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Abstract. Let R be the algebra of functions on a smooth affine irreducible
curve S over a field k and let A q be smooth and proper DG algebra over R. The

relative periodic cyclic homology HP∗(A q) of A q over R is equipped with the

Hodge filtration F · and the Gauss-Manin connection ∇ ([Ge], [K1]) satisfying the
Griffiths transversality condition. When k is a perfect field of odd characteristic

p, we prove that if the relative Hochschild homology HHm(A q, A q) vanishes in

degrees |m| ≥ p− 2 then a lifting R̃ of R over W2(k) and a lifting of A q over R̃
determine the structure of a relative Fontaine-Laffaille module ([Fa], §2 (c), [OV]

§4.6) on HP∗(A q). That is, the inverse Cartier transform of the Higgs R-module
(GrFHP∗(A q), GrF∇) is canonically isomorphic to (HP∗(A q),∇). This is non-

commutative counterpart of Faltings’ result ([Fa], Th. 6.2) for the de Rham

cohomology of a smooth proper scheme over R. Our result amplifies the non-
commutative Deligne-Illusie decomposition proven by Kaledin ([K4], Th. 5.1).

As a corollary, we show that the p-curvature of the Gauss-Manin connection on

HP∗(A q) is nilpotent and, moreover, it can be expressed in terms of the Kodaira-
Spencer class κ ∈ HH2(A,A) ⊗R Ω1

R (a similar result for the p-curvature of

the Gauss-Manin connection on the de Rham cohomology is proven by Katz in

[Katz2]). As an application of the nilpotency of the p-curvature we prove, using
a result from [Katz1]), a version of “the local monodromy theorem” of Griffiths-

Landman-Grothendieck for the periodic cyclic homology: if k = C, S is a smooth

compactification of S, then, for any smooth and proper DG algebra A q over R,

the Gauss-Manin connection on the relative periodic cyclic homology HP∗(A q)
has regular singularities, and its monodromy around every point at S − S is

quasi-unipotent.

1. Introduction

It is expected that the periodic cyclic homology of a DG algebra over C (and, more
generally, the periodic cyclic homology of a DG category) carries a lot of additional
structure similar to the mixed Hodge structure on the de Rham cohomology of alge-
braic varieties. Whereas a construction of such a structure seems to be out of reach at
the moment its counterpart in finite characteristic is much better understood thanks
to recent groundbreaking works of Kaledin. In particular, it is proven in [K4] that
under some assumptions on a DG algebra A q over a perfect field k of characteristic
p, a lifting of A q over the ring of second Witt vectors W2(k) specifies the structure
of a Fontaine-Laffaille module on the periodic cyclic homology of A q. The purpose of
this paper is to develop a relative version of Kaledin’s theory for DG algebras over
a base k-algebra R incorporating in the picture the Gauss-Manin connection on the
relative periodic cyclic homology constructed by Getzler in [Ge]. Our main result,
Theorem 1, asserts that, under some assumptions on A q, the Gauss-Manin connection
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on its periodic cyclic homology can be recovered from the Hochschild homology of
A q equipped with the action of the Kodaira-Spencer operator as the inverse Cartier
transform ([OV]). As an application, we prove, using the reduction modulo p tech-
nique, that, for a smooth and proper DG algebra over a complex punctured disk,
the monodromy of the Gauss-Manin connection on its periodic cyclic homology is
quasi-unipotent.

1.1. Relative Fontaine-Laffaille modules. Let R be a smooth commutative alge-
bra over a perfect field k of characteristic p > 0. Recall from ([Fa], §2 (c), [OV] §4.6)

the notion of relative Fontaine-Laffaille module 1 over R. Fix a flat lifting R̃ of R
over the ring W2(k) of second Witt vectors and a lifting F̃ : R̃→ R̃ of the Frobenius
morphism F : R→ R. Define the inverse Cartier transform

C−1

(R̃,F̃ )
: HIG(R)→ MIC(R)

to be a functor from the category of Higgs modules i.e., pairs (E, θ), where E is an
R-module and θ : E → E ⊗R Ω1

R is an R-linear morphism such that the composition
θ2 : E → E⊗RΩ1

R → E⊗RΩ2
R equals 02, to the category of R-modules with integrable

connection. Given a Higgs module (E, θ) we set

C−1

(R̃,F̃ )
(E, θ) := (F ∗E,∇can + C−1

(R̃,F̃ )
(θ)),

where ∇can is the Frobenius pullback connection on F ∗E and the map

(1.1) C−1

(R̃,F̃ )
: EndR(E)⊗ Ω1

R → F∗(EndR(F ∗E)⊗R Ω1
R)

takes f ⊗ η to F ∗(f)⊗ 1
p F̃
∗η̃, with η̃ ∈ Ω1

R̃
being a lifting of η. A relative Fontaine-

Laffaille module over R consists of a finitely generated R-module M with an integrable
connection ∇ and a Hodge filtration

0 = F l+1M ⊂ F lM ⊂ · · · ⊂ FmM = M

satisfying the Griffiths transversality condition, together with isomorphism in MIC(R):

φ : C−1

(R̃,F̃ )
(Gr

q
F M,GrF ∇)

∼−→ (M,∇).

Here GrF ∇ : Gr
q
F M → Gr

q−1
F M is the “Kodaira-Spencer” Higgs field induced by ∇.

3

The category MF[m,l](R̃, F̃ )(where l ≥ m are arbitrary integers) of relative
Fontaine-Laffaille modules has a number of remarkable properties not obvious from
the definition. It is proven by Faltings in ([Fa], Th. 2.1) that MF[m,l](R̃, F̃ ) is
abelian, every morphism between Fontaine-Laffaille modules is strictly compatible
with the Hodge filtration, and, for every Fontaine-Laffaille module (M,∇, F qM,φ),
the R-modules M and GrFM are flat. Moreover, if l − m < p, the category
MF[m,l](R̃, F̃ ) =:MF[m,l](R̃) is independent of the choice of the Frobenius lifting4.

1In [Fa], Faltings does not give a name to these objects. In [OV], they are called Fontaine modules.
The name suggested here is a tribute to [FL], where these objects were first introduced in the case

when R = k.
2Equivalently, a Higgs module is a module over the symmetric algebra S qTR.
3In [Fa], Faltings considers more general objects. In fact, what we call here a relative Fontaine-

Laffaille module is the same as a p-torsion object in Faltings’ category MF∇
[m,l]

(R)
4Every two liftings R̃, R of R are isomorphic. A choice of such an isomorphism induces an

equivalence MF[m,l](R̃)
∼−→ MF[m,l](R). We refer the reader to ([OV] §4.6) for a construction of

the category of Fontaine-Laffaille modules over any smooth scheme X over k equipped with a lifting

X̃ over W2(k).
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Fontaine-Laffaille modules arise geometrically: it is shown in ([Fa], Th. 6.2) that,
for a smooth proper scheme X → specR of relative dimension less than p, a lifting
of X over R̃ specifies a Fontaine-Laffaille module structure on the relative de Rham
cohomology H q

DR(X/R).

1.2. The Kodaira-Spencer class of a DG algebra. Let A q be a differential graded
algebra over R. Denote by HH q(A q, A q) its Hochschild cohomology and by

(1.2) κ ∈ HH2(A q, A q)⊗R Ω1
R

the Kodaira-Spencer class of A q. This can be defined as follows. Choose a quasi-
isomorphism A q ∼−→ B q, where B q is a semi-free DG algebra over R ([Dr], §13.4) and
a connection ∇′ :

⊕
Bi →

⊕
Bi ⊗ Ω1

R on the graded algebra
⊕
Bi satisfying the

Leibnitz rule with respect to the multiplication on
⊕
Bi. Then the commutator

(1.3) [∇′, d] ∈
∏

HomR(Bi, Bi+1)⊗ Ω1
R

with the differential d on B q commutes with d and it is a R-linear derivation of B q
with values in B q ⊗ Ω1

R of degree 1. Any such derivation determines a class in

HH2(B q, B q)⊗R Ω1
R
∼−→ HH2(A q, A q)⊗R Ω1

R.

The class corresponding to [∇′, d] is independent of the choices we made. This is the
Kodaira-Spencer class (1.2).

1.3. The Hodge filtration on the periodic cyclic homology. Denote by
(CH q(A q, A q), b) the relative Hochschild chain complex of A q and by CP q(A q) =
(CH q(A q, A q)((u)), b + uB) the periodic cyclic complex. The complex CP q(A q) is
equipped with the Hodge filtration

F iCP q(A q) := (uiCH q(A q, A q)[[u]], b+ uB),

which induces a Hodge filtration F qHP q(A q) on the periodic cyclic homology and a
convergent Hodge-to-de Rham spectral sequence

(1.4) HH q(A q, A q)((u))⇒ HP q(A q).
The Gauss-Manin connection ∇ on the periodic cyclic homology (we recall its con-
struction in §3) satisfies the Griffiths transversality condition

∇ : F
q
HP q(A q)→ F

q−1HP q(A q)⊗R Ω1
R.

The Kodaira-Spencer class (1.2) acts on the Hochschild homology:

eκ : HH q(A q, A q)→ HH q−2(A q, A q)⊗R Ω1
R.

The operator eκ is induced by the action of the Hochschild cohomology algebra on
the Hochschild homology (referred to as the “interior product” action).

1.4. Statement of the main result. Recall that A q is called homologically proper if
A q is perfect as a complex of R-modules. A DG algebra A q is said to be homologically
smooth if A q is quasi-isomorphic to a DG algebra B q which is termwise flat over R
and B q is perfect as a DG module over B q⊗R B qop. The following is one of the main
results of our paper.
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Theorem 1. Fix the pair (R̃, F̃ ) as in §1.1 and assume, in addition, that the char-
acteristic p of k is odd. Let A q be a homologically smooth and homologically proper
DG algebra over R such that

(1.5) HHm(A q, A q) = 0, for every m with |m| ≥ p− 2.

Then a lifting5 of A q over R̃, if it exists, specifies an isomorphism

(1.6) φ : C−1

(R̃,F̃ )
(Gr

q
F HP q(A q),GrF ∇)

∼−→ (HP q(A q),∇)

giving (HP q(A q),∇, F qHP q(A q)) a Fontaine-Laffaille module structure. In addition,
the Hodge-to-de Rham spectral sequence (1.4) degenerates at E1 and induces an iso-
morphism of Higgs modules

(1.7) (Gr
q
F HP q(A q),GrF ∇)

∼−→ (HH q(A q, A q)[u, u−1], u−1eκ).

Using (1.7), the isomorphism (1.6) takes the form

(1.8) φ : (F ∗HH q(A q, A q)[u, u−1],∇can + u−1C−1

(R̃,F̃ )
(eκ))

∼−→ (HP q(A q),∇),

where ∇can is the Frobenius pullback connection and C−1

(R̃,F̃ )
is the inverse Cartier

operator (1.1).

Remarks 1.1. (a) If R = k the above result is due to Kaledin ([K4], Th. 5.1).
(b) The construction from Theorem 1 determines a functor from the category of

homologically smooth and homologically proper DG algebras over R̃ satisfying
(1.5) localized with respect to quasi-isomorphisms to the category of Fontaine-
Laffaille modules. We expect, but do not check it in this paper, that this functor
extends to the homotopy category of smooth and proper DG categories over
R̃ satisfying the analogue of (1.5). When applied to the bounded derived DG

category Db(Coh(X̃)) of coherent sheaves on a smooth proper scheme X̃ over R̃
of relative dimension less than p− 1, we expect to recover the Fontaine-Laffaille
structure on

HP0(Db(Coh(X))
∼−→
⊕
i

H2i
DR(X)(i)

HP1(Db(Coh(X))
∼−→
⊕
i

H2i+1
DR (X)(i)

constructed by Faltings in ([Fa], Th. 6.2). Here X denotes the scheme over

R obtained from X̃ by the base change and H∗DR(X)(i) the Tate twist of the
Fontaine-Laffaille structure on the relative de Rham cohomology.

Let us explain some corollaries of Theorem 1. First, under the assumptions of
Theorem 1 the Hochschild and cyclic homology of A q is a locally free R-module.
This follows from a general property of Fontaine-Laffaille modules mentioned above.
Next, it follows, that under the same assumptions the p-curvature of the Gauss-Manin
connection on HP q(A q) is nilpotent6. In fact, there is a decreasing filtration,

(1.9) ViHP q(A q) ⊂ HP q(A q)
formed by the images under φ of

uiF ∗HH q(A q, A q)[u−1] ⊂ F ∗HH q(A q, A q)[u, u−1]

5A lifting of A q over R̃ is a termwise flat DG algebra Ã q over R̃ together with a quasi-isomorphism

Ã q ⊗R̃ R ∼−→ A q of DG algebras over R.
6This suffices for our main application in characteristic 0: Theorem 3 below.
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which is preserved by the connection and such that GrVq HP q(A q) has zero p-curvature:

(1.10) (GrVq HP q(A q),GrV ∇)
∼−→ (F ∗HH q(A q, A q)[u, u−1],∇can).

Moreover, using Theorem 1 we can express the p-curvature of ∇ on HP q(A q) in terms
of the Kodaira-Spencer operator eκ: by ([OV], Th. 2.8), for any Higgs module (E, θ),
such that the action of SpTR on E is trivial, the p-curvature of C−1

(R̃,F̃ )
(E, θ), viewed

as a R-linear morphism
ψ : F ∗E → F ∗E ⊗ F ∗Ω1

R

is equal to −F ∗(θ). In particular, under assumption (1.5), the p-curvature of
C−1

(R̃,F̃ )
(HH q(A q, A q)[u, u−1], u−1eκ), equals −u−1F ∗(eκ). As a corollary, we obtain

a version of the Katz formula for the p-curvature of the Gauss-Manin connection on
the de Rham cohomology ([Katz2], Th. 3.2): by (1.10) the p-curvature morphism for
HP q(A q) shifts the filtration V q:

ψ : V qHP q(A q)→ V q−1HP q(A q)⊗ F ∗Ω1
R.

Thus, ψ induces a morphism

ψ : GrVq HP q(A q)→ GrVq−1HP q(A q)⊗ F ∗Ω1
R.

Our version of the Katz formula asserts the commutativity of the following diagram.

(1.11)

GrVi HPj(A q) ∼−→ F ∗HHj+2i(A q, A q)yψ y−F∗(eκ)

GrVi−1HPj(A q)⊗ F ∗Ω1
R

∼−→ F ∗HHj+2i−2(A q, A q)⊗ F ∗Ω1
R.

1.5. The co-periodic cyclic homology, the conjugate filtration, and a gen-
eralized Katz p-curvature formula. Though, as explained above, formula (1.11)
is an immediate corollary of Theorem 1, a version of the former holds for any DG
algebra A q. What makes this generalization possible is the observation that although
the morphism (1.8) does depend on the choice of a lifting of A q over R̃ the induced
∇-invariant filtration (1.9) is canonical: in fact, it coincides with the conjugate filtra-
tion introduced by Kaledin in [K3].7 However, in general, the conjugate filtration is
a filtration on the co-periodic cyclic homology HP q(A q) defined Kaledin in loc. cit.
to be the homology of the complex

CP q(A q) = (CH q(A q, A q)((u−1)), b+ uB).

For any A q, this comes together with the conjugate filtration V qCP q(A q) satisfying
the properties

u : V qCP q(A q) ∼−→ V q+1CP q(A q)[2],

GrV CP q(A q) ∼−→ F ∗C(A q, A q)((u−1)).

This yields a convergent conjugate spectral sequence

(1.12) F ∗HH q(A q, A q)((u−1))⇒ HP q(A q),
whose E∞ page is GrVq HP q(A q). It is shown in [K3] that if A q is smooth and
homologically bounded then the morphisms

(1.13) (CH q(A q, A q)[u, u−1], b+ uB) −→ (CH q(A q, A q)((u)), b+ uB)

(1.14) (CH q(A q, A q)[u, u−1], b+ uB) −→ (CH q(A q, A q)((u−1)), b+ uB)

7The terminology is borrowed from [Katz1], where the conjugate filtration on the de Rham
cohomology in characteristic p was introduced.
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are quasi-isomorphisms. In particular, for smooth and homologically bounded DG
algebras one has a canonical isomorphism

(1.15) HP q(A q) ∼−→ HP q(A q).
For an arbitrary DG algebra A q we introduce in §3 a Gauss-Manin connection on
HP q(A q). It is compatible with the one on HP q(A q) if A q is smooth and homolog-
ically bounded. We show that ∇ preserves the conjugate filtration and the entire
conjugate spectral sequence (1.12) is compatible with the connection (where the first
page, F ∗HH q(A q, A q)((u−1)) is endowed with the Frobenius pullback connection). In

particular, the p-curvature ψ of the connection on HP q(A q) is zero on GrVq HP q(A q).
Hence, ψ induces a morphism

ψ : GrVq HP q(A q)→ GrVq−1HP q(A q)⊗ F ∗Ω1
R.

In §3 we prove the following result, which is a generalization of formula (1.11).

Theorem 2. Let A q be a DG algebra over R and κ ∈ HH2(A q, A q) ⊗R Ω1
R its

Kodaira-Spencer class.

(a) The morphism u−1F ∗(eκ) : F ∗HH q(A q, A q)((u−1))→ F ∗HH q(A q, A q)((u−1))⊗
F ∗Ω1

R commutes with all the differentials in the conjugate spectral sequence (1.12)
inducing a map

GrVq HP q(A q)→ GrVq−1HP q(A q)⊗ F ∗Ω1
R,

which we also denote by u−1F ∗(eκ). With this notation, we have

(1.16) u−1F ∗(eκ) = ψ.

(b) Assume that HHm(A q, A q) = 0 for all sufficiently negative m. Then the p-
curvature of the Gauss-Manin connection on HP q(A q) is nilpotent.

Corollary 1.2. Let A q be a smooth and proper DG algebra over R and let d be a
non-negative integer d such that HHm(A q, A q) = 0, for every m with |m| > d. Then
the p-curvature of the Gauss-Manin connection on HP q(A q) is nilpotent of exponent
≤ d+ 1, i.e., there exists a filtration

0 = V0HP q(A q) ⊂ · · · ⊂ Vd+1HP q(A q) = HP q(A q)
preserved by the connection such that, for every 0 < i ≤ d+ 1, the p-curvature of the
connection on Vi/Vi−1 is 0.

1.6. An application: the local monodromy theorem. As an application of the
nilpotency of the p-curvature we prove, using a result from ([Katz1]), “the local
monodromy theorem” for the periodic cyclic homology in characteristic 0.

Theorem 3. Let S be a smooth irreducible affine curve over C, S a smooth compact-
ification of S, and let A q be a smooth and proper DG algebra over O(S). Then the
Gauss-Manin connection on the relative periodic cyclic homology HP∗(A q) has regular
singularities and, its monodromy around every point at S − S is quasi-unipotent.

This result generalizes the Griffiths-Landman-Grothendieck theorem asserting that
for a smooth proper scheme X over S the Gauss-Manin connection on the relative
de Rham cohomology H∗DR(X) has regular singularities and that its monodromy
at infinity is quasi-unipotent. The derivation of Theorem 3 from Corollary 1.2 is
essentially due to Katz ([Katz1]); we explain the argument in §4.
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1.7. Proofs. Let us outline the proofs of Theorems 1 and 2. Without loss of gener-
ality we may assume that A q is a semi-free DG algebra over R. Let A q⊗p denote the
p-th tensor power of A q over R. This is a DG algebra equipped with an action of the
symmetric group Sp. In particular, it carries an action of the group Z/pZ ∼−→ Cp ⊂ Sp
of cyclic permutations. We denote by T (Cp, A q⊗p) the Tate cohomology complex of

Cp with coefficients in A q⊗p. The algebra structure on A q⊗p induces one on the Tate

cohomology Ȟ q(Cp, A q⊗p). Moreover, choosing an appropriate “complete resolution”

one can lift the cup product on the cochain level giving T (Cp, A q⊗p) the structure of
a DG algebra over R. If A q = A is an associative algebra then, for p 6= 2, one has a
canonical isomorphism of algebras

Ȟ∗(Cp, A q⊗p) ∼−→ F ∗A⊗ Ȟ∗(Cp,Fp)
∼−→ F ∗A[u, u−1, ε],

deg u = 2 and deg ε = 1, ε2 = 0. In general, Kaledin defines an increasing filtration

τdec≤ q T (Cp, A q⊗p) ⊂ T (Cp, A q⊗p)
making T (Cp, A q⊗p) a filtered DG algebra equipped with a canonical quasi-
isomorphism of graded DG algebras

(1.17)
⊕
i

Grτi T (Cp, A q⊗p) ∼−→ F ∗A q ⊗ Ȟ∗(Cp,Fp),
where the grading on the right-hand side comes from the grading on Ȟ∗(Cp,Fp).
Note that the right-hand side of (1.17) has a canonical connection - the Frobenius
pullback connection. A key observation explained in §2.2 is that there is a canonical
connection ∇ on the filtered DG algebra T (Cp, A q⊗p), which induces the Frobenius
pullback connection on Grτ .

Denote by T[m,l](Cp, A q⊗p), (m ≤ l), the quotient of τdec≤l T (Cp, A q⊗p) by

τdec≤m−1T (Cp, A q⊗p). The DG algebra

B(A q) := T[−1,0](Cp, A q⊗p),
which is a square-zero extension of F ∗A q

F ∗A q[1]
µ−→ B(A q) −→ F ∗A q

with a compatible connection ∇, admits another description. Let R̂ be a flat lifting of
R̃ over W (k), î∗ the functor from the category of DG algebras over R to the category

of DG algebras over R̂, which carries a DG algebra over R to the same underlying
DG ring with the action of R̂ induced by the morphism R̂ → R, and let Lî∗ be
the left adjoint functor, which carries a DG algebra C q over R̂ to the derived tensor

product C q L
⊗R̂ R. For any DG algebra A q over R the composition Lî∗î∗A q is an

algebra over Lî∗î∗R
∼−→ R[µ], where deg µ = −1, µ2 = 0. One can easily check

that the functor Lî∗î∗ depends on R̃ only (in particular, every automorphism of R̂,

which restricts to the identity on R̃ acts trivially on Lî∗î∗). Similarly, the morphism

of crystalline toposes Cris(R/k) → Cris(R/W (k)) induces a functor îcris∗ from the
category of DG algebras in the category of crystals on Cris(R/k) (i.e., the category
of R-modules with integrable connections) to the category of DG algebras in the

category of crystals on Cris(R/W (k)) (i.e., the category of p-adically complete R̂-

modules with integrable connections) and the left adjoint functor Lî∗cris. A key step
in our proof is the following result.

Theorem 4. Let A q be a term-wise flat DG algebra over R.



8 ALEXANDER PETROV DMITRY VAINTROB VADIM VOLOGODSKY

(a) There is a canonical quasi-isomorphism of DG algebras with connections

(B(A q),∇)
∼−→ Lî∗crisî∗crisF

∗A q.
(b) A lifting (R̃, F̃ ) of (R,F ) over W2(k) gives rise to a canonical quasi-isomorphism

of DG algebras with connections

(B(A q),∇)
∼−→ C−1

(R̃,F̃ )
(Lî∗î∗A q, µκ̃).

Here κ̃ is the Kodaira-Spencer class of A q regarded as a derivation of A q with
values in A q⊗Ω1

R of degree 1 (as defined by formula 1.3 ), µκ̃ the induced degree

0 derivation of Lî∗î∗A q with values in (Lî∗î∗A q)⊗Ω1
R , and C−1

(R̃,F̃ )
is the inverse

Cartier transform.
(c) A lifting of A q over R̃ gives rise to a canonical quasi-isomorphism of DG algebras

with connections

(B(A q),∇)
∼−→ C−1

(R̃,F̃ )
(A q[µ], µκ̃).

Remarks 1.3. (a) If R is a perfect field the above result is due to Kaledin ([K2],
Prop. 6.13).

(b) The first part of the Theorem together with the projection formula gives a canon-
ical isomorphism of DG algebras with connections

îcris∗ B(A q) ∼−→ îcris∗ F ∗A q ⊕ îcris∗ F ∗A q[1],

where the right-hand side of the equation is the trivial square-zero extension with
the Frobenius pullback connection. However, in general B(A q) does not split. For
example, from the second part of the Theorem it follows that the p-curvature of
∇ on B(A q) equals −µF ∗(µκ̃). In particular, it is not zero as long as κ̃ is not 0.

Next, we relate the cyclic homology of B(A q) together with the connection in-
duced by the one on B(A q) with the periodic cyclic homology of A q with the Gauss-
Manin connection. The two-step fitration F ∗A q[1] ⊂ B(A q) gives rise to a filtration
VmCC(B(A q)) ⊂ CC(B(A q)), (m = 0,−1,−2, · · · ), on the cyclic complex of B(A q).
Theorem 5. Let A q be a term-wise flat DG algebra over R. We have a canonical
quasi-isomorphism of filtered complexes with connections

V[−p+2,−1]CC(B(A q))[1]
∼−→ V[−p+2,−1]CP (A q).

Moreover, the multiplication by u−1 on the right-hand side corresponds under the
above quasi-isomorphism to the multiplication by the class Bµ in the second negative
cyclic homology group of the algebra k[µ].

Let us derive Theorem 1 from Theorems 5 and 4. Since the Cartier transform is a
monoidal functor, we have by part 3 of Theorem 5

(V[−p+2,−1]CC(B(A q)),∇)
∼−→ C−1

(R̃,F̃ )
(V[−p+2,−1]CC(A q[µ]), µκ̃).

We compute the right-hand side using the Künneth formula: with obvious notation
we have a quasi-isomorphism of mixed complexes

V[−p+2,−1]C(A q[µ])
∼−→ C(A q)⊗ V[−p+2,−1]C(k[µ]).

The Hochschild complex of k[µ] regarded as a mixed complex is quasi-isomorphic to
the divided power algebra:

C(k[µ], k[µ])
∼−→ k〈µ,Bµ〉
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with zero differential and Connes’ operator acting by the formulas: B((Bµ)[m]) = 0,
B(µ(Bµ)[m]) = (m+ 1)(Bµ)[m+1].

It follows, that

V[−p+2,−1]CC(A q[µ])
∼−→

⊕
0≤m≤p−3

C(A q)⊗ µ(Bµ)[m].

Setting Bµ = u−1 and using the Cartan formula ([Ge]; see also §3 for a review), we
find

(V[−p+2,−1]CC(A q[µ], µκ̃)[−1]
∼−→ (C(A q)⊗ k[u−1]/u2−p, u−1ικ̃).

Summarizing, we get

(V[−p+2,−1]CP (A q),∇)
∼−→ C−1

(R̃,F̃ )
(C(A q)⊗ k[u−1]/u2−p, u−1ικ̃)[2]

This implies the desired result. The derivation of Theorem 2 is similar.

2. The Tate cohomology complex of A⊗
p

·

In this section we construct a connection on the Tate complex T (Cp, A
⊗p
· ) and

prove Theorem 4.

2.1. The Tate cohomology complex. Let G be a finite group. A complete reso-
lution of the trivial Z[G]-module Z is an acyclic complex of free Z[G]-modules

−→ · · ·P−2 −→ P−1 −→ P 0 −→ P 1 −→ P 2 −→ · · ·

together with an isomorphism of Z[G]-modules

ε : Z ∼−→ ker(d : P 0 −→ P 1).

One can show for any two complete resolutions (P •, ε), (P ′•, ε′) there exists a mor-
phism f• : P • → P ′• of complexes of Z[G]-modules such that f0 ◦ε = ε′ and such f• is
unique up to homotopy (in fact Hom(P •, P ′•) in the homotopy category of complexes
of Z[G]-modules is canonically isomorphic to Z). Fix a complete resolution (P •, ε).
For a complex M q of Z[G]-modules we define its Tate cohomology complex T (G,M q)
to be

T (G,M q) := (M q ⊗Z P
•)G.

This defines a DG functor T (G, )̇ from the DG category C(Mod(Z[G])) of complexes
of Z[G]-modules to the DG category of complexes of abelian groups. By construction,

T (G, )̇ commutes with arbitrary direct sums. Also, it easy to check that T (G, )̇ carries
bounded complexes of free Z[G]-modules and bounded acyclic complexes to acyclic
complexes.8

2.2. Connection on the Tate complex. Denote specR by X. The following con-
struction is essentially contained in [K1], and it does not depend on the fact that X is
affine. By X [2] we denote the first infinitesimal thickening of the diagonal ∆ ⊂ X×X
and p1, p2 : X [2] → X are projections.

We will construct a connection on the DG algebra T (Cp, A q⊗p), that is a quasi-
isomorphism of DG algebras

∇ : p∗1T (Cp, A q⊗p) ∼= p∗2T (Cp, A q⊗p)
8Both statements may fail for unbounded complexes. For example, ε induces a quasi-isomorphism

T (G,Z)
∼−→ T (G,P •). Thus, T (G, )̇ does not respect arbitrary quasi-isomorphisms.



10 ALEXANDER PETROV DMITRY VAINTROB VADIM VOLOGODSKY

which is, when restricted to ∆ is equal to identity in the category of DG algebras
localized in quasi-isomorphisms. There is an exact sequence of sheaves on X ×X

0→ Ω1
∆ → OX×X/I2 → O∆ → 0

which induces an exact sequence of complexes

(2.1) 0→ A q ⊗ Ω1
X

β−→ p1∗p
∗
2A q α−→ A q → 0

making p1∗p
∗
2A q into a square-zero extension of the DG algebra A q. Giving connection

on A q is equivalent to providing a splitting of this extension in the category of DG
algebras localized in quasi-isomorphisms. We are going to construct such a splitting.
Consider the following two-term filtration on p1∗p

∗
2A q : G2 = 0, G1 = A q ⊗ Ω1

X , G
0 =

p1∗p
∗
2A q. It induces a filtration on (p1∗p

∗
2A q)⊗p, we will denote it also by G•.

Lemma 2.1. For a term-wise flat DG algebra A q the morphism α induces the fol-
lowing isomorphism of DG algebras with the action of Cp

G0(p1∗p
∗
2A q)⊗p/G1(p1∗p

∗
2A q)⊗p ∼−→ A q⊗p

and β induces the following isomorphism of complexes with the action of Cp

A q⊗p ⊗OX Ω1
X ⊗Z Z[Cp]

β−→ G1(p1∗p
∗
2A q)⊗p/G2(p1∗p

∗
2A q)⊗p

Proof. It is enough to prove the statements locally on X so we may choose a con-
nection on the graded module

⊕
Ai and get a splitting(non-compatible with the

differentials) p1∗p
∗
2A q = A q ⊕A q ⊗OX Ω1

X , hence

(p1∗p
∗
2A q)⊗p = A q⊗p ⊕ p−1⊕

i=0

(A q ⊗ . . . i

⊗(A q ⊗ Ω1
X)⊗ · · · ⊗A q)⊕

p−1⊕
i 6=j

(A q ⊗ . . . i

⊗(A q ⊗ Ω1
X)⊗ · · · ⊗

j

(A q ⊗ Ω1
X)⊗ · · · ⊗A q)⊕ . . .(2.2)

α projects (p1∗p
∗
2A q)⊗p on the first summand of this decomposition while β embeds

A q⊗p⊗OXΩ1
X⊗ZZ[Cp] onto the second (the summand (A q⊗. . . i

⊗(A q ⊗ Ω1
X)⊗ · · ·⊗A q)

corresponds to A q⊗p ⊗OX Ω1
X ⊗Z Z[Cp]⊗ σi) so they indeed induce isomorphisms on

the graded quotients. �

By adjunction, we have a map m : (p1∗p
∗
2A q)⊗p → p1∗p

∗
2(A q⊗p). Since X → X [2]

is a square-zero extension, m factors through G2, so we get the following diagram of
complexes of Cp-modules in which the top row is a distinguished triangle

(2.3)

A q⊗p ⊗ Ω1
X ⊗ Z[Cp] G0/G2 A q⊗p

p1∗p
∗
2(A q⊗p)

i π

m

Lemma 2.2. T (Cp,Z[Cp]) is contractible.

Proof. We will prove it using the resolution

. . .
1−σ−−−→

2k−1

Z[Cp]
N−→

2k

Z[Cp]
1−σ−−−→

2k+1

Z[Cp]
N−→ . . .
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where N = 1+σ+ · · ·+σp−1. Put h0(σi) = δi,p−1 and h1(σi) = −(1+σ+ · · ·+σi−1)
for 0 ≤ i ≤ p−1. Then Nh0+h1(1−σ) = Id, h0N+(1−σ)h1 = Id so h given by h0 at
even degrees and by h1 at odd degrees is a contracting homotopy for T (Cp,Z[Cp]). �

It follows that Tate cohomology complex of A q⊗p ⊗ Ω1
X ⊗ Z[Cp] is contractible

so π turns into a homotopy equivalence after taking Tate complexes. Finally,
put s = mπ−1. It is a section of α and, by adjunction, induces a connection
∇ : p∗1T (Cp, A q⊗p) ∼= p∗2T (Cp, A q⊗p).
2.3. The connection on the truncated Tate complex. Let A q be term-wise flat
DG algebra over R. Equip A q⊗p with the stupid filtration rescaled by p. It induces
a filtration on the Tate complex T (Cp, A q⊗p). In the following we denote by τ the
filtered truncation functors(cf. Definition 6.4 in [K2]). Unlike Kaledin, throughout
the paper we use cohomological grading for the filtrations.

As in the introduction, by îcris we denote the inclusion of crystalline toposes
Cris(R/k)→ Cris(R/W (k)). In this section we prove that

Theorem 6. There is a quasi-isomorphism of DG algebras with connection

(2.4) B(A q) := τ[−1,0]T (Cp, A q⊗p) ∼= Lîcris∗îcris∗Fr
∗A q =: T cris(A q)

Now let R̃ be the lifting of R over W2(k) and choose a lifting F̃ of the Frobenius

morphism on R̃. Choose also a lifting O of R̃ over W (k). Consider the functors

(2.5)
i∗ : D(Mod−R)→ D(Mod−O) Li∗ : D(Mod−O)→ D(Mod−R)

ĩ∗ : D(Mod−R)→ D(Mod− R̃) Lĩ∗ : D(Mod− R̃)→ D(Mod−R)

Note that as a complex of R-modules T cris(A q) is quasi-isomorphic to Li∗i∗Fr
∗A q.

Theorem 7. A lifting of A q to a DG algebra Ã q/R̃ gives a quasi-isomorphism of DG
algebras with connection

(2.6) T cris(A q) ∼= (Fr∗A q ⊕ Fr∗A q[1],∇can + µC−1

F̃
(κ̃))

2.4. Proof of Theorem 7. We start from the proof of Theorem 7, since we will
partially use it in the proof of Theorem 6. Fix a connection ∇′ on the algebra

⊕
Ai.

It might not be compatible with the differential – the Kodaira-Spencer class measures
this incompatibility: κ̃ = [∇′, d].

Lemma 2.3. For a module B/R̃ a connection ∇0 on ĩ∗B gives rise to a connection

on F̃ r
∗
(B) which reduces to the canonical connection on Fr∗B under ĩ∗.

Proof. Lift ∇0 to a map of W2(k)-modules ∇′0 : B → B ⊗ Ω1
R̃/W2k

. Then define a

connection ∇̃ on B as the pullback of ∇′0 under F̃ r. Namely, for f ⊗ x ∈ R̃⊗
F̃ r,R̃

B
put

(2.7) ∇̃(f ⊗ x) = x⊗ df + f · F̃ r
∗
(∇′0(x))

This is indeed a connection which does not depend on the choice of ∇′0 because

the value of F̃ r
∗
(ω) depends only on ĩ∗ω since ĩ∗F̃ r is zero on 1-forms. �

Applying this lemma to B =
⊕
Ãi and ∇′, we get a connection ∇̃. Since ∇̃ and d̃

commute modulo p, we get the following map
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(2.8)
[∇̃, d̃]

p
: F̃ r

∗
Ãi → ĩ∗Fr

∗Ai+1 ⊗ Ω1
R̃/W2(k)

We are now ready to prove the theorem. Put F = cone(̃i∗Fr
∗A q p−→ F̃ r

∗
Ã q). It is

a complex of R̃-modules with terms

F i = F̃ r
∗
Ãi ⊕ ĩ∗Fr∗Ai+1

and the differential given by (x, y) 7→ (dÃx + (−1)ipy, dA qy). Let r : F → ĩ∗Fr
∗A q

be the morphism which maps (x, y) ∈ F i to the reduction of x modulo p in ĩ∗Fr
∗Ai.

It is a morphism of complexes because p ∈ R̃ acts by zero on ĩ∗Fr
∗A q.

Lemma 2.4. (i) r is a quasi-isomorphism. (ii) Considering further F as a complex

of O-modules, the canonical map Lî∗F → î∗F is a quasi-isomorphism.

Proof. (i) is clear as r is term-wise surjective and its kernel is isomorphic to

cone(̃i∗Fr
∗A q id−→ ĩ∗Fr

∗A q) which has zero cohomology.
(ii) Terms of F are not flat over O so, a priori, there might be non-zero higher

derived functors of i∗. Pick
⊕
Ai – a lifting of the graded algebra

⊕
F̃ r
∗
Ãi to a free

graded algebra over O. Pick also a lifting δ of the differential d̃(δ is not a differential
anymore – its square need not be zero). It enables us to right down the following

resolution of î∗A q. Put

(2.9) Ci = Ai ⊕Ai+1; dC =

(
δ (−1)ip

(−1)i δ
2

p δ

)
δ2 is divisible by p because d2 = 0 on Fr∗A q and modules Ai are free over O.

Reduction maps Ci → F i give a morphism of complexes ρ : C q → F (reduction

maps commute with the differentials because δ2

p is actually divisible by p). Actually,

ρ is a quasi-isomorphism. Indeed, composing it with r we get a term-wise surjective
morphism of complexes with kernel given by Ki = pAi ⊕ Ai+1 and the differential
restricted from C q. For any (x, y) ∈ Ki such that dc(x, y) = 0 we have (x, y) =
dC(0, (−1)i−1 x

p ) so K q is acyclic and C q is an O-flat resolution of F . We get a

commutative diagram

Lî∗C q î∗C q
Lî∗F î∗F

∼

Left vertical arrow is a quasi-isomorphism because C q → F is a quasi-isomorphism
and the right vertical arrow is an isomorphism because both C q,F reduce modulo p
to the complex Fr∗A q⊕Fr∗A q[1]. Thus, the lower arrow is a quasi-isomorphism. �

We will now give F a structure of a DG algebra with connection. Let DG algebra

structure to be that of the trivial square-zero extension of F̃ r
∗
Ã q by the bimod-

ule ĩ∗Fr
∗A q[1]. To see that this algebra structure is compatible with the differen-

tial it is enough to check that D : (x, y) 7→ ((−1)ipy, 0) is a derivation because
the diagonal part (x, y) 7→ (dÃx, dA qy) is a derivation by default. For (a1, b1) ∈
F i, (a2, b2) ∈ Fj we have D((a1, b1)(a2, b2)) = ((−1)i+jp((−1)jb1a2+(−1)ia1b2), 0) =
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((−1)ipb1, 0)(a2, b2) + (a1, b1)((−1)jpb2, 0) = D((a1, b1))(a2, b2) + (a1, b1)D((a2, b2)),
q. e. d.

Next, define a connection as

(2.10)

∇F =

(
∇̃ 0

(−1)i [∇̃,d̃]
p ĩ∗∇can

)
: F̃ r

∗
Ãi⊕ĩ∗Fr∗Ai+1 → (F̃ r

∗
Ãi⊕ĩ∗Fr∗Ai+1)⊗R̃Ω1

R̃/W2(k)

The entry below the diagonal is chosen so that this connection commutes with the
differential on the DG algebra. To ensure that this connection respects the algebra

structure it is, as above, enough to check that (x, y) 7→ (0, (−1)i [∇̃,d̃]
p x) is a derivation

which follows from [∇̃,d̃]
p being a commutator of derivations. Finally, it is clear that

our connection is integrable.

Also, quasi-isomorphism r is compatible with connection because ∇̃ reduces to
∇can modulo p. In other words, îcris∗Fr

∗A q is quasi-isomorphic to (F ,∇F ). Thus,

T cris(A q) ∼= Lîcris∗((F ,∇F )). By the virtue of Lemma 2.4, Lîcris∗(F ,∇F ) is quasi-
isomorphic to (i∗F , i∗∇F ). The latter complex of R-modules with integrable connec-
tion is given by

(2.11)

(
∇can 0

(−1)i [∇̃,d̃]
p ∇can

)
: Fr∗Ai ⊕ Fr∗Ai+1 → (Fr∗Ai ⊕ Fr∗Ai+1)⊗ Ω1

R/k

So, Theorem 7 follows after we check that

Lemma 2.5.

(2.12)
[∇̃, d̃]

p
= C−1(κ̃)

Proof. By definition κ̃ = [∇′, d]. Recall that ∇̃i on F̃ r
∗
Ãi is given by the formula

∇̃i(f ⊗ x) = df ⊗ x+ f ⊗ F̃ r∗(∇′i(x)). Hence,

[∇̃, d̃]

p
(f ⊗ x) =

df ⊗ d̃(x̃) + f ⊗ F̃ r∗(∇′i(dx))− df ⊗ d̃(x̃)− f ⊗ dF̃ r
∗
(∇′i(x))

p
=

= f ⊗ F̃ r
∗
([∇′i, d])

p

(2.13)

and F̃ r
∗

p is exactly the Cartier isomorphism by [DI].

�

Remark 2.6. Of course, we could have computed T cris(A q) in one step using the
resolution (2.9) but we deal with non-liftability of A q over W (k) and non-existence
of a connection on A q separately for the sake of exposition.

2.5. Proof of Theorem 6. Choose a lifting F̂ r : O → O of the Frobenius endomor-
phism.
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Lemma 2.7. Let M be a flat O-module. For any n ∈ Z we have Ĥ2n−1(Cp,M
⊗p) = 0

and Ĥ2n(Cp,M
⊗p) is canonically isomorphic to i∗Fr

∗i∗M , where Cp, as usual, acts
on M⊗p by cyclic permutations.

Proof. The proof is similar to that of the Lemma 6.9 in [K3]. By peridoicity, it is
enough to consider the case n = 0. So, we should compute cohomology of the following
canonical truncation of the Tate complex

(M⊗p)Cp
N−→ (M⊗p)Cp

Lemma 6.9 from [K3] gives for any flat R-module N a map (N⊗p)Cp → Fr∗N .
Composing this map for N = i∗M with the inclusion i∗(M⊗p)Cp → (i∗M⊗p)Cp we
get a map ψ : i∗(M⊗p)Cp → Fr∗i∗M which, by adjointness, gives a map of complexes

[(M⊗p)Cp → (M⊗p)Cp ]→ i∗Fr
∗i∗M

Since any flat module is a filtered colimit of free modules, it is enough to prove that
this map is a quasi-isomorphism for finitely-generated free modules. Fixing a basis S
in a free module M , we get a decomposition of Cp-modules

M⊗p = M1 ⊕M2

where M1 is generated by s⊗p for s ∈ S and M2 is generated by all other tensors. So,
M1 is a trivial Cp-module, while M2 is free and ψ factors through projection on M1.

So, to prove the lemma it is left to check that Ĥ−1(Cp,O) = 0, Ĥ0(Cp,O) = i∗R.
The standard Tate complex for trivial module O takes the following form

(2.14) . . .
0−→ O p−→ O 0−→ . . .

So, Ĥ0(Cp,O) = O/pO = i∗R, Ĥ
−1(Cp,O) = 0 because multiplication by p is injec-

tive on O. �

In what follows, for any DG algebra B q we write T (B q) for the algebra T (Cp, B q⊗p).
Proposition 2.8. Let Â• be a lifting of A q to R̂, namely a DG algebra over O
such that Lî∗Â• is quasi-isomorphic to A q. The choice of a lifting gives a quasi-
isomorphism of DG algebras

(2.15) τ[−1,0]T (A q) ∼= Lî∗î∗Fr
∗A q

Proof. By definition, τ[−1,0]T (A q) ∼= τ[−1,0]Lî
∗T (Â•) = Lî∗τ[−1,0]T (Â•). Replacing

in the proof of Proposition 6.10 from [K3] their Lemma 6.9 by our 2.7 we get that

τ[−1,−1]T (Â•) = 0, τ[0,0]T (Â•) = î∗Fr
∗î∗Â• = î∗Fr

∗A q. The vanishing of τ[−1,−1]

implies that τ[−1,0]T (Â•)→ τ[0,0]T (Â•) ∼= î∗Fr
∗A q is an isomoprhism. Applying Lî∗

we get the statement.
�

For a liftable A q the above proposition can be reformulated as τ[−1,0]T (A q) ∼=
Fr∗A q ⊕ Fr∗A q[1] because F̂ r

∗
Â• is a lifting of Fr∗A q which splits Lî∗î∗Fr

∗A q by
Theorem 7.

Next, if A q is arbitrary, apply the proposition to Lî∗î∗A q putting Â• to be a semi-
free resolution of î∗A q. We get

(2.16) τ[−1,0]T (Lî∗î∗A q) ∼= Lî∗î∗Fr
∗A q ⊕ Lî∗î∗Fr∗A q[1]
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Consider the morphism Lî∗î∗A q → î∗î∗A q = A q. It induces T (Lî∗î∗A q) → T (A q).
So we get the following diagram

Lî∗î∗Fr
∗A q Lî∗î∗Fr

∗A q ⊕ Lî∗î∗Fr∗A q[1] ∼= τ[−1,0]T (Lî∗î∗A q) τ[−1,0]T (A q)
Denote the composition by ϕ. First,

Lemma 2.9. ϕ : Lî∗î∗Fr
∗A q → τ[−1,0]T (A q) is a quasi-isomorphism of DG algebras.

Proof. Clearly, ϕ is a morphism of DG algebras, so it is enough to check that it is
a quasi-isomorphism of complexes of R-modules. Since functors î∗, î∗, F r

∗, A q 7→ F
commute with filtered colimits, we may assume that A q is a perfect complex (any
complex is a direct limit of perfect complexes). Next, it is enough to check that it is
a quasi-isomorphism over all the localizations Rm at maximal ideals m ⊂ R. Finally,
by Nakayama lemma, it is enough to verify the statement over residue fields R/m.

Note that for any A q, the following square is commutative

Lî∗î∗Fr
∗A q τ[−1,0]T (A q)

Fr∗A q Fr∗A q
ϕ

Put k′ = R/m. Lî∗î∗Fr
∗k′ and τ[−1,0]T (k′) are both non-canonically split, i.e.

quasi-isomorphic to k′ ⊕ k′[1] and ϕ induces an isomorphism on zeroth cohomology.
We should prove that it is also an isomorphism on (−1)-st cohomology. Assume it

is not, i.e. is zero on H−1. Then ϕ factors through Lî∗î∗Fr
∗k′ → Fr∗k′ so induces

a splitting of τ[−1,0]T (k′). Since, ϕ is compatible with direct sums, τ[−1,0](V ) is also
canonically split for any k′-vector space V . In other words, the following extension of
polynomial functors V ectk′ → V ectk′ is split

0→ Fr∗V → (V ⊗p)Cp → (V ⊗p)Cp → Fr∗V → 0

This extension is equivalent to a similar one with Cp replaced by the symmetric
group Sp

0 Fr∗V (V ⊗p)Cp (V ⊗p)Cp Fr∗V 0

0 Fr∗V (V ⊗p)Sp (V ⊗p)Sp Fr∗V 0

πp

NCp

avp

NSp

Here πp is the projection and avp is the averaging over left cosets of Cp ⊂ Sp
that is avp(x) = 1

(p−1)!

∑
gCp∈Sp/Cp

g(x)(note that this does not depend on the choice of

representatives of cosets). From Corollary 4.7(r = j = 1) and Lemma 4.12 from [FS]
follows that the latter extension is non-split. Hence, ϕ must induce an isomorphism
on (-1)-st cohomology so it is a quisi-isomorphism for any A q. �

We have constructed a map ϕ : T cris(A)→ B(A q) of complexes of R-modules. To
finish the proof of the theorem we need to prove that

Lemma 2.10. ϕ is compatible with connection. Namely, the following square is
commutative in the derived category of R-modules



16 ALEXANDER PETROV DMITRY VAINTROB VADIM VOLOGODSKY

(2.17)

T cris(A) T cris(A)⊗R Ω1
R/k

B(A q) B(A q)⊗R Ω1
R/k

ϕ ϕ⊗id

Proof. First, assume that lemma is proven for liftable DG algebras, in particular
for Lî∗î∗A q. Theorem 7 implies that embedding Lî∗î∗Fr

∗A q → Lî∗î∗Fr
∗Lî∗î∗A q is

compatible with connection because the Kodaira-Spencer class of Fr∗A q vanishes.
The morphism τ[−1,0]T (Lî∗î∗A q)→ τ[−1,0]T (A q) is also compatible with the connec-
tion because, by definition, connection on the Tate complex is functorial in the DG
algebra. So, ϕ is a composition of morphisms compatible with connection.

So, we may assume that A q is liftable. We claim even more – that τ[−1,0]T (Â•)→
î∗Fr

∗A q is compatible with connection. The map τ[−1,0]T (Â•)→ τ[0,0]T (Â•) is obvi-

ously compatible, so we need to check that the isomorphism τ[0,0]T (Â•) ∼= î∗Fr
∗A q is

compatible. Applying τ[0,0] to the diagram (2.3) used in the definition of connection,
we get

τ[0,0]T (Cp, F
0/F 2(̂i∗p1∗p

∗
2A q)⊗p) τ[0,0]T (Cp, (i∗A q)⊗p)

τ[0,0]T (Cp, p1∗p
∗
2 (̂i∗A q)⊗p)

π

m

By the proof of 2.8, τ[0,0]T (Cp, (̂i∗A q)⊗p) = î∗Fr
∗A q and, similarly, π induces

and isomorphism, because the kernel of π : F 0/F 2((̂i∗p1∗p
∗
2A q)⊗p) → (̂i∗A q)⊗p is a

complex of free Cp-modules, whose Tate complex is contractible. Finally, since p1∗p
∗
2

commutes with T and τ[0,0], we get

i∗Fr
∗A q î∗Fr

∗A q
p1∗p

∗
2 î∗Fr

∗A q
Id

m

So, indeed, τ[0,0]T (Â) is isomorphic to the i∗ of the canonical connection on Fr∗A q.
�

3. The Gauss-Manin connection on the (co-)periodic cyclic homology

In this section we review Getzler’s and Kaledin’s constructions of the Gauss-Manin
connection, check that the two constructions agree, show that the Gauss-Manin con-
nection preserves the conjugate filtration, and prove Theorem 5.

3.1. Getzler’s construction. Let R be a smooth commutative algebra over a field
k, and let A q be a semi-free differential graded algebra over R ([Dr], §13.4). Denote
by (CH q(A q, A q), b) the relative Hochschild chain complex of A q over R 9 and by

9Here “relative over R” means that all the tensor products in the standard complex are taken
over R.
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CP q(A q) = (CH q(A q, A q)((u)), b + uB) the periodic cyclic complex. Getzler defined
in [Ge] a connection on CP q(A q)

∇ : CP q(A q)→ CP q(A q)⊗R Ω1
R.

His construction can be explained as follows: choose a connection ∇′ :
⊕
Ai →⊕

Ai ⊗ Ω1
R on the graded algebra

⊕
Ai satisfying the Leibnitz rule with respect to

the multiplication on
⊕
Ai. Then the commutator

κ̃ = [∇′, d] ∈
∏

HomR(Ai, Ai+1)⊗ Ω1
R

with the differential d on A q commutes with d and it is a R-linear derivation of A q
(with values in A q ⊗ Ω1

R) of degree 1. 10 As a derivation, κ̃ acts on CH q(A q, A q) by
the Lie derivative

Lκ̃ : CH q(A q, A q)→ CH q(A q, A q)⊗ Ω1
R[1], [Lκ̃, B] = 0

and the “interior product” operator

eκ̃ : CH q(A q, A q)→ CH q(A q, A q)⊗ Ω1
R[2].

The operators Lκ̃, eκ̃, B satisfy the Cartan formula up to homotopy: there is a canon-
ical operator

Eκ̃ : CH q(A q, A q)→ CH q(A q, A q)⊗ Ω1
R[2], [Eκ̃, B] = 0

such that [eκ̃, B] = Lκ̃ − [Eκ̃, b] ( [L], §4.1.8). One defines

(3.1) ∇ := ∇′ − u−1ικ̃,

where the first summand is the connection on
⊕
CPi(A q) induced the connection

∇′ on
⊕
Ai and ικ̃ :

⊕
CPi(A q) →⊕

CPi(A q) ⊗ Ω1
R is an R((u)) linear map given

by the formula ικ̃ = eκ̃ + uEκ̃. By construction, ∇ commutes with b + uB. Thus,
it induces a connection on CP q(A q). Getzler showed that up to homotopy ∇ does
not depend on the choice of ∇′.11 He also proved that the induced connection on
HP•(A q) is flat. However, we do not know how to make ∇ on CP q(A q) flat up to
coherent homotopies12.

By construction, the connection ∇ satisfies the Griffiths transversality property
with respect to the Hodge filtration F iCP q(A q) := (uiCH q(A q, A q)[[u]], b+ uB):

∇ : F iCP q(A q)→ F i−1CP q(A q)⊗R Ω1
R.

10Denote by Der•R(A q) the DG Lie algebra of R-linear derivations of A q: DeriR(A q) is the R-
module of R-linear derivations of the graded algebra

⊕
Ai; the differential on Der•R(A q) is given

by the commutator with d. The cohomology class κ ∈ H1(Der•R(A q)) ⊗ Ω1
R of κ̃ does not depend

on the choice of ∇′. (Indeed, any two connections differ by an element of Der0R(A q).) Recall that
the Hochschild cochain complex of A q is quasi-isomorphic to the cone of the map A q → Der•R(A q)
which takes an element of Ai to the corresponding inner derivation. We refer to the image κ of κ

under the induced morphism H1(Der•R(A q))→ HH2(A q, A q) as the Kodaira-Spencer class of A q.
11One can rephrase the above construction to make this fact obvious: let Der•k(R→ A q) be the

DG Lie algebra of k-linear derivations which take the subalgebra R ⊂ A0 to itself. Then Der•R(A q)
is a Lie ideal in Der•k(R → A q). Denote by ˜Derk(R) the cone of the morphism Der•R(A q) →
Der•k(R → A q). The restriction morphism ˜Derk(R) → Derk(R) a homotopy equivalence of DG

Lie algebras: a choice of ∇′ as above yields a homotopy inverse map. Next, we have a canonical

morphism of complexes ˜Derk(R)⊗R CP q(A q)→ CP q(A q) given by the formulas θ⊗ c 7→ u−1ιθ(c),
for θ ∈ Der•R(A q), and ζ⊗ c 7→ Lζ(c), for ζ ∈ Der•R(R→ A q). This yields a morphism Derk(R)⊗R
CP q(A q)→ CP q(A q) well defined up to homotopy.

12The problem is that, in general, the canonical morphism ˜Derk(R)⊗R CP q(A q)→ CP q(A q) is
not a Lie algebra action.
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Thus, ∇ induces a degree one R-linear morphism of graded complexes

GrF∇ : GrFCP q → GrFCP q ⊗R Ω1
R.

Abusing terminology, we refer to GrF∇ as the Kodaira-Spencer operator. Under
the identification GrFCP q = (CH q(A q, A q)((u)), b) the Kodaira-Spencer operator is
given by the formula

GrF∇ = u−1eκ̃.

3.2. Kaledin’s definition. Following ([K1], §3), we extend the argument from §2.2
to give another definition of the Gauss-Manin connection which will be used in our
proofs. Consider a two-term filtration on p1∗p

∗
2A q given as I0 = p1∗p

∗
2A q, I1 =

A q ⊗ Ω1
X , I

2 = 0. Note that I0/I1 = A q. Taking tensor powers of the fil-
tered complex p1∗p

∗
2A q, we obtain a filtration on the cyclic object (p1∗p

∗
2A q)#.

This gives rise a filtration Ii on the periodic cyclic complex of p1∗p
∗
2A q such that

I0CP q(p1∗p
∗
2A q)/I1CP q(p1∗p

∗
2A q) = CP q(A q). So we get a diagram with the upper

row being a distinguished triangle

I1/I2 I0/I2 CP q(A q)
p1∗p

∗
2CP q(A q)

i π

m

Lemma 3.1. I1CP q(p1∗p
∗
2A q)/I2CP q(p1∗p

∗
2A q) is contractible

Proof. By [K1] §3, the cyclic object I1(p1∗p
∗
2A q)#/I2(p1∗p

∗
2A q)# is free generated by

A# ⊗ Ω1 so its periodic cyclic complex is contractible. �

Hence, π is a quasi-isomorphism and the connection is defined as ∇ = mπ−1 :
CP q(A q)→ p1∗p

∗
2CP q(A q)

Proposition 3.2. Kaledin’s connection is equal to Getzler’s connection as a mor-
phism CP q(A q)→ p1∗p

∗
2CP q(A q) in the derived category.

Proof. We will show that Getzler’s formula comes from a section of π on the level of
complexes.
∇′ gives rise to a section ϕ of π :

⊕
CPi(p1∗p

∗
2A q)→⊕

CPi(A q) because ∇′ yields
a connection on any Ai1 ⊗ · · · ⊗Aik by the Leibnitz rule. Note that

[ϕ, b](a0 ⊗ · · · ⊗ an) = (
∑

1⊗ · · ·⊗
i

∇′ ⊗ · · · ⊗ 1)(
∑

a0 ⊗ · · · ⊗ dai ⊗ · · · ⊗ an+

+
∑

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)− b(
∑

a0 ⊗ · · · ⊗ ∇′ai ⊗ · · · ⊗ an) =

=
∑

a0 ⊗ · · · ⊗ (∇′d− d∇′)ai ⊗ · · · ⊗ an

(3.2)

This computation shows that [ϕ, b + uB] = Lκ̃ (because, clearly [ϕ,B] = 0)
where Lκ̃ : CP q(A q) → CP q(I1(p1∗p

∗
2A q)#/I2(p1∗p

∗
2A q)#). By [L], §4.1.11 we have

[u−1ικ̃, b+ uB] = Lκ̃. Hence, ϕ− u−1ικ̃ is a morphism of complexes and a section of
π so, in the derived category, π−1 = ϕ− u−1ικ̃. Applying m we get precisely the 3.1
considered as a map CP q(A q)→ p1∗p

∗
2CP q(A q).

�



THE GAUSS-MANIN CONNECTION ON THE PERIODIC CYCLIC HOMOLOGY 19

3.3. Proof of Theorem 5. As explained in ([K4], §3.3 and §5.1) we have a canonical
morphism

(3.3) B(A q)\ → π[(−2(p−1),0]i
∗
pA q\

in D(Λ, R). This induces a morphism of cyclic complexes

CC q(B(A q)) = CC q(B(A q)\)→ CC q(π[(−2(p−1),0]i
∗
pA q\),

(3.4) V−1CC q(B(A q))→ CC q(π[(−2(p−1),−1]i
∗
pA q\) ∼−→ V[−p+2,−1]CP q(A q)

We have to check that (3.4) factors through V[−p+2,−1]CC q(B(A q)) and that the re-
sulted morphism is a quasi-isomorphism.

Recall that any complete resolution has the structure of an E∞ operad. This
makes B(R)\ and π[(−2(p−1),0]i

∗
pR

\ into E∞ algebras in the category of complexes over

Fun(Λ, R) and B(A q)\, π[(−2(p−1),0]i
∗
pA q\ are modules over these algebras respectively.

The morphism 3.3 can be promoted to

(3.5) B(A q)\ L⊗B(R)\ π
[
(−2(p−1),0]i

∗
pR

\ → π[(−2(p−1),0]i
∗
pA q\

Moreover, if we endow the left-hand side of (3.5) with the filtration induced by the
canonical filtration on π[(−2(p−1),0]i

∗
pR

\ and the right-hand side with τdec, then (3.5)

is a filtered quasi-isomorphism. Pass to mixed complexes:

(3.6) C(B(A q)) L
⊗C(B(R)) C(π[(−2(p−1),0]i

∗
pR

\)→ C(π[(−2(p−1),0]i
∗
pA q\)

Now Theorem 5 follows from an easy Lemma below.

Lemma 3.3. The homomorphism of E∞ algebras

C(B(R))→ C(π[(−2(p−1),0]i
∗
pR

\)

induces a quasi-isomorphism

τ(−2(p−1),0]C(B(R))
∼−→ C(π[(−2(p−1),0]i

∗
pR

\).

4. The local monodromy theorem

In this section we prove Theorem 3 in a stronger and more general form. We start
by recalling some results of Katz from ([Katz1]).

4.1. Katz’s Theorem. Let S be a smooth geometrically connected complete curve
over a field K of characteristic 0, K(S) the field of rational functions on S, and let E
be a finite-dimensional vector space over K(S) with a K-linear connection

∇ : E → E ⊗ Ω1
K(S)/K .

Recall that ∇ is said to have regular singularities if E can be extended to a vector
bundle E over S such that ∇ extends to a connection on E , which has at worst simple
poles at some finite closed subset D ⊂ S:

∇ : E → E ⊗ Ω1
S(logD).

One says that the local monodromy of (E,∇) is quasi-unipotent if the pair (E ,∇) as
above can be chosen so that the residue of ∇

Res∇ : E|D → E|D
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has rational eigenvalues13. Let Res∇ = D + N , with [D,N ] = 0, be the Jordan
decomposition of Res∇ as a sum of a semi-simple operator D and a nilpotent oper-
ator N . If the local monodromy of (E,∇) is quasi-unipotent we say its exponent of
nilpotence is ≤ ν if Nν = 0.

If K = C then the category of finite-dimensional K(S)-vector spaces with K-
linear connections with regular singularities and quasi-unipotent local monodromy
is equivalent to the category of local systems (in the topological sense) over S take
off finitely many points whose local monodromy around every puncture is quasi-
unipotent (i.e., all its eigenvalues are roots of unity). The exponent of nilpotence of
local monodromy is the size of its largest Jordan block.

In ([Katz1], Th. 13.0.1), Katz proved the following result.

Theorem (Katz). Let C be a smooth scheme of relative dimension 1 over a domain
R which is finitely generated (as a ring) over Z, with fraction field K of characteristic
zero. Assume that the generic fiber of C is geometrically connected. Let (M,∇) be a
locally free OC-module with a connection ∇ : M →M⊗Ω1

C/R. Assume that (M,∇) is

globally nilpotent of nilpotence ν, that is, for any prime number p, the OC⊗Fp-module
M ⊗ Fp with R⊗ Fp-linear connection admits a filtration

0 = V0(M ⊗ Fp) ⊂ · · · ⊂ Vν(M ⊗ Fp) = M ⊗ Fp
such that the p-curvature of each successive quotient Vi/Vi−1 is 0. Then the pullback
M ⊗O(C) K(C) of M to the generic point of C has regular singularities and quasi-
unipotent local monodromy of exponent ≤ ν.

4.2. Monodromy Theorem. Now we can prove the main result of this section.

Theorem 8. Let A q be a smooth and proper DG algebra over K(S) and let d be a
non-negative integer such that

(4.1) HHm(A q, A q) = 0, for every m with |m| > d.

Then the Gauss-Manin connection on the relative periodic cyclic homology HP∗(A q)
has regular singularities and quasi-unipotent local monodromy of exponent ≤ d+ 1.

Proof. Using Theorem 1 from [Toën], there exists a finitely generated Z-algebra R ⊂
K, a smooth affine scheme C of relative dimension 1 over R with a geometrically
connected generic fiber, and a smooth proper DG algebra B q over O(C) together
with an open embedding C ⊗R K ↪→ S of curves over K and a quasi-isomorphism
A q = B q ⊗O(C) K(S) of DG algebras over K(S). We can choose B q to be term-wise
flat over O(C). Since the Hochschild homology

⊕
iHHi(B q, B q) of a smooth proper

DG algebra is finitely generated over O(C) replacing C by a dense open subscheme we
may assume that

⊕
iHHi(B q, B q) and HP∗(B q, B q) are free O(C)-modules of finite

rank. It follows that

HHi(B q, B q)⊗Z Fp
∼−→ HHi(B q ⊗Z Fp, B q ⊗Z Fp),

HHi(B q, B q)⊗O(C) K(S)
∼−→ HHi(A q, A q).

Using the Hodge-to-de Rham spectral sequence it follows that the periodic cyclic
homology also commutes with the base change. Then by Cor. 1.2 (M,∇) =
(HP∗(B q),∇GM ) satisfies the assumptions of the theorem of Katz with ν = d + 1
and we are done. �

13One can show (see e.g., [Katz1], §12) that if Res∇ has rational eigenvalues for one extension

then it has rational eigenvalues for every extension (E,∇) of (E,∇).
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