In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time

Russell Impagliazzo.
Department of Computer Science
University of California, San Diego
La Jolla, CA 92093-0114
russell@cs.ucsd.edu

Valentine Kabanets†
Department of Computer Science
University of California, San Diego
La Jolla, CA 92093-0114
kabanets@cs.ucsd.edu

Avi Wigderson‡
Department of Computer Science
Hebrew University
Jerusalem, Israel 91904
and
Institute for Advanced Study
Princeton, NJ 08540
avi@ias.edu

August 20, 2002

Abstract
Restricting the search space \{0, 1\}^n to the set of truth tables of “easy” Boolean functions on log \(n\) variables, as well as using some known hardness-randomness tradeoffs, we establish a number of results relating the complexity of exponential-time and probabilistic polynomial-time complexity classes. In particular, we show that $NEXP \subseteq P\text{-}\text{poly} \iff NEXP = \text{MA}$; this can be interpreted as saying that no derandomization of MA (and, hence, of promise-BPP) is possible unless $NEXP$ contains a hard Boolean function. We also prove several downward closure results for ZPP, RP, BPP, and MA; e.g., we show $\text{EXP} = \text{BPP} \iff \text{EE} = \text{BPE}$, where EE is the double-exponential time class and BPE is the exponential-time analogue of BPP.