnq, their direct products
etc.
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v.

This brings us to the moment map, denoted by
μGpvq, which is essentially a gradient of the log of
the norm of v along the group action.5 More ex-
plicitly, for each point v we can define the function
fvpgq “ log‖g ¨ v‖22, and μGpvq will be the gradient
of fvpgq evaluated at the identity element of G.6
The moment map carries useful information about
the group action, and one of its striking features is
that the set of possible spectra of the image of any
orbit closure under the moment map is a rational
convex polytope [10–13]! That is a mouthful, so
let us consider an example. Consider the action
of G “ GLpnq on some vector space V . Then the
moment map maps V toMatnˆnpCq (set of all nˆn
complex matrices). Then the collection specpμGpvqq,
as v varies over an orbit-closure forms a rational
convex polytope. Here specpMq denotes the vector
of eigenvalues of M arranged in decreasing order.
Note that μGpvq is a quadratic function of v, so
the appearance of convexity is extremely surprising
and non trivial. This polytope, which we will more
explicitly see in the next section, is the so called
moment polytope of the group action G on the orbit
of v.

In the matrix scaling case (Problem 3), it turns
out that the moment map applied to a certain
matrix A gives us precisely the marginals of A
(that is, the vector of row sums and column sums
normalized to sum 1).7 Thus, testing whether A can
be scaled to another matrix with prescribed row
and column sums is equivalent to testing whether
the prescribed vector of row and column sums
belongs to the moment polytope of the action of
TpnqˆTpnq on A. Similarly, all of the seven problems
listed above fit into this framework (membership
in moment polytope) for a suitable choice of group

5Indeed, the original name was momentum map, and is inspired
from Hamiltonian physics, in which momentum is proportional
to the derivative of position. Apparently moment maps are
common in physics, where they are used to obtain conserved
quantities (i.e. invariants) from symmetries of the phase space
of symplectic manifolds describing some Hamiltonian system.
In the general setting, we have the action of continuous group
on a manifold, and the moment map provides a reverse map,
from the manifold to the group (or more precisely, to the dual
of the Lie algebra of the group).
6In this paper we assume G is a linear algebraic group, so

we can take the gradient at the identity to mean the gradient of
fvpeAq at A “ 0 in the vector space of matrices tangent to G at
the identity.
7There is a slight technicality here and the moment map is

actually the absolute values squared of the entries of A.

and representation.8

The reader might notice the dual nature of the
problems above. They are both of algebraic as well
as analytic nature. This phenomenon is extremely
general and crucial for our paper. The analytic
nature helps in designing algorithms, making the
problem amenable to general optimization tech-
niques, while the algebraic helps with analysis of
these analytic algorithms and provides potential
functions to track progress made by these algo-
rithms. We will see that this will be the case for us
as well.

B. Our setting

In this paper, we will be concerned with the
action of the group of “local basis changes” on
tensors, which are of interest for several reasons.
The moment polytopes in this setting capture
fundamental problems in quantum many-body
physics - the so called one-body quantum marginal
problem. They also capture fundamental problems
in representation theory related to Kronecker co-
efficients, which are central objects of study in
algebraic combinatorics and play an important role
in geometric complexity theory. Moreover, as we
will see, these moment polytopes generalize many
of the settings described above and we believe that
their complexity is representative of the complexity
of general moment polytopes.

These moment polytopes (and their related prob-
lems) are most natural to state from the point
of view of quantum systems and their quantum
marginals9, so we begin with these definitions. But
before we define quantum systems some brief
notation must be established.

Let Tenpn0;n1, . . . , ndq “ C
n0 b C

n1 b . . . b C
nd

denote the space of d ` 1 dimensional tensors of
format n0 ˆ n1 ˆ ¨ ¨ ¨ ˆ nd, and let X be a tensor in
Tenpn0;n1, . . . , ndq. If we regard X as a vector in
C

n0n1...nd , with X: being it’s conjugate transpose,
then ρX “ XX: is a Hermitian positive semidefi-
nite (PSD) operator on Tenpn0;n1, . . . , ndq. We will
denote by ‖X‖ “ trrρX s1{2 the �2 norm of X (when
viewed as a vector). With this notation in mind, we
then define a quantum system with d`1 subsystems
as a PSD operator on Tenpn0;n1, . . . , ndq with unit

8For some of the problems mentioned above, it is non-trivial
to phrase them as moment polytopes.
9These generalize the classical notion of marginals of a

probability distribution on several variables.
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trace10.

Given a quantum system ρ on Tenpn0;n1, . . . , ndq
and a subset I Ď t0, 1, . . . , du, we define its (quan-
tum) marginals or reduced density matrices by ρpIq “
trIcrρs, where trIc denotes the partial trace over
tensor factors Ic “ t0, . . . , duzI . In the same way
that ρ describes the state of the entire quantum sys-
tem, ρpIq characterizes the state of the subsystems
labeled by I (in an analogous way to the classical
marginal of a probability distribution). For I “ tiu,
we write ρpiq; these operators are known as the one-
body marginals or one-body reduced density matrices
of ρ. Each ρpiq is uniquely characterized by the
property that

trrρpiqApiqs “
trrρpIn0

b In1
b . . .b Ini´1

bApiq b . . .b Ind
qs
(1)

for all operators Apiq on C
ni .

For a tensor X P Tenpn0;n1, . . . , ndq and a given
subset I Ď t0, 1, . . . , du of the subsystems, the
marginals of ρX with respect to I have a particularly
simple description: using the standard basis, iden-

tify X with a matrix M
pIq
X P MatnI ,nIc

pCq, where
we denote nI :“ś

iPI ni. The matrixM
pIq
X is known

as a flattening, unfolding, or matricization [14, 15]

of the tensor X . Then, ρ
pIq
X “ M

pIq
X pM pIq

X q: is its
Gram matrix.

Given a Hermitian operator σ on Cn (i.e., an nˆn
Hermitian matrix), we write specpσq “ ps1, . . . , snq
for the vector of eigenvalues of σ, ordered non-
increasingly. If σ is PSD with unit trace then its
eigenvalues form a probability distribution, so
specpσq is an element of P`pnq :“ tps1, . . . , snq :
s1 ě ¨ ¨ ¨ ě sn ě 0 :

ř
j sj “ 1u. We also abbreviate

P`pn1, . . . , ndq :“ P`pn1q ˆ ¨ ¨ ¨ ˆ P`pndq. We will
be particularly interested in characterizing the
eigenvalues of the one-body marginals, motivated
by the following fundamental problem in quantum
mechanics [16]:

Problem I.1 (One-body quantum marginal prob-
lem). Given p P P`pn1, . . . , ndq, decide if there exists
a tensor Y P Tenp1;n1, . . . , ndq such that specpρpiqY q “
ppiq for all i “ 1, . . . , d.

Remark I.2. Note that the above problem is equivalent
to the following, given density matrices pPSD matrices
with unit trace q ρp1q, . . . , ρpdq, determine if there exists
10A reader not familiar with the basics of quantum systems

may want to skip a couple of paragraphs ahead.

a tensor (pure state) Y P Tenp1;n1, . . . , ndq such that
ρ
piq
Y “ ρi for all i “ 1, . . . , d. Since a unitary change
of basis comes for free on each subsystem, only the
eigenvalues of ρp1q, . . . , ρpdq are relevant.

The above problem is extremely fundamental
from the point of view of quantum many-body
physics. It is a special case of the more general
quantum marginal problem, which puts constraints
on the marginals of multiple systems and is known
to be QMA-complete (for growing d) [17].
We note that the normalization to trace one is

natural; since trrρpiqY s “ ‖Y ‖2 for all i, we can
simultaneously rescale all marginals simply by
rescaling the tensor.
Now we discuss how Problem I.1 can be phrased

as a question about moment polytopes [16, 18–
22]. Let G “ GLpn1q ˆ ¨ ¨ ¨ ˆGLpndq, where GLpnq
denotes the group of invertible nˆn-matrices. Then
G acts on V “ Tenpn0;n1, . . . , ndq by
pgp1q, . . . , gpdqq ¨X :“ pIn0

b gp1q b . . .b gpdqqX.

As the group acts by rescaling slices of the tensor,
we will call any Y P G ¨X a tensor scaling of X .11

What is the moment map in this setting? It turns
out that the moment captures exactly the notion of
one-body quantum marginals. It is more convenient
to define the moment map on the projective space,
since we don’t care about the scalar multiples. We
will denote the projective space corresponding to
V by PpV q and identify it with the set of rank-one
trace-one PSD operators on V , PpV q “ tρ “ rXs “
XX:{X:X : 0 ‰ X P V u. Then the moment map
can be written as12

μ : PpV q Ñ Hermpn1q ˆ ¨ ¨ ¨ ˆHermpndq,
ρ ÞÑ pρp1q, . . . , ρpdqq, (2)

where Hermpnq denotes the space of Hermitian
nˆn-matrices. Now consider a projective subvariety
X of PpV q such as X “ PpV q or an orbit-closure13
i.e. X “ G ¨ rXs for some given tensor X P V .14 Let
11The extra coordinate with dimension n0 can be equiva-

lently thought of as enumerating an n0-tuple of tensors in
Tenpn1, . . . , ndq and the group G acts simultaneously on all the
tensors in the tuple. Much of the theory remains similar if one
sets n0 “ 1 and that can be done mentally on a first reading.
In the quantum language, it is the difference between acting on
pure states pn0 “ 1q vs acting on mixed states pn0 ą 1q.
12After identifying the Lie algebra of K with its dual.
13Here, the closure can be taken either in the Euclidean or in

the Zariski topology.
14In general X can be any G-stable irreducible projective

subvariety of PpV q.
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us look at the collection of marginal eigenvalues
when restricted to tensors in X :

ΔpX q :“ tpspecpρp1qq, . . . , specpρpdqqq : ρ P X u
Ď P`pn1, . . . , ndq. (3)

We emphasize again the amazing, surprising and
non-trivial fact that ΔpX q is a rational convex
polytope [13, 18, 19, 23] – known as the moment
polytope or Kirwan polytope of X .15 This means that
ΔpX q can in principle be given in terms of finitely
many affine inequalities in eigenvalues of the one-
body marginals [16, 20, 21]. In particular, the
preceding applies to X “ PpV q, so we can rephrase
Problem I.1 as follows: Given p P P`pn1, . . . , ndq,
is it a point in Δp1;n1, . . . , ndq :“ ΔpPpV qq? More
generally, we can consider the following decision
problem:

Problem I.3 (General moment polytope). Given p P
P`pn1, . . . , ndq, decide if there exists a tensor rY s P X
such that specpρpiqY q “ ppiq for all i “ 1, . . . , d.

When X “ G ¨ rXs is the orbit closure of some
given tensor X P V , we will abbreviate the moment
polytope by ΔpXq :“ ΔpG ¨ rXsq. In quantum infor-
mation theory, moment polytopes of orbit closures
have been called entanglement polytopes as they
characterize the multipartite entanglement from the
perspective of the one-body marginals [24, 25]. But,
along with the corresponding invariant-theoretic
multiplicities, they are also of interest in algebraic
and geometric complexity theory [26–29]. The cor-
responding decision problem is the following:

Problem I.4 (Moment polytope of orbit clo-
sure). Given X P Tenpn0;n1, . . . , ndq and p P
P`pn1, . . . , ndq, decide if there exists Y P G ¨X such
that specpρpiqY q “ ppiq for all i “ 1, . . . , d.

That is, Problem I.4 asks whether

15Note that we have identified PpV q with the set of rank 1
density matrices and hence it is far from being a convex set -
yet the spectrum of its image under the moment map is convex.

p “ ppp1q, . . . ,ppdqq is a point in ΔpXq.16
One can show that Problem I.4 is intimately

related to Problems I.1 and I.3: p P ΔpX q iff
p P ΔpXq for a generic X P X (see the full version).
This is explained in the full version of the paper. We
will therefore focus our attention on Problem I.4.
It is natural to go beyond the decision problem

and look for an algorithm that finds a tensor Y
with the desired marginals, as well as the group
element that transforms X into Y . Since such an
Y will be in the orbit through X , we demand only
that the marginals are correct up to some target
accuracy.

Definition I.5 (ε-close). The marginals of Y P
Tenpn0;n1, . . . , ndq are said to be ε-close to p P
P`pn1, . . . , ndq if ‖specpρpiqY q ´ ppiq‖1 ď ε for i “
1, . . . , d. Here, ‖x‖1 “ ř

j |xj | is the �1-norm.
Problem I.6 (Tensor scaling). Given X P
Tenpn0;n1, . . . , ndq, p P ΔpXq, and ε ą 0, find gε P G
such that Y “ gε ¨X has marginals that are ε-close to p.

While it may not be immediately clear, there exist
scalings as in Problem I.6 for any ε ą 0 if and only
if the answer to Problem I.4 is yes, i.e., if and only
if p P ΔpXq.
The polytopes ΔpX q admit alternative charac-

terization in terms of invariant theory [18]. This
connection is explained in the full version of the
paper, and it is central to the analysis of our
algorithms. For now, we only mention an important
special case. Let gpλ,μ,νq denote the Kronecker
coefficients, which are fundamental objects in the
classical representation theory of the symmetric and
general linear groups [31, 32]. They also feature in
geometric complexity theory as a potential way of
creating representation theoretic obstructions [26,
33]. For example, gpλ,μ,νq can be defined as the
multiplicity of the irreducible Sk-representation rλs
in the tensor product rμsbrνs. Here, λ, μ, and ν are

16When n0 “ 1, there is a physical interpretation of the
orbit-closure. Y P G ¨ X means that Y can be obtained to
arbitrary precision from X (which is naturally understood as
a d-partite quantum state) by a class of quantum operations
known as stochastic local operations and classical communication
(SLOCC) [30]. SLOCC can be intuitively understood as follows:
we imagine that different parties hold the different systems of a
quantum state; SLOCC then corresponds to a sequence of local
quantum operations and measurements, where we allow for
post-selection on specific measurement outcomes. Problem I.4
then asks if given a tensor X P Tenpn1, . . . , ndq, does there
exist a Y obtainable by a sequence of SLOCC operations from

X s.t. specpρpiq
Y q “ ppiq for all i. This is a generalization of

the SLOCC entanglement distillation question where ppiq is the
uniform distribution for all i.
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partitions, which we may think of nonincreasing
vectors in Z

ně0 with
ř

j λj “ ř
j μj “ ř

j νj “: k.
Then,

D integer s ě 1 : gpsλ, sμ, sνq ą 0 ô
1

k
pλ,μ,νq P Δp1;n, n, nq, (4)

so the solution to the one-body quantum marginal
problem captures precisely the asymptotic support of
the Kronecker coefficients [16, 34, 35]. We note that
the problem of deciding whether gpλ,μ,νq ą 0
is known to be NP-hard [36]. However since the
asymptotic vanishing of Kronecker coefficients is
captured by the quantum marginal problem, it has
been conjectured that it should have a polynomial
time algorithm and we make progress towards
this question.17 Since Kronecker coefficients are so
poorly understood, understanding their asymptotic
support would also go a long way in understanding
them.

C. Prior work

As mentioned above, Problem I.1 can be ap-
proached by first computing (the defining inequali-
ties of) the moment polytope Δpn0;n1, . . . , ndq. The
problem of computing moment polytopes has a
long history in mathematics (e.g., [13, 20, 23, 39–
44]). That the one-body quantum marginal problem
falls into this framework was first noticed by
Klyachko [45], who gave a complete description of
the polytopes in terms of finite lists of inequalities
(cf. [16, 46, 47]). Before that, only low-dimensional
special cases were known [48–50]. Further devel-
opments include the minimal complete description
from [20] and the cohomology-free variant [21]. Yet,
all these descriptions in terms of inequalities are
largely computationally infeasible; explicit descrip-
tions are known up to formats 3ˆ 3ˆ 9 [16] and
4ˆ4ˆ4 [21], and when all dimensions are two [48].
Problems I.3 and I.4 can in principle be ap-

proached using classical computational invariant
theory (e.g., [24, 51, 52]), based on the invariant-
theoretic description of ΔpX q and degree bounds
(see full version). In practice, however, this is com-
pletely infeasible except for very small dimensions.
The problem of describing ΔpX q also falls into the
17We note that the closely related Littlewood-Richardson coeffi-

cients (which capture the same problem for the representations
of the general linear group) satisfy the so called saturation
property: cpλ,μ,νq ą 0 iff cpsλ, sμ, sνq ą 0 [37]. Hence the
asymptotic support is the same as support for this case and this
is also a key ingredient in the polynomial time algorithms for
testing if cpλ,μ,νq ą 0 [38].

framework of [20], but it is not clear how to turn
this into an algorithm. In summary, all the methods
described above are computationally expensive and
take time at least exponential in the input size.
None of the preceding algebraic methods can be

used to solve Problem I.6, since they only decide
membership but do not produce the transformation
that produces a tensor with the desired target
spectra. This calls for the development of numerical
algorithms for Problem I.6. Curiously, this devel-
opment stemmed from motivations in algebraic
complexity and the PIT problem. The first such
algorithm was proposed in [53]. Its complexity
analysis, that brought on the connection to invariant
theory (and other fields, some mentioned above)
was achieved in [6]. In the language we use here,
it deals with d “ 2 (operator scaling) and uni-
form marginals, and results in polynomial time
algorithms for problems in diverse areas discussed
there.18 The operator scaling problem was then
extended in two directions, which we mention next:
one direction being general values of d (tensor
scaling) and the other being d “ 2 and arbitrary
marginals.
For general d, a deterministic algorithm was given

in [5] (based on a proposal in [56] for n0 “ 1). Very
recently, a randomized polynomial time algorithm
for operator scaling to general marginals was given
in [57]. The two papers [5, 57] study two different
generalizations of the operator scaling problem in
[6]. The present paper completes a natural square by
studying a common generalization of the problems
studied in [5, 57]. All these algorithms can be seen
as noncommutative generalizations of the Sinkhorn-
Knopp algorithm for ‘matrix scaling‘ [58, 59].
It was recently shown that Problem I.1 is in

NPXcoNP [60]. In view of Eq. (4), this should
be contrasted with the NP-hardness of deciding
whether a single Kronecker coefficient is zero or
not [36].

D. Summary of results

Our main result in this paper is a randomized
algorithm for tensor scaling to general marginals
(Problem I.6). As a consequence, we obtain algo-
rithms for all other problems.

Theorem I.7. There is a randomized algorithm run-
ning in time polypN, 1{εq, that takes as input X P
18The underlying algebraic problem associated with opera-

tor scaling, namely non-commutative singularity and rank of
symbolic matrices found a different, algebraic algorithm in the
works of [54, 55]
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Tenpn0;n1, . . . , ndq with Gaussian integer entries (spec-
ified as a list of real and complex parts, each encoded
in binary, with bit size ď b) and p P P`pn1, . . . , ndq
with rational entries (specified as a list of numerators
and denominators, each encoded in binary, with bit
size ď b). The algorithm either correctly identifies
that p R ΔpXq, or it outputs a scaling g P G such
that the marginals of g ¨ X are ε-close to the target
spectra p. Here N is the total bit-size of the input,
N “ 2n0n1 ¨ ¨ ¨ndb` 2pn1 ` ¨ ¨ ¨ndqb.
As a consequence of Theorem I.7, we obtain a

randomized algorithm for a promise version of the
membership Problem I.4 (and hence for Problem I.1,
see full version).

Corollary I.8. There is a randomized algorithm run-
ning in time polypN, 1{εq, that takes as input X P
Tenpn0;n1, . . . , ndq with Gaussian integer entries (spec-
ified as a list of real and complex parts, each encoded
in binary, with bit size ď b) and p P P`pn1, . . . , ndq
with rational entries (specified as a list of numerators
and denominators, each encoded in binary, with bit size
ď b). The algorithm distinguishes between the following
two cases:

1) p P ΔpXq.
2) p is ε-far (in �1-norm) from any point q P ΔpXq.

Here N is the total bit-size of the input, N “
2n0n1 ¨ ¨ ¨ndb` 2pn1 ` ¨ ¨ ¨ndqb.
This yields the following corollary.

Corollary I.9. There is a randomized algorithm run-
ning in time polypn0n1 ¨ ¨ ¨nd, b, 1{εq, that takes as
input p P P`pn1, . . . , ndq with rational entries (specified
as a list of numerators and denominators, each encoded
in binary, with bit size ď b). The algorithm distinguishes
between the following two cases:

1) p P Δp1;n1, . . . , ndq, i.e., there exists Y P
Tenpn1, . . . , ndq such that specpρpiqY q “ ppiq for
all i.

2) p is ε-far (in �1-norm) from any point q P
Δp1;n1, . . . , ndq.

As described before, Problem I.1 captures the
asymptotic vanishing of Kronecker coefficients.
Hence we get the following corollary which de-
scribes a randomized polynomial time algorithm
for a promise version of the asymptotic Kronecker
problem.

Corollary I.10. There is a randomized algorithm run-
ning in time polypn, b, 1{εq, that takes as input three
partitions λ,μ,ν P Zně0 with entries described in binary

with bit-size at most b. The algorithm distinguishes
between the following two cases:

1) There exists an integer s ě 1 s.t. gpsλ, sμ, sνq ą
0.

2) For all λ1,μ1,ν 1 s.t. g pλ1,μ1,ν 1q ą 0, it holds
that pλ1,μ1,ν 1q { |pλ1,μ1,ν 1q| is ε-far (in �1-
norm) from pλ,μ,νq{|pλ,μ,νq|.

Here g denotes the Kronecker coefficient and
|pλ,μ,νq| “ ř

j λj “ ř
j μj “ ř

j νj .

In many applications, the tensor X can be more
succinctly represented than by its n0n1 ¨ ¨ ¨nd many
coordinates. If the representation is preserved by
scalings and allows for efficient computation of the
marginals, then this yields a useful improvement
to Algorithm 1. A prime example of which are the
so called matrix-product states or tensor-train decom-
positions with polynomial bond dimension [56, 61].
We won’t define these states here (see full version
for a formal definition) but we will just say that
these have much smaller (exponentially smaller in
d) descriptions than specifying all the n0n1 ¨ ¨ ¨nd

coordinates of the tensors. This class includes the
unit tensors and the matrix multiplication tensors,
which are central objects in algebraic complexity
theory [27, 62] and whose moment polytopes are
not known!

Theorem I.11 (Informal). There is a randomized
algorithm running in time polypN, b, 1{εq, that takes as
input a matrix-product state X P Tenpn0;n1, . . . , ndq
with input size N and p P P`pn1, . . . , ndq with
rational entries (specified as a list of numerators and
denominators, each encoded in binary, with bit size ď b).
The algorithm either correctly identifies that p R ΔpXq,
or it outputs a scaling g P G such that the marginals of
g ¨X are ε-close to the target spectra p.

It is a very exciting open problem to improve
the running time dependence on ε in Corollary I.8,
Corollary I.9 and Corollary I.10 to polyplog 1{εq.
This would yield randomized polynomial time
algorithms for Problem I.1, Problem I.4 and the
asymptotic Kronecker problem due to the following
theorem that we prove in the full version.

Theorem I.12 (Minimal gap). Let X be a nonzero
tensor in Tenpn0;n1, . . . , ndq. If rY s P G ¨ rXs is
a scaling with marginals that are γpn1, . . . , nd, �q-
close to p, then p P ΔpX q. Here γpn1, . . . , nd, �q “
exp p´O ppn1 ` ¨ ¨ ¨ ` ndq logp�maxj njqqq and � is the
minimal integer s.t. �p has integral entries.

An analogous result for the full moment polytope
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ΔpPpV qq was proven in [60]. We believe that the
inverse exponential bound in the above theorem
cannot be improved to an inverse polynomial bound.
Therefore developing scaling algorithms with run-
time dependence polyplog 1{εq is of paramount
importance.

Before describing our algorithm and the high
level intuition for its analysis, let us describe
the algorithm and analysis for a rather special
case of matrix scaling, which turns out to very
enlightening.

E. Simple example: matrix scaling

The matrix scaling problem (Problem 3 in Sec-
tion I-A) provides us with a template for what
is to come, and understanding the evolution of a
particular algorithm for this problem will give us
intuition on how to solve the more general tensor
scaling problem, and how invariant theory naturally
appears.

If one wants to scale a given nˆ n matrix A to a
doubly stochastic matrix (that is, one whose rows
and columns each sum to 1), a natural algorithm
(first proposed in [58]) arises from the fact that the
group is a Cartesian product. We can alternately
use scalings of the form pR, Iq P Tpnq ˆ Tpnq to
normalize the row sums of A and scalings of the
form pI, Cq P Tpnq ˆ Tpnq to normalize the column
sums of A.
To this end, set RpAq to be a diagonal matrix

having RpAqi,i to be the inverse of the sum of
the elements of the ith row of A, and define
CpAq in a similar way for the columns of A. The
algorithm can be described as follows: repeatedly
(for a polynomial number of iterations) apply the
following steps:

‚ Normalize the rows of A. That is, AÐ RpAq¨A
‚ Normalize the columns of A. That is, A Ð
A ¨ CpAq.

If, throughout this process, the matrix A never
gets sufficiently close to a doubly stochastic matrix
(in �2-distance), then we will conclude that A
cannot be scaled to doubly stochastic; otherwise
we can conclude that A can be scaled to doubly
stochastic. The process also gives us a way to
obtain the scalings that approach doubly stochastic -
while there are multiple algorithms for the decision
problem (which turns out to be the bipartite perfect
matching problem), not all help find the scalings!

The analysis of this algorithm (from [4]; also see
[63] for a different potential function) is extremely

simple, and follows a three step approach based
on a progress measure P pAq “ PermpAq.
The following two properties of the potential func-
tion will be useful for us.

1) If A is scalable to doubly stochastic, then
P pAq ą 0.

2) P pAq ď 1 if A is row- or column-normalized.

The three step approach then is the following:

1) [Lower bound]: Initially P pAq ą 2´ polypnq
(w.l.o.g. we assume A is row-normalized) 19.

2) [Progress per step]: If A is row- or column-
normalized and sufficiently far from being
doubly stochastic, then normalizing A in-
creases P pAq. One can explicitly bound the
increase using a robust version of the AM-GM
inequality.

3) [Upper bound]: P pAq is bounded by 1 if A is
row- or column-normalized.

This three-step analysis shows that the scaling
algorithm is able to solve the doubly stochastic
scaling problem in polynomial time. The difficult
part of the analysis is coming up with a potential
function satisfying the properties above. This is the
role played by invariant theory later. A source of
good potential functions will turn out to be highest
weight vectors, which are (informally speaking)
“eigenvectors” of the action of certain subgroups of
the main group action. Note that the permanent
is an eigenvector of the action of Tpnq ˆ Tpnq since
PermpRXCq equals

´ś
i Ri,i ¨śj Cj,j

¯
¨ PermpXq

for pR,Cq P Tpnq ˆ Tpnq.
If we want to solve the more general scaling

problem, where we are given a prescribed value
for the row and column sums, say as an non-
negative integer vector pr, cq “ pr1, . . . rn, c1, . . . , cnq,
the same natural algorithm can be applied. The only
change one needs to make in the algorithm above is
that we will now normalize the rows of A to have
sums pr1, . . . , rnq and the columns to have sum
pc1, . . . , cnq. The analysis is also quite similar: one
can choose the potential function, for example, to
be the permanent of matrix B obtained from A by
repeating ith row ri times and jth column cj times.
However, the distinction between the uniform and
the non-uniform versions of the problems is much
starker in our higher dimensional non-commutative
setting, as we will see next.

19There is some dependency on the bit complexity of the
input that we are ignoring.
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F. Techniques and proof overview

Our algorithm and its analysis generalize two
recent works [5, 57], which in turn generalize the
analysis of matrix scaling in Section I-E. The paper
[5] studies the special case when ppiq is the uniform
distribution (over a set of size ni) for all i while
the paper [57] studies the special case d “ 2. Our
algorithm is a natural common generalization of the
algorithms in [5, 57] while our analysis generalizes
the analysis in [5] replacing the use of invariants
with highest weight vectors (we will explain what
these are later).

Let us develop some intuition for the algorithm.
It is usually the case with scaling problems, as we
saw with matrix scaling, and more generally in the
framework of alternating minimization, that one of
the constraints is easy to satisfy by scaling. The
same is true for the problem we have at hand.
We are given a tensor X P Tenpn0;n1, . . . , ndq.
Suppose we want spec

´
ρ
piq
X

¯
“ ppiq. With the

shorthand p
piq
Ò :“ pppiqni , . . . , p

piq
1 q, we act on X

by g “
ˆ
I, I, . . . , diag

´
p
piq
Ò

¯1{2 ´
ρ
piq
X

¯´1{2
, . . . , I

˙
,

where the non-trivial element is in the ith location.
This will satisfy the ith constraint. Or indeed, one

can choose any matrix R s.t. RR: “ ρ
piq
X and act

on X by g “
ˆ
I, I, . . . , diag

´
p
piq
Ò

¯1{2
R´1, . . . , I

˙
.

This will also satisfy the ith constraint. By choosing
each time to fix the index which is “farthest” from
its target spectrum, we have defined an iterative
algorithm (up to the choice of R at each step) that
keeps on alternately fixing the constraints. It turns
out that this algorithm works (for any choice of R
at each step!) when the ppiq’s are all uniform and
converges in a polynomial number of iterations [5].

Interestingly, the choice of R that works for
general ppiq’s is that of upper triangular matri-
ces!20 This was the choice made in [57] as well.
This restriction on scaling factors will make the
analysis more complicated as we shall soon see.
One intuitive reason for the difference between the
uniform and the general case is the following: in
the general case, we made an arbitrary decision to
try to scale X to have marginals diag

`
ppiq

˘
while

we could have chosen to scale it to any ρpiq s.t.

20This choice works for all ppiq’s. We don’t know if this
choice of upper-triangularity is necessary. There is also a nice
interpolation between the case of uniform ppiq’s and ppiq’s with
distinct entries. See full version.

specpρpiqq “ diag
`
ppiq

˘
. This choice of basis is not

present in the uniform case since all bases are the
same!

This restriction on scaling factors creates another
problem: it disconnects the orbit space (see example
below). Thus, we need to initialize the algorithm
with a random basis change of the given input,
and only then resume the restricted scaling. This
idea is used as well in [57]. We explain, via an
example, why this random basis change (or at least
a “clever” basis change) is needed at the start of
the algorithm. Consider the diagonal unit tensor
X P Tenp1; 2, 2, 2q, where Xj,k,� “ 1 iff j “ k “ �. It
is easy to see that without the initial randomization,
the algorithm (which chooses an upper triangular R
at each step) would only produce diagonal tensors
Y (Yj,k,� ‰ 0 iff j “ k “ �). And the marginals of
any such tensor are isospectral. On the other hand,
the G-orbit of X is dense in Tenp1; 2, 2, 2q and so
ΔpXq “ Δp1; 2, 2, 2q. In particular, X can be scaled
to tensors with non-isospectral marginals.

The algorithm is described as Algorithm 1.
The following is the main theorem regarding the
analysis of Algorithm 1 from which Theorem I.7
follows up to an analysis of the bit complexity of
Algorithm 1.

Theorem I.13 (Tensor scaling). Let X be a (nonzero)
tensor in Tenpn0;n1, . . . , ndq whose entries are Gaus-
sian integers of bitsize no more than b. Also, let
p P P`pn1, . . . , ndq with rational entries of bitsize no
more than b such that ppiqni ą 0 for all i “ 1, . . . , d.
Finally, let ε ą 0.
Then, with probability at least 1/2, Algorithm 1 either

correctly identifies that p R ΔpXq, or it outputs g P G
such that the marginals of Y “ g ¨X are ε-close to p.
In fact, we have

‖ρpiqY ´ diagpppiqÒ q‖tr ď ε for i “ 1, . . . , d (5)

in the latter case, where ‖A‖tr “ trr?A:As is the trace
norm.

Remark I.14. Note that the condition

‖ρpiqY ´ diag
´
p
piq
Ò

¯
‖tr ď ε

21Usually the Cholesky decomposition refers to ρ “ LL:
where L is lower triangular. However using such a decompo-
sition for a different matrix, one can easily obtain ρ “ RR:,
where R is upper triangular. Simply set R “ PLP where P is a
permutation matrix which swaps i and n ´ i and PρP “ LL:,
where L is lower triangular.
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Input: X P Tenpn0;n1, . . . , ndq with Gaussian
integer entries (specified as a list of real and
complex parts, each encoded in binary, with bit
size ď b) and p P P`pn1, . . . , ndq with rational
entries (specified as a list of numerators and
denominators, each encoded in binary, with bit

size ď b) such that p
piq
ni ą 0 for all i “ 1, . . . , d.

Output: Either the algorithm correctly identifies
that p R ΔpXq, or it outputs g P G such that the
marginals of Y :“ g ¨X satisfy Eq. (5); in particular
the marginals are ε-close to the target spectra p.

Algorithm:

1) Let � ą 0 such that �ppiq has integer entries for
all i “ 1, . . . , d. Let g “ pgp1q, . . . , gpdqq denote
the tuple of matrices (gpiq is ni ˆ ni) whose
entries are chosen independently uniformly
at random from t1, . . . ,Mu, where M :“ 2dK

and K :“ p�dmaxdi“1 niqdmaxd
i“1 n2

i .

2) For i “ 1, . . . , d, if the marginal ρ
piq
g¨X is

singular then output p R ΔpXq and halt.
Otherwise, update gp1q Ð gp1q{ ‖g ¨X‖.

3) For t “ 1, . . . , T where T is defined to beR
32 ln 2
ε2

´
3
řd

i“0 log2pniq ` b` d log2pMq
¯V

,

repeat the following:

‚ Compute Y :“ g ¨X and, for i “ 1, . . . , d,

the one-body marginals ρ
piq
Y and the dis-

tances εpiq :“ ‖ρpiqY ´ diagpppiqÒ q‖tr.
‚ Select an index i P t1, . . . , du for which εpiq
is largest. If εpiq ď ε, output g and halt.

‚ Compute the Cholesky decomposi-

tion21ρ
piq
Y “ RpiqpRpiqq:, where Rpiq is

an upper-triangular matrix. Update

gpiq Ð diagpppiqÒ q1{2pRpiqq´1gpiq.
4) Output p R ΔpXq.

Algorithm 1: Scaling algorithm for Theorem I.13

implies that

‖spec
´
ρ
piq
Y

¯
´ diag

´
ppiq

¯
‖1 ď ε

See full version.

To analyze our algorithm and prove Theorem I.13,
we follow a three-step argument similar to the
analysis in Section I-E. This has been used to
great effect for operator scaling and tensor scaling

in [5, 6, 53, 57] after identifying the appropriate
potential function.

As we described in Section I-E, the appropriate
potential functions to choose are the ones which are
eigenvectors of an appropriate group action. In the
matrix scaling case, we were acting by Tpnq ˆ Tpnq
and hence we chose the potential function to be
permanent which is an eigenvector for this group
action. In our algorithm, we are acting by the
group corresponding to (direct products of) upper
triangular matrices (this is known as the Borel
subgroup). So for us, the right potential functions
to consider are functions which are eigenvectors for
the action of (tuples of) upper triangular matrices.
One such class of functions are the so called highest
weight vectors from representation theory22, which
we come to next.

What are highest weight vectors? We have the
action of G on V “ Tenpn0;n1, . . . , ndq. Let us
consider the space of degree k polynomial functions
on V , denoted by CrV sk. The action of G on
V induces an action of G on CrV sk given by
pg ¨P qpvq “ P

`
g´1 ¨ v˘. Consider a tuple of vectors

λ “ `
λp1q, . . . ,λpdq

˘
, λpiq P Z

ni . Then we say that
P is a highest weight vector with weight λ if

g ¨ P “
dź

i“1

niź
j“1

´
g
piq
j,j

¯λ
piq
j

P

where g “ `
gp1q, . . . , gpdq

˘
is such that gpiq is an

upper triangular matrix for each i. Note that this

necessitates
řni

j“1 λ
piq
j “ ´k for each i. This also

necessitates (not trivial to see why) that for all i,

λ
piq
1 ě ¨ ¨ ¨ ě λ

piq
ni .

The following two properties of highest weight
vectors will be crucial for our analysis:

1) [[18], see full version]: Let p P P`pn1, . . . , ndq
be a rational vector. Then p P ΔpXq iff
there exists an integer k ě 1 s.t. λ “ kp
has integer entries and there exists a
highest weight vector P with weight λ˚ s.t.
pg ¨ P q pXq ‰ 0 for some g P G. Here λ˚ “´´
´λp1qn1 , . . . ,´λp1q1

¯
, . . . ,

´
´λpdqnd , . . . ,´λpdq1

¯¯
.

This extends a fact used in previous papers:
the uniform vector is in ΔpXq iff some
invariant polynomial does not vanish on X .

22Here we restrict our attention to the action on polynomials
because that is what we need to describe the intuition for the
analysis of the algorithm. But the discussion of weight vectors
applies to arbitrary (rational) representations of the group G,
see full version.
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2) [see full version] The space of highest weight
vectors with weight λ˚ is spanned by polyno-
mials P with integer coefficients that satisfy
the following bound

|P pXq| ď pn1 ¨ ¨ ¨ndqk‖X‖k (6)

This extends an identical bound in past papers
from invariant polynomials to highest weight
vectors.

We use classical constructions of highest weight
vectors [5, 64, 65] to derive the second fact. These
constructions are only semi-explicit (e.g., it is not
clear if they can be evaluated efficiently), however
they suffice for us because we only need a bound on
their evaluations for their use as a potential function.
We note that such bounds on their evaluations
haven’t been observed before in the invariant theory
literature (except in [5] for the special case of in-
variants) whereas for us they are extremely crucial!
We also emphasize that it is crucial for us that
the bound is singly exponential in k. Some naive
strategies of using solution sizes for linear systems
only yield bounds that are doubly exponential in
k.
The potential function we use is Φpgq “ |P pg ¨

Xq|1{k. Here P is some highest weight vector of
degree k (for some k), integer coefficients and
weight λ˚ that satisfies pg ¨ P q pXq ‰ 0 as well as
Eq. (6). Such a P exists by the discussion above.
Using these properties, a three-step analysis, similar
to the one in Section I-E, follows the following
outline.

1) [Lower bound]: Since pg¨P q pXq is nonzero for
some g, we must have that |P pg¨Xq| is nonzero
for a random choice of g. Furthermore, since
we choose g to have integer coefficients,
|P pg ¨Xq| ě 1. After the normalization in Step
(2), we get Φpgq ě 1{fpn0, . . . , nd, d, b,Mq. It
is not hard to see that fpn0, . . . , nd, b,Mq ď
2bMd pn0n1 ¨ ¨ ¨ndq2.

2) [Progress per step]: Φpgq increases at each
step. Furthermore, if the current spectrum
is “far" from the target spectrum, then one
can explicitly bound the increase. Here the
highest weight vector property of P , as well as
Pinsker’s inequality from information theory,
play an important role.

3) [Upper bound]: Φpgq ď n1 ¨ ¨ ¨nd always. This
follows from Eq. (6) and the fact that we
maintain the unit norm property of g ¨X after
the normalization in Step (2) of the algorithm.

These three steps imply that in a polynomial
number of iterations, one should get close to the
target spectrum. A complete analysis is presented
in the full version. Note that to ensure that we only
use a polynomial amount of random bits for the
initial randomization, we need the highest weight
vectors to have degree at most exponential in the
input parameters. This is achieved by relying on
Derksen’s degree bounds [66] (see full version).

G. Additional discussion

We would like to point out two important dis-
tinctions between the analysis for matrix scaling in
Section I-E and our analysis here. First is that, as
we have seen, there is a major difference between
the uniform and the non-uniform versions of our
problem - while this was not the case for matrix
scaling. This phenomenon is general and is a distinc-
tion between commutative and non-commutative
group actions. It has to do with the fact that all
irreducible representations of commutative groups
are one-dimensional, whereas for non-commutative
groups they are not. Secondly, in the matrix scaling
analysis, the upper bound was easy to obtain as
well. Whereas for us, the upper bound step is the
hardest and requires the use of deep results in
representation theory. The upper bound steps were
the cause of main difficulty in the papers [5, 6, 57]
as well23, and this is one key point of distinction
between commutative and non-commutative group
actions.

We believe that our framework of using the
highest weight vectors as potential functions for
the analysis of analytic algorithms is the right way
to approach moment polytope problems - even
beyond the cases that we consider in this paper.

The approach taken in [57] (for the case of d “ 2)
is one of reducing the non-uniform version of the
problem to the uniform version (which was solved
in [6] for the case of d “ 2). The reduction is
complicated and a bit ad hoc. We generalize this
reduction to our setting (d ą 2) (see full version),
and provide a somewhat more principled view of
the reduction along the way. However, it still seems
rather specialized and mysterious compared to the
general reduction in geometric invariant theory
from the “non-uniform” to the “uniform” case (also
known as the shifting trick, see full version).

23In some of the papers, the lower bound is the hard step,
due to the use of a dual kind of potential function.
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It is interesting to discuss some of the salient
features and possible variations of Algorithm 1 (we
expand on these points in the main text):

‚ Iterations and randomness. If we choose �
as the product of the denominators of all

p
piq
j , the algorithm terminates after at most

T “ poly
`
1
ε , d,maxdi“0 ni, b

˘
iterations and uses

log2pMq “ polypd,maxdi“0 ni, bq bits of random-
ness. For fixed or even inverse polynomial
ε ą 0, this is polynomial in the input size. In
fact, this is better than the number of iterations
in [57]: there, the number of iterations also
depended on p´1

n and q´1
n . To get an algorithm

with truly polynomial run time, one needs
to truncate the group elements gpiq’s up to
polynomial number of bits after the decimal
point. We provide an explanation on why this
doesn’t affect the performance of the algorithm
in the full version.

‚ Degenerate spectra. If λpiq is degenerate, i.e.,
λ
piq
j “ λ

piq
k for some j ‰ k, then we may

replace the Cholesky factors in step 3 by block
upper triangular matrices, where the block
sizes are the degeneracies - the set of such
matrices is a so-called parabolic subgroup of
the general linear group (see full version).
Moreover, the random matrix g need only be
generic up to action of the parabolic subgroup.
In particular, when scaling to uniform spectra
then no randomization is required and we can
use Hermitian square roots, so Algorithm 1
reduces to the uniform tensor scaling algorithm
of [5].

‚ Singular spectra. As written, Item 3 of Algo-
rithm 1 fails if the spectra are singular, that is
if for some i we have ri :“ rank diagpppiqq ă
ni. However, in this case, one may first
pass to a smaller tensor tensor X` obtained
by restricting the ith index to the last ri
coordinates. We show in the full version
that X` is scalable by upper triangulars to
marginals diagpppiqri , . . . , p

piq
1 q, i P rds if and

only if X is scalable by upper triangulars to

diagp0, . . . , 0, ppiqri , . . . , p
piq
1 q, i P rds.

We discuss extensions of Algorithm 1 for more
general varieties with “good” parametrizations in
the full version.

H. Conclusions and open problems

We provide an efficient weak membership oracle
for moment polytopes corresponding to a natural

class of group actions on tensors. This generalizes
recent works on operator and tensor scaling and
also yields efficient algorithms for promise versions
of the one-body quantum marginal problem and
the asymptotic support of Kronecker coefficients.
Our work leaves open several interesting questions
some of which we state below.

‚ Improve the dependency on error ε in the
running time of Algorithm 1 to polyplogp1{εqq.
As discussed, this will immediately yield
polynomial time algorithms for the one-body
quantum marginal problem. This is open even
for the uniform version of the problem. Here
the notion of geodesic convexity of certain
“capacity" optimization problems should play
a key role (e.g. see [67]).

‚ Extend the weak membership oracle we de-
velop to moment polytopes of other group
actions, using Kirwan’s gradient flow [23]
as proposed in [22]. The quantitative tools
developed in this paper naturally extend to
this setup and we will elaborate on this in
forthcoming work.

‚ Develop separation oracles for moment poly-
topes. A related question is: can we opti-
mize over moment polytopes? This will have
algorithmic applications on the problem of
computing quantum functionals, as described
in [29]. In this paper, Strassen’s support func-
tionals are generalized to quantum functionals,
which are defined by convex optimization over
the entanglement polytope. Thus, separation
oracles for moment polytopes could lead to
efficient algorithms for computing quantum
functionals, which are important for comparing
tensor powers (see [68–70]).

‚ Find natural instances of combinatorial op-
timization problems which can be encoded
as moment polytopes. Some examples can be
found in [2].
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