A HIGHER-DIMENSIONAL EXAMPLE IN ANY CHARACTERISTIC

Let p be an arbitrary prime number. Denote $\overline{\mathbb{F}}_{p}$ by k.
Theorem 1. There exist smooth projective derived equivalent varieties X_{1}, X_{2} over k such that

$$
h^{0,3}\left(X_{1}\right) \neq h^{0,3}\left(X_{2}\right)
$$

Moreover, for both $i=1,2$ the variety X_{i} satisfies the following properties:
(a) X_{i} can be lifted to a smooth formal scheme \mathfrak{X}_{i} over $W(k)$ such that Hodge cohomology groups $H^{r}\left(\mathfrak{X}_{i}, \Omega_{\mathfrak{X}_{i} / W(k)}^{s}\right)$ are torsion-free for all r, s.
(b) The Hodge-to-de Rham spectral sequence for X_{i} degenerates at the first page.
(c) The crystalline cohomology groups $H_{\text {cris }}^{n}\left(X_{i} / W(k)\right)$ are torsion-free for all n.
(d) The Hochschild-Kostant-Rosenberg spectral sequence for X_{i} degenerates at the second page. That is, there exists an isomorphism $\operatorname{HH}_{n}\left(X_{i} / k\right) \simeq \bigoplus_{s} H^{s}\left(X_{i}, \Omega_{X_{i} / k}^{n+s}\right)$ for every n.
(e) X_{i} cannot be lifted to a smooth algebraic scheme over $W(k)$.

The varieties X_{1}, X_{2} are both obtained as approximations of the quotient stack associated to a finite group acting on an abelian variety. The key to the construction is the appropriate choice of such finite group action that relies on complex multiplication and Honda-Tate theory.

Let $G=\mathbb{Z} / l \mathbb{Z}$ be the cyclic group of order l where l is an arbitrary odd prime divisor of a number of the form $p^{2 r}+1$, for an arbitrary $r \geq 1$.

Proposition 0.1. There exists an abelian variety A over k equipped with an action of G by endomorphisms of A such that

$$
\begin{equation*}
\operatorname{dim}_{k} H^{3}\left(A, \mathcal{O}_{A}\right)^{G} \neq \operatorname{dim}_{k} H^{3}\left(\widehat{A}, \mathcal{O}_{\widehat{A}}\right)^{G} \tag{1}
\end{equation*}
$$

Here \widehat{A} denotes the dual abelian variety. Moreover, A can be lifted to a formal abelian scheme \mathfrak{A} over $W(k)$ together with an action of G.

Proof. Take $A=\mathfrak{Z} \times{ }_{W\left(k^{\prime}\right)} k$ with \mathfrak{Z}, k^{\prime} provided by [Pet21], Proposition 3.1. The inequality (1) follows because there are G-equivariant isomorphisms $H^{3}(\widehat{A}, \mathcal{O}) \simeq \Lambda^{3} H^{1}\left(\widehat{A}, \mathcal{O}_{\widehat{A}}\right) \simeq \Lambda^{3}\left(H^{0}\left(A, \Omega_{A / k}^{1}\right)^{\vee}\right) \simeq$ $H^{0}\left(A, \Omega_{A / k}^{3}\right)^{\vee}$ (the last isomorphism exists even if $\left.p=3\right)$ and $\operatorname{dim}_{k} H^{0}\left(A, \Omega_{A / k}^{3}\right)^{G}=$ $\operatorname{dim}_{k}\left(H^{0}\left(A, \Omega_{A / k}^{3}\right)^{\vee}\right)^{G}$ as the order of G is prime to p.

This proposition is specific to positive characteristic. For an abelian variety B equipped with an action of a finite group Γ over a field F of characteristic zero there must exist Γ-equivariant isomorphisms $H^{i}\left(B, \Omega_{B / F}^{j}\right) \simeq H^{i}\left(\widehat{B}, \Omega_{\widehat{B} / F}^{j}\right)^{\vee}$ for all i, j as follows either from Hodge theory or thanks to the existence of a separable Γ-invariant polarization on B.

A more subtle feature of this construction is that it is impossible to find an abelian variety B with an action of a finite group Γ with $p \nmid|\Gamma|$ that would have $\operatorname{dim}_{k} H^{i}\left(B, \mathcal{O}_{B}\right)^{\Gamma} \neq \operatorname{dim}_{k} H^{i}\left(\widehat{B}, \mathcal{O}_{\widehat{B}}\right)^{\Gamma}$ for $i=1$ or $i=2$. This can be deduced from Corollary 2.2 of [Pet21] applied to an approximation of the stack $[\mathfrak{B} / G]$ where \mathfrak{B} is a formal Γ-equivariant lift of B that exists by Grothendieck-Messing theory combined with the fact that the order of Γ is prime to p.

Proof of Theorem 1. Let A be the abelian variety provided by Proposition 0.1. By Proposition 15 of [Ser58] there exists a smooth complete intersection Y of dimension 4 over k equipped with a free action of G. The diagonal action of G on the product of $A \times Y$ is free as well.

Define $X_{1}=(A \times Y) / G$ and $X_{2}=(\widehat{A} \times Y) / G$ where \widehat{A} is the dual abelian variety of A equipped with the induced action of G. In both cases the quotient is taken with respect to the free diagonal action. The equivalence of $D^{b}\left(X_{1}\right)$ and $D^{b}\left(X_{2}\right)$ will follow from the Mukai equivalence between derived categories of an abelian scheme and its dual. Indeed, consider X_{1} and X_{2} as abelian schemes over Y / G. The base changes of both $\operatorname{Pic}_{Y / G}^{0}\left(X_{1}\right)$ and X_{2} along $Y \rightarrow Y / G$ are isomorphic to $\widehat{A} \times Y$ compatibly with the G-action. By étale descent, $\operatorname{Pic}_{Y / G}^{0}\left(X_{1}\right) \simeq X_{2}$ as abelian schemes over Y / G. Proposition 6.7 of [BBHR09] implies that $D^{b}\left(X_{1}\right) \simeq D^{b}\left(X_{2}\right)$.

Next, we compare the Hodge numbers of X_{1} and X_{2}. By Théorème 1.1 of Exposé XI [SGA73] we have $H^{i}\left(Y, \mathcal{O}_{Y}\right)=0$ for $1 \leq i \leq 3$. Hence, there are G-equivariant identifications $H^{3}\left(A \times Y, \mathcal{O}_{A \times Y}\right) \simeq$ $H^{3}\left(A, \mathcal{O}_{A}\right)$ and $H^{3}\left(\widehat{A} \times Y, \mathcal{O}_{\widehat{A} \times Y}\right) \simeq H^{3}\left(\widehat{A}, \mathcal{O}_{\widehat{A}}\right)$. Since G acts freely on both $A \times Y$ and $\widehat{A} \times Y$, the projections $A \times Y \rightarrow X_{1}$ and $\widehat{A} \times Y \rightarrow X_{2}$ are étale G-torsors and, since the order of G is prime to p, we have $H^{3}\left(X_{1}, \mathcal{O}_{X_{1}}\right) \simeq H^{3}\left(A \times Y, \mathcal{O}_{A \times Y}\right)^{G}$ and $H^{3}\left(X_{2}, \mathcal{O}_{X_{2}}\right) \simeq H^{3}\left(\widehat{A} \times Y, \mathcal{O}_{\widehat{A} \times Y}\right)^{G}$.

The inequality (1) therefore says that $h^{0,3}\left(X_{1}\right) \neq h^{0,3}\left(X_{2}\right)$. Condition (a) can be fulfilled as it is possible to choose Y that lifts to a smooth projective scheme over $W(k)$ together with an action of G, by Proposition 4.2.3 of [Ray79]. Denote by \mathfrak{X}_{1} and \mathfrak{X}_{2} the resulting formal schemes over $W(k)$ lifting X_{1} and X_{2}. Since \mathfrak{X}_{i} for $i=1,2$ can be presented as a quotient by a free action of G of a product of an abelian scheme with a complete intersection, the Hodge cohomology modules $H^{r}\left(\mathfrak{X}_{i}, \Omega_{\mathfrak{X}_{i} / W(k)}^{s}\right)$ are free for all r, s.

Both properties (b) and (d) would be immediate if we had $\operatorname{dim}_{k} X_{i} \leq p$ but this is not always possible to achieve. Instead, we can argue using the lifts \mathfrak{X}_{i}. For (b), consider the Hodge-Tate complex $\bar{\triangle}_{\mathfrak{X}_{i} / W(k)[[u]]}$. By Proposition 4.15 of [BS21] there is a morphism $s: \Omega_{\mathfrak{X}_{i} / W(k)}^{1}[-1] \rightarrow \bar{\triangle}_{\mathfrak{X}_{i} / W(k)[[u]]}$ in the derived category of \mathfrak{X}_{i} that induces an isomorphism on first cohomology. Taking n-th tensor power of s and precomposing it with the antisymmetrization map $\Omega_{\mathfrak{X}_{i} / W(k)}^{n} \rightarrow\left(\Omega_{\mathfrak{X}_{i} / W(k)}^{1}\right) \otimes n$ we obtain maps $\Omega_{\mathfrak{X}_{i} / W(k)}^{n}[-n] \rightarrow \bar{\triangle}_{\mathfrak{X}_{i} / W(k)[[u]]}$ that induce a quasi-isomorphism $\overline{\mathbb{}}_{\mathfrak{X}_{i} / W(k)[[u]]}\left[\frac{1}{p}\right] \simeq$ $\bigoplus_{n \geq 0} \Omega_{\mathfrak{X}_{i} / W(k)}^{n}[-n] \otimes_{W(k)} W(k)\left[\frac{1}{p}\right]$. In particular, the differentials in the Hodge-Tate spectral sequence $H^{s}\left(\mathfrak{X}_{i}, \Omega_{\mathfrak{X}_{i} / W(k)}^{r}\right) \Rightarrow H_{\frac{\Delta}{\Delta}}^{s+r}\left(\mathfrak{X}_{i} / W(k)[[u]]\right)$ vanish modulo torsion. But, as we established above, the Hodge cohomology of \mathfrak{X}_{i} has no torsion, so the Hodge-Tate spectral sequence degenerates at the second page. Therefore the conjugate spectral sequence for X_{i} degenerates at the second page as well and, equivalently, the Hodge-to-de Rham spectral sequence degenerates at the first page.

Similarly, for (d) consider the Hochschild-Kostant-Rosenberg spectral sequence $E_{2}^{r, s}=$ $H^{r}\left(\mathfrak{X}_{i}, \Omega_{\mathfrak{X}_{i} / W(k)}^{-s}\right)$ converging to $\mathrm{HH}_{-r-s}\left(\mathfrak{X}_{i} / W(k)\right)$. There exist maps $\varepsilon_{n}: \Omega_{\mathfrak{X}_{i} / W(k)}^{n}[n] \rightarrow$ $\mathrm{HH}\left(\mathfrak{X}_{i} / W(k)\right)$ into the Hochschild complex inducing multiplication by n ! on the n-th cohomology: $\varepsilon_{n}=n!: \Omega_{\mathfrak{X}_{i} / W(k)}^{n} \rightarrow \mathcal{H}^{-n}\left(\mathrm{HH}\left(\mathfrak{X}_{i} / W(k)\right)\right) \simeq \Omega_{\mathfrak{X}_{i} / W(k)}^{n}$. Therefore, the HKR spectral sequence always degenerates modulo torsion, hence degenerates at the second page in our case. Passing to the mod p reduction gives (d).

The property (c) follows from (a) and (b) as $H_{\text {cris }}^{n}\left(X_{i} / W(k)\right) \simeq H_{\mathrm{dR}}^{n}\left(\mathfrak{X}_{i} / W(k)\right)$.
Finally, to prove (e), note that by the same computation as above one sees that $h^{0,3}\left(X_{1}\right)=$ $h^{3,0}\left(X_{2}\right) \neq h^{0,3}\left(X_{2}\right)=h^{3,0}\left(X_{1}\right)$ so both X_{1} and X_{2} violate Hodge symmetry. Denote by K the fraction field of $W(k)$. If \mathcal{X}_{i} is a smooth scheme over $W(k)$ lifting X_{i} then we have

$$
\begin{equation*}
\operatorname{dim}_{K} H^{r}\left(\mathcal{X}_{i, K}, \Omega_{\mathcal{X}_{i, K} / K}^{s}\right) \leq \operatorname{dim}_{k} H^{r}\left(X_{i}, \Omega_{X_{i} / k}^{s}\right) \tag{2}
\end{equation*}
$$

for all r, s by semi-continuity while $\operatorname{dim}_{K} H_{\mathrm{dR}}^{n}\left(\mathcal{X}_{i, K} / K\right)=\operatorname{dim}_{k} H_{\mathrm{dR}}^{n}\left(X_{i} / k\right)$ because $H_{\mathrm{dR}}^{n}\left(\mathcal{X}_{i} / W(k)\right) \simeq$ $H_{\text {cris }}^{n}\left(X_{i} / W(k)\right)$ is torsion-free for all n. Since Hodge-to-de Rham spectral sequences for X_{i} and $\mathcal{X}_{i, K}$ degenerate at the first page, we deduce that $\sum_{r, s} \operatorname{dim}_{K} H^{r}\left(\mathcal{X}_{i, K}, \Omega_{\mathcal{X}_{i, K} / K}^{s}\right)=\sum_{r, s} \operatorname{dim}_{k} H^{r}\left(X_{i}, \Omega_{X_{i} / k}^{s}\right)$ so (2) is in fact equality for all r, s. But this means that the smooth proper algebraic variety $\mathcal{X}_{i, K}$ over a field of characteristic zero violates Hodge symmetry which is impossible.

References

[BBHR09] Claudio Bartocci, Ugo Bruzzo, and Daniel Hernández Ruipérez. Fourier-Mukai and Nahm transforms in geometry and mathematical physics, volume 276 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2009.
[BS21] Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology, 2021, 1905.08229v3.
[Pet21] Alexander Petrov. Rigid-analytic varieties with projective reduction violating Hodge symmetry. Compos. Math., 157(3):625-640, 2021.
[Ray79] Michel Raynaud. "p-torsion" du schéma de Picard. In Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, volume 64 of Astérisque, pages $87-148$. Soc. Math. France, Paris, 1979.
[Ser58] Jean-Pierre Serre. Sur la topologie des variétés algébriques en caractéristique p. In Symposium internacional de topología algebraica International symposium on algebraic topology, pages 24-53. Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958.
[SGA73] Groupes de monodromie en géométrie algébrique. II. Lecture Notes in Mathematics, Vol. 340. SpringerVerlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz.

