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The complexity of a Brauer class α ∈ Br(K) over a field K can be measured by
two integers: the period per(α), which is simply the order of α in Br(K); and the

index ind(α), equal to
√

dimK(D) where D is the unique central division algebra
of class α. The integers per(α) and ind(α) share the same prime factors, and
per(α) divides ind(α). The period-index problem is to determine an integer e such
that ind(α) divides per(α)e. The following longstanding conjecture, first raised
in print by Colliot-Thélène [2], predicts a precise value of e for function fields of
varieties.

Conjecture 1 (Period-index conjecture). Let K be a field of finite transcendence
degree d over an algebraically closed field k. For all α ∈ Br(K), ind(α) divides
per(α)d−1.

This is vacuously true for d ≤ 1, as then Br(K) = 0 by Tsen’s theorem. It is
also true for d = 2 by de Jong [3] when per(α) is prime to the characteristic of
k, and by [9, 5] in general. In higher dimensions, the conjecture is wide open: it
is not even known for a single field K of transcendence degree d ≥ 3 that there
exists an integer e such that ind(α) divides per(α)e for all α ∈ Br(K).

If X is a smooth projective model for K, then the restriction Br(X)→ Br(K)
is an isomorphism onto the subgroup of unramified Brauer classes. By [5], Conjec-
ture 1 would follow in general if it were known for all unramified Brauer classes on
all K. In this way, the conjecture can be viewed as a global problem. I reported
on recent progress on the period-index problem from this perspective, restricting
for simplicity to the case where the base field k = C is the complex numbers. The
first result, joint with de Jong, gives evidence that the integer e in the period-index
problem can be chosen uniformly in α.

Theorem 2 ([4]). Let X → S be a smooth proper morphism of complex varieties.
Assume that the very general fiber of X → S is projective and satisfies the Lefschetz
standard conjecture in degree 2. Then there exists a positive integer e such that
for all s ∈ S(C) and α ∈ Br(Xs), ind(α) divides per(α)e.

Recall that for a smooth projective d-dimensional variety Y with an ample di-
visor h, the Lefschetz standard conjecture in degree 2 says that the inverse of
the hard Lefschetz isomorphism (−) ∪ hd−2 : H2(Y,Q)

∼−→ H2d−2(Y,Q) is alge-
braic. This conjecture is known for some interesting classes of varieties, including
threefolds of Kodaira dimension less than 3 [11, 12] and holomorphic symplectic
varieties of K3[n] or Kummer type [1, 6].

The idea behind the proof of Theorem 2 is to use the algebraicity of the inverse
Lefschetz isomorphism to reduce to studying classes in the image of a correspon-
dence from a surface, and to use the known period-index conjecture for surfaces
to bound the index of such classes.
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The second result, joint with Hotchkiss, establishes the first nontrivial case of
the unramified period-index conjecture in dimension greater than 2.

Theorem 3 ([8]). Let X be a complex abelian threefold. For all α ∈ Br(X),
ind(α) divides per(α)2.

The proof relies on the Hodge theory and enumerative geometry of categories.
Suppose that C is an enhanced triangulated category that admits an embedding
as a semiorthogonal component into the derived category of a smooth proper
variety. Then by [10] there is an associated finitely generated abelian group Ktop

0 (C)

equipped with a weight 0 Hodge structure and a natural map K0(C) → Ktop
0 (C)

from the Grothendieck group factoring through the subgroup Hdg(C) ⊂ Ktop
0 (C)

of integral Hodge classes. When C is the derived category of α-twisted sheaves for
a class α ∈ Br(X) on a smooth proper variety, we write Ktop

0 (X,α), Hdg(X,α),
and K0(X,α) for these invariants. Since ind(α) can be computed as the minimal
positive rank of an element of K0(X,α), the period-index conjecture for α factors
into two steps:

(1) Construct a Hodge class v ∈ Hdg(X,α) of rank per(α)dim(X)−1.
(2) Show that v is algebraic, i.e. in the image of K0(X,α)→ Hdg(X,α).

Step (1) was solved by Hotchkiss [7] when per(α) is prime to (dimX− 1)!. The

key ingredient is an explicit description of the Hodge structure Ktop
0 (X,α) when α

is topologically trivial, in terms of a twist by a B-field. In special cases, like when
X is an abelian variety, this also allows Step (1) to be solved for all α ∈ Br(X).

Step (2) can be regarded as a case of the integral Hodge conjecture for cate-
gories. In [8] we develop a theory of reduced Donaldson–Thomas invariants for
CY3 categories, with the feature that the variational integral Hodge conjecture
holds for classes with nonvanishing invariant. Theorem 3 is then proved by spe-
cializing (X,α) within the Hodge locus for the class v from Step (1) to an untwisted
abelian threefold with nonvanishing invariant.
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