Restricting the search space \(\{0, 1\}^n\) to the set of truth tables of “easy” Boolean functions on logarithmically many variables, as well as using some known hardness-randomness tradeoffs, we establish a number of results relating the complexity of exponential-time and probabilistic polynomial-time complexity classes. In particular, we show that $\text{NEXP} \subset \text{P/poly} \iff \text{NEXP} = \text{MA}$; this can be interpreted as saying that no derandomization of MA (and, hence, of promise-BPP) is possible unless NEXP contains a hard Boolean function. We also prove several downward closure results for ZPP, RP, BPP, and MA; e.g., we show $\text{EXP} = \text{BPP} \iff \text{EE} = \text{BPE}$, where EE is the double-exponential time class and BPE is the exponential-time analogue of BPP.