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Abstract. We prove that any semi-simple representation of the Galois group

of a number field coming from geometry appears as a subquotient of the ring
of regular functions on the pro-algebraic completion of the fundamental group

of the projective line with 3 punctures.

1. Introduction

A surprising result of Belyi [Bel79] says that every non-unit element of the
absolute Galois group GQ acts non-trivially on the etale fundamental group
πet

1 (P1
Q \ {0, 1,∞}) of the projective line with 3 punctures. It can be deduced

from this that every finite image representation of the Galois group can be found
in the space of locally constant functions on that fundamental group:

Proposition 1.1 (Proposition 5.1). For a number field F , any continuous finite
image representation ρ : GF → GLd(Q) can be embedded into the space of locally

constant functions Funcloc.const.(πet
1 (P1

F
\ {0, 1,∞}, 0v),Q). Here 0v is a tangential

base point supported at 0.

In this paper we generalize this result by proving that every semi-simple rep-
resentation coming from geometry appears as a subquotient of the space of func-
tions on the pro-algebraic completion of πet

1 (P1
F
\ {0, 1,∞}, 0v). Fix a prime p.

Explicitly, the space of regular functions Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] is the

space of continuous functions πet
1 (P1

F
\ {0, 1,∞}, 0v) → Qp that can be factored

as πet
1 (P1

F
\ {0, 1,∞}, 0v)

ρ−→ GLn(Qp)
f−→ Qp where ρ is a continuous represen-

tation and f ∈ Qp[GLn,Qp
] is a regular function. Denote by Qp[πpro−alg

1 (P1
F
\

{0, 1,∞}, 0v)]GF−fin ⊂ Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] the subspace of functions

whose GF -orbit spans a finite-dimensional space. This is our main result:

Theorem 1.2. For any separated scheme X of finite type over F and any i ∈ N, the
semi-simplification of the GF -representation Hi(XF ,Qp) appears as a subquotient

of the space Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin.

Conversely, it was shown in [Pet21, Corollary 8.6] that for any smooth variety Y
over F with an F -rational base point y, any finite-dimensional subrepresentation

V of Qp[πpro−alg
1 (YF , y)] is de Rham at places above p and is almost everywhere

unramified. Therefore, the Fontaine-Mazur conjecture [FM95] is equivalent to the
conjunction of the following two conjectures, see Lemma 9.3:
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Conjecture 1.3. Every irreducible finite-dimensional representation of GF that

appears as a subquotient of Qp[π
pro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin is a subquotient

of Hi
et(XF ,Qp(j)) for some smooth projective variety X and i ≥ 0, j ∈ Z.

We will observe in Corollary 9.2, extending a result of Pridham [Pri09], that for

every Galois representation appearing in Qp[π
pro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin the

Frobenius eigenvalues at almost all places are Weil numbers, a condition notably
absent from the Fontaine-Mazur conjecture.

Conjecture 1.4. Any irreducible Qp-representation of GF that is almost every-
where unramified and is de Rham at places above p can be established as a sub-

quotient of Qp[π
pro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin for every tangential base point 0v

supported at 0.

Before sketching the proof of the theorem, let us get a feel for working
with the Galois action on the pro-algebraic completion of the etale fundamental
group by looking at two mechanisms for producing Galois representations inside

Qp[πpro−alg
1 (YF , y)], for a variety Y over F . In the Example 1.5 geometrically

irreducible local systems yield Galois representations inside functions on the funda-
mental group, and Example 1.6 demonstrates how Belyi’s theorem implies Theorem
1.2 when X is a curve.

Example 1.5. If L is a Qp-local system then the corresponding representation of

the geometric fundamental group defines a morphism ρgeom
L : πpro−alg

1 (YF , y) →
GLLy

to the algebraic group of invertible matrices on the space Ly. Regular func-

tions on GLLy
then give rise to elements of Qp[πpro−alg

1 (YF , y)]. In particular, there

is a GF -equivariant map End(Ly) → Qp[πpro−alg
1 (YF , y)] whose image consists of

matrix coefficients of the representation ρgeom
L ; it is the space dual to the Qp-span of

the image of the map πet
1 (YF , y)→ End(Ly). For example, if L|YF

is absolutely ir-

reducible, Burnside’s theorem tells us that the map End(Ly)→ Qp[πpro−alg
1 (YF , y)]

is an inclusion. Thus, if a Galois representation V can be established as the fiber
over y of a geometrically absolutely irreducible local system on Y , then the adjoint
representation V ⊗ V ∨ of the Galois group GF is a subspace of the ring of regular
function on the pro-algebraic completion of πet

1 (YF , y).

Example 1.6. Suppose that C is a smooth projective curve equipped with a finite
morphism f : C → P1

F that is etale over P1
F \{0, 1,∞}. Belyi’s theorem [Bel79, The-

orem 4] says that for any curve over F one can choose such a morphism. Assume
further that C contains a rational point x ∈ C(F ) with f(x) = 0. The fundamental
group of the open subscheme U := f−1(P1

F \ {0, 1,∞}) ⊂ C is then a finite index
subgroup f∗(π

et
1 (UF , xv′)) ⊂ πet

1 (P1
F
\ {0, 1,∞}, 0v) where xv′ and 0v are appro-

priate tangential base points. By Lemma 2.2 the restriction to this finite index

subgroup induces a GF -equivariant surjection Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] →

Qp[πpro−alg
1 (UF , xv′)]. On the other hand, the map πet

1 (UF , xv′) → H1
et(UF ,Qp)∨

yields a surjective map πpro−alg
1 (UF , xv′) → H1

et(UF ,Qp)∨ onto the correspond-

ing vector group. The linear functions on that vector group then give a sub-

space H1
et(UF ,Qp) ⊂ Qp[πpro−alg

1 (P1
F
\{0, 1,∞}, 0v)]. In particular, this establishes

H1
et(CF ,Qp) as a subrepresentation of Qp[πpro−alg

1 (P1
F
\ {0, 1,∞}, 0v)].
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The only arithmetic input needed for our proof is Belyi’s theorem and the rest
is a purely algebro-geometric argument that we will now describe. A related result
has been recently independently obtained by Joseph Ayoub: it follows from [Ayo21,
Corollary 4.47] that the action of the motivic Galois group of Q on the motivic fun-
damental group of P1

Q \ {0, 1,∞} is faithful. Our Proposition 1.7 can be used to

deduce Theorem 1.2 from this faithfulness result, though, to the best of my under-
standing, this would give a proof different from ours; in particular, our argument is
constructive in that it gives an explicit way of finding a given Galois representation

Hi
et(XF ,Qp) inside Qp[πpro−alg

1 (P1
F
\ {0, 1,∞}, 0v)].

Denote by CF the set of finite-dimensional representations of GF that can be

realized as subquotients of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin, for every choice

of the tangential base point 0v supported at 0. To prove the theorem, we will
show first that CF is closed under direct sums and tensor products (in particular,

every representation from CF appears in Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] with an

arbitrarily large multiplicity).

Proposition 1.7 (Proposition 4.1). For any two Galois representations V1, V2 ∈ CF
the representations V1 ⊕ V2 and V1 ⊗ V2 also belong to CF .

This is a special feature of the variety P1
F
\ {0, 1,∞} which comes down to the

fact that the Cartesian square of its fundamental group can be established as a
subquotient of the fundamental group itself, compatibly with the Galois actions.

The proof of Theorem 1.2 now proceeds by induction on the dimension of X. The
base case dimX = 0 is given by Proposition 1.1. Assuming that the theorem has
been proven for all schemes of dimension < dimX, using resolution of singularities
and the Gysin sequence, we may freely replace X by a birational variety. We can
therefore assume that X admits a smooth proper morphism to a (possibly open)
curve. Applying Belyi’s theorem to this curve we may moreover assume that X
admits a smooth proper morphism f : X → P1

F \ {0, 1,∞} to the projective line
with three punctures.

Leray spectral sequence together with Artin vanishing now tell us that in or-
der to show that the semi-simplification of Hn(XF ,Qp) lies in CF it is enough
to do so for the Galois representations H0(P1

F
\ {0, 1,∞}, Rnπ∗Qp) and H1(P1

F
\

{0, 1,∞}, Rn−1π∗Qp). The statement about 0th cohomology is immediate from
the induction assumption, because H0(P1

F
\{0, 1,∞}, Rnπ∗Qp) embeds into a stalk

(Rnπ∗Qp)y = Hn(f−1(y)F ,Qp). The assertion about 1st cohomology is proven
using the following purely algebraic observation

Proposition 1.8 (Proposition 7.1). For a Qp-local system L on any geo-
metrically connected finite type scheme Y over F equipped with a base point
y, the Galois representation H1

et(YF ,L) is a subquotient of the tensor product

Qp[πpro−alg
1 (YF , y)]GF−fin ⊗ Ly.

This proves that H1(P1
F
\ {0, 1,∞}, Rn−1π∗Qp) is in CF because CF is stable

under tensor products, and this finishes the proof of the induction step.
Proposition 1.8 crucially uses matrix coefficients of non-semi-simple representa-

tions of πet
1 (P1

F
\ {0, 1,∞}, 0v) and the analogous statement is false for the pro-

reductive completion of πet
1 (YF , y). This begs the question:
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Question 1.9. Which representations of GF appear as subquotients of the space

Qp[πpro−red
1 (P1

F
\{0, 1,∞}, 0v)]GF−fin of regular functions on the pro-reductive com-

pletion of πet
1 (P1

F
\ {0, 1,∞}, 0v)?

More explicitly, this question can be reformulated as asking to classify, for all
finite extensions F ′ ⊃ F , representations of GF ′ having the form V ⊗ V ∨ where V
is the stalk at 0v of a geometrically irreducible Qp-local system on P1

F ′ \ {0, 1,∞},
cf. Lemma 9.5.

Lastly, let us remark that the usage of tangential base points is important for
our proof, but Theorem 1.2 might well be true for classical base points as well.
We comment on this in Subsection 9.3, see also Corollary 9.2 for an instance of
a substantial difference between the Galois action on the fundamental group with
respect to a tangential base point and a classical base point.

Notation By a ‘pointed scheme’ or a ‘scheme equipped with a base point’ over
a base field K we will mean a pair (X,x) where either X is an arbitrary scheme
over K and x ∈ X(K) is a rational point, or X is a smooth curve over K and x is
a tangential base point supported at a K-point of X \ X where X is the smooth
compactification of X (see Section 10 for a brief review of tangential base points).
For both of these settings, πet

1 (XK , x) will denote the etale fundamental group of
XK with respect to the geometric base point supported at x. It comes equipped
with a continuous action of GK . Likewise, πet

1 (X,x) = GKnπet
1 (XK , x) will denote

the fundamental group of the scheme X.
Acknowledgement. I am grateful to Mark Kisin for comments and sugges-

tions on the exposition, and to Joseph Ayoub for pointing me to his work [Ayo21].
This research was partially conducted during the period the author served as a
Clay Research Fellow, and enjoyed the hospitality of the Max Planck Institute for
Mathematics in Bonn.

2. Pro-algebraic completion

Let Γ be a topological group. For a finite extension E of Qp we denote by

Γpro−alg
E the pro-algebraic completion of Γ over E. It is defined as the affine

group scheme1 over E equipped with a continuous (with respect to the inverse

limit of the p-adic topologies on E-points of finite type quotients of Γpro−alg
E )

map αΓ : Γ → Γpro−alg
E (E) satisfying the following universal property. For any

continuous homomorphism ρ : Γ → GLn(E) there exists a unique morphism

ρalg : Γpro−alg
E → GLn,E of group schemes such that the induced map on E-points

fits into the commutative diagram

(2.1)

Γ GLn(E)

Γpro−alg
E (E)

ρ

αΓ ρalg

Similarly, the pro-reductive completion Γpro−red
E is the pro-reductive group over

E satisfying the analogous universal property among representations ρ : Γ →

1Recall that every affine group scheme is isomorphic to an inverse limit of linear algebraic
group schemes
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GLn(E) for which the Zariski closure of the image is a reductive subgroup of GLn,E .
These notions were first introduced in [HM57], see also [Pri12] for a discussion of
these objects in a setup very close to ours. This section reviews all the necessary
facts about pro-algebraic completions.

Let Funccont(Γ, E) be the space of all continuous functions Γ → E. It is
equipped with an action of Γ given by (γ · f)(x) = f(γ−1x) for γ, x ∈ Γ and
f ∈ Funccont(Γ, E).

Lemma 2.1. (i) For a finite extension E′ ⊂ E there is a canonical isomorphism

Γpro−alg
E′ ' Γpro−alg

E ×SpecE SpecE′.

(ii) The ring of functions E[Γpro−alg
E ] admits the following description

(2.2)

E[Γpro−alg
E ] = {f ∈ Funccont(Γ, E)|the span of Γ · f is finite-dimensional over E}

Proof. (ii) There is a map α∗Γ : E[Γpro−alg
E ]→ Funccont(Γ, E) given by precomposing

with αΓ. By definition, a regular function on Γpro−alg
E factors through some homo-

morphism Γpro−alg
E → GLn,E . So, to prove that the image of α∗Γ is contained in the

right-hand side of (2.2) it is enough to observe that for any element f ∈ E[GLn,E ]
the orbit GLn(E) · f spans a finite-dimensional E-vector space.

Next, let f be an element of the right-hand side of (2.2). The span of Γ · f
gives a continuous finite-dimensional representation V of Γ and the function f
factors through the homomorphism Γ → GL(V ), hence it lies in the image of α∗Γ.

Finally, α∗Γ is injective because any regular function on Γpro−alg
E factors through

an algebraic group and a homomorphism from Γpro−alg
E to an algebraic group is

completely determined by its restriction to Γ.
Part (i) now follows because the right hand side of (2.2) satisfies base change

under finite extensions of E. �

Lemma 2.2. If Γ1 ⊂ Γ is an open subgroup of finite index then the restriction map

E[Γpro−alg
E ]→ E[Γpro−alg

1,E ] is surjective.

Proof. We will use the description of functions on the pro-algebraic completion
provided by the right hand side of (2.2). Let f1 : Γ1 → E be a continuous function
whose translates span a finite-dimensional space. Pick representatives for the left

cosets of Γ1 ⊂ Γ so that Γ =
d⊔
i=1

giΓ1 for some g2, . . . gd ∈ Γ and g1 = 1. Then define

a function f : Γ → E be declaring f(gih) = f1(h) for every h ∈ Γ1. It evidently
extends f1 onto f and its Γ-translates span a finite-dimensional space. �

Example 2.3. Let Γ be the infinite cyclic group Z endowed with the discrete

topology. As implied by the Jordan decomposition, Γpro−alg

Qp

' Ga,Qp
× Ẑ×T where

T is the pro-torus with character group X∗(T ) = Q×p /µ∞, cf. [BLMM02, Example

1]. Here we take Γpro−alg

Qp

to mean the base change Γpro−alg
Qp

×Qp
Qp. The proalgebraic

completion Γpro−alg
Qp

itself can be described as Ga×H0×T0 where H0 is a pro-finite

etale group scheme corresponding to the GQp -module Ẑ(1) and T0 is the (non-split)

pro-torus with the GQp
-module of characters given by X∗(T0) = Q×p /µ∞.
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Similarly, for the pro-finite group Γ = Ẑ the pro-algebraic completion over Qp
can be described as Ga,Qp

× Ẑ × T+ where T+ is the pro-torus over Qp with the

character group X∗(T+) = Z×p /µ∞, reflecting the fact that the eigenvalues of a

topological generator of Ẑ in a continuous representation must belong to Zp.

We will never work with the pro-algebraic completion in terms of its points
but will rather analyze the ring of regular functions on it. Given a continuous
representation ρ : Γ→ GL(V ) on a finite-dimensional E-vector space V , denote by

F(V ) the E-span of the image of the composition Γ
ρ−→ GL(V ) ⊂ EndE V . The

dual space F(V )∨ is sometimes referred to as the space of matrix coefficients of the

representation V . One might think of the functions on Γpro−alg
E as of the ring of

matrix coefficients of all representations:

Lemma 2.4. For every representation V , there is a natural embedding F(V )∨ ⊂
E[Γpro−alg

E ] and

(i) E[Γpro−alg
E ] is equal to the union of these subspaces for varying V .

(ii) The space E[Γpro−red
E ] can be identified with the subspace of E[Γpro−alg

E ] ob-
tained by taking the union of the subspaces F(V )∨ for all semi-simple repre-
sentations V .

Proof. The space (EndE V )∨ of linear functions on the vector space EndE V maps

to E[Γpro−alg
E ] via restriction to GLV and pullback along the map ρalg : Γpro−alg

E →
GLV . Its image in E[Γpro−alg

E ] is canonically dual to F(V ).

Given a function f ∈ E[Γpro−alg
E ] denote by V the E-span of its finite-dimensional

orbit under the action of Γ. By adjunction, we then obtain a function α : Γ→ V ∨.
The original function f is obtained by postcomposing α with the functional V ∨ →
E corresponding to the element f ∈ V . Denote by g : V → E the functional
corresponding to the element α(1).

The function f can be obtained by composing the map Γ → End(V ) with the
map End(V ) → E that sends an endomorphism A : V → V to g(A(f)). Thus f

lies in the subspace F(L)∨ ⊂ E[Γpro−alg
E ]. This finishes the proof of part (i).

To show part (ii), note first that the canonical surjection of group schemes

Γpro−alg
E � Γpro−red

E induces an inclusion E[Γpro−red
E ] ⊂ E[Γpro−alg

E ] and for a semi-

simple representation V the subspace F(V )∨ is contained inside E[Γpro−red
E ]. Con-

versely, given a function f ∈ E[Γpro−red
E ] the above strategy produces a representa-

tion V of Γ that factors through Γpro−red
E because the action of Γ via translations

on the space E[Γpro−alg
E ] preserves the subspace E[Γpro−red

E ] and factors through

Γpro−red
E on that subspace. Therefore V is semi-simple as a representation of the

pro-reductive group Γpro−red
E and hence is semi-simple as a representation of Γ

because Γ is Zariski dense in Γpro−red
E (E). �

Let K be any base field and (X,x) be a K-scheme equipped with a base point
(that is, x is a K-point or a tangential base point at infinity). For brevity, we
denote the pro-algebraic (resp. pro-reductive) completion of the topological group

πet
1 (X,x) over E = Qp by πpro−alg

1 (X,x) (resp. πpro−red
1 (X,x)). The action of GK

on πet
1 (XK , x) induces an action on the spaces of functions Qp[πpro−alg

1 (XK , x)] and

Qp[πpro−red
1 (XK , x)].
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Example 2.5. In general, this action is not locally finite. For instance, consider the
case of X = Gm,K over a field K of characteristic zero containing only finitely many
roots of unity. Grothendieck’s quasi-unipotent monodromy theorem comes down to

the fact that for a function f on the pro-algebraic completion of πet
1 (XK , x) = Ẑ(1)

the span of its GK-orbit is finite-dimensional if and only if f factors through the

canonical map Ẑpro−alg

Qp

� Ga,Qp
× Ẑ.

We will concern ourselves only with the locally finite subspace of

Qp[πpro−alg
1 (XK , x)] which admits an alternative description, immediate from

Lemma 2.1 (ii).

Lemma 2.6. The image of the restriction map Qp[πpro−alg
1 (X,x)] →

Qp[πpro−alg
1 (XK , x)] coincides with the subspace

(2.3) Qp[πpro−alg
1 (XK , x)]GF−fin :=

{f ∈ Qp[πpro−alg
1 (XK , x)] | the span of σ · f for σ ∈ GK is finite-dimensional}

Lemma 2.4 gives a way to produce elements in Qp[πpro−alg
1 (XK , x)]GF−fin from

local systems on X. Viewing a Qp-local system L on X as a representation of

πet
1 (XK , x) on the space Lx, we get a subspace F(L)∨ ⊂ Qp[πpro−alg

1 (XK , x)]. Note
that applying the construction F(−) to the space Lx as a representation of the
arithmetic fundamental group πet

1 (XK , x) might potentially yield a larger space
but only matrix coefficients of the geometric representation πet

1 (XK , x)→ GL(Lx)
make a contribution to Qp[πet

1 (XK , x)]. Lemma 2.4 applied to Γ = πet
1 (X,x) and

Lemma 2.6 imply:

Lemma 2.7. For any local system L on X the subspace F(L)∨ ⊂
Qp[πpro−alg

1 (XK , x)] consists of functions locally finite for the GK-action and the

space Qp[πpro−alg
1 (XK , x)]GK−fin is the union of such subspaces for varying L.

A useful consequence of Lemmas 2.2 and 2.6 is

Lemma 2.8. If (X,x) → (Y, y) is a finite etale cover of K-schemes equipped

with base points, we get a GK-equivariant surjection Qp[πpro−alg
1 (YK , y)]GK−fin �

Qp[πpro−alg
1 (XK , x)]GK−fin.

3. Belyi’s theorem and its immediate consequences

The driving force of all our arguments is the following surprising theorem of
Belyi’s.

Theorem 3.1. For a smooth proper geometrically connected curve C over a number
field F and a finite set of closed points S ⊂ |C| there exists a finite morphism
f : C → P1

F such that f is etale over P1
F \ {0, 1,∞} and f(S) ⊂ {0, 1,∞}.

This statement is stronger than [Bel79, Theorem 4] but this is what Belyi’s proof
actually shows, see also [Ser97, Theorem 5.4.B]. We will often use the theorem
paraphrased in the following way:

Corollary 3.2. For any smooth, possibly non-proper, curve U over F there exists a
dense open subscheme U ′ ⊂ U together with a finite etale map U ′ → P1

F \{0, 1,∞}.
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We will use this result as a black box, except for the proof of Lemma 4.3 which
will require us to write down an explicit etale cover of P1

F \ {0, 1,∞}, using Be-
lyi’s proof idea. The following result is an instance of Belyi’s theorem implying a

universality statement for the Galois action on Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)].

Proposition 3.3. Suppose that X is a normal quasi-projective scheme of finite
type over a number field F and x ∈ X(F ) is a base point lying in the smooth

locus of X. Any finite-dimensional subquotient of Qp[πpro−alg
1 (XF , x)]GF−fin can be

established as a subquotient of Qp[πpro−alg
1 (P1

F
\{0, 1,∞}, 0v)]GF−fin, for any choice

of a tangential base point 0v supported at 0.

Proof. We may freely replace the scheme X by another pointed scheme X ′, x′ ∈
X ′(F ) admitting a map f : X ′ → X that induces a surjection πet

1 (X ′
F
, x′) →

πet
1 (XF , x), as the induced map Qp[πpro−alg

1 (XF , x)] → Qp[πpro−alg
1 (X ′

F
, x′)] is a

GF -equivariant embedding. We will use this observation to reduce to the case
dimX = 1.

The embedding Xsm ⊂ X of the maximal open smooth subscheme induces a
surjection πet

1 (Xsm
F
, x) � πet

1 (XF , x) by [SGA71, Proposition V.8.2], so we may
assume that X is smooth. By the Lefschetz hyperplane theorem for not necessarily
proper varieties [EK16, Theorem 1.1] we may further assume that X is a (possibly
non-proper) curve.

Using Theorem 3.1 we choose a quasi-finite map f : X → P1
F that is etale over

P1
F \ {0, 1,∞} and sends x to 0. Now let v ∈ T0P1

F be a non-zero tangent vector
for which we want to prove the claim. If f is ramified at x, it is not necessar-
ily possible to choose an F -rational tangential base point for X \ f−1({0, 1,∞})
based at x ∈ f−1(0) that would map to 0v under f . If there happens to exist
an F -base point xw such that f∗(xw) = 0v, we can conclude the proof by notic-

ing that Lemma 2.8 yields a surjection Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin �

Qp[πpro−alg
1 (XF \f−1{0, 1,∞}, xw)]GF−fin, while Qp[πpro−alg

1 (XF , x)]GF−fin embeds

into Qp[πpro−alg
1 (XF \ f−1{0, 1,∞}, xw)]GF−fin.

In general, we can choose such base point xw over F and consider the open
subgroup H := πet

1 (XF \ f−1({0, 1,∞}), xw) ⊂ πet
1 (P1

F
\ {0, 1,∞}, 0v). By Lemma

2.7, it is enough to prove that for any local system L on X the representation F(L)∨

(defined with respect to the base point x) is a subquotient of Qp[πpro−alg
1 (P1

F
\

{0, 1,∞}, 0v)]. Consider the pushforward L′ := f∗(L|f−1(P1
F \{0,1,∞})) which is a

local system of rank deg f · rkL on P1
F \ {0, 1,∞}.

The stalk Lx embeds canonically into the stalk L′0v
and, under the action of

πet
1 (P1

F
\ {0, 1,∞}, 0v) on L′0v

, the subgroup H preserves this subspace Lx ⊂ L′0v
.

Moreover, the action of H on Lx factors through H � πet
1 (XF , x) with πet

1 (XF , x)
acting on Lx via the geometric monodromy of the local system L.

Let W ⊂ End(L′0v
) be the subspace of operators A that satisfy A(Lx) ⊂ Lx. The

previous paragraph demonstrates that the image of H in End(L′0v
) is contained in

W and its image under the natural map W → End(Lx) is equal to F(L). Therefore
F(L) is a subquotient of F(L′) (the latter defined with respect to the base point
0v) and we are done. �

Our proof of the main theorem will require to work simultaneously with all
tangential base points supported at 0 (there are F× worth of those). Recall the
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following set of isomorphism classes of finite-dimensional Qp-representations of GF
that was mentioned in the introduction

(3.1)

CF := {V | V appears as a subquotient of Qp[πpro−alg
1 (P1

F
\{0, 1,∞}, 0v)] for every v}

Corollary 3.4. For any normal quasi-projective scheme X over F that admits an
F -rational base point the representation H1

et(XF ,Qp) belongs to CF .

Proof. This follows from Proposition 3.3 because the canonical map πet
1 (XF , x)→

H1
et(XF ,Qp)∨ extends to a surjective map from πpro−alg

1 (XF , x) to the vector group
H1

et(XF ,Qp)∨ and the space H1
et(XF ,Qp) is GF -equivariantly identified with the

space of linear functions on that vector group. �

We do not know if the analog of Proposition 3.3 is true for an X equipped with
a tangential base point x, so there potentially might be representations appearing

in Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] for some, but not all v, hence the necessity to

work with the class CF .

4. Direct sum and tensor product

In this section, we show that the class CF is stable under direct sums and tensor

products. In particular, any representation from CF appears in Qp[πpro−alg
1 (P1

F
\

{0, 1,∞}, 0v)] with infinite multiplicity. It is important for the argument that we are

working with Galois representation simultaneously appearing in Qp[πpro−alg
1 (P1

F
\

{0, 1,∞}, 0v)] for all choices of the tangential base point at 0.

Proposition 4.1. Suppose that representations V1, V2 of GF belong to CF . Then
so do representations V1 ⊕ V2 and V1 ⊗ V2.

Proof. In the case of V1 ⊗ V2 we will prove a slightly stronger statement which we
formulate explicitly for a future application

Lemma 4.2. For a tangential base point 0v supported at 0 there exist two other
tangential base points 0v1 and 0v2 such that, if V1 and V2 are representations of

GF with Vi appearing as subquotients of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0vi)]GF−fin for

i = 1, 2, then V1 ⊗ V2 is a subquotient of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin.

Proof. The key to the proof is the following telescopic property of the fundamental
group of P1

F \ {0, 1,∞}:

Lemma 4.3. There exists an open subgroup Γ ⊂ πet
1 (P1

F
\ {0, 1,∞}, 0v) stable

under GF and admitting a GF -equivariant surjection Γ � πet
1 (P1

F
\{0, 1,∞}, 0v1)×

πet
1 (P1

F
\ {0, 1,∞}, 0v2

) for some tangential base points 0v1
, 0v2

at 0.

Proof. Consider the degree 3 finite morphism f : P1
F → P1

F given by f(z) = 27
4 z(z−

1)2. We have f ′(z) = 27
4 (3z − 1)(z − 1) so the only ramification points of f are

1
3 , 1 and ∞. Since f(1) = 0, f( 1

3 ) = 1, f(∞) = ∞ the map f restricts to a finite

etale cover P1
F \ {0, 1

3 , 1,
4
3 ,∞} → P1

F \ {0, 1,∞}. Moreover, since f is unramified

at 0, we may choose a tangential base point 0v1 for P1
F \ {0, 1

3 , 1,
4
3 ,∞} such that

f(0v1
) = 0v.
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Define Γ as the subgroup f∗(π
et
1 (P1

F \ {0, 1
3 , 1,

4
3 ,∞}, 0v1

)) ⊂ πet
1 (P1

F
\

{0, 1,∞}, 0v). The inclusion maps ι1 : P1
F \ {0, 1

3 , 1,
4
3 ,∞} → P1

F \ {0, 1,∞},
ι2 : P1

F \ {0, 1
3 , 1,

4
3 ,∞} → P1

F \ {0, 1
3 ,

4
3} induce a surjection Γ � πet

1 (P1
F
\

{0, 1,∞}, 0v1) × πet
1 (P1

F
\ {0, 1

3 ,
4
3}, 0v1) by the Seifert-van Kampen theorem and

this proves the assertion because πet
1 (P1

F
\ {0, 1

3 ,
4
3}, 0v1

) can be identified via an

automorphism of P1
F with πet

1 (P1
F
\ {0, 1,∞}, 0v2) for some tangential base point

0v2
. �

The representation V1 ⊗ V2 is a subquotient of the following space, where Γ is
provided by Lemma 4.3:

Qp[πpro−alg
1 (P1

F
\{0, 1,∞}, 0v1)]GF−fin⊗Qp[πpro−alg

1 (P1
F
\{0, 1,∞}, 0v2)]GF−fin ⊂ Qp[Γpro−alg

Qp
]GF−fin

and Qp[Γpro−alg
Qp

]GF−fin, in turn, is a quotient of

Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin by Lemma 2.8 so V1 ⊗ V2 is a subquotient

of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin. This finishes the proof of Lemma 4.2. �

Since the representation V1 ⊕ V2 is a direct summand of the tensor product
(V1⊕Qp)⊗(V2⊕Qp), to show that V1⊕V2 belongs to CF it is enough to demonstrate
that V ⊕ Qp lies in CF for any V ∈ CF . The latter assertion amounts to showing
that the n-dimensional trivial representation Qnp is in CF for every n and this, in

turn, would follow if we can show that Q2
p ∈ CF , because CF is already known to

be stable under tensor products. We have a GF -equivariant surjection πet
1 (P1

F
\

{0, 1,∞}, 0v) → πet
1 (P1

F \ {0,∞}, 0v) ' Ẑ(1) � Z/2 which induces an embedding

Q2
p ' Qp[Z/2] ↪→ Qp[πpro−alg

1 (P1
F
\ {0, 1,∞}, 0v)] and this concudes the proof that

CF is stable under direct sums. �

Corollary 4.4. Qp(−1) ∈ CF .

Proof. Corollary 3.4 implies that H1
et(EF ,Qp) ∈ CF for any elliptic curve E.

By Poincare duality, Qp(−1) ' H2
et(EF ,Qp), which is a direct summand of

H1
et(EF ,Qp)⊗2, hence lies in CF as well. �

When running arguments with spectral sequences, we will sometimes implicitly
use the following consequence of CF being stable under direct sums.

Corollary 4.5. If V is a representation from CF and · · · ⊂ F i+1V ⊂ F iV ⊂ . . . is
a filtration on V then the associated graded representation

⊕
i

F iV/F i+1V is also

in CF .

5. Artin motives

Finding Galois representation attached to 0-dimensional varieties inside func-

tions on πpro−alg
1 (P1

F
\{0, 1,∞}, 0v) amounts to unraveling Belyi’s argument for the

faithfulness of the action of GF on πet
1 (P1

F
\ {0, 1,∞}, x).

Lemma 5.1. For any finite set T equipped with a continuous action of GF the

representation Qp[T ] is a subquotient of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] for every

tangential base point 0v.
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Proof. Our plan here is to first prove that for every finite Galois extension K ⊃ F
and for every tangential base point 0v the space Qp[πpro−alg

1 (P1
F
\ {0, 1,∞}, 0v)]

has some faithful representation of Gal(K/F ) as a subquotient, though it will not
yet be guaranteed that there exists a common faithful representation appearing in

Qp[πpro−alg
1 (P1

F
\{0, 1,∞}, 0v)] for every base point 0v. We will then use Lemma 4.2

to deduce that in fact, any finite-dimensional representation ofGF factoring through

Gal(K/F ) appears as a subquotient of every Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)].

We start by choosing a smooth proper geometrically connected curve C over K
that does not descend to any smaller subfield K ′ ⊂ K. For instance, we can take
C to be an elliptic curve over K such that the j-invariant j(C) generates the field
K over Q. By Theorem 3.1 there exists a finite map f : C → P1

K that is etale over
P1
K \ {0, 1,∞}. Denote by U ⊂ C the preimage f−1(P1

K \ {0, 1,∞}). Choosing a

tangential F -base point xw for C \ U that lies above 0v, we get an open subgroup
f∗(π

et
1 (UK , xw)) ⊂ πet

1 (P1
K
\ {0, 1,∞}, 0v). If an element σ ∈ GF stabilizes this

subgroup then the scheme UK can be descended to the field (F )σ=1. Our choice
of C thus forces the stabilizer of this subgroup to be contained inside GK ⊂ GF .
In particular, there is a finite GF -equivariant quotient πet

1 (P1
F
\ {0, 1,∞}, 0v) � S

such that the kernel of the action of GF on S is contained in GK . All in all, there
exists a GF -equivariant finite quotient πet

1 (P1
F
\ {0, 1,∞}, 0) → X such that the

action of GF on X factors through a faithful action of Gal(K/F ).
Therefore, for every tangential base point 0v there is a faithful representation

Wv of Gal(K/F ) appearing in Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]. Since every faithful

representation of a finite group G contains a faithful subrepresentation of dimension
≤ |G|, we may choose the representationsWv in a way that they all belong to finitely
many isomorphism classes, as v varies. Let W1, . . . ,WN be the finite list of these
representations.

Fix now a particular tangential base point 0v supported at 0. Repeatedly ap-
plying Lemma 4.2, we can conclude that for any d ∈ N a tensor product of the
form W⊗a1

1 ⊗ · · · ⊗ W⊗aNN , with ai ≥ d for at least one i, is a subquotient of

Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]. Since any representation of a finite group is con-

tained in a large enough tensor power of any faithful representation, this proves
that any representation of GF factoring through Gal(K/F ) belongs to CF . �

Corollary 5.2. Let F ′ ⊃ F be a finite extension. If for a representation V of GF
the restriction V |GF ′ belongs to CF ′ then V itself is in CF .

Proof. Choose a tangent vector v ∈ T0P1
F and let 0v1

, 0v2
be the corresponding aux-

iliary tangential base points provided by Lemma 4.2. By assumption, there exists a

finite-dimensional subspace W ⊂ Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v1

)] stable under the

action of GF ′ such that V |GF ′ is a quotient of W . Let W ′ ⊃W be the GF -span of

W inside Qp[πpro−alg
1 (P1

F
\{0, 1,∞}, 0v1)] which we view as a representation of GF .

The inclusion W ⊂ W ′ gives rise to the inclusion IndGF

GF ′
W ⊂ IndGF

GF ′
(W ′|GF ′ ) =

W ′⊗Qp[GF /GF ′ ] while V is a quotient of IndGF

GF ′
W , because the induced represen-

tation IndGF

GF ′
(V |GF ′ ) = V ⊗Qp[GF /GF ′ ] is. The representation W ′⊗Qp[GF /GF ′ ]

is a subquotient of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] by Lemma 4.2 and Proposition

5.1 so V is a subquotient of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)], as desired. �
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6. Dual representations

The class CF also turns out to be stable under duality. This is a special feature
of tangential base points and the analogs of Proposition 6.1 and Lemma 6.2 for a
classical base point in place of 0v are false by Corollary 9.2. These results are not
used in the proof of our main theorem but are needed for Lemma 9.3.

Proposition 6.1. If V ∈ CF then V ∨ ∈ CF .

Proof. The dual representation V ∨ can be written as the tensor product
ΛdimV−1V ⊗(detV )∨ so V ∨ is a direct summand of the tensor product V ⊗ dimV−1⊗
(detV )∨. The character (detV )∨ belongs to CF by Lemma 6.2 below (the assump-
tion of the lemma is satisfied because V is known to be de Rham at places above
p by [Pet21, Proposition 8.5]), so V ∨ is also in CF by Proposition 4.1. �

Lemma 6.2. Any continuous character χ : GF → Q×p that is Hodge-Tate at all

places above p is a subquotient of Qp[π
pro−alg
1 (P1

F
\{0, 1,∞}, 0v)] for every tangential

base point 0v.

Proof. We start by proving that the cyclotomic character Qp(1) appears in

Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]. Let f : E → P1

F,λ \ {0, 1,∞} be the Legendre
family of elliptic curves over the punctured projective line with coordinate λ, de-
fined as E = ProjF [λ±1,(λ−1)−1] F [λ±1, (λ − 1)−1, x, y, z]/(zy2 − x(x − z)(x − λz)).
Consider the local system L = R1f∗Qp on P1

F \ {0, 1,∞}. The geometric local
system L|XF

is absolutely irreducible so we may apply the discussion of Example
1.5 to L.

To compute the stalk L0v
, note that the restriction of E to the punctured formal

neighborhood of 0 can be identified with the Tate elliptic curve ETate → SpecF ((q))
through an appropriate power series λ = 16q − 128q2 + . . . .

The corresponding representation of GF ((q)) on W := H1
et(ETate,F ((q))

,Qp) is an

extension Qp →W → Qp(−1) whose class in H1(GF ((q)),Qp(1)) = (F ((q))×)̂p⊗Zp

Qp is given by q. The unique local system on Gm,F = SpecF [q±1] whose restriction
to SpecF ((q)) is isomorphic to W is given by an extension Qp →W→ Qp(−1) cor-

responding to the class q ∈ H1
et(Gm,F ,Qp(1)) = (F [q±1]×)̂p ⊗Zp

Qp. Therefore the
stalk L0v

= Wq=v/16 is the Kummer extension 0→ Qp →Wq=v/16 → Qp(−1)→ 0
capturing the obstruction to finding a compatible system of p-power roots of the
number v/16 in F . By Example 1.5 the Galois representation L0v ⊗ L∨0v

can

be embedded into Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]. In particular, Qp(1) embeds

into this space of functions. This also shows that Qp(−1) is a subquotient of

Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] (though we already proved this by an easier argu-

ment in Corollary 4.4).
By Corollary 3.4, for any abelian variety A the representation H1

et(AF ,Qp) lies in
CF . ThereforeH1

et(AF ,Qp)∨ = H1
et(A

∨
F
,Qp)(1) is in CF as well. Taking into account

that all finite image representations lie in CF , we know that CF contains all the
objects of the Tannakian subcategory of RepQp

GF generated by etale cohomology

of CM abelian varieties and finite image representations. By [FM95, §6], this implies
that CF contains all abelian representations that are Hodge-Tate at primes above
p. �
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7. First cohomology of local systems

Proposition 7.1. Let X be any geometrically connected scheme of finite type over
a field K equipped with a base point x. For a Qp-local system L on X the Galois

representation H1
et(XF ,L) is a subquotient of Qp[πpro−alg

1 (XK , x)]⊗ Lx.

Proof. The first cohomology H1
et(XK ,L) is isomorphic to the first group cohomol-

ogy H1
cont(π

et
1 (XK , x),Lx) compatibly with the Galois action. The group cohomol-

ogy is computed by the standard complex

Lx
∂0−→ Funccont(πet

1 (XK , x),Lx)
∂1−→ . . .

The subspace Z1
cont(π

et
1 (XK , x),Lx) := ker ∂1 ⊂ Funccont(πet

1 (XK , x),Lx) of 1-
cocycles fits into the exact sequence

0→ H0(XK ,L)→ Lx
∂0−→ Z1

cont(π
et
1 (XK , x),Lx)→ H1

et(XK ,L)→ 0

Hence Z1
cont(π

et
1 (XK , x),Lx) is a finite-dimensional Galois representation that has

H1
et(XK ,L) as a quotient.
On the other hand, as we will know compute, every element f ∈

Z1
cont(π

et
1 (XK , x),Lx) extends to a function on πpro−alg

1 (XK , x) with values in the
affine scheme corresponding to the vector space Lx. If f : πet

1 (XK , x) → Lx is a
continuous 1-cocycle then its translate fg by an element g ∈ πet

1 (XK , x) is given
by fg(h) = f(g−1h) = g−1f(h) + f(g−1). Therefore, the span of the πet

1 (XK , x)-
orbit of the function f is contained inside the sum of the finite-dimensional space
ρL(πet

1 (XK , x)) · f with the finite-dimensional space of constant functions. Hence,

Z1
cont(π

et
1 (XK , x),Lx) is a subspace of Qp[πpro−alg

1 (XK , x)]⊗Qp
Lx compatibly with

the Galois action, so H1
et(XK ,L) is a subquotient of this tensor product. �

Remark 7.2. Another way to see that every 1-cocycle on πet
1 (XK , x) extends

to a function on the pro-algebraic completion is to observe that the canoni-

cal map Z1
alg(πpro−alg

1 (XK , x),Lx) → Z1
cont(π

et
1 (XK , x),Lx) is an isomorphism.

This is the case because the source and the target of this map are extensions

of H1
alg(πpro−alg

1 (XK , x),Lx) and H1
cont(π

et
1 (XK , x),Lx), respectively, by the space

Lx/L
πet

1 (XK ,x)
x . The map H1

alg(πpro−alg
1 (XK , x),Lx) → H1

cont(π
et
1 (XK , x),Lx) is an

isomorphism because both groups classify extensions of the trivial representation
Qp by Lx and the categories of finite-dimensional representations of πet

1 (XK , x) and

πpro−alg
1 (XK , x) are equivalent.

8. Proof of Theorem 1.2

After the preparatory work of the previous sections, the main result will follow
by induction on the dimension, exhibiting the relevant variety as a fibration over a
curve and applying a Leray spectral sequence.

Proof of Theorem 1.2. We will start with some preliminary reductions. The argu-
ment can be shortened slightly if we appeal to resolution of singularities by we take
care to show that the existence of alterations [dJ96] is enough. It is harmless to
assume that X is connected and reduced. Next, choose a simplicial h-hypercover
Y• → X such that each Yi, i ∈ N is a smooth F -scheme. By cohomological de-
scent [SGA72, Vbis] there is a spectral sequence of Galois representations with
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Eij1 = Hj
et(Yi,F ,Qp) converging to Hi+j

et (XF ,Qp). Hence any irreducible subquo-

tient of Hn
et(XF ,Qp) appears as an irreducible subquotient of some Hj

et(Yi,F ,Qp),
so we may from now on assume that X is smooth.

We will now argue by induction on dimX, the base case dimX = 0 being cov-
ered by Lemma 5.1. If U ⊂ X is a dense open subscheme then the Gysin sequence
and purity imply that any irreducible subquotient of the kernel or the cokernel
of the restriction map Hn

et(XF ,Qp) → Hn
et(UF ,Qp) appears as a subquotient of

the representation Hi
et(ZF ,Qp(−j)) for some i, j ≥ 0, and Z a smooth variety

with dimZ < dimX. Therefore establishing the induction step for X is equiv-
alent to doing so for U (recall that by Corollary 4.4, if Hj

et(ZF ,Qp) ∈ CF then

Hj
et(ZF ,Qp(−j)) ∈ CF for j ≥ 0). Also, we may replace X by a finite etale cover

X ′ → X because, by the Leray spectral sequence, Hn
et(XF ,Qp) is a direct summand

of Hn
et(X

′
F
,Qp).

Next, we will reduce to the case where X admits a smooth proper morphism
to a dense open subscheme P1

F . We may assume that X is affine and choose a
non-constant morphism f : X → A1

F . Choose a possibly singular compactification

X ⊃ X and a projective birational morphism b : X
′ → X such that there is a

map f̃ : X
′ → P1

F extending f on b−1(X) ' X. Then choose a smooth alteration

a : X
′′ → X

′
as in [dJ96, Theorem 4.1]. There exists an open dense V ⊂ X

′′

that is a finite etale cover of an open subscheme of X via the composition b ◦ a, so

it is enough to prove the theorem for X
′′
. There exists an open dense subscheme

U ⊂ P1
F such that f̃ ◦a is smooth over U , so we have reduced to proving the theorem

for the variety Y := f−1(U) which admits a smooth proper morphism π : Y → U .

There is a Leray spectral sequence with Ei,j2 = Hi
et(UF , R

jπ∗Qp) converging

to Hi+j
et (YF ,Qp). Therefore, to prove that the semi-simplification of Hn

et(YF ,Qp)
is in CF , it is enough to prove the same for each of the representations
Hi(UF , R

jπ∗Qp), because CF is closed under direct sums. By Artin vanishing,
the group Hi

et(UF , R
jπ∗Qp) can be non-zero only for i = 0 or 1. Choose a ra-

tional point x ∈ U(F ). By smooth and proper base change theorem each of the
sheaves Rjπ∗Qp is a local system on U and the stalk (Rjπ∗Qp)x is isomorphic to

the cohomology Hj
et(f

−1(x)F ,Qp) of the fiber above x. Since f−1(x) is a variety

of dimension < dimX, semi-simplifications of the representations Hj
et(f

−1(x),Qp)
are already known to appear in CF , for every j. The same immediately follows for
the global sections H0(UF , R

jπ∗Qp) ⊂ (Rjπ∗Qp)x.
Applying Proposition 7.1 to the local system Rjπ∗Qp we see that

H1
et(UF , R

jπ∗Qp) is a subquotient of Qp[πpro−alg
1 (UF , x)]GF−fin ⊗ (Rjπ∗Qp)x. By

Proposition 3.3 the representation Qp[πpro−alg
1 (UF , x)]GF−fin is a union of represen-

tations from CF and (Rjπ∗Qp)x is in CF by the induction assumption. Since CF is
closed under tensor products, the 1st cohomology group H1

et(UF , R
jπ∗Qp) is in CF

as well so the induction step is established.
�

9. Variants and questions

In this section, we make miscellaneous comments on possible extensions and
variations of our main theorem.
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9.1. Frobenius eigenvalues. We start by formulating an analog of Weil’s Rie-
mann Hypothesis for fundamental groups that arises from L. Lafforgue’s work on
the global Langlands correspondence for function fields. These results were proven
in [Pri09, Theorem 1.14, Theorem 1.17] in the case of a classical base point. We
include the proofs (equivalent to those of Pridham) to highlight the different be-
haviors that exhibit fundamental groups with respect to classical base points and
tangential base points.

Proposition 9.1. Let X be a geometrically connected normal variety over a finite
field k of characteristic p and l be a prime different from p.

(i) If x is any base point of X (that is, a k-point or a tangential base

point) then the eigenvalues of Frk on both Ql[πpro−red
1 (Xk, x)]Gk−fin and

Ql[πpro−alg
1 (Xk, x)]Gk−fin are Weil numbers.

If x ∈ X(k) is a classical base point then, more specifically,

(ii) The eigenvalues of Frk on Ql[πpro−red
1 (Xk, x)]Gk−fin are Weil numbers of

weight 0.

(iiii) The eigenvalues of Frk on Ql[πpro−alg
1 (Xk, x)]Gk−fin are Weil numbers of

non-negative integral weight.

Proof. We will access the spaces Ql[πpro−red
1 (Xk, x)]Gk−fin

and Ql[πpro−red
1 (Xk, x)]Gk−fin through the description of Lemma 2.7. Let L be

a Ql-local system on X.
In the situation of (ii), by Lemma 2.4 (ii), the local system L is geometrically

semi-simple. It is not necessarily semi-simple on X, but replacing L by its semi-
simplification does not affect Frobenius eigenvalues on F(L). We can therefore
assume that L is irreducible and, twisting it by a character of the Galois group Gk
we can moreover assume that detL has finite image, by [Del80, Theoreme 1.3.1].
By [Laf02, Proposition VII.7] the sheaf L is then pure of weight 0 and hence the
eigenvalues of Frk on F(L) ⊂ Lx ⊗ L∨x are Weil numbers of weight zero.

To deal with (i) and (iii), recall that by [Laf02, Corollary VII.8], the local system

L⊗Ql
Ql admits a decomposition

n⊕
i=1

χi ⊗Li where each χi is a Ql-character of Gk

and Lis are mixed Ql-local systems on X, in the sense of [Del80, Definition 1.2.2

(ii)]. Since F(χi ⊗ Li) = F(Li) and F(L ⊗Ql
Ql) embeds into

n⊕
i=1

F(χi ⊗ Li), we

may assume from the beginning that L is a mixed Ql-local system.
In other words, there is a filtration Wm+1 = 0 ⊂ Wm ⊂ · · · ⊂ Wn = L by sub-

local systems on X such that each Wi/Wi+1 is pure of weight (−i), cf. [Del80, The-
oreme 3.4.1 (ii)]. The space of endomorphisms End(Lx) gets equipped with a Z-
indexed filtration Fi End(Lx) = {A ∈ End(Lx)|A(Wj) ⊂ Wj+i for all j}. The im-
age of the map πet

1 (Xk, x)→ End(Lx) corresponding to L lands inside F0 End(Lx)
because the subspaces Wj,x ⊂ Lx are preserved under the action of πet

1 (Xk, x). Each
of the quotients Fi/Fi+1 is identified with

⊕
j

Hom(Wj,x/Wj+1,x,Wi+j,x/Wi+j+1,x),

compatibly with the action of Gk. Therefore each Gk-representation Fi/Fi+1 is pure
of weight −i and the eigenvalues of Frk on F(L) ⊂ F0 End(Lx) are Weil numbers
of weights ≤ 0, as desired.
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Finally, to prove (i) it remains to show that for a mixed local system L the stalk
Lx at a tangential base point is a mixed representation of Gk. This is a consequence
of Deligne’s weight monodromy theorem, as stated in [Del80, Corollaire 1.8.5]. �

Corollary 9.2. Let X be a smooth geometrically connected variety over F equipped
with a base point x.

(i) If x is a tangential base point then for any finite-dimensional GF -

representation V ⊂ Qp[πpro−alg
1 (XF , x)] there exists a finite set S of places

of F such that for every v 6∈ S the action of GF on V is unramified at v and
the eigenvalues of the Frobenius element Frv are #k(v)-Weil numbers.

(ii) If x is a classical base point, we can say more: for any finite-dimensional

GF -representation V ⊂ Qp[πpro−alg
1 (XF , x)] (resp. V ⊂ Qp[πpro−red

1 (XF , x)])
there exists a finite set S of places of F such that for every v 6∈ S the action
of GF on V is unramified at v and the eigenvalues of the Frobenius element
Frv are #k(v)-Weil numbers of non-negative weights (resp. of weight 0).

Proof. The proof is analogous to that of [Pet21, Corollary 8.6]. We will write out
the argument for the pro-algebraic completion and the proof for the pro-reductive
completion proceeds in the same way.

Let f : πpro−alg
1 (XF , x) → GLn,Qp

be a morphism such that V is contained

in the image of the induced map f∗ : Qp[GLn,Qp
] → Qp[πpro−alg

1 (XF , x)]. The
restriction of f to πet

1 (XF , x) necessarily factors through GLn(Zp) ⊂ GLn(Qp)
and therefore factors through the pro-S completion πet

1 (XF , x) → πet
1 (XF , x)(S)

for a finite set of primes S. Hence V lies in the image of the induced map

Qp[(πet
1 (XF , x)(S))pro−alg

Qp
]GF−fin → Qp[πpro−alg

1 (XF , x)]GF−fin.

Enlarging S, we may assume that there exists a smooth proper scheme X
over OF,S equipped with a horizontal normal crossings divisor D ⊂ X such

that X = XF for X := X \ D and x extends to an OF,S-base point x̃ of X.

Choose a place v and an embedding F ⊂ F v yielding a decomposition sub-

group GFv
⊂ GF . By [Pet21, Lemma 8.7] the space Qp[(πet

1 (XF , x)(S))pro−alg
Qp

]

is identified with Qp[πet
1 (X

k(v)
, x̃k(v))

(S))pro−alg
Qp

] compatibly with the action of

the local Galois group GFv
. Therefore the restriction V |GFv

is a subquotient

of Qp[(πet
1 (X

k(v)
, x̃k(v))

(S))pro−alg
Qp

] ⊂ Qp[πet
1 (X

k(v)
, x̃k(v))] where the action factors

through GFv
� Gk(v) and the result follows from Proposition 9.1. �

Thus, a finite-dimensional subrepresentation V ⊂ Qp[πpro−alg
1 (XF , x)] not only

satisfies the assumptions of the Fontaine-Mazur conjecture but also a potentially
(though not actually if the Fontaine-Mazur conjecture is true) stronger condition
on the eigenvalues of the Frobenius elements.

Let us explicate how the Fontaine-Mazur conjecture is related to Conjectures 1.3
and 1.4.

Lemma 9.3. The Fontaine-Mazur conjecture [FM95, Conjecture 1] is equivalent
to the conjunction of Conjecture 1.3 and Conjecture 1.4

Proof. Assume that the Fontaine-Mazur conjecture is true. Conjecture 1.3 is im-
plied by the Fontaine-Mazur conjecture because, by [Pet21, Corollary 8.6], any sub-

quotient of Qp[π
pro−alg
1 (P1

F
\{0, 1,∞}, 0v)]GF−fin is geometric in the sense of [FM95].
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Conjecture 1.4 similarly follows from Theorem 1.2 and Lemma 6.2, because all the
representations in question arise as subquotients of some Hi

et(XF ,Qp(j)).
Conversely, an irreducible geometric representation is a subquotient of

Qp[π
pro−alg
1 (P1

F
\ {0, 1,∞}, 0v)]GF−fin for some 0v by Conjecture 1.4, hence comes

from geometry by Conjecture 1.3. �

9.2. Pro-reductive completion. As mentioned in the introduction, our proof of
Theorem 1.2 has the disadvantage of appealing to non-semi-simple representations
of πet

1 (P1
F
\{0, 1,∞}, 0v). In this section, we discuss partial results on Galois repre-

sentations appearing inside the space of functions on the pro-reductive completions
of fundamental groups. Define the subclass Cred

F ⊂ CF as

(9.1)

Cred
F := {V | V appears as a subquotient of Qp[πpro−red

1 (P1
F
\{0, 1,∞}, 0v)] for every v}

This class shares some of the properties of CF :

Proposition 9.4. (i) All representations with finite image belong to Cred
F

(ii) If V1, V2 ∈ Cred
F then V1 ⊕ V2, V1 ⊗ V2 ∈ Cred

F .
(iii) If, for a finite extension F ′ ⊃ F the restriction V |GF ′ of a representation V

lies in Cred
F ′ then V ∈ CF .

Proof. The proofs of Lemma 2.2, Proposition 5.1, Proposition 4.1 and Corollary 5.2
go through verbatim with the pro-reductive completion in place of the pro-algebraic
completion. �

Notably, the analog of Proposition 7.1 does not hold for the pro-reductive com-
pletion already in the case of the trivial local system L = Qp, as Corollary 9.2

shows. We can also describe the class Cred
F more explicitly using the following

Lemma 9.5. Let X be a geometrically connected scheme over F equipped with a
base point x. If a finite-dimensional representation V of GF can be embedded into

Qp[πpro−red
1 (XF , x)] then, for some finite extension F ′ ⊃ F , the restriction V |GF ′

is isomorphic to a direct sum of representations of the form Lx ⊗ L∨x where L is a
geometrically absolutely irreducible local system on XF ′ .

Proof. We need to prove that if L is any geometrically semi-simple local system
then the representation F(L) has the aforementioned form.

Let L|XF
=

⊕
i∈I

Mi be the decomposition into irreducible summands. The Galois

group GF then acts continuously on the set of isomorphism classes of Mis, so, after
replacing F by a finite extension, we may assume that this action is trivial. That
is, for each σ ∈ GF the twist Mσ

i is isomorphic to Mi.
This implies that each Mi extends to a projective representation of πet

1 (XF ′ , x)
and, by Tate’s theorem [Ser77, Theorem 4] (or, alternatively automatically by pass-

ing to a finite extension of F ) each Mi in fact extends to a local system M̃i.

We can then consider the caonical map HomXF
(M̃i|XF

,L|XF
) ⊗ M̃i → L where

Wi := HomXF
(Mi|XF

,L|XF
) = H0(XF , (M̃i

∨
⊗ L)|XF

) is viewed as a representa-
tion of GF .

Since each Mi is irreducible, these maps induce an isomorphism
⊕
i∈J

Wi ⊗ M̃i '

L for an appropriate subset J ⊂ I. Since F(L1 ⊕ L2) is a direct summand of
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F(L1) ⊕ F(L2) for any local systems L1,L2 on X, we may therefore assume that
L = W ⊗M for some geometrically irreducible M on X. This finishes the proof
because F(W ⊗M) = F(M). �

In the spirit of Theorem 1.2, geometrically irreducible local systems on any
variety give rise to representations in Cred

F :

Proposition 9.6. Let L be a geometrically irreducible Qp-local system (resp. ge-
ometrically absolutely irreducible Qp-local system) on a variety S over F , equipped
with a base point s ∈ S(F ). Then the Galois representation Ls⊗L∨s is a subquotient

of Qp[π
pro−red
1 (P1

F
\ {0, 1,∞}, 0v)] (resp. Qp[πpro−red

1 (P1
F
\ {0, 1,∞}, 0v)]) for every

tangential base point 0v.

Proof. Applying the discussion of the Example 1.5 in the introduction, we see that

Ls ⊗ L∨s is a subrperesentation of Qp[π
pro−red
1 (SF , s)]. Proposition 3.3, reproven

with pro-reductive completions in place of pro-algebraic completions then implies
the claimed result. �

Corollary 9.7. If V = H1
et(AF ,Qp) for an abelian variety A over F or V =

H2
et(XF ,Qp) for a K3 surface X then V ⊗ V ∨ ∈ Cred

F .

Proof. Denoting g = dimA let S = Ag,Γ(3) be the moduli space of principally po-
larized abelian varieties with full level 3 structure (the level structure is introduced
just to ensure that Ag,Γ(3) is representable by a smooth variety). It is equipped

with the universal family π : Auniv → S Choosing a basis in A[3](F ) we get a
point x ∈ S(F ′) corresponding to A defined over a finite extension F ′ ⊃ F . The
assumption of Proposition 9.6 is satisfied for L = R1π∗Qp (see e.g. [Del71, Lemme
4.4.16]), so (V ⊗ V ∨)|GF ′ is in Cred

F ′ and the claim follows by Proposition 9.4 (iii).
The case of the cohomology of a K3 surface is dealt with in the same way using

that the corresponding geometric monodromy representation of the fundamental
group of the moduli space is irreducible, cf. [Huy16, Corollary 6.4.7]. �

9.3. Base points. Among the results on the representations appearing in

Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, 0v)] that we have discussed so far, the only one that

is genuinely special to tangential base points is Proposition 6.1, as Corollary 9.2
shows. I hope that the proof of Theorem 1.2 can be rectified to show that the
semi-simplification of any representation coming from geometry is a subquotient

of Qp[πpro−alg
1 (P1

F
\ {0, 1,∞}, x)] for every base point x. However, at present, the

usage of tangential base points appears to be necessary in the proofs of Proposition
3.3 and Proposition 4.1. These difficulties would be remedied if one could answer
affirmatively the following general question about Belyi maps.

Question 9.8. Given two points x, y ∈ P1(F ) \ {0, 1,∞}, is it possible to find a
finite map f : P1

F → P1
F that is etale above P1

F \{0, 1,∞} such that f(0) = 0, f(1) =
1, f(∞) =∞, f(x) = y?

10. Tangential base points

In this section, we recall the notion of a tangential base point at infinity due
to [Del89, §15] and collect relevant basic facts about it. Let C be a smooth curve
over an arbitrary field F of characteristic zero and denote by C its smooth proper
compactification.
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Given a point x ∈ (C \ C)(F ) and a non-zero tangent vector v ∈ TC,x, we may
choose a generator t of the maximal ideal mx ⊂ OC,x such that the image of t in

mx/m
2
x ' T∨C,v is equal to 1 when paired with v. We will call such t compatible with

the tangent vector v. This property defines t uniquely up to multiplication by an
element in 1+m2

x. The choice of t defines a morphism ι : SpecF ((t))→ C inducing

an isomorphism ÔC,x[1/t] ' F ((t)). There is also an embedding ι0 : SpecF ((t))→
SpecF [t, t−1] = Gm,F which is fixed once and for all.

The tangential base point xv associated to x and v is a functor from the category
of finite etale covers of C to the category of finite etale covers of SpecF defined as
the composition

(10.1)

FÉt(C) FÉt(SpecF ((t)))

FÉt(SpecF ) FÉt(Gm,F )

ι∗

∼

t=1

Here the vertical functor is inverse to the restriction along ι0. The resulting
functor does not depend, up to an isomorphism, on the choice of t by [Del89,
Lemme 15.25]. If we further choose an algebraic closure F ⊂ F we may define the
fundamental groups ofXF andX with respect to the base point xv, which we denote
by πet

1 (XF , xv) and πet
1 (X,xv), respectively. The latter group can be described as

the usual semi-direct product: πet
1 (X,xv) = GFnπet

1 (XF , xv). Fundamental groups
defined using tangential base points interact with those defined with respect to
classical points interact as follows:

Lemma 10.1. (i) Given a point x ∈ C(F ) and a tangent vector v ∈ TxC, for
a finite etale cover U → C the geometric fibers of U at x and of U |C\x
at xv are canonically identified. In particular, there is a natural surjective
homomorphism πet

1 (C \ x, xv)→ πet
1 (C, x).

(ii) Suppose that f : D → C is a finite surjective, possibly ramified, morphism be-
tween smooth curves. Given a point x ∈ D(F ) and a tangent vector v ∈ TxD,
there exists a tangent vector w ∈ Tf(x)C such that pullback of etale covers

along f induces a morphism πet
1 (D \ f−1(f(x)), xv) → πet

1 (C \ f(x), f(x)w)
that is an isomorphism onto an open subgroup.

(iii) In the situation of (ii), given a tangent vector w ∈ Tf(x)C there exists a
tangential base point xv defined over a finite Kummer extension of F such
that f(xv) = f(x)w.

Proof. (i) This follows directly from the definition because a finite etale cover of
SpecF ((t)) that extends to SpecF [[t]] is trivial, so the fibers of the corresponding
cover of Gm,K over 0 and 1 are canonically identified.

(ii) This is evident if f is unramified at x. In general, f induces some morphism

ÔC,f(x) → ÔD,x between completed local rings. Choosing a local coordinate t at
x compatible with v and some local coordinate s at f(x) we can write this map
as F ((s)) 7→ F ((t)) given by some s 7→ ant

n + an+1t
n+1 + . . . . The appropriate

tangent vector w is then given by an · ∂∂s .

(iii) As in the proof of the previous part, there is an induced morphism ÔC,f(x) →
ÔD,x but this time we choose a local coordinate s for D that is compatible with
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w. If the map between completed local rings is given by F ((s)) → F ((t)), s 7→
ant

n + an+1t
n+1 + . . . then the desired tangent vector v is defined as a

1/n
n · ∂∂t . �
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ematics, Vol. 270. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie
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