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Introduction

§ 0. Notations, terminology and general remarks.

Throughout the paper we fix a field F and consider the category Sm/F of smooth
separated schemes of finite type over F . We make Sm/F into a site using one of the
following three topologies: Zariski topology, Nisnevich topology or etale topology.
For any presheaf F on Sm/F we denote by F∼

Zar,F
∼
Nis and F∼

et the sheaf associated
with F in Zariski, Nisnevich and etale topologies respectively.

For any site C we denote by C∼ (resp. C∧) the category of abelian sheaves (resp.
the category of abelian presheaves) on C.

We denote by Sch/F the category of all separated schemes of finite type over F .
Let F : Sm/F → A be a (covariant) functor from Sm/F to an abelian category

A. Let further X ∈ Sm/F be a smooth scheme and let i : Y →֒ X be a smooth
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closed subscheme provided with a retraction r : X → Y (i.e. ri = 1Y ). In this case
F(r)F(i) = 1F(Y ) and hence F(Y ) is canonically a direct summand in F(X). We’ll
use the notation F(X/Y ) for the complementary direct summand. Thus F(X/Y )
may be identified either with the kernel of the homomorphism F(r) : F(X)→ F(Y )
or with the cokernel of the homomorphism F(i) : F(Y )→ F(X). We’ll use similar
notations in case F : Sch/F → A is a functor from Sch/F to an abelian category
A and Y ⊂ X is a retract of X ∈ Sch/F .

More generally, assume we are given a scheme X and n closed subschemes
ij : Yj →֒ X (1 ≤ j ≤ n) (the schemes X, Yj should be smooth in case of the
category Sm/F ). Assume further that we are given retractions rj : X → Yj (1 ≤
j ≤ n) such that the morphisms ρj = ijrj : X → X pairwise commute. In this case
each of F(Yj) may be identified with a direct summand in F(X). Moreover the
sum

∑n
j=1F(Yj) ⊂ F(X) is also a canonical direct summand: the corresponding

projection is given by the formula

1F(X) − (1F(X)−F(ρ1)) · . . . · (1F(X) − F(ρn)) =

=

n∑

s=1

∑

1≤j1<...<js≤n

(−1)s−1F(ρj1 · ... · ρjs) : F(X) −→
n∑

j=1

F(Yj).

The above situation arises in particular in the following case. Let (Z, z0) be a
scheme provided with a distinguished rational point. Set X = Z×n. The point z0
defines n embeddings of Z×(n−1) in X . The corresponding subschemes Yj ⊂ X
consist of all points with j-th coordinate equal to z0, the corresponding morphisms
ρj : X → X are given by the formula

ρj(z1, ..., zn) = (z1, ..., z
j
0, ..., zn)

and obviously pairwise commute. We’ll use the notation F(Z∧n) for the direct
summand of F(Z×n) complementary to

∑n
j=1F(Yj). Throughout the paper this

kind of notation is constantly used in the special case when Z = Gm = A1 \ 0 and
z0 = 1 is the identity of the group scheme Gm.

The previous construction has an obvious analogue for contravariant functors.
In this case F(X/Y ) may be identified either with the kernel of the homomorphism
F(i) : F(X) → F(Y ) or with the cokernel of the homomorphism
F(r) : F(Y ) → F(X). Furthermore the direct summand F(Z∧n) ⊂ F(Z×n)
may be identified with the intersection of kernels of restriction homomorphisms

F(Z×n)
F(ij)
−−−→ F(Z×(n−1)).

The standart cosimplicial scheme ∆•
F .

Recall that ∆n
F is a closed subscheme in An+1

F defined by the equation t0 + ...+
tn = 1. We’ll refer to the points vi = (0, ..., 1

i
, ..., 0) ∈ ∆n (0 ≤ i ≤ n) as vertices

of ∆n. Each nondecreasing map φ : [m] = {0, 1, ..., m} → [n] = {0, 1, ..., n} defines
the corresponding morphism of schemes

∆m −→ ∆n : (t0, ..., tm) 7→ t0vφ(0) + ...+ tmvφ(m).
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There are n + 1 coface morphisms di : ∆n−1 → ∆n (0 ≤ i ≤ n) (corresponding to
strictly increasing maps [n−1]→ [n]). These coface morphisms are obviously closed
embeddings, the corresponding closed subschemes of ∆n are defined by equations
ti = 0 and are called the (codimension one) faces of ∆n.

For any presheaf of abelian groups F : Sm/F → Ab one can consider a simplicial
presheaf C∗(F) defined by the formula Cn(F)(U) = F(U × ∆n). It’s easy to
see that homology presheaves Hi of the complex C∗(F) are homotopy invariant
- i.e. Hi(U × A1) = Hi(U) for any U ∈ Sm/F (see [S-V § 7]). In the same
way one can construct the bisimplicial presheaf C∗,∗(F), defined by the formula
Cp,q(F)(U) = F(U×∆p×∆q). Homotopy invariance of the cohomology presheaves
of C∗(F) implies easily that the natural embedding i : C∗(F) →֒ Tot C∗,∗(F) is a
quasiisomorphism. The quasiisomorphism i has a canonical left inverse called the
shuffle map (cf. [D] ch. 6, § 12), whose construction we are going to remind.

Every strictly increasing map (φ, ψ) : [p+ q]→ [p]× [q] defines a linear isomor-
phism of schemes

∆p+q → ∆p ×∆q (t0, ..., tp+q) 7→ t0 · (vφ(0), vψ(0)) + ...+ tp+q · (vφ(p+q), vψ(p+q))

and hence gives an isomorphism of presheaves (φ, ψ)∗ : Cp,q(F)→ Cp+q(F). Note
further that strictly increasing maps (φ, ψ) : [p + q] → [p] × [q] are in one to one
correspondence with (p, q) shuffles: each (p, q)-shuffle σ defines a map (φ, ψ) via
the formula

φ(x) = |{1 ≤ i ≤ p : σ(i) ≤ x}|

ψ(x) = |{p+ 1 ≤ i ≤ p+ q : σ(i) ≤ x}|.

We’ll use the notation σ∗ : Cp,q(F)
∼
−→ Cp+q(F) for the isomorphism of presheaves

defined by the strictly increasing map (φ, ψ) corresponding to σ. The shuffle map
∇ : Tot C∗,∗(F)→ C∗(F) is defined via the formula

∇p,q =
∑

σ−(p,q)−shuffle

ǫ(σ)σ∗ : Cp,q(F)→ Cp+q(F).

A well known and easy computation shows that ∇ is a homomorphism of complexes
which is left inverse to i (i.e. ∇i = 1C∗(F)). It’s not difficult to see that moreover
the composition i∇ is homotopic to identity (so that i and ∇ are mutually unverse
homotopy equivalences), but we won’t need this fact.

Resolution of singularities

Definition 0.1. We’ll be saying that resolution of singularities holds over the field
F , provided that the following two conditions are satisfied.

(1) For any integral separated scheme of finite type X over F there exists a
proper birational morphism Y → X with Y smooth (over F ).

(2) For any smooth integral scheme X over F and any birational proper mor-
phism Y → X there exists a tower of morphisms Xn → Xn−1 → ... →
X0 = X, each stage of which is a blow up with a smooth center, and such
that the composition morphism Xn → X may be factored through Y → X.
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It’s well known that resolution of singularities holds over fields of characteristic
zero, whether it holds over (perfect) fields of positive characteristic remains one
of the central problems of algebraic geometry. The following important theorem
due to de Jong may be used sometimes as a replacement of the first of the above
properties .

Theorem 0.2 [J]. For any field F and any integral separated scheme of finite type
X over F there exists a proper surjective morphism Y → X with Y smooth over F .

It should be noted that this theorem implies that all results of [S-V] hold over
an algebraically closed field of arbitrary characteristic.

Hypercohomology.
Motivic cohomology are defined as Zariski (or Nisnevich) hypercohomology with

coefficients in a complex of sheaves which is not bounded below. We find it necessary
to remind the definition and properties of hypercohomology in this generality.

Let A be an abelian category with enough injectives. Let further F : A → Ab
be a left exact additive functor. Denote the right derived functors of F by RiF .
Let finally A• be a complex of degree +1 in A and let A• → I•• be the Cartan-
Eilenberg resolution of A•. The hypercohomology groups R∗F(A•) are defined as
cohomology of the total complex corresponding to the bicomplex F(I••)

R∗F(A•) = H∗(Tot(F(I••))).

The following two results concerning hypercohomology constitute a minor gener-
alization of well-known facts. For the sake of completness we sketch the proof
below.

Theorem 0.3. Assume that either the complex A• is bounded below or the functor
F is of finite cohomological dimension (i.e. Ri(F) = 0 for i >> 0). Then both
spectral sequences of the bicomplex F(I••) are strongly convergent. Thus we have
two hypercohomology spectrtal sequences

Ipq1 = RpF(Aq)⇒ Rp+qF(A•)

IIpq2 = RqF(Hp(A•))⇒ Rp+qF(A•).

Proof. The case when the complex A• is bounded below is well-known so we’ll
consider only the case when the functor F is of finite cohomological dimension.

Let 0 → A• ǫ
−→ I•0

d′
−→ I•1

d′
−→ . . . be the Cartan-Eilenberg resolution of A•.

Define the complex A•n as the kernel of the homomorphism d′ : I•n → I•n+1. The
following properties of the complex A•n are straightforward from definitions.

(0.3.1). For each i we have exact sequences

0→ Ai → Ii,0 → . . . → Ii,n−1 → Ai,n → 0

0→ Zi(A•)→ Zi(I•0)→ . . . → Zi(I•n−1)→ Zi(A•n)→ 0

0→ Bi(A•)→ Bi(I•0)→ . . . → Bi(I•n−1)→ Bi(A•n)→ 0

0→ Hi(A•)→ Hi(I•0)→ . . . → Hi(I•n−1)→ Hi(A•n)→ 0
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We conclude immediately from (0.3.1) the following further properties of the
complex A•n.

(0.3.2). 0→ A•n −→ I•n
d′
−→ I•n+1 d′

−→ . . . is the Cartan-Eilenberg resolution of
the complex A•n.

(0.3.3). Assume that n ≥ cd F then all objects Ai,n, Zi(A•n), Bi(A•n), Hi(A•n)
are F-acyclic.

Lemma 0.3.4. Let F be a functor of finite cohomological dimension d. Let further
A•be a complex such that all objects Ai, Hi(A•) are F-acyclic, and let 0 → A• →
I•• be the Cartan-Eilenberg resolution of A•, then

(1) The objects Zi(A•), Bi(A•) are also F-acyclic for all i.
(2) Zi(F(A•)) = F(Zi(A•)), Bi(F(A•)) = F(Bi(A•)), Hi(F(A•)) =

= F(Hi(A•)) for all i.
(3) F(A•) −→ Tot F(I••) is a quasiisomorphism (F-acyclicity of Ai (for all i)

alone is enough for this conclusion).

Proof. To prove (1) one shows by inverse induction on n ≥ 1 that RnF(Zi(A•)) =
RnF(Bi(A•)) = 0 for all i. The point (2) is immediate from (1). To prove (3) one
notes that the i-th coloumn of the bicomplex F(I••) is a resolution of F(Ai) which
is enough to conclude that F(A•) −→ Tot F(I••) is a quasiisomorphism.

To conclude the proof of the Theorem 0.3 we denote by τ≤nI
•• the subbicomplex

0 → I•0 −→ I•1 −→ . . . −→ I•n−1 −→ A•n → 0 of I••. Taking n ≥ cd F we
see immediately from the results proved above that the embedding τ≤nI

•• →֒ I••

induces a quasiisomorphism of complexes Tot F(τ≤nI
••)

∼
−→ Tot F(I••). Moreover

the first (respectively the second) spectral sequences of the bicomplexes F(τ≤nI
••)

and F(I••) coincide from E1-term on (resp. from E2-term on).

In case the functor F coincides with HomA(X,−) the corresponding hyperco-
homology groups are ususlly denoted RHom∗

A(X,A•). They may be interpreted as
appropriate Hom-groups in the derived category D(A).

Proposition 0.4. Assume that either the complex A• is bounded below or
Exti(X,−) = 0 for i >> 0. Then RHomi

A(X,A•) = HomD(A)(X,A
•[i]).

Proof. The case when the complex A• is bounded below is well-known, so we’ll con-
sider only the case when the cohomological dimension of the functor HomA(X,−) =
F is finite. Note first of all that according to definitions

HomD(A)(X,A
•[i]) = lim−→

A•
∼
−→B•

HomK(A)(X,B
•[i]) = lim−→

A•
∼
−→B•

Hi(HomA(X,B•))

where direct limit is taken over all quasiisomorphisms A• ∼
−→ B•, K(A) denotes

the homotopy category of complexes and HomA(X,B•) is the complex of abelian
groups ...→ HomA(X,Bi) −→ HomA(X,Bi+1)→ ... .
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Lemma 0.4.1. Let F be a left exact additive functor of finite cohomological di-
mension d, then

(1) For any complex A• there exists a quasiisomorphism A• → B•, where the
terms Bi are F-acyclic for all i.

(2) Let B• f
−→ C• be a quasiisomorphism of complexes. Assume that all terms

Bi and Ci are F-acyclic. Then the induced homomorphism of complexes of
abelian groups F(f) : F(B•) −→ F(C•) is also a quasiisomorphism.

Proof. To prove the point (1) it suffices to note that A• −→ Tot τ≤nI
•• is always

a quasiisomorphism. Moreover the terms of the complex Tot τ≤nI
•• are F -acyclic

for any left exact additive functor F of cohomological dimension≤ d provided that
n ≥ d.

To prove the second statement denote by co(f) the cone of f . The complex
co(f) is acyclic (since f is a quasiisomorphism) and consists of F -acyclic terms.
Lemma 0.3.4 shows that the complex co(F(f)) = F(co(f)) is acyclic as well and
hence F(f) is a quasiisomorphism.

Lemma 0.4.1 shows that

HomD(A)(X,A
•[i]) = Hi(HomA(X,B•))

for any quasiisomorphism A• → B• from A• to a complex with HomA(X,−)-acyclic
terms. Applying this to the complex Tot τ≤nI

•• (with n >> 0) we easily conclude
the proof of Proposition 0.4.

Ext-groups
For any two complexes A•, B• ∈ D(A) we set

ExtiA(A•, B•) = HomD(A)(A
•, B•[i]).

It’s well-known that in case A•, B• ∈ D−(A) (resp. ∈ D+(A), Db(A)) the corre-
sponding Ext-groups coincide with Hom-groups in the category D−(A) (resp. in
D+(A), Db(A)).
Infinite direct sums in the derived categories.

Let A be an abelian category satisfying the Grothendieck’s axiom Ab-?. Below
we’ll discuss infinite direct sums in the categoryD−(A). A similar discussion applies
with minimal modifications to D+(A) and Db(A) as well.

Lemma 0.5. Let {A•
i }i∈I be a family of complexes. Any quasiisomorphism C• →

⊕

i∈I A
•
i may be dominated (in the category K(A)) by a quasiisomorphism of the

form
⊕

i∈I C
•
i

⊕fi
−−→

⊕

i∈I A
•
i (where each fi : C•

i → A•
i is a quasiisimorphism).

Proof. A well-known property of the homotopy category K(A) shows that for each
i there exists a complex C•

i a quasiisomorphism fi : C•
i → A•

i and a morphism
gi : C•

i → C• which make the following diagram commute up to homotopy.

C•
i

gi
−−−−→ C•

fi



y



y

A•
i

ini−−−−→
⊕

i∈I A
•
i
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A family of morphisms gi : C•
i → C• defines a morphism g = (gi)i∈I :

⊕
C•
i → C•

and according to the construction the following diagram commutes up to homotopy
⊕

i∈I C
•
i

g
−−−−→ C•

⊕fi



y



y

⊕

i∈I A
•
i

=
−−−−→

⊕

i∈I A
•
i

Corollary 0.5.1. For any complex B• we have a natural isomorphism

HomD(A)(
⊕

i∈I

A•
i , B

•) =
∏

i∈I

HomD(A)(A
•
i , B

•).

In other words
⊕

i∈I A
•
i is a direct sum of complexes A•

i in the category D(A) as
well.

Proof. In view of definitions and Lemma 0.5 we have the following identifications

HomD(A)(
⊕

i∈I

A•
i , B

•) = lim−→
C•

∼−→
L

i∈I A
•
i

HomK(A)(C
•, B•) =

= lim−→
{C•

i

∼−→A•
i }i∈I

∏

i∈I

HomK(A)(C
•
i , B

•) =
∏

i∈I

HomD(A)(A
•
i , B

•).

We’ll be saying that the family of complexes {A•
i }i∈I is uniformly bounded above

(resp. uniformly homologically bounded above) iff there exists an integer N such
that Ani = 0 (resp. Hn(A•

i ) = 0) for all i ∈ I and all n ≥ N .

Corollary 0.5.2. A direct sum of a family of complexes {A•
i }i∈I ∈ D

−(A) exists
in D−(A) if and only if this family is uniformly homologically bounded above.

Let {A•
i }i∈I ∈ D

−(A) be a family of complexes. We’ll denote by < {A•
i } >⊂

D−(A) the minimal full triangulated subcategory closed with respect to taking
direct sums of uniformly homologically bounded above families of complexes. We’ll
be saying that the family {A•

i }i∈I weakly generates the category < {A•
i }i∈I >.

Lemma 0.6. Let A•• be a bounded above bicomplex in A. Then

Tot(A••) ∈< {A•i}i∈Z >⊂ D−(A).

Proof. Denote by σ≥nA
•• ⊂ A•• the subbicomplex of A•• consisting of terms Aij

with j ≥ n. Denote further by in : σ≥nA
•• −→ A•• and jn : σ≥nA

•• −→ σ≥n−1A
••

the obvious embeddings. The complexes Tot(σ≥nA
••) obviously lie in the triangu-

lated subcategory generated by all A•i. Furthermore we have a short exact sequence
of bicomplexes

0→
⊕

n

σ≥nA
••

(1σ≥nA••−jn)

−−−−−−−−−→
⊕

n

σ≥nA
•• (in)
−−→ A•• → 0

which shows that Tot(A••) lies in the subcategory weakly generated by A•i.
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§ 1. Homotopy invariant presheaves with transfers.

For any X, Y ∈ Sm/F define Cor(X, Y ) to be the free abelian group gener-
ated by closed integral subschemes Z ⊂ X ×F Y which are finite and surjec-
tive over a component of X . Let X, Y,W ∈ Sm/F be smooth schemes and let
Z ∈ Cor(X, Y ), T ∈ Cor(Y,W ) be cycles on X × Y and Y × W each compo-
nent of which is finite and surjective over a component of X (respectively over
a component of Y ). One checks easily that the cycles Z × W and X × T in-
tersect properly on X × Y × W and each component of the intersection cycle
(Z × W )•(X × T ) is finite and surjective over a component of X . Thus setting
T ◦ Z = (pr1,3)∗((Z × Y )•(X × T )) we get a bilinear composition map

Cor(Y,W )× Cor(X, Y )→ Cor(X,W ).

In this way we get a new category (denoted SmCor/F ) whose objects are smooth
schemes of finite type over F and HomSmCor/F (X, Y ) = Cor(X, Y ) – see [V 1] for
details.

The category SmCor/F is clearly additive, the direct sum of two schemes being
given by their disjoint union. A presheaf with transfers on the category Sm/F
is defined as a contravariant additive functor F : SmCor/F → Ab. Note that
associating to each morphism f : X → Y its graph Γf ∈ Cor(X, Y ) we get a
canonical map HomSm/F (X, Y ) → Cor(X, Y ). In this way we get a canonical
functor Sm/F → SmCor/F , which allows to view presheaves with transfers on
Sm/F as presheaves in the usual sence equipped with appropriate additional data.

For any X ∈ Sm/F we’ll denote by Ztr(X) the corresponding representable
functor, i.e. Ztr(X) is a presheaf with transfers defined via the formula

Ztr(X)(U) = Cor(U,X).

One checks easily that the pesheaf Ztr(X) is actually a sheaf in the etale topology
(and a fortiory in Zariski and Nisnevich topologies as well). Direct sums of such
sheaves are sometimes called free presheaves with transfer or free Nissnevich sheaves
with transfers. This terminology is not very consistent since sheaves Ztr(X) are
obviously projective objects in the category of presheaves with transfers, but clearly
not in the category of Nisnevich sheaves with transfers.

In a similar way we may associate a presheaf with transfers Ztr(X) to each
scheme of finite type X ∈ Sch/F . To be more precise for each U ∈ Sm/F we define
Ztr(X)(U) to be the free abelian group generated by closed integral subschemes
Z ⊂ U × X which are finite and surjective over a component of U . The same
construction as above defines (for any U, V ∈ Sm/F ) the bilinear pairing

Cor(V, U)× Ztr(X)(U) −→ Ztr(X)(V )

which makes Ztr(X) into a presheaf with transfers. Moreover the presheaf with
transfers Ztr(X) is an etale sheaf for any X ∈ Sch/F . Obviously Ztr is a functor
from Sch/F to the category of (etale) sheaves with transfer.
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Consider the standart cosimplicial object ∆• = ∆•
F in Sm/F . For any presheaf

of abelian groups F on Sm/F we get a simplicial presheaf C•(F), by setting
Cn(F)(U) = F(U ×∆n). We’ll use the same notation C•(F) for the corresponding
complex (of degree −1) of abelian presheaves. Usually we’ll be dealing with com-
plexes of degree +1, in particular, we reindex the complex C•(F) (in the standart
way), by setting

Ci(F) = C−i(F).

Recall that a presheaf F : Sm/F → Ab is said to be homotopy invariant, provided
that for any U ∈ Sm/F the natural homomorphism F(U) →
→ F(U × A1) is an isomorphism. It’s easy to see ( [S-V 1] Corollary 7.5 ) that
cohomology presheaves of the complex C•(F) are homotopy invariant.

The following result sums up some of the basic properties of homotopy invariant
presheaves with transfers.

Theorem 1.1 [V 1]. Let F be a homotopy invariant presheaf with transfers on
Sm/F , then

(1) The sheaf F∼
Zar coincides with F∼

Nis and has a natural structure of a homo-
topy invariant sheaf with transfers.

(2) For any X ∈ Sm/F and any i ≥ 0 Hi
Zar(X,F

∼
Zar) = Hi

Nis(X,F
∼
Nis)

(3) The presheaves X 7→ Hi
Zar(X,F

∼
Zar) = Hi

Nis(X,F
∼
Nis) are homotopy in-

variant (and have a natural structure of presheaves with transfers).

Corollary 1.1.1. Let C• be a complex (of degree +1) of Nisnevich sheaves with
transfers with homotopy invariant cohomology presheaves. Then for any scheme
X ∈ Sm/F we have a natural isomorphism of hypercohomology groups
H∗
Zar(X,C

•) = H∗
Nis(X,C

•).

Proof. Note that cohomological dimension of X with respect to both Zariski and
Nisnevich topology is finite (and equal to dim X). This remark and Theorem 0.3
give us two convergent hypercohomology spectral sequences (in which Hq denotes
the q-th cohomology presheaf of C•)

ZarII
pq
2 = Hp

Zar(X, (H
q)∼Zar)⇒ Hp+q

Zar (X,C
•)

NisII
pq
2 = Hp

Nis(X, (H
q)∼Nis)⇒ Hp+q

Nis (X,C•)

Moreover we have a natural homomorphism of spectral sequences ZarII → NisII.
Theorem 1.1 shows that the map on E2 terms is an isomorphism, hence the map
on the limits is an isomorphism as well.

Nisnevich topology is much more convenient in dealing with presheaves with
transfers as one sees from the following Lemma (which fails in case of the Zariski
topology).

Lemma 1.2 [V 1]. Let F be any presheaf with transfers on Sm/F . Then there
exists the unique structure of a Nisnevich sheaf with transfers on F∼

Nis making
the homomorphism F → F∼

Nis into a homomorphism of presheaves with transfers.
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For any Nisnevich sheaf with transfers G and any homomorphism of presheaves
with transfers F → G the associated homomorphism F∼

Nis → G is compatible with
transfers.

Lemma 1.2 implies easily that Nisnevich sheaves with transfers form an abelian
category which we denote NSwT/F .

Lemma 1.3. Homotopy invariant Nisnevich sheaves with transfers form a full
abelian subcategory in NSwT/F , closed under taking kernels and cokernels of mor-
phisms and under extensions.

Proof. Let f : F → G be a homomorphism of homotopy invariant sheaves with
transfers. Denote by K and C the kernel and cokernel of f in the category of
presheaves. Then K and C obviously are homotopy invariant presheaves with trans-
fers. Furthermore K is a sheaf and coincides with Ker f , whereas Coker f = C∼Nis.
Theorem 1.1 (1) shows now that Coker f is homotopy invariant. Finally let
0 → F → H → G → 0 be an extension of Nisnevich sheaves with transfers and
assume that F and G are homotopy invariant. For any U ∈ Sm/F we have a
commutative diagram with exact rows

0→ F(U) −−−−→ H(U) −−−−→ G(U) −−−−→ H1
Nis(U,F)

∼
=



y



y

∼
=



y

∼
=



y

0→ F(U ×A1) −−−−→ H(U × A1) −−−−→ G(U ×A1) −−−−→ H1
Nis(U × A1,F)

Theorem 1.1 (3) shows that the right hand side vertical map is an isomorphism so
that homotopy invariance of H follows from the five lemma.

Homotopy invariance of the cohomology presheaves of the complexes C•(F)
implies immediately the following fact.

Lemma 1.4. Let A• be a bounded above complex of Nisnevich sheaves with trans-
fers. All cohomology presheaves of the complex Tot C•(A•) are homotopy invariant.
Hence all cohomology sheaves of Tot C•(A•) are homotopy invariant as well.

A convenient framework for dealing with homotopy invariant sheaves with trans-
fers is provided by the tensor triangulated category DM−(F ). Recall (see [V 2])
that DM−(F ) is defined as the full subcategory of the derived category
D−(NSwT/F ) of bounded above complexes of Nisnevich sheaves with transfers
comprising the complexes with homotopy invariant cohomology sheaves. Lemma
1.4 shows that for any bounded above copmplex of Nisnevich sheaves with transfers
A• the complex C•(A•) is in DM−(F ). For any X ∈ Sm/F we define its motive
M(X) as the element C•(Ztr(X)) ∈ DM−(F ). The following theorem relates
DM−(F ) to Nisnevich cohomology.

Theorem 1.5[V 2]. For any complex A• ∈ DM−(F ) and any X ∈ Sm/F we have
natural isomorphisms

Hi
Nis(X,A

•) = HomDM−(F )(M(X), A•[i]).
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The proof splits naturally into two parts. In the first part we compare Nisnevich
cohomology with Hom-groups in the category D−(NSwT/F ). We start with the
following Lemma.

Lemma 1.6 [V 1]. Let f : Y → X be a Nisnevich covering of a (not necessarily
smooth) scheme X. Then the following sequence of Nisnevich sheaves with transfers
is exact

0←− Ztr(X)
f∗
←− Ztr(Y )

(p2)∗−(p1)∗
←−−−−−−− Ztr(Y ×X Y )

(p23)∗−(p13)∗+(p12)∗
←−−−−−−−−−−−−−− . . .

Proof. It suffices to show that if S is a smooth henselian scheme then the sequence
of abelian groups

A•(S) = (0←− Ztr(X)(S)
f∗
←− Ztr(Y )(S)

(p2)∗−(p1)∗
←−−−−−−− Ztr(Y ×X Y )(S)←− . . .)

is exact. Fix a closed integral subscheme Z ⊂ X × S finite and surjective over
S and denote by AZn (S) the subgroup of An(S) generated by closed integral sub-
schemes T ⊂ Y ×X ... ×X Y × S (finite and surjective over S) whose set the-
oretical image in X × S coincides with Z. Obviously AZ• (S) is a subcomplex
of A•(S) and moreover A•(S) = ⊕ZA

Z
• (S). Thus it suffices to show that ev-

ery complex AZ• (S) is contractible. The scheme Z being finite and surjective
over a henselian scheme S is henselian itself, which implies that the projection
p1 : Z → X admits a lifting f : Z → Y . Let T ⊂ Y ×X ...×X Y

︸ ︷︷ ︸

n

×S be a gener-

ator of AZn (S) and let g : T → Z be the corresponding morphism. The morphism

T
pr1×Xfg×pr2
−−−−−−−−−→ Y ×X ...×X Y

︸ ︷︷ ︸

n

×XY ×S is obviously a closed embedding and hence

defines a closed integral subscheme T ′ = un(T ) ⊂ Y ×X ...×X Y
︸ ︷︷ ︸

n+1

×S (finite and

surjective over S). In this way a get a homomorphism un : AZn (S)→ AZn+1(S), and

one checks immediately that u is a contracting homotopy for the complex AZ• (S).

Corollary 1.7. Let I ∈ NSwT/F be an injective Nisnevich sheaf with transfers.
Then for any X ∈ Sm/F Hi

Nis(X, I) = 0 for all i > 0.

Proof. We first compute Chech cohomology of I with respect to a Nisnevich cov-
ering f : Y → X . These cohomology are the cohomology of the complex

I(Y ) −−−−→ I(Y ×X Y ) −−−−→ . . .

=



y =



y

HomNSwT (Ztr(Y ), I) −−−−→ HomNSwT (Ztr(Y ×X Y ), I) −−−−→ . . .

Injectivity of I in NSwT/F and Lemma 1.6 show that
∨

Hi(Y/X, I) = 0 for i > 0.
Now the standard argument involving the Cartan-Leray spectral sequence ends up
the proof.
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Corollary 1.7.1. For any Nisnevich sheaf with transfers F we have natural iden-
tifications

ExtiNSwT (Ztr(X),F) = Hi
Nis(X,F).

In particular ExtiNSwT (Ztr(X),−) = 0 for i > dimX.

Proposition 1.8. Let A• ∈ D−(NSwT/F ) be a bounded above complex of Nis-
nevich sheaves with transfers. Then for any X ∈ Sm/F we have a natural isomor-
phism.

Hi
Nis(X,A

•) = HomD−(NSwT/F )(Ztr(X), A•[i]).

Proof. Let A• −→ J•• and A• −→ I•• be the Cartan-Eilenberg resolutions of A•

in the categories of Nisnevich sheaves with transfers and all Nisnevich sheaves re-
spectively. It’s easy to see from the defining property of the Cartan-Eilenberg
resolution that there exists a unique (up to a homotopy of bidegree (0,−1)) ho-
momorphism of resolutions J•• −→ I••. Furthermore Proposition 0.4 allows us to
identify HomD−(NSwT/F )(Ztr(X), A•[i]) to Hi(Tot(J••(X))) whereas Hi

Nis(X,A
•)

identifies canonically to Hi(Tot(I••(X))). What we have to verify is that the

above homomorphism of resolutions induces an isomorphism H∗(Tot(J••(X)))
∼
−→

H∗(Tot(I••(X))). Theorem 0.3 provides us with two spectral sequences converging
to cohomology in question and Corollary 1.7.1 shows that the induced map on the
E1-terms of the first spectral sequences is an isomorphism. Thus the map on limits
is an isomorphism as well.

In the second part of the proof we compare HomD−(NSwT/F )(Ztr(X), A•) and
HomDM−(F )(M(X), A•) = HomD−(NSwT/F )(C

•(Ztr(X)), A•).
A presheaf (resp. a presheaf with transfers) F is said to be contractible provided

that there exists a homomorphism of presheaves (resp. of presheaves with transfers)
φ : F → C−1(F) = C1(F) with the property that ∂0φ = 0, ∂1φ = 1F . Here
∂0, ∂1 : C1(F) → C0(F) = F are the face operations of the simplicial presheaf
C•(F). In other words to each section s ∈ F(U) one can associate in a natural
way a section φ(s) ∈ C1(F)(U) = F(U ×A1) such that φ(s)|U×0 = 0, φ(s)|U×1 = s.
It follows easily from the definition that Zariski (Nisnevich, etale) sheaf associated
to a contractible presheaf is again contractible. Typical examples of contractible
presheavs are given by the following Lemma.

Lemma 1.9. For any presheaf (resp. presheaf with transfers) F the kernel of any
iterated face operation ∂ : Cn(F)→ C0(F) = F is contractible.

Proof. We consider only the special case K = Ker(∂0 : C1(F)→ F). The proof in
the general case is similar. For any X ∈ Sm/F we have:

K(X) = {s ∈ F(X ×A1) : s|X×0 = 0}.

Denote by m : A1 × A1 → A1 the multiplication morphism (m(a, b) = ab) and
finally set φ(s) = (1X ×m)∗(s) ∈ F(X × A1 × A1). One checks immediately that
φ(s)|X×A1×0 = 0, i.e. φ(s) ∈ K(X × A1) and further

∂0φ(s) = φ(s)|X×0×A1 = 0, ∂1φ(s) = φ(s)|X×1×A1 = s.
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A Nisnevich sheaf F is said to be strongly homotopy invariant provided that
all cohomology presheaves X 7→ Hi

Nis(X,F) are homotopy invariant. According
to Theorem 1.1 each homotopy invariant Nisnevich sheaf with transfers is strongly
homotopy invariant.

Proposition 1.10. Let G and F be Nisnevich sheaves ( resp. Nisnevich sheaves
with transfers). Assume that G is contractible and F is strongly homotopy invariant.

Then ExtiNis(G,F) = 0 for all i ≥ 0 (resp. ExtiNSwT (G,F) = 0 for all i ≥ 0).

Proof. We’ll give a proof for Nisnevich sheaves, the case of Nisnevich sheaves with
transfers is treated similarly. Let 0 → F → I• be an injective resolution of F .
The cohomology presheaves of the complex C1(I

•) are given by the formula X 7→
Hi
Nis(X × A1,F) = Hi

Nis(X,F). Since the sheaf associated to the presheaf X 7→
Hi
Nis(X,F) is trivial for i > 0 we conclude that C1(I

•) is a resolution of C1(F) = F .
The face operations ∂0, ∂1 : C1(I

•) → I• give two maps of resolutions over the
identity endomorphism of F and hence are homotopic. Thus there exists a family
of sheaf homomorphisms sn : C1(I

n)→ In−1 such that dsn+ sn+1C1(d) = ∂1−∂0.
Let now φ : G → C1(G) be the homomorphism from the definition of a contractible
sheaf. One checks immediately now that associating to each homomorphism f ∈
HomNis(G, I

n) the homomorphism un(f) = snC1(f)φ ∈ HomNis(G, I
n−1) we get a

contracting homotopy for the complex HomNis(G, I
•).

Corollary 1.10.1. Let G and F be Nisnevich sheaves with transfers. Assume that
F is homotopy invariant (and hence strongly homotopy invariant) and G admits a
finite resolution

0 −→ G −→ G0 −→ . . . −→ Gn → 0

in which all Gi are contractible Nisnevich sheaves with transfers. Then
ExtiNSwT/F (G,F) = 0 for all i ≥ 0.

Corollary 1.10.2. Let A• be a bounded above complex of Nisnevich sheaves with
transfers. Assume that all Ai are contractible and all the cohomology sheaves Hi =
Hi(A•) are homotopy invariant. Then the complex A• is acyclic.

Proof. We prove that Hi = 0 by inverse induction on i. For i >> 0 Hi = 0 since
A• is bounded above. Assume now that Hj = 0 for all j > i and denote by Zi the
kernel of d : Ai → Ai+1. According to our inductive assumption the sheaf Zi has
a finite resolution

0→ Zi → Ai → Ai+1 → . . .

with contractible terms. Since the sheaf Hi is homotopy invariant we conclude
from Corollary 1.10.1 that HomNSwT (Zi,Hi) = 0. Thus the natural epimorphism
Zi ։ Hi is zero and hence Hi = 0.

For any presheaf F and any n ≥ 0 we have a natural monomorphism F → Cn(F)
split by any of the iterated face maps ∂ : Cn(F) → C0(F) = F . Denoting by
C0•(F) the constant simplicial presheaf (which has F in all dimensions and all face
and degeneracy maps are identities) we get a natural monomorphism (split in each
dimension) of simplicial presheaves C0•(F)→ C•(F) and hence also the associated
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monomorphism of compexes (of degree +1) C•
0 (F)→ C•(F). The cokernel of this

monomorphism consists of contractible presheaves according to Lemma 1.9. This
construction generalizes immediately to complexes of presheaves. In particular, for
each bounded above complex A• of Nisnevich sheaves with transfers we have a
natural monomorphism of complexes C•

0 (A•)→ C•(A•) whose cokernel consists of
contractible sheaves. Note further that we also have a natural embedding A• →
C•

0 (A•) whose cokernel is contractible (in the usual sence of homological algebra)
and hence acyclic.

Proposition 1.11. Let A• be a bounded above complex of Nisnevich sheaves with
transfers.

(1) If each An is contractible then the complex C•(A•) is acyclic.
(2) If the cohomology sheaves Hi(A•) are homotopy invariant then the natural

embedding A• → C•(A•) is a quasiisomorphism.

Proof. If each An is contractible then each Ci(An) is contractible as well, so that
all terms of the complex C•(A•) are contractible. Since the cohomology sheaves of
this complex are homotopy invariant we conclude from Corollary 1.10.2 that this
complex is acyclic.

Assume now that the cohomology sheaves of A• are homotopy invariant. Lemma
1.3 implies immediately that all the cohomology sheaves of the complex
C•(A•)/C•

0 (A•) are homotopy invariant. Since the terms of this complex are con-
tractible we conclude from Corollary 1.10.2 that this complex is acyclic. Thus
the natural embedding C•

0 (A•) → C•(A•) is a quasiisomorphism and hence the
embedding A• → C•

0 (A•)→ C•(A•) is a quasiisomorphism as well.

Corollary 1.11.1. Let B•, A• be bounded above complexes of Nisnevich sheaves
with transfers. Assume that the sheaves Bn are contractible and the cohomology
sheaves Hn(A•) are homotopy invariant. Then HomD−(NSwT/F )(B

•, A•) = 0.

Proof. It suffices to show that each homomorphism of complexes f : B• → A• gives
zero in HomD−(NSwT/F )(B

•, A•). This follows immediately from the commutative
diagram

B• f
−−−−→ A•



y



y

C•(B•)
C•(f)
−−−−→ C•(A•)

in which the right vertical arrow is a qasiisomorphism and the complex C•(B•) is
acyclic.

Corollary 1.11.2. Let B•, A• be bounded above complexes of Nisnevich sheaves
with transfers. Assume that the cohomology sheaves Hn(A•) are homotopy invari-
ant. Then the natural embedding B• → C•(B•) induces an isomorphism

HomD−(NSwT/F )(C
•(B•), A•)

∼
−→ HomD−(NSwT/F )(B

•, A•).
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Proof. Once again we decompose the embedding B• → C•(B•) into a composi-
tion B• → C•

0 (B•) → C•(B•). The first arrow is a quasiisomorphism and hence
induces isomorphisms on HomD−(NSwT/F )(−, A

•). The second embedding has
cokernel consisting of contractible sheaves and hence also induces an isomorphism
on HomD−(NSwT/F )(−, A

•) according to corollary 1.11.1.

Corollary 1.11.2 shows that if A• ∈ DM−(F ) is a bounded above complex of
Nisnevich sheaves with transfers with homotopy invariant cohomology sheaves then
for any scheme X ∈ Sm/F the natural embedding Ztr(X)→ C•(Ztr(X)) = M(X)
induces an isomorphism

HomD−(NSwT/F )(M(X), A•[i])
∼
−→ HomD−(NSwT/F )(Ztr(X), A•[i])

which together with Corollary 1.8 ends up the proof of the Theorem 1.5.
Proposition 1.11 shows immediately that if A• is an acyclic bounded above com-

plex of Nisnevich sheaves with transfers then the complex C•(A•) is acyclic as well.
This implies further that if f : A• → B• is a quasiisomorphism of bounded above
complexes of Nisnevich sheaves with transfers then C•(f) is also a quasiisomor-
phism. Thus we get a functor

C• : D−(NSwT/F )→ DM−(F ).

Denote by A the thick triangulated subcategory ofD−(NSwT/F ) comprising those
complexes A• for which the complex C•(A•) is acyclic. The previous discussion
proves immediately the following result.

Theorem 1.12 [V 2]. (1) The functor C• takes distinguished triangles to distin-
guished triangles and commutes with direct sums (of homologically bounded above
families).
(2) The functor C• is left adjoint to the embedding functor DM−(F ) →֒
→֒ D−(NSwT/F ) and establishes an equivalence of DM−(F ) with the localiza-
tion of D−(NSwT/F ) with respect to the thick triangulated subcategory A.

We finish this section by a more detailed description of the category A.

Lemma 1.13. A complex A• ∈ D−(NSwT ) is in A if and only if it is quasi-
isomorphic to a (bounded above) complex of contractible Nisnevich sheaves with
transfers.

Proof. If all the entries of the complex A• are contractible then the complex C•(A•)
is acyclic according to Proposition 1.11. Assume now that the complex C•(A•) is
acyclic. The distinguished triangle

C•
0 (A•)→ C•(A•)→ C•(A•)/C•

0 (A•)→ C•
0 (A•)[1]→ . . .

shows that the complex C•
0 (A•) (which is quasiisomorphic to A•) is quasiisomorphic

to a complex C•(A•)/C•
0 (A•)[−1] with contractible entries.

Let X ∈ Sch/F be a scheme with a distinguished rational point x0 ∈ X . We’ll
be saying that the scheme X is (algebraically) contractible (to the point x0) iff
there exists a morphism f : X × A1 → X such that f |X×1 = 1X , f |X×0 = x0 and
f |x0×A1 = x0.
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Proposition 1.14. (1) Assume that the scheme (X, x0) is contractible. Then for
any Y ∈ Sch/F the sheaf Ztr(Y ×X/Y × x0) is contractible.
(2) The category A is weakly generated by the contractible sheaves
Ztr(Y × A1/Y × 0) (Y ∈ Sm/F ).

Proof. Let f : X×A1 → X be the contraction of X . We define the homomorphism
of sheaves φ : Ztr(Y ×X)→ C1(Ztr(Y ×X)) as the composition

Ztr(Y ×X)
Z 7→Z×∆

A1
−−−−−−−→ C1(Ztr(Y ×X × A1))

C1(1Y ×f)
−−−−−−→ C1(Ztr(Y ×X))

Here the first arrow sends a section of Ztr(Y × X) over a smooth scheme U (i.e.
a cycle Z ⊂ Y × X × U each component of which is finite and surjective over a
component of U) to the section of Ztr(Y × X × A1) over U × A1 given by the
cycle Z × ∆A1 ⊂ Y × X × A1 × U × A1 (each component of which is obviously
finite and surjective over a component of U × A1). One checks immediately that
φ takes Ztr(Y × x0) to C1(Ztr(Y × x0)) and hence defines a homomorphism φ :
Ztr(Y ×X/Y ×x0)→ C1(Ztr(Y ×X/Y ×x0)) and furthermore ∂1φ = Id, ∂0φ = 0.

To prove the second statement it suffices (in view of Lemmas 0.6 and 1.13) to
show that every contractible sheaf F ∈ NSwT admits a left resolution by the
direct sums of sheaves of the form Ztr(Y ×A1/Y ). We’ll show more generally that
such resolutions exist for all sheaves F ∈ NSwT for which the complex C•(F) is
acyclic (i.e. F ∈ A). Note first of all that to give a homomorphism of sheaves with
transfers Ztr(Y ×A1/Y )→ F is the same as to give a section s ∈ F(Y ×A1) such

that s|Y×0 = 0. Surjectivity of the homomorphism C1(F)
∂1−∂0−−−−→ F implies that

locally in the Nisnevich topology each section t ∈ F(Y ) may be written in the form
t = s|Y×1, where s ∈ F(Y × A1) is a section for which s|Y×0 = 0. This remark
shows that the natural homomorphism

⊕

Y ∈Sm/F

⊕

s∈F(Y×A1):s|Y ×0=0

Ztr(Y × A1/Y ) −→ F

is surjective. The kernel of this homomorphism is again in A, so that the construc-
tion may be repeated.

§ 2 Tensor structure on the category DM−(F ).

To define the tensor structure on the category DM−(F ) we start with the defini-
tion of the tensor product of presheaves with transfers. The definition we are about
to give is dictated by the following (expected) properties of the tensor product op-
eration: it should commute with any direct sums and moreover should commute
with tensoring (in the usual sence) with arbitrary abelian groups, be right exact
and satisfy the property that (here the superscript pr stands for the tensor product
in the category of presheaves) Ztr(X)⊗prtr Ztr(Y ) = Ztr(X × Y ). Note that for any
presheaf with transfers F we have a natural exact sequence:

0←− F ←− ⊕X∈Sm/FF(X)⊗ Ztr(X)←− ⊕f∈Cor(X,Y )F(Y )⊗ Ztr(X)
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tensoring such resolutions for F and G we come immediately to the following for-
mula for F ⊗prtr G

F ⊗prtr G = Coker(
⊕

X∈Sm/F,g∈Cor(Y ′,Y )

F(X)⊗ G(Y )⊗ Ztr(X × Y
′)⊕

⊕
⊕

Y ∈Sm/F,f∈Cor(X′,X)

F(X)⊗ G(Y )⊗ Ztr(X
′ × Y ) −→

−→
⊕

X,Y ∈Sm/F

F(X)⊗ G(Y )⊗ Ztr(X × Y )).

In other words the presheaf with transfers F ⊗prtr G is given by the formula:

(F ⊗prtr G)(Z) =
⊕

X,Y ∈Sm/F

F(X)⊗ G(Y )⊗ Cor(Z,X × Y )/Λ

where Λ is the subgroup generated by elements of the following form

φ⊗ ψ ⊗ (f × 1Y ) · h− f∗(φ)⊗ ψ ⊗ h :
f ∈ Cor(X ′, X), φ ∈ F(X)

ψ ∈ G(Y ), h ∈ Cor(Z,X ′ × Y )

φ⊗ ψ ⊗ (1X × g) · h− φ⊗ g
∗(ψ)⊗ h :

g ∈ Cor(Y ′, Y ), φ ∈ F(X)

ψ ∈ G(Y ), h ∈ Cor(Z,X × Y ′)

With this definition one verifies easily that ⊗prtr has all the expected properties.
In particular, the functor ⊗prtr is right exact in each variable, commutative and
associative (up to a natural isomorphism) and Ztr(X) ⊗prtr Ztr(Y ) = Ztr(X × Y ).
Next one defines the tensor product of Nisnevich sheaves with transfers as the sheaf
associated with their tensor product in the category of presheaves. We denote the
last operation by ⊗tr. The bifunctor ⊗tr : NSwT/F × NSwT/F → NSwT/F
is still right exact, commutative and associative , commutes with arbitrary direct
sums and satisfies the identity Ztr(X)⊗trZtr(Y ) = Ztr(X×Y ). The following uni-
versal mapping property of the tensor product of Nisnevich sheaves with transfers
is obvious from the definition.

Lemma 2.1. Let F ,G,H be Nisnevich sheaves with transfers. To give a homomor-

phism of sheaves with transfers F ⊗tr G
p
−→ H is the same as to give bilinear maps

pX,Y : F(X) × G(Y ) → H(X × Y ) (X, Y ∈ Sm/F ) which satisfy the following
properties

(1) For any f ∈ Cor(X ′, X) the following diagram commutes

F(X)× G(Y )
pX,Y
−−−−→ H(X × Y )

f∗×1G(Y )



y (f×1Y )∗



y

F(X ′)× G(Y )
pX′,Y
−−−−→ H(X ′ × Y )
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(2) For any g ∈ Cor(Y ′, Y ) the following diagram commutes

F(X)× G(Y )
pX,Y
−−−−→ H(X × Y )

1F(X)×g
∗



y (1X×g)∗



y

F(X)× G(Y ′)
pX,Y ′

−−−−→ H(X × Y ′)

To extend this operation on the category D−(NSwT/F ) we need a few auxiliary
results. For any X ∈ Sm/F denote by LXi the left derived functors of the right
exact functor

Ztr(X)⊗prtr − : Presheaves with transfers→ Presheaves with transfers.

Note that the sheaves Ztr(X) are projective in the category of presheaves with
transfer, but we don’t know whether they are flat (probably not).

Lemma 2.2. Let F be a presheaf with transfers such that F∼
Nis = 0. Then

LXi (F)∼Nis = 0 for all i ≥ 0 and all X ∈ Sm/F .

Proof. We first construct certain special presheaves with transfers F for which
F∼
Nis = 0. Let f : Y ′ → Y be a Nisnevich covering of Y ∈ Sm/F . Denote by
Hi(Y

′/Y ) the homology presheaves of the complex

Č•(Y
′/Y ) : 0←− Ztr(Y )

f∗
←− Ztr(Y

′)←− Ztr(Y
′ ×Y Y

′)←− . . . .

Lemma 1.6 shows that Hi(Y
′/Y )∼Nis = 0 for all i. Moreover it’s clear from the

definition that for each presheaf with transfers F for which F∼
Nis = 0 there exists

an epimorphism onto F from a direct sum of presheaves of the form H0(Y
′/Y ). We

now start proving our statement by induction on i. For i < 0 everything is obvious.
Assume now that the statement holds for all i < j. The previous remark shows that
to prove the vanishing of LXj (F)∼Nis for any presheaf F with F∼

Nis = 0 it suffices to

consider the special case F = H0(Y
′/Y ). Tensoring the complex Č•(Y

′/Y ) with
Ztr(X) we get a spectral sequence

E2
pq = LXp (Hq(Y

′/Y ))⇒ Hp+q(Ztr(X)⊗prtr Č•(Y
′/Y )).

Note further that the complex Ztr(X)⊗prtr Č•(Y
′/Y )) is equal to Č•(X×Y

′/X×Y ),
so that the limit of our spectral sequence coincides with H∗(X × Y

′/X × Y ). This
shows that applying to the above spectral sequence the exact functor ∼

Nis we get a
new spectral sequence which converges to zero:

E2
pq = LXp (Hq(Y

′/Y ))∼Nis ⇒ 0

Applying the induction hypothesis we get immediately the desired conclusion.
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Corollary 2.3. Let A• be a bounded below complex (of degree -1) of free presheaves
with transfers. Assume that Hi(A•)

∼
Nis = 0 for all i. Then Hi(Ztr(X)⊗prtr A•)

∼
Nis =

0 for all i and all X ∈ Sm/F .

Proof. This statement follows immediately from Lemma 2.2 in view of the spectral
sequence

E2
pq = LXp (Hq(A•))⇒ Hp+q(Ztr(X)⊗prtr A•).

We return back to complexes of degree +1 and cohomological notations. Corol-
lary 2.3 implies easily the following result

Corollary 2.4. Let A• and B• be bounded above complexes (of degree +1) of free
Nisnevich sheaves with transfers. Assume that either A• or B• is acyclic, then the
complex A• ⊗tr B

• is acyclic as well.

Corollary 2.5. Let A•
1 → A•

2 be a quasiisomorphism of bounded above complexes
of free Nisnevich sheaves with transfers. Then for any bounded above complex B•

of free Nisnevich sheaves with transfers the induced homomorphism A•
1 ⊗tr B

• →
A•

2 ⊗tr B
• is a quasiisomorphism as well.

For any Nisnevich sheaf with transfers F we have a natural epimorphism onto
F from a free Nisnevich sheaf with transfers:

⊕

X∈Sm/F,φ∈F(X) Ztr(X) → F . Re-

peating this construction we get a canonical free resolution X•(F)→ F . As always
we reindex X• in cohomological terms, so that X •(F) is a complex of degree +1
concentrated in nonpositive degrees. Applying the functor X • to a bounded above
complex A• of Nisnevich sheaves with transfers we get a free bounded above com-
plex X •(A•) and a natural quasiisomorphism X •(A•)→ A•. We define the tensor
product operation on the category D−(NSwT/F ) via the formula

A• ⊗L B• = X •(A•)⊗tr X
•(B•).

Corollary 2.5 shows that this construction is well defined and moreover A•⊗LB• =
A•⊗tr B

• for any complexes A•, B• of free Nisnevich sheaves with transfers (more
generally for any complexes whose entries are direct summands in appropriate free
sheaves, i.e. are projective in the category of presheaves with transfers). The
following properties of the bifunctor ⊗L are now straightforward.

Lemma 2.6. (1) The functor ⊗L is commutative and associative (up to a natural
isomorphism)
(2) The functor ⊗L takes distinguished triangles in each variable to distinguished
triangles.
(3) The functor ⊗L takes direct sums (of homologically bounded families) to direct
sums.

To pass from the category D−(NSwT/F ) to the category DM−(F ) we have to
verify that the tensor product A• ⊗L B• of two complexes, one of which is in the
localizing subcategory A is again in A.
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Proposition 2.7. Let A•, B• be bounded above complexes of Nisnevich sheaves
with transfers. Assume that A• ∈ A, then A• ⊗L B• ∈ A.

Proof. Since the category A is weakly generated by sheaves of the form Ztr(Y ×
A1/Y ) (Y ∈ Sm/F ) and the categoryD−(NSwT ) is weakly generated by sheaves
Ztr(X) (X ∈ Sm/F ) it suffices to note that

Ztr(Y ×A1/Y )⊗L Ztr(X) = Ztr(Y × A1/Y )⊗tr Ztr(X) =

= Ztr(Y ×X × A1/Y ×X) ∈ A.

Proposition 2.7 together with Theorem 1.12 show that the tensor structure on the
category D−(NSwT/F ) induces (via the localizing functor C•) a tensor structure
on the category DM−(F ). Explicitly the tensor product operation on the category
DM−(F ) is given by the formula

A• ⊗B• = C•(A• ⊗L B•).

The following result sums up the main properties of this tensor product operation.

Proposition 2.8. (1) The functor ⊗ : DM−(F )×DM−(F )→ DM−(F ) is com-
mutative and associative (up to a natural isomorphism).
(2) The functor ⊗ takes distinguished triangles in each variable to distinguished
triangles.
(3) The functor ⊗ takes direct sums (of homologically bounded families) to direct
sums.
(4) For any A•, B• ∈ D−(NSwT ) we have a natural isomorphism C•(A•⊗LB•)

∼
−→

C•(A•) ⊗ C•(B•). In particular for all schemes X, Y ∈ Sm/F we have a natural

isomorphism M(X × Y )
∼
= M(X)⊗M(Y ).

§ 3. Motivic Cohomology

The concept of motivic cohomology (as we understand it today) goes back to the
beginning of the 80’s when A. Beilinson conjectured that there should exist com-
plexes of Zariski sheaves Z(n) on Sm/F which have (among others) the following
properties:

Be1 (Normalization) The complex Z(0) is quasiisomorphic to the constant sheaf
Z positioned in degree 0, the complex Z(1) is quasiisomorphic to the sheaf
O∗ of invertible functions positioned in degree 1.

Be2 (The Beilinson Soulé Vanishing Conjecture) For n > 0 the complex Z(n)
is acyclic outside the interval [1, n], the n-th cohomology sheaf Hn(Z(n))
coincides with the sheaf KMn of Milnor Kn-groups.

Be3 (Relationship to K-theory) For any X ∈ Sm/F there exists a natural spec-
tral sequence

Ep,q2 = Hp
Zar(X,Z(q))⇒ K2q−p(X)
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which rationally degenerates and defines isomorphisms ofH∗
Zar(X,Z(∗))⊗Q

with subsequent factors of the γ filtration on K∗(X)⊗Q.
Be4 (The Beilinson-Lichtenbaum Conjecture) For any l prime to charF the com-

plex Z/l(n) = Z(n) ⊗L Z/l is quasiisomorphic to τ≤nRπ∗(µ
⊗n
l ). Here π is

the obvious morphism of sites (Sm/F )et → (Sm/F )Zar and τ≤n denotes
trancation at the level n.

In this section we define (following [V 2]) the motivic complexes Z(n) and es-
tablish some of there elementary properties.

Consider the sheaf Ztr(G
∧n
m ). According to definitions (see §0) Ztr(G

∧n
m ) co-

incides with Ztr(G
×n
m )/Dn (here Gm stands for the multiplicative group scheme

Gm = A1 \ {0}) and Dn is the sum of images of homomorphisms

Ztr(G
×n−1
m )→ Ztr(G

×n
m )

given by the embeddings of the form

(x1, . . . , xn−1) 7→ (x1, . . . , 1, . . . , xn−1).

The subsheaf Dn is in fact a direct summand of Ztr(G
×n
m ) (see §0). The corre-

sponding projection p : Ztr(G
×n
m )→ Dn is given by the formula

p =
∑

I

(−1)card(I)−1(pI)∗,

where I runs through all non empty subsets of {1, ..., n} and pI : G×n
m → G×n

m is
the coordinate morphism, replacing all I-entries by 1 ∈ Gm. The sheaf Ztr(G

∧n
m )

coincides with the complementary direct summand and may be also identified with
the intersection of kernels of homomorphisms (pI)∗ over all non empty subsets
I ⊂ {1, ..., n} (since (pI)∗p = (pI)∗ for any I 6= ∅). Furthermore, with these
notations we have a canonical direct sum decomposition

(3.0) Ztr(G
×n
m ) =

n⊕

m=0

⊕

I⊂{1,...,n}
card I=m

Ztr(G
∧m
m ) =

n⊕

m=0

Ztr(G
∧m
m )(

n
m)

Definition 3.1. The motivic complex Z(n) of weight n on Sm/F is the com-
plex C∗(Ztr(G

∧n
m ))[−n] = C∗(Ztr(G

×n
m )/Dn)[−n]. For a smooth scheme X over F

we define its motivic cohomology groups Hi
M(X,Z(n)) as Zariski hypercohomology

Hi
Zar(X,Z(n)).

Note that Z(n) is a complex of sheaves with transfers in Nisnevich topology (ac-
tually even in the etale topology) with homotopy invariant cohomology presheaves.
Thus Corollary 1.2 shows that H∗

Zar(X,Z(n)) = H∗
Nis(X,Z(n)). Using further

Theorem 1.5 we see that Hi
M(X,Z(n)) = HomDM−(F )(M(X),Z(n)).

The motiv Z(1) is called the Tate motiv. For any X ∈ DM−(F ) we denote by
X(n) the tensor product X ⊗Z(n). In particular for an abelian group A we denote
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by A(n) the tensor product complex A⊗Z(n). Proposition 2.8 implies easily, that
A(n) may be identified with the complex C∗(Ztr(G

∧n
m ) ⊗ A)[−n]. In particular

Z/l(n) = C∗(Ztr(G
∧n
m )/l)[−n].

Proposition 2.8 implies that for each m,n we have a canonical isomorphism
Z(m)⊗ Z(n)

∼
→ Z(m+ n) and the following diagrams commute for all m,n, p

Z(m)⊗ Z(n)⊗ Z(p)
∼

−−−−→ Z(m+ n)⊗ Z(p)

∼
=



y

∼
=



y

Z(m)⊗ Z(n+ p)
∼

−−−−→ Z(m+ n+ p).

Lemma 3.2.

(1) The complex Z(0) is canonically quasisomorphic to the constant sheaf Z,
positioned in degree 0, the complex Z(1) is canonically quasiisomorphic to
the sheaf O∗ positioned in degree one.

(2) The complex Z(n) is acyclic in degrees > n.
(3) For all n,m ≥ 0 we have a natural isomorphism Ztr(G

∧n
m )⊗tr Ztr(G

∧m
m ) =

Ztr(G
∧(n+m)
m ) and hence a natural quasiisomorphism Z(n)⊗Z(m)

∼
= Z(n+

m).

Proof. Identification of the complex Z(0) is straightforward. The complex Z(1)
is a canonical direct summand in C∗(Ztr(Gm))[−1]. To identify Z(1) we start
by computing the cohomology presheaves of the complex C∗(Ztr(Gm))[−1]. Let
U ∈ Sm/F be any smooth affine scheme. Denoting by Hi the i-th cohomology
presheaf of C∗(Ztr(Gm))[−1] we have (using the notations introduced in [S-V]) the
following identifications

Hi(U) = H1−i(C∗(Ztr(Gm))(U)) = Hsin
1−i(U ×Gm/U).

Computation of singular homology of relative smooth curves - [S-V §3] shows that

Hi(U) =0 i 6= 1

H1(U) =Pic(U × P1, U × 0
∐

U ×∞).

The exact sequence relating relative Picard group to the absolute ones shows imme-
diately that Pic(U × P1, U × 0

∐
U ×∞) = O∗(U)⊕ Z. This computation implies

easily that all cohomology sheaves of Z(1) except forH1 vanish andH1(Z(1)) = O∗.
Acyclicity of the complex Z(n) in degrees > n is obvious from the construc-

tion. The last statement follows from the identification Ztr(G
×n
m )⊗tr Ztr(G

×m
m ) =

Ztr(G
×(n+m)
m ) and right exactness of the functor ⊗tr.

Remark 3.2.0 The proof of the Lemma 3.2 gives the following explicit way to iden-
tify the presheaf H1(Z(1)) with O∗. To each f ∈ O∗(U) = HomSm/F (U,Gm) we

associate the class of its graph Γf ∈ Ztr(Gm)(U) in H1(Z(1))(U) = Ztr(G
∧1
m )(U)/

/ Im(Ztr(G
∧1
m )(U × A1)). Vice versa start with an irreducible cycle Z ⊂ U × Gm

finite and surjective over U . This cycle defines an invertible function p2 ∈ O
∗(Z),

taking the norm of this function from Z to U gives us an invertible function
fZ = NZ/U (p2) ∈ O

∗(U). The two above maps define mutually inverse isomor-

phisms of O∗(U) and H1(Z(1))(U) (at least for affine U ’s).
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Corollary 3.2.1. For any X ∈ Sm/F we have the following formulae:

Hi
M(X,Z(0)) =

{

H0(X,Z) if i = 0

0 if i 6= 0

Hi
M(X,Z(1)) =







H0(X,O∗) if i = 1

Pic(X) if i = 2

0 if i 6= 1, 2

The formula (3.0) gives the following identification of the motiv of G×n
m .

Lemma 3.3. For any n ≥ 0 we have the natural direct sum decomposition

M(G×n
m ) =

n⊕

m=0

Z(m)[m](
n
m).

For any X, Y ∈ Sm/F we get a natural pairing

Hi
M(X,Z(n))⊗Hj

M(Y,Z(m)) = HomDM−(F )(M(X),Z(n)[i])⊗

⊗ HomDM−(F )(M(Y ),Z(m)[j])→ HomDM−(F )(M(X)⊗M(Y ),

(Z(n)⊗ Z(m))[i+ j]) = Hi+j
M (X × Y,Z(n+m)).

Using these pairings and the homomorphism in motivic cohomology induced by the
diagonal embedding ∆ : X → X×X one makes H∗,∗

M (X) =
⊕

i,nH
i
M(X,Z(n)) into

a bigraded associative ring. Note further that H1,1
M (SpecF ) = F ∗. Thus we get a

canonical homomorphism from the tensor algebra T (F ∗) of the multiplicative group
F ∗ to the subring ⊕∞

n=0H
n,n
M (SpecF ) of the motivic cohomology ring H∗,∗

M (SpecF ).

Theorem 3.4. The natural homomorphism T (F ∗) → ⊕∞
n=0H

n,n
M (SpecF ) defines

an isomorphism KM
∗ (F )

∼
−→ ⊕∞

n=0H
n,n
M (SpecF ) (here KM

∗ (F ) is the Milnor ring of
the field F - see [B-T]).

Proof. We’ll use the notation H∗,∗
M (F ) for H∗,∗

M (SpecF ). Note first of all that mo-
tivic cohomology H∗

M(F,Z(n)) coincides up to a shift of degrees with homology of
the complex C∗(Ztr(G

∧n
m ))(F ): Hi

M(F,Z(n)) = Hn−i(C∗(G
∧n
m )(F )). In particular

Hn,n
M (F ) = Coker

(

Ztr(G
∧n
m )(A1

F )
∂0−∂1−−−−→ Ztr(G

∧n
m )(SpecF )

)

.

Moreover products in the motivic cohomology ring H∗,∗
M (F ) may be computed as

follows. Every pair of cycles Z ⊂ G×n
m × ∆p, T ⊂ G×m

m × ∆q defines a cycle
Z × T ⊂ G×n+m

m × ∆p × ∆q. In this way we get a homomorphism of com-
plexes C∗(Ztr(G

×n
m ))(F )⊗ C∗(Ztr(G

×m
m ))(F ) → C∗,∗(Ztr(G

×n+m
m ))(F ), which ob-

viously factors to define a homomorphism C∗(Ztr(G
∧n
m ))(F )⊗C∗(Ztr(G

∧m
m ))(F )→

C∗,∗(Ztr(G
∧n+m
m ))(F ). Composing this homomorphism with the shuffle map (see
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§ 0) we finally get a homomorphism of complexes Z(n)(F ) ⊗ Z(m)(F ) → Z(n +
m)(F ) which defines the desired pairings in cohomology.

Every n-tuple (a1, ..., an) of elements of F ∗ defines an F -rational point
(a1, ..., an) ∈ G×n

m . We’ll denote by [a1, ..., an] the class of this rational point in
Hn,n

M (F ). According to definitions [a1, ..., an] = 0 if at least one of ai is equal to
1. Moreover the definition of products in motivic cohomology implies easily that
[a1, ..., an] · [b1, ..., bm] = [a1, ..., an, b1, ...bm]. This remark shows that the homomor-
phism (F ∗)⊗n → Hn,n

M (F ) sends the tensor a1 ⊗ ... ⊗ an to [a1, ..., an]). We first
check that the homomorphism (F ∗)⊗n → Hn,n(F ) factors through KM

n (F ). To do
so it suffices to verify that that the class of the rational point (a, 1−a) ∈ G×2

m dies in

H2,2
M (F ). The proof of this fact requires the use of the transfer homomorphisms in

motivic cohomology. We start by reminding the definition and properties of these
homomorphisms.

Let j : F →֒ E be a field extension. Extending scalars in cycles we get a canon-
ical homomorphism of complexes C∗(Ztr(G

∧n
m ))(F ) → C∗(Ztr(G

∧n
m ))(E) and the

induced homomorphism in motivic cohomology j∗ : Hi
M(F,Z(n))→ Hi

M(E,Z(n)).
We often use the notation xE for the image j∗(x) ∈ H

i
M(E,Z(n)) of the element

x ∈ Hi
M(F,Z(n)). The homomorphism j∗ : H∗,∗

M (F ) → H∗,∗
M (E) is obviously com-

patible with products in motivic cohomology.
Assume now that E/F is a finite field extension. Taking direct images of cycles

we get a homomorphism of complexes C∗(G
∧n
m )(E) → C∗(G

∧n
m )(F ) and hence the

induced homomorphisms in homology groups

NE/F : Hi(C∗(G
∧n
m )(E)) = Hn−i,n

M (E)→ Hi(C∗(G
∧n
m )(F )) = Hn−i,n

M (F ).

Lemma 3.4.1. Let E/F be a finite field extension and let further K/F be a finite
normal field extension such that HomF (E,K) 6= ∅ . For any x ∈ Hn,n

M (E) and
y ∈ Hm,m

M (F ) we have:

(1) NE/F (yE · x) = y · NE/F (x), NE/F (x · yE) = NE/F (x) · y. In particular
NE/F (yE) = [E : F ] · y.

(2) (NE/F (x))K = [E : F ]i ·
∑

j∈HomF (E,K) j∗(x) (here [E/F ]i stands for the

inseparable degree of the field extension E/F ).

(3) The homomorphism NE/F : E∗ = H1,1
M (E)→ F ∗ = H1,1

M (F ) coincides with
the usual norm homomorphism in field extensions.

Proof. The first two properties follow immediately from the corresponding proper-
ties of the direct image homomorphism for cycles. The last property follows from
(2), since the homomorphism F ∗ = H1,1

M (F )→ K∗ = H1,1
M (K) is injective.

Lemma 3.4.2. Assume that there exists an integer N > 0 such that N ·[a, 1−a] = 0
for any field F and any element a ∈ F ∗ \ {1} (resp. N · [a,−a] = 0 for any F and
any a ∈ F ∗). Then [a, 1−a] = 0 ∀F ∀a ∈ F ∗\{1} (resp. [a,−a] = 0 ∀F ∀a ∈
F ∗).

Proof. The proof is the same in both cases so we’ll consider only the first one. It
suffices to show that if all symbols of the form [a, 1 − a] are killed by an integer
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N = Mp, where p is a prime then all such symbols are killed by M already. The
case a ∈ (F ∗)p is easy so we’ll assume that a is not p-th power. Set α = a1/p,
E = F (α). According to our assumptions 0 = Mp · [α, 1 − α] = M · [a, 1 − α].
Applying to this equation the homomorphism NE/F and using Lemma 3.4.1 we
get:

0 = NE/F (M ·[a, 1−α]) = M ·[a]·NE/F ([1−α]) = M ·[a]·[NE/F (1−α)] = M ·[a, 1−a].

Proposition 3.4.3. For any field F and any a ∈ F ∗ \ {1} the element [a, 1− a] ∈
H2,2

M (F ) is trivial.

Proof. For any a, b ∈ F ∗ \ {1} consider the closed subscheme Y ⊂ A1 ×Gm, given
by the equation

X2 − (t · (a+ b) + (1− t) · (1 + ab))X + ab = 0

(here t is the coordinate in A1 and X is the coordinate in Gm). One checks imme-
diately that the projection p2 : Y → Gm is an isomorphism so that in particular
Y is integral. Moreover it’s clear that Y is finite and surjective over A1 and hence
defines an element y ∈ Ztr(G

∧1
m )(A1). Note that ∂0(y) = [ab] + [1] = [ab] and

∂1(y) = [a]+[b] (this shows again that [ab] = [a]+[b]). Next consider the closed em-
bedding Y →֒ A1×G×2

m obtained by means of the diagonal embedding Gm →֒ G×2
m

and denote by y′ ∈ Ztr(G
∧2
m )(A1) the corresponding element. The faces of y′ are

given by the formulae ∂0(y
′) = [ab, ab] + [1, 1] = [ab, ab] ,∂1(y

′) = [a, a] + [b, b]. This
gives us the relation [ab, ab] = [a, a] + [b, b]. Taking here a = b and using bimulti-
plicativity of the symbol [−,−] we see that 2 · [a,−a] = 0 ∀a ∈ F ∗. Using Lemma
3.4.2 we conclude that in fact [a,−a] = 0 ∀a ∈ F ∗. The relation [a,−a] = 0
implies immediately that [a, 1 − a] + [a−1, 1 − a−1] = 0 ∀a ∈ F ∗ \ {1}. Assume
now that a ∈ F ∗ is an element such that a6 6= 1. Consider a closed subscheme
Z ⊂ A1 × (Gm \ {1}) given by the equation

X3 − t · (a3 + 1) ·X2 + t · (a3 + 1) ·X − a3 = 0.

Once again one checks immediately that the projection p2 : Z → Gm \ {1} is an
isomorphism, so that Z is, in particular, integral. The fiber of Z over 0 ∈ A1

consists of all cubical roots of a3 and the fiber of Z over 1 ∈ A1 consists of a3 and
two roots x1, x2 of the equation X2 − X + 1 = 0. We embed Z into A1 × G×2

m

using the embedding Gm \ {1} →֒ G×2
m x 7→ (x, 1 − x) and denote by z′ the

corresponding element in Ztr(G
∧2
m )(A1). Assume for the moment that F contains

all roots (in the algebraic closure of F ) of the equation X6 − 1 = 0. In this case
∂0(z

′) = [a, 1− a] + [ξa, 1− ξa] + [ξ2a, 1− ξ2a] = [a, 1− a3] + [ξ, (1− ξa)(1− ξ2a)2],
where ξ is the generator of the group µ3 (ξ = 1 if char(F ) = 3). At the same
time ∂1(z

′) = [a3, 1 − a3] + [x1, 1 − x1] + [x2, 1 − x2] = [a3, 1 − a3]. Multiplying
the relation ∂0(z

′) = ∂1(z
′) by 3 and keeping in mind that ξ3 = 1 we get the

relation 2[a3, 1 − a3] = 0. Using once again the transfer argument we conclude
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further that 6[a, 1− a] = 0 for any a ∈ F ∗ \ {1}. Lemma 3.4.2 shows finally that
[a, 1− a] = 0 ∀a ∈ F ∗ \ {1}.

Proposition 3.4.2 shows that the homomorphism T (F ∗) → ⊕∞
n=0H

n,n
M (F ) fac-

tors through the Milnor ring KM
∗ (F ). We denote by λ = λF the resulting ring

homomorphism KM
∗ (F )→ ⊕∞

n=0H
n,n
M (F ).

Lemma 3.4.4. The homomorphism λ : KM
∗ (F ) → ⊕∞

n=0H
n,n
M (F ) is compatible

with transfer maps in Milnor K-theory and motivic cohomology respectively. In
other words for any finite field extension E/F the following diagram commutes

KM
∗ (E)

λE−−−−→ ⊕∞
n=0H

n,n
M (E)

NE/F



y NE/F



y

KM
∗ (F )

λF−−−−→ ⊕∞
n=0H

n,n
M (F ).

Proof. The general case is reduced easily to the case where the field F has no
extensions of degree prime to p (for a certain prime integer p) and [E : F ] = p. In
this case the Milnor ring KM

∗ (E) is additively generated by symbols of the form
{a1, ..., an−1, b} (ai ∈ F

∗, b ∈ E∗) - see [B-T]. Using Lemma 3.4.1 we easily conclude
that both images of such a symbol in Hn,n

M (F ) are equal to {a1, ..., an−1, NE/F (b)}.

Corollary 3.4.5. The homomorphism λF : KM
n (F )→ Hn,n

M (F ) is surjective.

Proof. The group Hn,n
M (F ) is generated by classes of closed points in G×n

m . Each
closed point x ∈ G×n

m defines a finite field extension E = F (x) of F and a rational
point x′ = (x′1, ..., x

′
n) ∈ G×n

m (E). Moreover according to the definition of the
transfer maps in motivic cohomology we have : [x] = NE/F ([x′]). Lemma 3.4.4
shows now that [x] = λF (NE/F ({x′1, ..., x

′
n})).

End of the proof of the Theorem 3.4.
To finish the proof we define a homomorphism Hn,n

M (F )→ KM
n (F ) inverse to λF .

Let v ∈ G×n
m be any closed point. The residue field F (v) is a finite extension of

F and we set θ(v) = NF (v)/F ({X1(v), ..., Xn(v)}) ∈ K
M
n (F ). The usual argument

involving the Weil reciprocity formula (see [N-S]) shows that the homomorphism
θ : Ztr(G

×n
m )(F ) → KM

n (F ) killes the image of ∂0 − ∂1 and thus defines a homo-
morphism θ : Hn,n

M (F )→ KM
n (F ) inverse to λF .

§ 4. Fundamental distinguished triangles in the category DM−(F ).

In this section we construct (following [V 2]) several fundamental distinguished
triangles in the categoryDM−(F ), which lead to various exact sequences of motivic
cohomology. We also identify motives of affine and projective vector bundles and
of blow ups (with smooth center).

Lemma 4.1. Let X = U ∪V be a (Zariski) open covering of a scheme X ∈ Sm/F .
Then we have a natural distinguished triangle

M(U ∩ V )→M(U)⊕M(V )→M(X)→M(U ∩ V )[1]
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in the category DM−(F ).

Proof. One checks easily that the following sequence of Nisnevich sheaves is exact
(cf. Lemma 1.6)

0→ Ztr(U ∩ V )→ Ztr(U)⊕ Ztr(V )→ Ztr(X)→ 0.

This gives us a distinguished triangle

Ztr(U ∩ V )→ Ztr(U)⊕ Ztr(V )→ Ztr(X)→ Ztr(U ∩ V )[1]

in the category D−(NSwT/F ). Applying to this triangle the functor C∗ we get
the triangle in question.

The proof of the following Proposition gives a typical example of the use of the
above distinguished triangles.

Proposition 4.2. Let E be a locally free OX-module and let p : Y = SpecS∗(E#)→

X be the corresponding affine vector bundle. Then M(p) : M(Y )
∼
−→ M(X) is a

quasiisomorphism.

Proof. Let X = U ∪ V be an open covering of X . The morphism p induces a map
from the distinguished triangle, corresponding to the covering Y = p−1(U)∪p−1(V )
to the distinguished triangle, corresponding to the covering X = U ∪V . This shows
immediately that if M(p) : M(p−1(U))→M(U), M(p) : M(p−1(V ))→M(V ) and
M(p) : M(p−1(U ∩V ))→M(U ∩V ) are quasiisomorphisms, then M(p) : M(Y )→
M(X) is a quasiisomorphism as well. This remark allows to reduce the general case
of our statement to the situation when the locally free sheef E is trivial. In the latter
case Y = X×An. Proceeding by induction on n it suffices to consider the case n = 1.
Finally the natural morphism M(i0) : M(X)→M(X ×A1) is a quasiisomorphism
according to Proposition 1.14 and hence M(p) : M(X × A1) → M(X) is also a
quasiisomorphism (since pi0 = 1X).

As a next application of the distinguished triangle of Lemma 4.1 we compute
the motives of the affine space without the origin and of the projective space.

Proposition 4.3. There exists a canonical direct sum decomposition

M(An \ 0) = Z(0)⊕ Z(n)[2n− 1].

Proof. We proceed by induction on n. The case n = 1 is covered by Lemma
3.3. In the general case we cover the scheme X = An \ 0 by two open pieces
U = {x ∈ An : x1 6= 0}, V = {x ∈ An : x2 6= 0 or x3 6= 0, ..., or xn 6= 0}. Ob-
viously V = A1 × (An−1 \ 0), U ∩ V = Gm × (An−1 \ 0). Induction hypothesis
and Proposition 4.2 show that M(U) = Z(0) ⊕ Z(1)[1], M(V ) = Z(0) ⊕ Z(n −
1)[2n − 3], M(U ∩ V ) = (Z(0) ⊕ Z(1)[1]) ⊗ (Z(0) ⊕ Z(n − 1)[2n − 3]) = Z(0) ⊕
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⊕Z(n − 1)[2n − 3] ⊕ Z(1)[1] ⊕ Z(n)[2n − 2]. Furthermore it’s clear from the con-
struction that the homomorphism

M(U ∩ V ) = Z(0)⊕ Z(1)[1]⊕ Z(n− 1)[2n− 3]⊕ Z(n)[2n− 2]→

→M(U)⊕M(V ) = Z(0)⊕ Z(1)[1]⊕ Z(0)⊕ Z(n− 1)[2n− 3]

sends the second and the third term on the left isomorphically onto the same sum-
mand on the right and sends Z(0) diagonally to Z(0)⊕Z(0). Thus the distinguished
triangle, corresponding to the covering X = U ∪ V simplifies and takes the form

Z(n)[2n− 2]→ Z(0)→M(X)→ Z(n)[2n− 1].

Now it suffices to note that the morphism M(SpecF ) = Z(0) → M(X) is induced
by the rational point (1, ..., 0) ∈ X and is split by the obvious morphism M(X)→
M(SpecF ) = Z(0) induced by the projection X → SpecF .

The canonical line bundle O(1) defines an element τ ∈ Pic(Pn) =
H2

M(Pn,Z(1)) = HomDM−(F )(M(Pn),Z(1)[2]). Raising τ to powers 0, 1, ..., n we

get the corresponding morphisms τk : M(Pn)→ Z(k)[2k].

Proposition 4.4. The canonical morphism

(1, τ, ..., τn) : M(Pn)→ Z(0)⊕ Z(1)[2]⊕ ...⊕ Z(n)[2n]

is an isomorphism.

Proof. Consider an open covering of Pn by two open pieces X = Pn = U ∪V , where
U = Pn \ [0 : ... : 0 : 1], V = (Pn)Tn

. It’s well known that the projection with the
center [0 : ... : 0 : 1] makes U into an affine line bundle over Pn−1. Furthermore
V = An, U ∩ V = An \ 0. Using Propositions 4.2 and 4.3 we conclude that the
distinguished triangle, corresponding to the above covering looks as follows:

Z(0)⊕ Z(n)[2n− 1]→ Z(0)⊕M(Pn−1)→M(Pn)→ Z(0)[1]⊕ Z(n)[2n]

Neglecting the trivial summand Z(0), which maps diagonally into Z(0)⊕M(Pn−1)
and shifting to the right, this triangle is simplified to

M(Pn−1)→M(Pn)→ Z(n)[2n]→M(Pn−1)[1]

Induction hypothesis implies that the canonical morphism M(Pn−1) → M(Pn)
is split by the morphism (1, τ, ..., τn−1). Thus we get a direct sum decomposition
M(Pn) = M(Pn−1)⊕Z(n)[2n]. This basically ends up the proof, the only thing still
missing is the verification of the fact that the above morphism M(Pn)→ Z(n)[2n]
coincides (at least up to a sign) with τn. This is not hard to do, we refer the reader
to [V 0] for technical details.

Let E be a locally free OX -module of constant rank n + 1. Denote by P =
P (E) = Proj S∗(E#) the corresponding projective bundle and by p : P → X
the corresponding projection. The same as above the canonical line bundle OP (1)
defines a morphism τ : P → Z(1)[2].
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Theorem 4.5. The natural morphism

M(P )
M(∆)
−−−−→M(P × P ) = M(P )⊗M(P )

M(p)⊗(1,τ,...,τn)
−−−−−−−−−−−→M(X)⊗ (Z(0)⊕

⊕ Z(1)[2]⊕ ...⊕ Z(n)[2n]) = M(X)⊕M(X)(1)[2]⊕ ...⊕M(X)(n)[2n]

is an isomorphism.

Proof. Proceeding in the same way as in the proof of the Proposition 4.2 we easily
reduce the general case to the case when the sheaf E is trivial. In the latter case
M(P (E)) = M(X)⊗M(Pn) and our statement follows from Proposition 4.4.

The following important theorem of Voevodsky is the basis for the construction
of several distinguished triangles in the category DM−(F ).

Theorem 4.6 [V 1]. Assume that resolution of singularities holds over F . Let F
be a presheaf with transfers such that for any connected scheme X ∈ Sm/F and
any section s ∈ F(X) there exists a proper birational morphism f : Y → X (with
Y ∈ Sm/F ) such that f∗(s) = 0 ∈ F(Y ). Then the complex C∗(F∼

Nis) is acyclic.

Theorem 4.7. Let Z ⊂ X be a smooth subscheme in a smooth scheme X. Denote
by p : BZ(X) → X the blow up of X with center Z. Then we have a natural
distinguished triangle

M(p−1(Z))→M(Z)⊕M(BZ(X))→M(X)→M(p−1(Z))[1].

Proof. It’s easy to check that the sequence of Nisnevich sheaves with transfers

0→ Ztr(p
−1(Z))→ Ztr(Z)⊕ Ztr(BZ(X))→ Ztr(X)

is exact. Denote by C the cokernel of the last homomorphism above. The sheaf C
is associated to the presheaf

U 7→
Ztr(X)(U)

Im(Ztr(Z)(U)⊕ Ztr(BZ(X)(U))
.

Our statement would follow from the above exact sequence and Theorem 4.6 as
soon as we show that the above presheaf satisfies the conditions of the Theorem
4.6. We start with a section s ∈ Ztr(X)(U) (with U ∈ Sm/F - smooth connected
scheme) and want to show that it either comes from Ztr(Z)(U) or otherwise can
be lifted to Ztr(BZ(X))(V ) after an appropriate base change V → U (with V → U
proper and birational). We may clearly assume that s is represented by a closed
integral subscheme S ⊂ U ×X , finite and surjective over U . The case when S is
contained in U × Z is trivial. Thus we may assume that S 6⊂ U × Z. Denote by
T the closure of (1U × p)

−1(S ∩ (U × (X \ Z)) in U × BZ(X). The scheme T is
clearly proper and surjective over U , but need not be finite over U . According to
the Platification Theorem - see [R-G] there exists a blow up (not necessarily with
smooth center) U ′ → U such that the proper inverse image T ′ of T in U ′ ×BZ(X)
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is flat over U ′. Since T ′ → U ′ is proper and finite over the generic point of U ′ we
conclude that T ′ → U ′ is finite. Finally there exists (according to the Definition
4.6) a proper birational morphism V → U ′ with V smooth over F . Thus we get a
proper birational morphism V → U with V smooth, such that the proper inverse
image T ′′ of T in V ×BZ(X) is finite over V . Obviously this T ′′ gives us a lifting
to Ztr(BZ(X))(V ) of the inverse image of S to Ztr(X)(V ).

Theorem 4.8. In conditions and notations of Theorem 4.7 assume further that Z
is everywhere of codimension c. Then we have a canonical direct sum decomposition

M(BZ(X)) = M(X)⊕
c−1⊕

i=1

M(Z)(i)[2i].

Proof. Denote by E the conormal sheaf of Z in X . It’s well known that the sheaf E
is a locally free OZ-module of rank c and p−1(Z) may be identified with a projective
bundle P (E). Using Theorem 4.5 we see that the distinguished triangle of Theorem
4.7 may be rewritten in the following more simple form:

c−1⊕

i=1

M(Z)(i)[2i]→M(BZ(X))→M(X)→
c−1⊕

i=1

M(Z)(i)[2i+ 1]

It suffices now to show that the morphism M(BZ(X))
M(p)
−−−→ M(X) admits a

canonical section αXZ : M(X) → M(BZ(X)). To do so we compare the above
distinguished triangle to a similar distinguished triangle corresponding to the blow
up q : BZ×{0}(X × A1) → X × A1 of Z × {0} ⊂ X × A1. It’s easy to see that

the morphism i0 : X → X × A1 induces a morphism (which we still denote i0)

BZ(X)
i0−→ BZ×{0}(X × A1) (which takes p−1(Z) to q−1(Z × {0})). Moreover it’s

clear from the proof of the Theorem 4.7 that we get an induced homomorphism from
the distinguished triangle corresponding to the blow up p to the one corresponding
to the blow up q. Note further that q−1(Z × {0}) = P (E ⊕ OZ) and the embed-

ding p−1(Z)
i0−→ q−1(Z × {0}) is the obvious one (corresponding to the embedding

E → E ⊕ OZ). This implies immediately that the restriction of the canonical bun-
dle OP (E⊕OZ)(1) to P (E) coincides with OP (E)(1) and hence the following diagram
commutes (for all k ≥ 0)

M(p−1(Z)) = M(P (E))
τk

−−−−→ Z(k)[2k]

M(i0)



y =



y

M(q−1(Z × {0})) = M(P (E ⊕OZ))
τk

−−−−→ Z(k)[2k]

Thus under the identification of the Theorem 4.5 the canonical morphism
M(i0) : M(p−1(Z) → M(q−1(Z × {0}) becomes an obvious embedding
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⊕c−1
i=0M(Z)(i)[2i]

ic/c−1
−−−−→ ⊕ci=0M(Z)(i)[2i]. Denote by prc/c−1 the obvious pro-

jection of the direct sum on the right onto the direct sum on the left. Consider
next the following commutative diagram with distinguished rows

⊕c−1
i=1 Z(i)[2i] −−−−→ M(BZ(X))

M(p)
−−−−→ M(X) −−−−→ . . .

ic/c−1



y M(i0)



y M(i0)



y

⊕c
i=1 Z(i)[2i] −−−−→ M(BZ×{0}(X × A1))

M(q)
−−−−→ M(X ×A1) −−−−→ . . .

The morphism M(i0) : M(X) → M(X × A1) is an isomorphism with inverse
M(pr1) : M(X × A1) → M(X) and hence coincides with M(i1). The morphism
i1 : X → X × A1 admits a canonical lifting to BZ×{0}(X × A1), which we still
denote by i1. Thus M(i1 · pr1) yields a section for M(q) and hence the bottom
triangle splits providing an isomorphism M(BZ×{0}(X × A1)) = M(X × A1) ⊕
⊕c

i=1M(Z)(i)[2i]. Denote by
∼

β the corresponding projection of M(BZ×{0}(X ×

A1)) onto ⊕ci=1M(Z)(i)[2i]. We finally note that the homomorphism βXZ = prc/c−1 ·
∼

β ·M(i0) : M(BZ(X))→ ⊕c−1
i=1Z(i)[2i] is a left inverse for the canonical morphism

⊕c−1
i=1Z(i)[2i] → M(BZ(X)) appearing in the top triangle. Thus the top trian-

gle also splits canonically , which provides us with the section αXZ : M(X) →
M(BZ(X)) for M(p).

To define the Gizin morphisms we need a slight generalization of Theorem 4.8.
Let U →֒ X be a (smooth) subscheme of X ∈ Sm/F (not necessarily closed).
We define the object M(X/U) ∈ DM−(F ) as the cone of the homomorphism
M(U)→M(X). Thus we always have a canonical distinguished triangle M(U)→
M(X)→M(X/U)→ M(U)[1]. Whenever f : X → X ′ is a morphism of schemes,
taking a subscheme U ⊂ X to a subscheme U ′ ⊂ X ′ we get an evident morphism
M(f) : M(X/U)→M(X ′/U ′). Let Z ⊂ X be a smooth closed subscheme, and let
U ⊂ X be a smooth subscheme not intersecting Z. In this case U lifts canonically
to a subscheme of BZ(X). The arguments used in the proof of the Theorem 4.7
apply without changes to this relative situation and provide us with a distinguished
triangle

M(p−1(Z))→M(BZ(X)/U)→M(X/U)→M(p−1(Z))[1].

Moreover the proof of the Theorem 4.8 also goes through nearly without changes.
This time one has to compare the distinguished triangle in question to the distin-
guished triangle corresponding to q with motives taken relative to the subscheme
U × A1. We’ll keep the notations introduced in the proof of Theorem 4.8 in this
relative situation as well. Thus we get in particular canonical morphisms

M(X/U)
αX

Z−−→M(BZ(X)/U), M(BZ×{0}(X ×A1)/U × A1)
∼

β
−→

c⊕

i=1

M(Z)(i)[2i].
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The absolute and relative morphisms thus obtained are compatible one with an-

other, so that the following diagram (and a similar diagram involving
∼

β) commutes:

M(X)
αX

Z−−−−→ M(BZ(X))


y



y

M(X/U)
αX

Z−−−−→ M(BZ(X)/U).

Let Z ⊂ X be a closed subscheme of a scheme X ∈ Sm/F . Denoting the open
subscheme X \ Z by U we define the motive of X with supports in Z MZ(X) as
the relative motive M(X/U). Assume that Z is smooth everywhere of codimension
c in X . In this case we can apply the previous discussion and get a canonical
morphism

MZ(X)
αX

Z−−→M(BZ(X)/U)
M(i0)
−−−−→M(BZ×{0}(X×A1)/U×A1)

∼
β
−→

c⊕

i=1

M(Z)(i)[2i]

It’s easy to see that the composition of this morphism with the projection prc/c−1

onto the direct sum of the first c−1 summands is trivial. Thus the above morphism
may be considered as a morphism from MZ(X) to M(Z)(c)[2c], which is called
the Gizin morphism and is denoted GXZ : MZ(X) → M(Z)(c)[2c]). The following
naturality properties of the Gizin morphism are straightforward from the definition.

Lemma 4.9.

(1) Let f : X ′ → X be a smooth morphism. Set Z ′ = Z ×X X ′, so that Z ′ is
a smooth closed subscheme of X ′ everywhere of codimension c. Then the
following diaggram commutes

MZ′(X ′)
M(f)
−−−−→ MZ(X)

GX′

Z′



y GX

Z



y

M(Z ′)(c)[2c]
M(f |Z′ )(c)[2c]
−−−−−−−−−→ M(Z)(c)[2c]

(2) Let Y ∈ Sm/F be a smooth scheme. Then the following diagram commutes

MZ×Y (X × Y )
GX×Y

Z×Y
−−−−→ M(Z × Y )(c)[2c]

=



y =



y

MZ(X)⊗M(Y )
GX

Z ⊗1M(Y )
−−−−−−−→ M(Z)(c)[2c]⊗M(Y )

(3) Let X = U ∪ V be a Zariski open covering of a (smooth) scheme X. In this
case we have a distinguished triangle

MZ∩(U∩V )(U ∩ V )→MZ∩U (U)⊕MZ∩V (V )→MZ(X)→MZ∩(U∩V )(U ∩ V )[1]
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Moreover the Gizin morphisms

GU∩V
Z∩(U∩V ) : MZ∩(U∩V )(U ∩ V )→M(Z ∩ (U ∩ V ))(c)[2c],

GUZ∩U : MZ∩U (U)→M(Z ∩ U)(c)[2c],

GVZ∩V : MZ∩V (V )→M(Z ∩ V )(c)[2c],

GXZ : MZ(X)→M(Z)(c)[2c]

define a homomorphism from the above distinguished triangle to the distin-
guished triangle corresponding to the Zariski open covering Z = (Z ∩ U) ∪
(Z ∩ V ) (twisted and shifted several times).

Theorem 4.10 (Cohomological purity in motivic cohomology)[V 2]. Let
Z ⊂ X be a smooth closed subscheme everywhere of codimension c. Then the Gizin
morphism GXZ : MZ(X)→M(Z)(c)[2c] is an isomorphism.

Proof. Lemma 4.9 (3) shows that the question is local with respect to the Zariski
topology on X . In perticular we may assume that there exists an etale morphism
f : X → Ad such that Z = f−1(Ad−c × {0}). Consider the cartesian square

Y
pr2
−−−−→ Z × Ac

pr1



y



yf |Z×1Ac

X
f

−−−−→ Ad

Since f |Z : Z → Ad−c is an etale morphism we conclude that the diagonal em-
bedding ∆Z : Z → Z ×Ad−c Z is both open and closed. Thus we may find an
open subscheme X ′ ⊂ Y such that X ′ ∩ Z ×Ad−c Z = ∆(Z). Denote by p1, p2

restrictions of projections pr1, pr2 to an open subscheme X ′ ⊂ Y . It’s clear that
the morphisms p1, p2 are etale. Moreover, identifying Z with its image in X ′ under
∆Z we see easily, that p−1

1 (Z) = Z, p−1
2 (Z ×{0}) = Z and the induced morphisms

(p1)|Z : Z → Z, (p2)|Z : Z → Z × {0} are both equal to identity. Using Lemma 4.9
we get two commutative diagrams

MZ(X ′)
GX′

Z−−−−→ M(Z)(c)[2c] MZ(X ′)
GX′

Z−−−−→ M(Z)(c)[2c]

M(p1)



y =



y M(p2)



y =



y

MZ(X)
GX

Z−−−−→ M(Z)(c)[2c] MZ×{0}(Z × Ac)
GZ×A

c

Z×{0}
−−−−−→ M(Z)(c)[2c]

Lemma 4.11 below shows that the vertical arrows in the above diagrams are iso-
morphisms. Thus to show that GXZ is an isomorphism it suffices to show that

GZ×A
c

Z×{0} = 1M(Z) ×G
A

c

{0} is an isomorphism. Thus we are reduced to showing that

the Gizin morphism GA
c

{0} : M{0}(A
c) → Z(c)[2c] is an isomorphism. Proposition

4.3 implies easily that M{0}(A
c)

∼
= Z(c)[2c]. Thus we only have to verify, that the

isomorphism given by Proposition 4.3 coincides with the Gizin morphism. We omit
the technical details of this verification - see [V 0].
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Lemma 4.11 (Etale excision - [V 1]). Let f : X ′ → X be an etale morphism
of smooth schemes. Let further Z ⊂ X be a smooth closed subscheme such that

Z ′ = f−1(Z)
f |Z′
−−→ Z is an isomorphism. Then the induced morphism M(f) :

MZ′(X ′) −→MZ(X) is an izomorphism.

Proof. The motiv MZ(X) (resp MZ′(X ′)) may be identified with
C∗(Ztr(X)/Ztr(X \ Z)) (resp. with C∗(Ztr(X

′)/Ztr(X
′ \ Z ′)). Thus it suffices

to show that the induced homomorphism of the quotient Nisnevich sheaves

f∗ : Ztr(X
′)/Ztr(X

′ \ Z ′) −→ Ztr(X)/Ztr(X \ Z)

is an isomorphism. To do so we have to compare the sections of these sheaves over
a smooth henselian scheme S. Note that (Ztr(X)/Ztr(X \ Z))(S) is a free abelian
group with basis consisting of closed integral subschemes T ⊂ X × S finite and
surjective over S, which are not contained in (X \ Z) × S. Any such scheme T is
again henselian and its (unique) closed point t0 lies in Z × S. Denote by T ′ the

inverse image of T under the morphism X ′ × S
f×1S
−−−→ X × S. The scheme T ′ is

etale over the henselian scheme T and hence (see [M]) splits into a disjoint sum

T ′ =
∼

T ′
∐
T ′

0

∐
...

∐
T ′
n, where the image of

∼

T ′ in T does not contain t0 and the
schemes T ′

i are finite and etale over T and henselian. Since t0 ∈ Z ×S we conclude
easily that the inverse image of t0 in X ′ × S consists of only one point t′0 ∈ Z

′ × S
and moreover F (t′0) = F (t0). This shows that n = 0 and the induced morphism
T ′

0 → T is an isomorphism. We define a map

φ : (Ztr(X)/Ztr(X \ Z))(S)→ (Ztr(X
′)/Ztr(X

′ \ Z ′))(S)

setting φ([T ]) = [T ′
0]. The above discussion shows that φf∗ = Id, f∗φ = Id.

We refer the reader to [F-V] for the proof of the following important Theorem.

Theorem 4.12 (Quasiinvertibility of the Tate object). Assume that reso-
lution of singularities holds over F . Then for any complexes A•, B• ∈ DM−(F )
tensoring with the identity endomorphism of Z(1) defines an isomorphism

HomDM−(F )(A
•, B•)

∼
−→ HomDM−(F )(A

•(1), B•(1)).

Corollary 4.12.1. Assume that resolution of singularities holds over F . Then for
any scheme X ∈ Sm/F multiplcation by τ ∈ H2

M(P1,Z(1)) = H2
M(P1/SpecF,Z(1))

defines isomorphisms

Hi
M(X,Z(n− 1))

∼
−→ Hi+2

M (X × P1/X,Z(n))

Hi
M(X,Z/l(n− 1))

∼
−→ Hi+2

M (X × P1/X,Z/l(n)).

Proof. This follows immediately from Theorem 4.12, since under identification
M(P1/SpecF ) = Z(1)[2] the element τ corresponds to the identity endomorphism
of Z(1).
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§ 5. Motivic cohomology of non

smooth schemes and the cdh-topology.

Recall that to each scheme X ∈ Sch/F we have associated in § 1 a Nisnevich
sheaf with transfers Ztr(X). This allows us to define a motiv M(X) of an arbitrary
scheme X as an object C∗(Ztr(X)) of the category DM−(F ) and to define motivic
cohomology of X with coefficients in an arbitrary complex C• ∈ DM−(F ) via the
formula

Hi
M(X,C•) = HomDM−(F )(M(X), C•[i]).

Note that according to the Theorem 1.5 for smooth schemes the new definition
coincides with the original one. Many of the properties of motivic cohomology
proved in § 4 for smooth schemes ,in particular the Mayer-Vietoris distinguished
triangle for open coverings, hold actually for arbitrary schemes. Moreover we also
have the Mayer-Vietoris distinguished triangle for the closed coverings.

Lemma 5.1. Let X = U ∪ V be a closed covering of a scheme X ∈ Sch/F . In
this case we have the following distinguished triangle in the category DM−(F )

M(U ∩ V )→M(U)⊕M(V )→M(X)→M(U ∩ V )[1].

Proof. The result follows immediately since the following sequence of Nisnevich
sheaves with transfers is exact (even as a sequence of presheaves).

0→ Ztr(U ∩ V )→ Ztr(U)⊕ Ztr(V )→ Ztr(X)→ 0.

The proof of the following result is identical to that of the Theorem 4.7.

Theorem 5.2. Assume that resolution of singularities holds over F . Let p : X ′ →
X be a proper morphism of schemes and let T ⊂ X be a closed subscheme such that
p is an isomorphism over X \ T . Then the bicomplex

M(p−1(T )) −→M(T )⊕M(X ′) −→M(X)

is acyclic and hence we have a natural distinguished triangle in DM−(F )

M(p−1(T )) −→M(T )⊕M(X ′) −→M(X) −→M(p−1(T ))[1].

If Z ⊂ X is a closed subscheme we define the motiv of X with supports in Z the
same way as it was done for smooth schemes in § 4, i.e. MZ(X) is the cone of the

homomorphism of complexes M(X \ Z)
M(i)
−−−→M(X).

Corollary 5.3. In conditions and notations of the previous Theorem let Z be a
closed subscheme of X. Then the bicomplex

Mp−1(Z∩T )(p
−1(T )) −→MZ∩T (T )⊕Mp−1(Z)(X

′) −→MZ(X)

is acyclic and hence we have a natural distinguished triangle in DM−(F )

Mp−1(Z∩T )(p
−1(T )) −→MZ∩T (T )⊕Mp−1(Z)(X

′) −→MZ(X) −→

−→Mp−1(Z∩T )(p
−1(T ))[1].

The following Lemma provides some elementary properties of motives with sup-
ports.
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Lemma 5.4. (1) Assume that the closed subscheme Z ⊂ X is a disjoint sum of
two subschemes : Z = Z1

∐
Z2. Then we have a natural isomorphism of motivs

with supports : MZ(X) = MZ1
(X)⊕MZ2

(X).
(2) Let Z ′ ⊂ Z ⊂ X be a pair of closed subschemes. In this case we have a natural
distinguished triangle in the category DM−(F )

MZ\Z′(X \ Z ′)→MZ(X)→MZ′(X)→MZ\Z′(X \ Z ′)[1].

Proof. (1) Set Ui = X \ Zi, U = X \ Z. Then U = U1 ∩ U2 and U1 ∪ U2 = X.
The Mayer-Vietoris property for the open coverings implies the acyclicty of the
following bicomplex

M(U) → M(U1)⊕M(U2) → M(X)

↓ ↓ =



y

M(X) → M(X)⊕M(X) → M(X).

Thus the cone of the left vertical arrow is quasiisomorphic to the cone of the middle
vertical arrow.

To prove (2) it suffices to note that the cone of the homomorphism MZ\Z′(X \
Z ′)→MZ(X) coincides with the total complex corresponding to the bicomplex

M(X \ Z)
=

−−−−→ M(X \ Z)


y



y

M(X \ Z ′) −−−−→ M(X)

and hence is canonically quasiisomorphic to MZ′(X).

Definition 5.5. We define the notion of a strictly dense open subscheme U in the
scheme X by induction on dimX. For schemes of dimension 0 the only strictly
dense open subscheme of X is X itself. In general we’ll be saying that U is strictly
dense in X iff there exists a proper morphism p : X ′ → X with X ′ ∈ Sm/F and a
closed subscheme T ⊂ X such that

(1) p is an isomorphism over X \ T
(2) dimT < dimX, dim p−1(T ) < dimX
(3) p−1(U) is dense in X ′, U ∩ T is strictly dense in T , p−1(U ∩ T ) is strictly

in p−1(T ).

Obviously for smooth schemes X strictly dense open subschemes are the same
as dense open subschemes, in the general case this is however a more restricting
condition. For one thing it’s obvious that each strictly dense open subscheme should
have a non-empty intersection with the singular locus of X . The above definition
essentially was devised for the sake of the following result.
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Theorem 5.6. Assume that resolution of singularities holds over F . Let C• ∈
DM−(F ) be a complex such that H∗

Z(X,C•) = 0 for any smooth irreducible scheme
X and any irreducible closed smooth subscheme Z 6= X. Then H∗

Z(X,C•) = 0 for
any X ∈ Sch/F and any closed subscheme Z ⊂ X such that X \Z is strictly dense
in X.

Proof. We first treat the case when X is smooth. The general case is reduced
immediately to the case when X is smooth and irreducible. In case Z is smooth
and irreducible there’s nothing to prove. The case of an arbitrary smooth Z follows
now from the additivity of MZ(X) with respect to Z:

MZ(X) = MZ1
(X)⊕MZ2

(X)

in case Z is a disjoint sum of two subschemes Z1 and Z2. In the general case we
may assume Z reduced and proceed by induction on dim Z. Since over a perfect
field each integral scheme is smooth at the generic point we can find a nonempty
open U ⊂ X , which contains generic points of all components of Z and such that
Z ∩ U is smooth. Denote by Z ′ the closed subscheme Z ∩ (X \ U). According
to our construction dim Z ′ < dim Z. On the other hand the closed subscheme
Z \ Z ′ ⊂ X \ Z ′ = U is smooth, so that it suffices to use the existence of the
distinguished triangle

MZ\Z′(X \ Z ′) −→MZ(X) −→MZ′(X) −→MZ\Z′(X \ Z ′)[1].

The case of an arbitrary scheme X follows now from Corollary 5.3 in view of the
Definition 5.5.

Definition 5.7. The cdh-topology (completely decomposed h-topology) on the cate-
gory Sch/F is defined as the weakest Grothendieck topology for which the following
two families of morphisms are coverings

(1) Every Nisnevich covering is also a cdh-covering.
(2) Let p : X ′ → X be a proper morphism of schemes and let T ⊂ X be a closed

subscheme such that p is an isomorphism over X \ T . Then the morphism

T
∐
X ′ (i,p)
−−−→ X is a cdh-covering.

Note that covering of a scheme X by its irreducible components (considered as
closed reduced subschemes of X) is a cdh-covering. Furthermore it’s easy to see
from the definition than whenever X ′ → X is a cdh-covering each point x ∈ X
admits a lifting x′ ∈ X ′ with the same residue field: F (x) = F (x′). The last
property characterizes the cdh-coverings in the case of proper morphisms.

Lemma 5.8. Let p : X ′ → X be a proper morphism such that each point x ∈ X
admits a lifting x′ ∈ X ′ for which F (x) = F (x′). Then p is a cdh-covering.

Proof. Proceeding by Noethirian induction we may assume that for any proper
closed subscheme T ⊂ X the induced morphism X ′ ×X T → T is a cdh-covering.
Now the statement for X is obvious unless X is integral. Assume that X is integral.
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According to our assumptions there exists a closed integral subscheme X ′′ ⊂ X ′

such that the morphism p′′ = p|X′′ : X ′′ → X is birational. Let T ⊂ X be a
proper closed subscheme for which p′′ is an isomorphism over X \ T . Accord-

ing to definitions the family X ′′ p′′

−→ X, T →֒ X is a cdh-covering. Furthermore
X ′ ×X X ′′ → X ′′ is a cdh-covering (since it admits a section) and the morphism
X ′ ×X T → T is a cdh-covering according to the induction hypothesis. Thus
X ′ → X is a cdh-covering locally in the cdh-topology and hence is a cdh-covering.

We’ll call the cdh-coverings of Lemma 5.8 the proper cdh-coverings. A proper
cdh-covering p : X ′ → X of an integral scheme X is called a proper birational
cdh-covering in case the morphism p is an isomorphism over an appropriate neigh-
bourhood of the generic point of X . Note that the proof of Lemma 5.8 shows
that each proper cdh-covering of an integral scheme X admits a proper birational
refinement.

The following Proposition gives a clearer view on the structure of cdh-coverings.

Proposition 5.9. Every cdh-covering of a scheme X ∈ Sch/F has a refinement
of the following form

{Ui → X ′ −→ X}ni=1

where X ′ → X is a proper cdh-covering and {Ui → X ′}ni=1 is a Nisnevich covering
of the scheme X ′.

Proof. To abbreviate terminology we call coverings of the above type special cdh-
coverings. Note that to show that a given covering of a scheme X admits a special
refinement is equivallent to showing that there exists a proper cdh-covering X ′ → X
such that the induced covering of the scheme X ′ admits a Nisnevich refinement.
Thus one may always replace the scheme X by any of its proper cdh-coverings
(and the given covering of X by the induced covering of X ′). Furthermore if
X = X1

∐
X2 is a disjoint sum of two schemes, then verifying the statement for X

(and a given covering ofX) is equivalent to verifying it for bothXi (and the induced
coverings). The above remarks imply in particular that to verify our statement
for a scheme X (and a given covering of X) is equivallent to veryfing it for all
irreducible components of X , considered as closed integral subschemes of X (and
the corresponding induced coverings of these components).

Note further that according to definitions each cdh-covering admits a refinement
of the form {X i

n → Xn → Xn−1 → ... → X0 = X}mi=1, where {X i
n → Xn}

m
i=1 is a

Nisnevich covering of the scheme Xn and each stage in the tower Xn → ...→ X0 =
X is either a Nisnevich covering or a proper cdh-covering. Proceeding by induction
on the length of the tower one sees easily that it suffices to verify that coverings

of the form T
p
−→ U

q
−→ X (where T

p
−→ U is a proper covering and U

q
−→ X is a

Nisnevich covering) admit a special refinement.
Proceeding by the Noetherian induction we may assume that for any proper

closed subscheme Z ⊂ X the induced covering of Z admits a special refinement
and the scheme X is integral. In this case the scheme U is a disjoint sum of its
connected components U =

∐
Ui and each Ui is integral. Denote the inverse image
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of Ui in T by Ti. Replacing T → U by a finer covering we may assume further
that each Ti → Ui is a proper birational covering. Applying the Platification
Theorem (see [R-G]) to the morphism T → X we find a proper closed subscheme
Z ⊂ X such that for each i the proper inverse image T ′

i of Ti under the morphism
X ′ = BZ(X)→ X is flat over X ′. Thus for each i we get a commutative diagram

T ′
i



y

Ti ×X X ′ −−−−→ Ti


y



y

Ui ×X X ′ −−−−→ Ui


y



y

X ′ −−−−→ X

Note that the scheme X ′ is integral and birationally isomorphic to X , from which
one concludes easily that the scheme Ui ×X X ′ is integral as well. The morphism
T ′
i → Ui×X X

′ becomes flat being composed with the etale morphism Ui×X X
′ →

X ′ and hence is flat itself. Moreover the scheme T ′
i is integral and the morphism

T ′
i → Ui×XX

′ is proper and birational. Since every proper flat birational morphism
of integral schemes is an isomorphism we conclude that Ti ×X X ′ → Ui ×X X ′

admits a section. Thus the induced covering of the scheme X ′ admits a Nisnevich
refinement U ×X X ′ → X ′. Finally according to our induction hypothesis there
exists a proper covering Z ′ → Z such that the induced covering of Z ′ admits a
Nisnevich refinement. The morphism X ′

∐
Z ′ → X is a proper covering of X and

the induced covering of the scheme X ′
∐
Z ′ admits a Nisnevich refinement, which

ends up the proof.

¿From this point till the end of the § we assume that resolution of singulari-
ties holds over F . This assumption implies in particular that for smooth schemes
Lemma 5.8 admits the following Improvement.

Lemma 5.10. Let X be a smooth integral scheme. Then every proper birational

morphism X ′ p
−→ X is a cdh-covering.

Proof. According to definitions p admits a refinement which is a composition of
blow up’s with smooth centers. So it suffices to note that a blow up with a smooth
center satisfies the conditions of the Lemma 5.8.

Consider an obvious morphism of sites (Sch/F )cdh
θ
−→ (Sm/F )Nis and the in-

duced functors on the categories of abelian sheaves

(Sch/F )∼cdh
θ∗−→←−
θ∗

(Sm/F )∼Nis
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Proposition 5.11. The functor θ∗ : (Sm/F )∼Nis → (Sch/F )∼cdh is exact.

Proof. To prove the result we define a cdh-topology on the category Sm/F . This
topology is not defined in terms of covering families (since there is not enough fiber
products in the category Sm/F ), but in terms of covering sieves. More precisely,
every family of morphisms {Xi → X}i∈I in Sch/F defines a sieve on Sm/F ,
consisting of those arrows Y → X in the category Sm/F , which may be factored
through one of Xi → X . The covering sieves of X ∈ Sm/F for the cdh-topology
on Sm/F are those which contain a sieve defined by an appropriate cdh-covering
of X in Sch/F . One checks easily (using resolution of singularities) that restricting
a cdh-sheaf from the category Sch/F to Sm/F we get again a cdh-sheaf, i.e. the
inclusion functor Sm/F →֒ Sch/F is continious (in the terminology of [SGA 4]).
All in all we get a morphism of sites φ : (Sch/F )cdh → (Sm/F )cdh and a pair of
induced functors on the categories of sheaves

(Sch/F )∼cdh
φ∗
−→←−
φ∗

(Sm/F )∼cdh

Here φ∗ is the restriction functor and the functor φ∗ is left adjoint to φ∗. The functor
φ∗ has (in the present circumstances) also a right adjoint, which we denote by
e : (Sm/F )∼cdh −→ (Sch/F )∼cdh. In fact, the functor φ∗ on the category of presheaves
φ∗ : (Sch/F )∧ −→ (Sm/F )∧ has a right adjoint e : (Sm/F )∧ −→ (Sch/F )∧ given
by the formula e(F)(Y ) = HomFunct(Sm/F,Sets)(hY ,F), where hY is the functor
on Sm/F represented by the scheme Y ∈ Sch/F . One checks easily (once again
using resolution of singularities) that the functor e actually takes cdh-sheaves to
cdh-sheaves and moreover φ∗ and e are mutually inverse equivalences of categories
(cf. [S-V § 6]). This implies immediately that φ∗ and e coincide and, in particular,
the functor φ∗ is exact. Finally the functor θ∗ coincides with the composition of φ∗

and the sheafification functor

(Sm/F )∼Nis
F7→F∼

cdh−−−−−→ (Sm/F )∼cdh

which is always exact - see [SGA 4].

In the sequell we’ll usually identify the categories (Sch/F )∼cdh and (Sm/F )∼cdh
via the quasiinverse equivalences φ∗ and φ∗ = e. In particular we’ll usually use the
notation (−)∼cdh for the inverse image functor θ∗ : (Sm/F )∼Nis → (Sch/F )∼cdh.

Proposition 5.12. Let F be a homotopy invariant Nisnevich sheaf with transfers.
Let further G be a Nisnevich sheaf such that G∼cdh = 0. Then Ext∗Nis(G,F) = 0.

Proof. We first verify our statement for certain special sheaves G. Let Z ⊂ X be a
closed smooth subscheme of a smooth scheme X . Denote by G(X,Z) the cokernel
of the homomorphism ZNis(BZ(X)) −→ ZNis(X).

(5.12.1). Ext∗Nis(G(X,Z),F) = 0.

Proof. One checks easily that the sheaf G(X,Z) fits into an exact sequence

0 −→ ZNis(p
−1(Z)) −→ ZNis(Z)⊕ ZNis(BZ(X)) −→ ZNis(X) −→ G(X,Z) −→ 0
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which gives us a spectral sequence converging to Ext∗Nis(G(X,Z),F) and whose E1

term loks as follows:

H∗
Nis(X,F) −→ H∗

Nis(Z,F)⊕H∗
Nis(BZ(X),F) −→ H∗

Nis(p
−1(Z),F).

Since Nisnevich cohomology with coefficients in F satisfies descent for blow-up’s -
see Theorems 4.8 and 1.5 one concludes immediately that the E2-term of the above
spectral sequence is zero.

To conclude the proof we note that the condition G∼cdh = 0 is equivalent to the
fact that for each integral scheme X ∈ Sm/F and each section s ∈ G(X) there
exists a cdh-covering sieve of X such that s dies being restricted to this sieve.
Furthermore resolution of singularities together with Proposition 5.9 and Lemma
5.10 imply that every cdh-covering sieve of X admits a refinement defined by a
covering family of the form {Ui → Xn → ... → X0 = X}ni=1 where {Ui → Xn}

n
i=1

is a Nisnevich covering of Xn and Xn → ... → X0 = X is a tower of blow-up’s
with smooth centers. Thus for each s ∈ G(X) there exists a tower of blow-up’s
with smooth centers Xn → ...→ X0 = X and a Nisnevich covering {Ui → Xn}

n
i=1

of Xn such that s|Ui
= 0 ∀i. Since G is a Nisnevich sheaf we conclude further

that s|Xn
= 0. Denote by Gn the subsheaf of G generated by sections which can

be killed by a tower of ≤ n blow-up’s with smooth centers (in particular G0 = 0).
According to the construction for each n the quotient sheaf Gn/Gn−1 is generated
by sections which can be killed by just one blow-up with a smooth center. Thus for
each n there exists an epimorphism onto Gn/Gn−1 from the direct sum of sheaves
of the form G(X,Z). We now proceed to show that ExtiNis(G,F) = 0 by induction

on i. Induction hypothesis and (5.12.1) show that ExtiNis(Gn/Gn−1,F) = 0 for all
n. This implies further that ExtiNis(Gn,F) = 0 for all n. Finally we use the exact
sequence (cf. the proof of Lemma 0.6)

0→
∞⊕

n=0

Gn −→
∞⊕

n=0

Gn −→ G → 0

to conclude that ExtiNis(G,F) = 0.

Corollary 5.12.2. In conditions and notations of Proposition 5.12 the Nisnevich
sheaf F is a sheaf in the cdh-topology as well.

Proof. One checks immediately that F is separated in the cdh-topology (to do so
it suffices to note that the homomorphism F(X) → F(BZ(X)) is injective for a
blow-up with a smooth center Z -see Theorem 4.8). This implies that the canonical
homomorphism F → F∼

cdh is injective. Denote by G the quotient Nisnevich sheaf,
so that G fits into an exact sequence

0→ F → F∼
cdh → G → 0

and, in particular G∼cdh = 0. Since Ext1Nis(G,F) = 0 we conclude that the above
sequence of Nisnevich shieves splits, so that G is a direct summand in the cdh-sheaf
F∼
cdh and hence is a cdh-sheaf itself. Thus G = 0.
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Denote by α : (Sm/F )cdh −→ (Sm/F )Nis the obvious morphism of cites. Note
that θ = αφ, moreover the functor α∗ : (Sm/F )∼cdh −→ (Sm/F )∼Nis is just the
forgetful functor, whereas the functor α∗ : (Sm/F )∼NIs −→ (Sm/F )∼cdh coincides
with the sheafification functor (−)∼cdh.

Corollary 5.12.3. Let F be a homotopy invariant Nisnevich sheaf with transfers.
Then Riα∗(F) = 0 for i > 0 and hence H∗

cdh(X,F) = H∗
Nis(X,F) for any X ∈

Sm/F .

Proof. Let 0 → F
ǫ
−→ I0 d

−→ I1 d
−→ . . . be the cdh-injective resolution of the cdh-

sheaf F . Applying the functor α∗ to the above resolution we get the same complex
of sheaves, but considered now as a complex of Nisnevich sheaves. Thus we have
to verify that Nisnevich cohomology sheaves Hi of the complex I• are trivial for
i > 0. We proceed by induction on i. Note first that (Hi)∼cdh = 0. Denote by Zi

the kernel of the homomorphism Ii
d
−→ Ii+1, so that we get an exact sequence of

Nisnevich sheaves

0 −→ F −→ I0 −→ . . . → Ii−1 d
−→ Zi

p
−→ Hi → 0

and hence an element in Exti+1
Nis(H

i,F). The resulting extension class is trivial
according to Proposition 5.12. Since the sheaves I0, ..., Ii−1 are injective considered

as Nisnevich sheaves as well this implies easily that the epimorphism Zi
p
−→ Hi splits

and hence Hi is a direct summand of the cdh-sheaf Zi and hence is a cdh-sheaf
itself. Thus Hi = 0.

We delay the proof of the following result till § 12.

Theorem 5.13. The cdh-cohomological dimension of any scheme X ∈ Sch/F is
finite (and ≤ dimX).

Theorem 5.13 together with results of § 0 show that cdh-hypercohomology of a
scheme X ∈ Sch/F with coefficients in an arbitrary complex of cdh-sheaves makes
perfect sence and has all the expected properties.

Theorem 5.14. For any complex C• ∈ DM−(F ) and any scheme X ∈ Sch/F we
have natural identifications

H∗
M(X,C•) = H∗

cdh(X, (C
•)∼cdh).

Proof. For any X ∈ Sch/F let ZNis(X) : Sm/F → Ab be the Nisnevich sheaf as-
sociated to the presheaf U 7→ Z[HomSch/F (U,X)]. One checks easily that ZNis(X)
is a subsheaf in Ztr(X) and moreover ZNis(X)∼cdh = Zcdh(X). This remark gives
us a sequence of natural homomorphisms

Hi
M(X,C•) = ExtiNSwT (Ztr(X), C•) −→ ExtiNis(Ztr(X), C•) −→

→ ExtiNis(ZNis(X), C•) −→ Exticdh(ZNis(X)∼cdh, (C
•)∼cdh) = Hi

cdh(X, (C
•)∼cdh).
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We have to show that the composition of these homomorphisms is an isomorphism.
We first treat the case of a smooth X . In this case the composition of the first two
homomorphisms is an isomorphism according to the Theorem 1.5. The proof of the
fact that the last map is also an isomorphism is identical to the proof of Corollary
1.1.1 taking into account Theorem 5.13 and Corollary 5.12.3. In the general case
we proceed by induction on dimX . Using additional induction on the number of
irreducible components of X and Lemma 5.1 one reduces the general case first to
the case of an integral scheme X . In the latter case resolution of singularities gives

us a proper birational morphism X ′ p
−→ X with X ′ smooth and irreducible. Let

Z ⊂ X be a proper closed subscheme such that p is an isomorphism over X \ Z.
In view of Theorem 5.2 (and Lemma 12.1) we get a commutative diagram with
exact rows (in which all motivic cohomology are taken with coefficients in C• and
all cdh-cohomology are taken with coefficients in (C•)∼cdh ).

−−−−→ Hi−1
M (p−1(Z)) −−−−→ Hi

M(X) −−−−→ Hi
M(X ′)⊕Hi

M(Z) −−−−→


y



y



y

−−−−→ Hi−1
cdh (p−1(Z)) −−−−→ Hi

cdh(X) −−−−→ Hi
cdh(X

′)⊕Hi
cdh(Z) −−−−→

Induction hypothesis and the five-Lemma finish the proof.

§ 6. Truncated etale cohomology and

the Beilinson-Lichtenbaum Conjecture.

The usual way to formulate the Beilinson-Lichtenbaum Conjecture (cf. § 3) is
to say that a complex of Nisnevich sheaves Z/l(n) is canonically quasiisomorphic
to τ≤nR(π0)∗(µ

⊗n
l ), where

π0 : (Sm/F )et → (Sm/F )Nis

is the obvious morphism of sites and τ≤n denotes the level n truncation functor.
We modify this conjecture slightly so that it would concern an isomorphism of two
objects of DM−(F ). Throughout this section F is a perfect field and l is an integer
prime to charF .

We start by reminding a few elementary properties of h-sheaves to be used later.
Recall that h-topology on the category Sch/F is a Grothendieck topology which
is stronger than the etale topology and which is essentially characterized by the
property that every proper surjective morphism is an h-covering (see [V 0] or [S-V]
for the explicit definition). Denote by

(Sch/F )h
π
−→ (Sm/F )Nis (Sch/F )h

ρ
−→ (Sm/F )et

the obvious morphism of sites (so that π = π0ρ).

Lemma 6.1. The inverse image functors

(Sm/F )∼Nis
π∗

−→ (Sch/F )∼h (Sm/F )∼et
ρ∗

−→ (Sch/F )∼h
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are exact.

Proof. The proof is identical to that of Proposition 5.11, using now Theorem 0.2
(which shows that every scheme X ∈ Sch/F admits a smooth h-covering) instead
of resolution of singularities.

The proof of Lemma 6.1 is based (the same as the proof of Proposition 5.11) on
the fact that one can define h-topology on the category Sm/F and moreover the
categories of sheaves (Sch/F )∼h and (Sm/F )∼h are canonically equivalent. In the
sequel we’ll usually identify these categories and often use the notation (−)∼h for
both π∗ and ρ∗.

Corollary 6.1.1. The direct image functors

π∗ : (Sch/F )∼h → (Sm/F )∼Nis ρ∗ : (Sch/F )∼h → (Sm/F )∼et

take injective sheaves to injective sheaves.

Lemma 6.2. Riρ∗(µ
⊗n
l ) =

{
µ⊗n
l if i = 0

0 if i 6= 0

Proof. The morphism ρ may be factored as a composition

(Sch/F )h
α
−→ (Sch/F )et

β
−→ (Sm/F )et

Since the restriction functor β∗ : (Sch/F )∼et → (Sm/F )∼et is obviously exact we
conclude that Riρ∗ = β∗R

iα∗. Finally the vanishing of Riα∗(µ
⊗n
l ) for i > 0 was

proved in [S-V § 10].

Corollary 6.2.1. For any etale sheaf F ∈ (Sm/F )∼et we have natural isomorphisms

Ext∗et(F , µ
⊗n
l ) = Ext∗h(ρ

∗F , µ⊗n
l )

Lemma 6.3. For any X ∈ Sm/F the natural embedding of etale sheaves Zet(X) →֒

Ztr(X) induces an isomorphism of h-sheaves Zh(X) = (Zet(X))∼h
∼
−→ (Ztr(X))∼h .

Proof. Note that the etale sheaf Zet(X) may be identified with a subsheaf of Ztr(X),
whose sections over U ∈ Sm/F are integral linear combinations of closed integral
subschemes Z ⊂ X×U which are finite surjective and etale over a component of U .
In view of Lemma 6.1 it suffices to show that (Ztr(X)/Zet(X))∼h = 0. To do so we’ll
show that for any U ∈ Sm/F and any Z ∈ Ztr(X)(U) there exists an h-covering
∼

U → U with
∼

U ∈ Sm/F such that the inverse image of Z in Ztr(X)(
∼

U) belongs

to Zet(X)(
∼

U). Obviously we may suppose that U is irreducible and Z is a closed
integral subscheme in X ×U finite and surjective over U . We proceed by induction
on degree d = [Z : U ]. Let U ′ → Z be a proper surjective morphism with U ′ smooth
and irreducible (see Theorem 0.2). The inverse image of Z in Ztr(X)(U ′) equals
Z ′ = cycle(U ′ ×U Z). One of components of the above cycle is the graph of the
section U ′ → U ′×U Z (which belongs to Zet(X)(U ′)) and all the other components
are of degree < d.
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Corollary 6.3.1. For any X ∈ Sm/F we have natural isomorphisms

Ext∗et(Ztr(X), µ⊗n
l ) = Ext∗et(Zet(X), µ⊗n

l ) = H∗
et(X, µ

⊗n
l ) = H∗

h(X, µ
⊗n
l ).

The following Lemma shows that the result of Lemma 6.3 is valid for non smooth
schemes as well.

Lemma 6.3.2. For any X ∈ Sch/F we have a natural identification Ztr(X)∼h =
Zh(X).

Proof. Define a presheaf ZSm/F (X) on the category Sm/F via the formula
ZSm/F (X)(U) = Z[HomSch/F (U,X)], i.e. ZSm/F (X) is the restriction to Sm/F of
the free presheaf on Sch/F generated by X . One checks easily (using as always
Theorem 0.2), that for any h-sheaf G on the category Sch/F we have a canonical
identification

Hom(Sm/F )∧(ZSm/F (X), π∗(G)) = G(X).

The above formula shows that (ZSm/F (X))∼h = Zh(X). Furthermore we have an
obvious embedding ZSm/F (X) →֒ Ztr(X) and the arguement used in the proof of
Lemma 6.3 shows that the h-sheafification of the quotient Ztr(X)/ZSm/F (X) is
trivial. This shows that Zh(X) = ZSm/F (X)∼h = Ztr(X)∼h .

The proof of the following Lemma is identical to that of Proposition 1.10.

Lemma 6.4. Let F be a contractible etale sheaf and let G be a strongly homotopy
invariant etale sheaf. Then Ext∗et(F ,G) = 0.

Corollary 6.4.1. Let C• be a bounded above complex of contractible etale sheaves

and let G be a strongly homotopy invariant etale sheaf. Then Ext∗et(C
•,G)

def
=

HomD−((Sm/F )∼et)
(C•,G[∗]) = 0.

Proof. Let B be the full triangulated subcategory of D−((Sm/F )et) consisting of
complexes with trivial Ext∗ to G. The category B is obviously closed with respect
to taking arbitrary direct sums (of homologically bounded families) and contains
all Ci according to Lemma 6.4. Lemma 0.6 shows now that C∗ ∈ B.

Corollary 6.4.2. For any X ∈ Sm/F we have natural identifications

Ext∗et(C
∗(Ztr(X)), µ⊗n

l ) = Ext∗et(Ztr(X), µ⊗n
l ) = H∗

et(X, µ
⊗n
l ).

Proof. Recall that the complex C∗(Ztr(X)) contains a subcomplex C∗
0 (Ztr(X))

which is canonically quasiisomorphic to Ztr(X) and such that the factorcomplex
C∗/C∗

0 consists of contractible sheaves. Our statement follows now from Corollary
6.4.1, taking into account that the etale sheaf µ⊗n

l is strongly homotopy invariant.
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Lemma 6.5. For any h-sheaf G the Nisnevich sheaf π∗(G) has a natural structure
of a Nisnevich sheaf with transfers. Moreover for any F ∈ NSwT/F we have a
natural identification

HomNis(F , π∗(G)) = HomNSwT (F , π∗(G)).

In other words every homomorphism of Nisnevich sheaves F → π∗(G) is compatible
with transfers.

Proof. Recall that for any h-sheaf G and any finite surjective morphism Z → X
from an integral scheme Z to an irreducible normal scheme X we defined in [S-V]
the transfer homomorphism TrZ/X : G(Z) → G(X). Let now X, Y be smooth
irreducible schemes and let Z ⊂ X × Y be a closed integral subscheme finite and
surjective over X . We define the homomorphism Z∗ : G(Y )→ G(X) as the compo-
sition

G(Y )
(p2)∗

−−−→ G(Z)
TrZ/X
−−−−→ G(X).

One checks easily, using the results of [S-V § 5], that this defines the structure of a
Nisnevich sheaf with transfers on π∗(G) .

In proving the second statement we may assume that F = Ztr(X) for some
X ∈ Sm/F . In this case

HomNSwT/F (Ztr(X), π∗(G)) = π∗(G)(X) = G(X)

HomNis(Ztr(X), π∗(G)) = Homh(π
∗(Ztr(X)),G) = Homh(Zh(X),G) = G(X).

The complex Rπ∗(µ
⊗n
l ) may be defined as follows. Consider a resolution J•(n)

0→ µ⊗n
l → J0(n)→ J1(n)→ . . .

of µ⊗n
l by injective h-sheaves. Then the complex Rπ∗(µ

⊗n
l ) coincides with

π∗(J
•(n)) = (π∗(J

0(n))→ π∗(J
1(n))→ . . . ).

According to Lemma 6.5 the complex π∗(J
•(n)) is actually a complex of Nisnevich

sheaves with transfers. Moreover the cohomology presheaves of π∗(J
•(n)) are of

the form
X 7→ Hi

h(X, µ
⊗n
l ) = Hi

et(X, µ
⊗n
l )

and hence are homotopy invariant. This shows that the complex

Bl(n) = τ≤nπ∗(J
•(n))

is a bounded above complex of Nisnevich sheaves with transfers with homotopy
invariant cohomology sheaves, i.e. an object of DM−(F ).

Sometimes it’s preferable to work with resolutions of µ⊗n
l by injective objects in

the category of h-sheaves of Z/l-modules. For any such resolution 0→ µ⊗n
l → I•(n)

we have a unique (up to homotopy) homomorphism of resolutions I•(n) → J•(n)
and the induced homomorphisms

π∗(I
•(n))→ π∗(J

•(n)) τ≤nπ∗(I
•(n))→ τ≤nπ∗(J

•(n))

are quasiisomorphism since injective sheaves of Z/l-modules are acyclic (i.e.
H∗
h(X, I

k) = 0 for any X ∈ Sch/F any k ≥ 0 and any ∗ > 0). Thus we may
equally define the complex Bl(n) as τ≤nπ∗(I

•(n)).



BLOCH-KATO CONJECTURE AND MOTIVIC COHOMOLOGY 47

Lemma 6.6. For any n ≥ 0 we have natural identifications

Hi
et(G

∧n
m , µ⊗n

l ) = Hi−n
et (F,Z/l).

Proof. We first compute etale cohomology of G∧n
m,F

. Note that according to the

definition H∗
et(G

∧n
m,F

, µ⊗n
l ) is a direct summand in H∗

et(G
×n

m,F
, µ⊗n
l ), consisting of

cohomology classes which vanish being restricted to any copy of G
×(n−1)

m,F
inside

G×n

m,F
. The well-known computation of the etale cohomology of Gm,F

H∗
et(Gm,F , µl) =







µl if ∗ = 0

Z/l if ∗ = 1

0 if ∗ > 1

and the Künneth formula for etale cohomology imply easily that

H∗
et(G

∧n
m,F

, µ⊗n
l ) =

{
Z/l if ∗ = n

0 if ∗ 6= n

We conclude the proof using the Hochschild-Serre spectral sequence

Remark 6.6.1. We’ll denote by αn the canonical generator of Hn
et(G

∧n
m , µ⊗n

l ). The
proof of the Lemma shows that αn coincides with the n-th power α1 ∈ H

1
et(G

∧1
m , µl)

and, in particular αn ∪ αm = αn+m for all n,m ≥ 0.

Corollary 6.6.2. Ext0et(Z/l(n), µ⊗n
l ) = Ext0et(Z(n), µ⊗n

l ) = Hn
et(G

∧n
m , µ⊗n

l ) = Z/l.

Proof. This follows immediately from Corollary 6.4.2, Lemma 6.6 and an exact
sequence of Ext-groups corresponding to the short exact sequence of complexes

0→ Z(n)
l
−→ Z(n) −→ Z/l(n)→ 0

Proposition 6.7. The complex of etale sheaves π∗
0(Z/l(n)) is canonically quasiiso-

morphic to µ⊗n
l and hence the same is true for the complex of h-sheaves π∗(Z/l(n)).

Proof. Denote by Hi the i-th cohomology presheaf of Z/l(n). Our statement may
be rephrased as follows. The etale sheaves (Hi)∼et are trivial for i 6= 0 and the sheaf
(H0)∼et is canonically isomorphic to µ⊗n

l . We first show that (Hi)∼et = 0 for i 6= 0
and that the sheaf (H0)∼et is a locally constant sheaf of free Z/l-modules of rank
one. This amounts to showing that for any X ∈ Sm/F and any closed point x ∈ X

Hi(OshX,x) =

{ ∼
= Z/l if i = 0

0 if i 6= 0

Note first that Hi is a homotopy invariant presheaf of Z/l-modules with transfers
so that the rigidity theorem ([S-V] Theorem 4.4) shows that Hi(OshX,x) = Hi(F ).

Futhermore (in notations of [S-V])

Hi(F ) = Hsin
n−i(G

∧n
m,F

),Z/l)
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The dual Z/l-module Hi(F )# coincides with Hn−i
sin (G∧n

m,F
,Z/l) =

= Hn−i
et (G∧n

m,F
,Z/l) - see [S-V]. This together with the computation of the etale

cohomology of G∧n
m,F

(see Lemma 6.6) proves our claim. To finish the proof of the

Proposition we note that vanishing of (Hi)∼et for i 6= 0 gives us canonical isomor-
phisms

Homet((H
0)∼et, µ

⊗n
l ) = Ext0et(Z/l(n), µ⊗n

l ) = Z/l.

Proposition 6.7 provides us with canonical morphisms

π∗(Z/l(n))→ τ≥0π
∗(Z/l(n))→ I•(n)→ J•(n)

Using further the adjunction relation between π∗ and π∗ we get a canonical mor-
phism

Z/l(n)→ π∗(I
•(n))

∼
−→ π∗(J

•(n))

which factors through Bl(n) = τ≤n(π∗(I
•(n)), since the complex Z/l(n) is bounded

above at level n. We denote the resulting morphism Z/l(n)→ Bl(n) by αn. Note
that according to Lemma 6.5 the homomorphism αn is compatible with transfers
i.e. αn ∈ HomDM−(F )(Z/l(n), Bl(n)).

Conjecture 6.8 (The Beilinson-Lichtenbaum Conjecture in weight n).
The canonical morphism αn : Z/l(n) → Bl(n) = τ≤n(π∗(I

•(n))) is a quasiisomor-
phism.

Remark 6.8.1 Lemma 6.2 and Corollary 6.1.1 show that the complex ρ∗(J
•(n)) is

an injective resolution of the etale sheaf µ⊗n
l ∈ (Sm/F )∼et. This implies immediately

that the complex π∗(J
•(n)) = (π0)∗(ρ∗(J

•(n))) coincides (if we ignore the transfers)
with R(π0)∗(µ

⊗n
l ) and Bl(n) coincides with τ≤nR(π0)∗(µ

⊗n
l ), so that the present

formulation of the Beilinson-Lichtenbaum Conjecture is equivalent to the usual one.

Lemma 6.9. To prove the Beilinson-Lichtenbaum Conjecture in the weight n it
suffices to show that for any finitely generated field extension E/F the homomor-
phisms

(αn)∗ : Hi
M(E,Z/l(n))→ Hi

M(E,Bl(n))

are isomorphisms.

Proof. Let Hi (resp.
∼

Hi) denote the i-th cohomology sheaf of Z/l(n) (resp. of
Bl(n)). The Beilinson-Lichtenbaum Conjecture asserts that the induced maps

(αn)∗ : Hi →
∼

Hi are isomorphisms for all i. Note further that Hi and
∼

Hi are
homotopy invariant Nisnevich sheaves with transfers and according to [V 1] a ho-
momorphism of Nisnevich sheaves with transfers is an isomorphism iff it induces
isomorphisms on sections over an arbitrary finitely generated field extension of F .

The following Lemma allows to reduce the general case of the Beilinson-
Lichtenbaum Conjecture to the case of prime numbers.
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Lemma 6.10. Let l, l′ be two integers. If the Beilinson-Lichtenbaum Conjecture
in the weight n holds modulo l and l′ then it also holds modulo ll′. Thus to prove
the Beilinson-Lichtenbaum Conjecture in the weight n modulo l it suffices to prove
it modulo all prime divisors of l.

Proof. Note that in DM−(F ) we have a distinguished Bockstein triangle

Z/l′(n) −→ Z/ll′(n) −→ Z/l(n) −→ Z/l′(n)[1].

Validity of the Beilinson-Lichtenbaum Conjecture modulo l implies that we have a
similar distinguished triangle involving B(n):

Bl′(n) −→ Bll′(n) −→ Bl(n) −→ Bl′(n)[1].

To check this one has only to verify that the induced homomorphism on the n-th
cohomology sheaves Hn(Bll′(n)) −→ Hn(Bl(n)) is surjective. This follows however
from the commutative diagram

Hn(Z(n))
=

−−−−→ Hn(Z(n))


y



y

Hn(Bll′(n)) −−−−→ Hn(Bl(n))

in which the right vertical homomorphism is surjective. Finally one checks easily
that the homomorphisms αn give a map from the first distinguished triangle to the
second one and our statement follows in view of the five-Lemma.

We end up this section with a few remarks concerning motivic cohomology with
coefficients in Bl(n).

Lemma 6.11. For any X ∈ Sch/F and any i ≤ n we have natural isomorphisms

Hi
M(X,Bl(n)) = Hi

h(X, µ
⊗n
l ) = Hi

et(X, µ
⊗n
l ).

Proof. According to definitions and Corollary 1.11.2 we have natural identifications

Hi
M(X,Bl(n)) = ExtiNSwT (Ztr(X), Bl(n)).

The short exact sequence of complexes

0→ Bl(n)→ π∗(J
•(n))→ τ≥n+1π∗(J

•(n))→ 0

gives rise to a long exact sequence of Ext-groups The Ext-groups from Ztr(X)
to τ≥n+1π∗(J

•(n)) are trivial in degrees ≤ n by obvious reasons. The complex
π∗(J

•(n)) consists of injective Nisnevich sheaves with transfers and hence

Ext∗NSwT (Ztr(X), π∗(J
•(n))) = H∗(HomNSwT (Ztr(X), π∗(J

•(n)))) =

H∗(HomNis(Ztr(X), π∗(J
•(n)))) = H∗(Homh(Zh(X), J•(n))) = H∗

h(X, µ
⊗n
l ).
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Corollary 6.11.1. HomDM−(F )(Z/l(n), Bl(n)) = HomDM−(F )(Z(n), Bl(n)) =

= Hn
et(G

∧n
m , µ⊗n

l ) = Z/l. Under this identification the homomorphism αn corre-
sponds to the cohomology class denoted by αn previously.

Proof. The first statement follows from Lemma 6.11 and the long exact cohomology
sequence, corresponding to the short exact sequence of complexes

0→ Z(n)
l
−→ Z(n)→ Z/l(n)→ 0

The second statement is obvious from the construction.

Remark 6.11.2 Corollary 6.11.1 shows that HomDM−(F )(Z/l(n), Bl(n)) may be
identified with HomDM−(F )(Z(n), Bl(n)), we’ll use the same notation αn for the
corresponding morphism Z(n)→ Bl(n).

§ 7. The Bloch-Kato Conjecture.

We keep notations and assumptions of the previous section.

Proposition 7.1. For any n,m ≥ 0 there are natural pairings Bl(n)⊗ Bl(m) →
→ Bl(n+m). Furthermore for any X, Y ∈ Sch/F and any integers i ≤ n, j ≤ m
the resulting pairing in cohomology

Hi
et(X, µ

⊗n
l )⊗Hj

et(Y, µ
⊗m
l ) = Hi

M(X,Bl(n))⊗Hj
M(Y,Bl(m))→

→ Hi+j
M (X × Y,Bl(n+m)) = Hi+j

et (X × Y, µ
⊗(n+m)
l )

coincides with the usual product pairing in etale cohomology.

Proof. Note that for any injective h-sheaf of Z/l-modules I all groups of sections
I(X) are injective Z/l-modules and hence free Z/l-modules. This remark implies
immediately that the complex I•(n) ⊗h I

•(m) is a resolution of µ⊗n
l ⊗h µ

⊗m
l =

µ⊗n+m
l , which gives us a natural homomorphism of complexes I•(n)⊗h I

•(m) →
I•(n+m). Furthermore one checks easily (using Lemma 2.1) that for any h-sheaves
F ,G there exists a canonical homomorphism of Nisnevich sheaves with transfers
π∗(F)⊗tr π∗(G)→ π∗(F ⊗h G). This gives us a homomorphism of complexes

Bl(n)⊗L Bl(m)→ Bl(n)⊗tr Bl(m)→ π∗(I
•(n))⊗tr π∗(I

•(m))→

→ π∗(I
•(n)⊗h I

•(m))→ π∗(I
•(n+m))

which factors through Bl(n + m) since the complex Bl(n) ⊗L Bl(m) is bounded
above at the level n+m. Applying finally the localising functor C∗ to both sides
we get the desired pairing

Bl(n)⊗Bl(m) = C∗(Bl(n)⊗L Bl(m))→ C∗(Bl(n+m))
∼
←− Bl(n+m)

The second statement is obvious from the construction.



BLOCH-KATO CONJECTURE AND MOTIVIC COHOMOLOGY 51

Corollary 7.1.1. For any n,m ≥ 0 the following diagram in DM−(F ) commutes

Z/l(n)⊗ Z/l(m)
∼

−−−−→ Z/l(n+m)

αn⊗αm



y



yαn+m

Bl(n)⊗Bl(m) −−−−→ Bl(n+m)

Proof. We have to show that two resulting maps in DM−(F ) from Z/l(n) ⊗
Z/l(m) = Z/l(n + m) to Bl(n + m) coincide. To do so we note that

HomDM−(F )(Z/l(n+m), Bl(n+m)) = Hn+m
et (G

∧(n+m)
m , µ

⊗(n+m)
l ) (= Z/l) and the

resulting maps correspond to the cohomology classes αn+m and αn ∪ αm = αn+m

respectively.

Lemma 7.2. For any (finitely generated) field extension E/F we have natural
identifications:

Hi
M(E,Z/l(1)) =







H0(E, µl) if i = 0

E∗/E∗l if i = 1

0 if i 6= 0, 1

The homomorphism

(α1)∗ : Hi
M(E,Z/l(1))→ Hi

M(E,Bl(1)) =

{
Hi
et(E, µl) if i = 0, 1

0 if i 6= 0, 1

is identity in degree 0 and coincides with the Kümmer isomorphism χ : E∗/E∗l ∼
−→

H1
et(E, µl) in degree one. In particular the Beilinson-Lichtenbaum Conjecture is

true in weight 1.

Proof. As was noted in § 3 the complex Z(1) is naturally quasiisomorphic to O∗[−1]
and hence the complex Z/l(1) is naturally quasiisomorphic to the complex

O∗ l
−→ O∗

which gives immediately the computation of motivic cohomology of any field with
coefficients in Z/l(1). To compute the action of α1 in cohomology we may proceed
as follows. Let 0 → O∗ → L• be an injective resolution of the etale sheaf O∗ ∈

(Sm/F )∼et. The cone J• = Cone(L• l
−→ L•) gives us an injective resolution of the

etale sheaf µl. According to definitions and Remark 5.8.1 the homomorphism α1

corresponds (by adjunction) to the natural quasiisomorphism of complexes of etale
sheaves

Cone(O∗ l
−→ O∗)→ Cone(L• l

−→ L•).

Thus homomorphisms induced by α1 in motivic cohomology of E may be computed
using the homomorphism of complexes

Cone(E∗ l
−→ E∗)→ Cone(L•(E)

l
−→ L•(E)) = J•(E).
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Since the cohomology of L•(E) coincides withH∗
et(E,O

∗) we get (applying Hilbert’s
Theorem 90) the following commutative diagram with exact rows

0 −→ µl(E) −→ E∗ l
−→ E∗ −→ E∗/E∗l → 0

↓ (α1)∗ ↓= ↓= ↓ (α1)∗

0 −→ H0(J•(E)) −→ H0(L•(E))
l
−→ H0(L•(E))

δ
−→ H1(J•(E)) → 0

The diagram shows immediately that the homomorphism
(α1)∗ : E∗ → H1(J•(E)) = H1

et(E, µl) coincides with the connecting homomor-
phism δ : H0

et(E,O
∗) → H1

et(E, µl), corresponding to the short exact sequence of
etale sheaves

0→ µl → O
∗ l
−→ O∗ → 0

i.e. E∗/E∗l (α1)∗
−−−→ H1

et(E, µl) coincides with the Kümmer isomorphism.

Corollary 7.2.1. For any n ≥ 0 and any finitely generated field extension E/F
the homomorphism in motivic cohomology induced by αn

(αn)∗ : KM
n (E)/l = Hn

M(E,Z/l(n))→ Hn
M(E,Bl(n)) = Hn

et(E, µ
⊗n
l )

coincides with the norm residue homomorphism.

Proof. Corollary 7.1.1 Lemma 7.2 and Proposition 7.1 show that (αn)∗ sends the
symbol {a1, ..., an} to χ(a1) ∪ ... ∪ χ(an).

Corollary 7.2.1 shows that the Beilinson-Lichtenbaum Conjecture includes as a
special case the following conjecture due to S. Bloch and K. Kato.

Conjecture 7.3 (Bloch-Kato Conjecture for a field E in weight n). The
norm-residue homomorphism χn : KM

n (E)/l→ Hn
et(E, µ

⊗n
l ) is an isomorphism.

We’ll be also considering the following weaker form of the Bloch-Kato Conjecture.

Conjecture 7.3.1 (Weak Bloch-Kato Conjecture for a field E in weight
n). The norm-residue homomorphism χn : KM

n (E)/l → Hn
et(E, µ

⊗n
l ) is an epi-

morphism.

Our main result shows that the validity of the Weak Bloch-Kato Conjecture
alone implies the validity of the Beilinson-Lichtenbaum Conjecture.

Theorem 7.4. Assume that resolution of singularities holds over F and the Weak
Bloch-Kato Conjecture (modulo l) holds in weights ≤ n for all finitely generated
field extensions E/F . Then the Beilinson-Lichtenbaum Conjecture (modulo any
power of l) also holds over F in weights ≤ n.

The proof of this Theorem occupies the rest of this section and the next 3 sec-
tions. Proceeding by induction on n we may (and will) assume that the Beilinson-
Lichtenbaum Conjecture is already known to be true in weights < n and, in par-
ticular, the strong form of the Bloch-Kato Conjecture (for finitely generated field
extensions E/F ) is also true in weights < n. We start with the following elementary
observation.
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Lemma 7.5. Assume that l is prime. Then for any finitely generated field exten-
sion E/F the induced homomorphisms in motivic cohomology

(αn)∗ : Hi
M(E,Z/l(n)) −→ Hi

M(E,Bl(n)) = Hi
et(E, µ

⊗n
l )

are surjective for all i ≤ n.

Proof. We may obviously assume that i ≤ n − 1. Furthermore since the degree
of the field extension E(µl)/E is prime to l we see, using the standard trick with
transfer maps, that it suffices to consider the case when E contains the primitive
l-th root of unity. In the latter case our statement follows immediately from the
commutativity of the following diagram

H0
M(E,Z/l(1))⊗Hi

M(E,Z/l(n− 1)) −−−−→ Hi
M(E,Z/l(n))

∼
=



y



y

H0
et(E, µl)⊗H

i
et(E, µ

⊗(n−1)
l )

∼
−−−−→ Hi

et(E, µ
⊗n
l )

We finish this section with the following important result, which gives the first
step towards the proof of Theorem 7.4.

Proposition 7.6. For any affine semilocal scheme S essentially of finite type over
F the homomorphism in motivic cohomology induced by αn

(αn)∗ : Hn
M(S,Z/l(n)) −→ Hn

M(S,Bl(n)) = Hn
et(S, µ

⊗n
l )

is surjective.

Proof. Assume first that S is smooth (and irreducible). Denote by Kn (resp. Hn)
the n-th cohomology sheaf of the complex Z/l(n) (resp. of Bl(n)). Since all
higher dimensional cohomology groups of a smooth semilocal scheme with coef-
ficients in a homotopy invariant sheaf with transfers vanish (see [V 1]) we conclude
that Hn

M(S,Z/l(n)) = H0
Zar(S,Kn), H

n
M(S,Bl(n)) = H0

Zar(S,H
n). The cokernel

L of the homomorphism (αn)∗ : Kn →H
n is a homotopy invariant Nisnevich sheaf

with transfers which vanish on all finitely generated field extensions of F according
to our assumptions and hence is zero ([V 1]). Moreover the sequence

H0
Zar(S,Kn)→ H0

Zar(S,H
n)→ H0

Zar(S,L) = 0

is exact ([V 1]), which ends up the proof in the smooth case.
For an arbitrary affine semilocal scheme we proceed as follows. Embed S as

a closed subscheme into a smooth affine semilocal scheme T and denote by I the
defining ideal of S. Let ThI be the henselization of T along I. The scheme S
embeds canonically as a closed subscheme of ThI and according to a Theorem of
O. Gabber [G] the restriction homomorphism in etale cohomology Hn

et(T
h
I , µ

⊗n
l )→

Hn
et(S, µ

⊗n
l ) is an isomorphism. On the other hand the scheme ThI is a filtered
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inverse limit of smooth semilocal schemes essentially of finite type over F (each
containing S as a closed subscheme). Since etale cohomology commutes with filtered
limits we conclude that for every cohomology class x ∈ Hn

et(S, µ
⊗n
l ) there exists a

smooth affine semilocal scheme T ′ essentially of finite type over F , containing S as
a closed subscheme such that x is the restriction to S of an appropriate cohomology
class x′ ∈ Hn

et(T
′, µ⊗n

l ). Now it suffices to use the commutativity of the following
diagram

Hn
M(T ′,Z/l(n))

։

−−−−→ Hn
et(T

′, µ⊗n
l )



y



y

Hn
M(S,Z/l(n)) −−−−→ Hn

et(S, µ
⊗n
l ).

§ 8. Bl(n)-cohomology with supports.

Lemma 8.1.

Hi
M(P1

F ,Z/l(1)) =







Hi
M(F,Z/l(1)) if i = 0, 1

Z/l if i = 2

0 if i 6= 0, 1, 2

Proof. This follows easily from the computation of motivic cohomology with coef-
ficients in Z(1) = O∗[−1] - see Corollary 3.2.1.

Hi
M(P1

F ,Z(1)) =







F ∗ if i = 1

Pic(P1
F ) = Z if i = 2

0 if i 6= 1, 2

Remark 8.1.1 The complex Z/l(1) is naturally qasiisomorphic
to Bl(1) = τ≤1π∗(I

•(1)). It has exactly two non-zero cohomology sheaves: H0(1)
and H1(1). Moreover the sheaf H0(1) coincides with µl and the sheaf H1(1) is
the sheaf associated with the preasheaf U 7→ H1

et(U, µl). Higher dimensional
Zariski cohomology with coefficients in µl vanish, from which we conclude that
H2

M(P1
F ,Z/l(1)) = H1

Zar(P
1
F ,H

1(1)). Furthermore Zariski cohomology of any
smooth scheme with coefficients in H1(1) may be computed using the Gersten
complexes - see [B-O]. In particular H∗

Zar(P
1
F ,H

1(1)) may be computed using the
Gersten complex

H1
et(F (P1), µl) −→

⊕

x∈(P1
F )1

Z/l

Here and in the sequell we denote by U i the set of points of codimension i on
a smooth scheme U . We’ll be using the notation β for the canonical generator
of H2

M(P1
F ,Z/l(1)) = H2

M(P1
F , Bl(1)) = H1

Zar(P
1
F ,H

1(1)). In terms of the above
Gersten complex β may be represented by the class of any rational point of P1

F .
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Usually we’ll be thinking of β as represented by the class of the rational point
∞ ∈ P1

F .

Remark 8.1.2 We use 0 as a distinguished rational point on P1
F . For any X ∈

Sm/F this allows us to identify X with a closed subscheme X × 0 ⊂ X × P1
F .

The motiv M(X × P1
F /X) coincides with M(X)(1)[2] - see § 4. Motivic coho-

mology H∗
M(X × P1

F /X,C
∗) may be identified with the kernel of the natural split

epimorphism H∗
M(X × P1

F , C
∗) → H∗

M(X,C∗) induced by the closed embedding
X = X × 0 →֒ X × P1

F . Since motivic cohomology groups are homotopy invariant
H∗

M(X × P1
F /X,C

∗) may be also identified with the kernel of the canonical homo-
morphism H∗

M(X × P1
F , C

∗) → H∗
M(X × A1

F , C
∗), where we identify A1

F with the
open subscheme P1

F \∞.

Proposition 8.2. For any X ∈ Sm/F multiplication by
β ∈ H2

M(P1
F /Spec F,Bl(1)) defines isomorphisms

Hi−2
M (X,Bl(n− 1))

β
∼
−→ Hi

M(X × P1
F /X,Bl(n)).

Proof. The same construction as in § 7 defines natural pairings

τ≤k−1π∗I
•(n− 1)⊗ τ≤1π∗I

•(1) −→ τ≤kπ∗I
•(n).

We’ll show more generally that multiplication by β induces isomorphisms

Hi−2
M (X, τ≤k−1π∗I

•(n− 1))
β
∼
−→ Hi

M(X × P1
F /X, τ≤kπ∗I

•(n))

for all k ≥ 0. Denote by Hk(n) the k-th cohomology sheaf of the complex π∗I
•(n).

Thus Hk(n) is the Zariski sheaf associated to the presheaf U 7→ Hk
et(U, µ

⊗n
l )

(Hk(n) = 0 for k > n). Proceeding by induction on k it suffices to show that
for each k the multiplication by β ∈ H1

Zar(P
1
F ,H

1(1)) induces isomorphisms

Hi−1
Zar(X,H

k−1(n− 1))
β
∼
−→ Hi

Zar(X × P1
F /X,H

k(n)).

Zariski cohomology of any smooth scheme Y with coefficients in Hk(n) may be
computed using the Gersten complex

⊕

y∈Y 0

Hk
et(F (y), µ⊗n

l ) −→
⊕

y∈Y 1

Hk−1
et (F (y), µ⊗n−1

l −→ . . .

Remark 8.1.2 shows further that Hi
Zar(X ×P1

F /X,H
k(n)) may be computed using

the Gersten bicomplex

⊕

y∈(X×P1
F )0 H

k
et(F (y), µ⊗n

l ) −−−−→
⊕

y∈(X×P1
F )1 H

k−1
et (F (y), µ

⊗(n−1)
l ) −−−−→



y



y

⊕

y∈(X×A1
F )0 H

k
et(F (y), µ⊗n

l ) −−−−→
⊕

y∈(X×A1
F )1 H

k−1
et (F (y), µ

⊗(n−1)
l ) −−−−→
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since the vertical arrows of the above bicomplex are split surjective, this bicomplex
is naturally quasiiisomorphic to the kernel of the vertical homomorphism of Gersten
complexes, which coincides with the Gersten complex

⊕

x∈X0

Hk−1
et (F (x), µ

⊗(n−1)
l ) −→

⊕

x∈X1

Hk−2
et (F (x), µ

⊗(n−2)
l )

shifted to the right by 1. This gives us the desired isomorphisms

Hi
Zar(X × P1

F /X,H
k(n)) = Hi−1

Zar(X,H
k−1(n− 1))

Moreover it’s easy to see that this isomorphism coincides (up to a sign) with mul-
tiplication by β.

Corollary 8.3. For any Z ∈ Sm/F we have natural izomorphisms
H∗

M(Z(d), Bl(n)) = H∗
M(Z,Bl(n− d)). Moreover (assuming that resolution of sin-

gularities holds over F ) the following diagram commutes

H∗
M(Z,Z/l(n− d))

∼
−−−−→ H∗

M(Z(d),Z/l(n))

(αn−d)∗



y (αn)∗



y

H∗
M(Z,Bl(n− d))

∼
−−−−→ H∗

M(Z(d), Bl(n))

Proof. Proceeding by induction on d it suffices to consider the case d = 1. The
motiv Z(1) may be identified with Z×P1

F /Z[−2]. Proposition 8.2 shows that mul-
tiplication by β gives the desired isomorphism. Moreover Corollary 4.12.1 shows
that multiplication by τ ∈ H2

M(P1,Z(1)) gives an isomorphism in motivic cohomol-
ogy with coefficients in Z/l(−). Compatibility of products in motivic cohomology
with Z/l(−) and Bl(−) coefficients together with the fact that β coincides with the
image of τ under the homomorphism Z(1)→ Z/l(1) = Bl(1) proves the commuta-
tivity of the above diagram.

Corollary 8.4. Let X ∈ Sm/F be a smooth irreducible scheme and let Z 6= X be
a smooth irreducible closed subscheme. Then the map in motivic cohomology with
supports in Z

H∗
Z(X,Z/l(n)) −→ H∗

Z(X,Bl(n))

is an isomorphism.

Proof. Recall that motivic cohomology of X with supports in Z is defined as the
motivic cihimilogy of the coneMZ(X) = (M(X)→M(U)) (U = X\Z). Recall also
that in case Z is smooth everywhere of codimension d the motivMZ(X) is naturally
isomorphic to M(Z)(d)[2d] - cf § 4. Thus our statement follows immediately from
Corollary 8.3 (and the induction hypothesis).

Using now Theorem 5.6 we get finally the following result.

Theorem 8.5. Let X ∈ Sch/F be a scheme and let Z ⊂ X be a closed subscheme
such that U = X \ Z is strictly dense in X. Then the natural map in motivic
cohomology with supports in Z

(αn)∗ : H∗
Z(X,Z/l(n)) −→ H∗

Z(X,Bl(n))

is an isomorphism.
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§ 9. Shift of degrees

Let ∂∆n denote the closed subscheme of ∆n, given by the equation t0 · ... · tn = 0,
in other words ∂∆n is the union of all codimension one faces of ∆n. Usually we’ll
identify the scheme ∆n−1 with the face tn = 0 of ∆n and denote the union of all
other faces by σ∆n. Thus σ∆n is a closed subscheme of ∆n given by the equation
t0 · ... · tn−1 = 0. Obviously

∂∆n = ∆n−1 ∪ σ∆n and ∆n−1 ∩ σ∆n = ∂∆n−1.

Lemma 9.1. The scheme σ∆n is algebraically contractible.

Proof. The linear contraction of ∆n to the vertex vn = (0, ..., 0, 1)

∆n × A1 −→ ∆n (t0, ..., tn)× t 7→ t · (t0, ..., tn) + (1− t) · (0, ..., 0, 1)

obviously maps σ∆n × A1 to σ∆n and defines the desired contraction.

Let X ∈ Sch/F be a scheme of finite type over F . Each of the vertices vi ∈ ∂∆n

defines a natural morphism M(X)
(1X×vi)∗
−−−−−−→M(X×∂∆n) which is right inverse to

the morphism defined by the projectionM(X×∂∆n)
(p1)∗
−−−→M(X). Thus the choice

of the vertex vi allows us to identify M(X) with a direct summand in M(X×∂∆n).
In case n > 1 this identification is really independent of the choice of the vertex.
In the case n = 1 we’ll be using the vertex v0 to make the above identification.
We’ll denote by M(X×∂∆n/X) the complimentary direct summand. The motivic
cohomology groups Hi

M(X × ∂∆n/X,C∗) coincide with the kernel of the natural
split epimorphism

Hi
M(X × ∂∆n, C∗)

(1X×v0)
∗

−−−−−−→ Hi
M(X,C∗).

Lemma 9.2. For any X ∈ Sch/F any n > 0 and any C∗ ∈ DM−(F ) we have
natural isomorphisms

δn−1 : H
i−(n−1)
M (X,C∗)

∼
−→ Hi

M(X × ∂∆n/X,C∗).

Proof. We proceed by induction on n. The case n = 1 is trivial, so assume that
n > 1. The closed covering X × ∂∆n = X ×∆n−1 ∪X ×σ∆n gives us a long exact
Mayer-Vietoris sequence, which (since the schemes ∆n−1 and σ∆n are contractible)
looks as follows (all motivic cohomology groups are taken with coefficients in C∗):

Hi−1
M (X × ∂∆n) −→ Hi−1

M (X)⊕Hi−1
M (X) −→ Hi−1

M (X × ∂∆n−1)
δ
−→ Hi

M(X × ∂∆n)

One checks easily that the image of the homomorphism

Hi−1
M (X × ∂∆n) −→ Hi−1

M (X)⊕Hi−1
M (X)

consists of all elements of the form y ⊕ (−y) y ∈ Hi−1
M (X) and hence the above

exact sequence gives rise to the following four term exact sequence

0 −→ Hi−1
M (X)

(p1)
∗

−−−→ Hi−1
M (X × ∂∆n−1)

δ
−→ Hi

M(X × ∂∆n)
(1X×v0)

∗

−−−−−−→ Hi
M(X) −→ 0

Thus the homomorphism δ defines an isomorphism

δ : Hi−1
M (X × ∂∆n−1/X)

∼
−→ Hi

M(X × ∂∆n/X)

which concludes the proof.
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Proposition 9.3. In conditions and notations of Theorem 7.4 the induced homo-
morphism in motivic cohomology

(αn)∗ : Hi
M(E,Z/l(n)) −→ Hi

M(E,Bl(n)) = Hi
et(E, µ

⊗n
l )

is surjective for any finitely generated field extension E/F .

Proof. In the most important case when l is prime this is trivial - see Lemma 7.5. In
the general case one has to use a more subtle arguement. Lemma 9.2 shows that mo-
tivic cohomology groups in question may be identified with Hn

M(∂∆n−i+1
E ,Z/l(n))

and Hn
M(∂∆n−i+1

E , Bl(n)) respectively. For any open subscheme U ⊂ ∂∆n−i+1
E

containing all the vertices vi we have an exact sequence of motivic cohomology
groups (both with Z/l(n) and Bl(n)-coefficients)

Hn
T (∂∆n−i+1

E ) −→ Hn
M(∂∆n−i+1

E ) −→ Hn
M(U) −→ Hn+1

T (∂∆n−i+1
E )

where we denoted by T the closed subscheme ∂∆n−i+1
E \U . Taking direct limits of

these sequences over all U ’s we get the following commutative diagram with exact
rows

Hn
T
(∂∆n−i+1

E ) −−−−→ Hn
M(∂∆n−i+1

E ) −−−−→ Hn
M(U) −−−−→ Hn+1

T
(∂∆n−i+1

E )

∼
=



y



y epi



y

∼
=



y

Hn
T
(∂∆n−i+1

E ) −−−−→ Hn
M(∂∆n−i+1

E ) −−−−→ Hn
M(U) −−−−→ Hn+1

T
(∂∆n−i+1

E )

Here the top row motivic cohomology are taken with Z/l(n)-coefficients, bottom
row motivic cohomology are taken with Bl(n)-coefficients, U denotes the semilocal-
ization of the scheme ∂∆n−i+1

E at the points vi and Hn
T
(∂∆n−i+1

E ) stands for

lim−→
T

Hn
T (∂∆n−i+1

E )

where direct limit is taken over all closed reduced subschemes containing no vertices.
Note that the first and the last vertical maps in the above diagram are isomorphisms
according to Theorem 8.5 (one checks easily that every open subscheme of ∂∆n−i+1

E

containing all vertices is strictly dense). Finally the second from the right vertical
map is surjective according to Proposition 7.6. An easy diagram chase shows that
the homomorphism Hn

M(∂∆n−i+1
E ,Z/l(n))→ Hn

M(∂∆n−i+1
E , Bl(n)) is surjective as

well.

Lemma 9.2 gives us, in particular, for all i < n and all finitely generated field
extensions E/F a natural isomorphism

δn−i : Hi
M(E,Z/l(n))

∼
−→ Hn

M(∂∆n−i+1
E /SpecE,Z/l(n)) ⊂ Hn

M(∂∆n−i+1
E ,Z/l(n)).

We’ll need below an explicit formula for this isomorphism.
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Note first of all that for any X ∈ Sch/F and any complex C∗ ∈ DM−(F )
we have a natural homomorphism Hi((C∗)∼cdh(X))→ Hi

M(X,C∗) which in certain
cases (in the case of fields for example) is an isomorphism. We’ll show, in particular,
that the map δn−i : Hi

M(E,Z/l(n))→ Hn
M(∂∆n−i+1

E ,Z/l(n)) factors through

Hn(Z/l(n)∼cdh(∂∆n−i+1
E )) =

= Ztr(G
∧n
m )∼cdh(∂∆n−i+1

E )/ Im(C1(Ztr(G
∧n
m )∼cdh(∂∆n−i+1

E )).

Our reasoning applies more generally to any complex of the form C∗(F)[−n]. The
motivic cohomology group Hi

M(E,C∗(F)[−n]) coincides with the (n − i)-th ho-
mology group of the simplicial abelian group F(∆•

E) and may be computed us-
ing the corressponding Moore complex, i.e it may be identified with an appro-
priate quotient of F(∆n−i

E )0 = {s ∈ F(∆n−i
E ) : ∂j(s) = 0 (0 ≤ j ≤ n − i)}.

Denote by p : ∆n−i ∼
−→ ∆n−i an automorphism of ∆n−i given by the formula

(t0, ..., tn−i) 7→ (tn−i, ..., t0). The section p∗(s) (the same as s) vanishes on all faces
of ∆n−i

E and hence may be glued together with the zero section on σ∆n−i+1
E to give

a section λ(s) of F∼
cdh over ∂∆n−i+1

E . In this way we get a homomorphism

F(∆n−i
E )0

λ
−→ F∼

cdh(∂∆n−i+1
E )

can
−−→ Hn((C∗(F)[−n])∼cdh(∂∆n−i+1

E ))
can
−−→

can
−−→ Hn

M(∂∆n−i+1
E , C∗(F)[−n]).

Lemma 9.4. The natural isomorphism

δn−i : Hi
M(E,C∗(F)[−n])

∼
−→ Hn

M(∂∆n−i+1
E /SpecE, C∗(F)[−n])) ⊂

⊂ Hn
M(∂∆n−i+1

E , C∗(F)[−n])

takes the homology class of s ∈ F(∆n−i
E )0 to the canonical image of

λ(s) ∈ F∼
cdh(∂∆n−i+1

E ) in Hn
M(∂∆n−i+1

E , C∗(F)[−n]) (possibly up to a sign).

Proof. For each 0 ≤ j ≤ n − i we define a (j + i)-dimentional cocycle sj of the

complex (C∗(F)[−n])∼cdh(∂∆j+1
E ), i.e. a n−(j+i) dimensional cycle of the complex

(C∗(F))∼cdh(∂∆j+1
E ) so that the following properties hold

(1) s0|v0 = 0 s0|v1 = s

(2) δ(sj) = +−sj+1

(3) sn−i = λ(s)

Define a morphism qj : ∆n−i−j ×∆j+1 → ∆n−i via the formula

(t0, ..., tn−i−j)× (t′0, ..., t
′
j+1) 7→ t′0(t0, ..., tn−i−j, 0, ..., 0) + t′j+1vn−i−j + ...+ t′1vn−i

and let pj : ∆n−i−j×∆j → ∆n−i be the restriction of qj . One checks easily that pj
maps all faces of ∆n−i−j ×∆j to faces of ∆n−i . This implies, in particular, that
(pj)

∗(s) ∈ Cn−i−j(F)(∆j
E) vanishes on all faces of ∆j

E and hence may be glued

together (along ∂∆j
E) with the zero section to give a section sj of Cn−i−j(F)∼cdh
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over ∂∆j+1
E . Moreover all faces of sj are equal to zero and hence sj is a cycle.

To compute δ(sj) we note that sj extends to a section q∗j (s) of Cn−i−j(F) over

∆j+1
E and hence δ(sj) is represented by the cycle in Cn−i−j−1(F)(∂∆j+2

E ) whose

restriction to ∆j+1
E is equal to

∑n−i−j−1
k=0 (−1)k∂k(q

∗
j (s)) and whose restriction to

other faces of ∂∆j+2
E is zero. Finally an immediate verification shows that

∂k(q
∗
j (s)) =

{
0 if k 6= n− i− j

p∗j+1(s) if k = n− i− j

For any presheaf F define a new presheaf
∼

C1(F) via the formula

∼

C1(F)(X) = lim−→
X×{0,1}⊂U⊂X×A1

F(U) (X ∈ Sm/F )

Here the direct limit is taken over all open subschemes U ⊂ X ×A1 which contain

X ×{0, 1}. The presheaf
∼

C1(F)(X) is equipped with two obvious homomorphisms

∼

C1(F)
i∗0−→−→
i∗1

F

Moreover a straightforward verification shows that if F is a presheaf with trans-

fers, then
∼

C1(F) also has a natural structure of a presheaf with transfers and the
homomorphisms i∗0, i

∗
1 are compatible with transfers.

Definition 9.5. We’ll be saying that a presheaf with transfers F is rationally con-
tractible iff there exists a homomorphism of presheaves with transfers s : F →
∼

C1(F), such that i∗0s = 0, i∗1s = Id.

Proposition 9.6. The presheaves with transfers Ztr(G
∧n
m ), Ztr(G

∧n
m )/l are ra-

tionally contractible.

Proof. Obviously it suffices to establish rational contractibility of the sheaf
Ztr(G

∧n
m ). This follows easily from the fact that the scheme G×n

m ,being an open
subscheme in a contractible scheme An, is rationally contractible. To be more
precise consider a morphism of schemes

G×n
m × A1 ψ

−→ An : (t1, ..., tn)× t 7→ t · (t1, ..., tn) + (1− t) · (1, ..., 1)

and set W = ψ−1(G×n
m ), T = G×n

m × A1 \W . Thus W is an open subscheme of
G×n
m × A1, containing G×n

m × {0, 1} and ψ defines a morphism ψ : W → G×n
m such

that

ψ|
G

×n
m ×1 = Id, ψ|

G
×n
m ×0 = (1, ..., 1)
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Let X ∈ Sm/F be a smooth irreducibla scheme and let Z ∈ Ztr(G
×n
m )(X) be a

closed integral subscheme of X × G×n
m finite and surjective over X . The closed

integral subscheme

Z × A1 = Z ×∆A1 ⊂ (X × A1)× (G×n
m × A1)

defines an element in Ztr(G
×n
m × A1)(X ×A1). Set

UZ = X × A1 \ prX×A1(Z × A1 ∩ ((X × A1)× T )

The scheme UZ is an open subscheme of X ×A1, containing X × {0, 1}. Moreover

Z × A1 ∩ (UZ × (G×n
m × A1)) ⊂ UZ ×W

and this closed integral subschem defines an element in Ztr(W )(UZ). Apply-
ing to this element the homomorphism Ztr(ψ) : Ztr(W ) → Ztr(G

×n
m ) we get

an element s(Z) ∈ Ztr(G
×n
m )(UZ). A straightforward verification shows that in

this way we get a homomorphism of presheaves with transfers s : Ztr(G
×n
m ) →

∼

C1(Ztr(G
×n
m )). Finally the composition i∗1s is the identity map, whereas the com-

position i∗0s : Ztr(G
×n
m )→ Ztr(G

×n
m ) is induced by the constant morphism G×n

m →
G×n
m : (t1, ..., tn) 7→ (1, ..., 1). This implies that the factor sheaf

Ztr(G
×n
m )/Ztr((1, ..., 1)) is rationally contractible and hence its direct summand

Ztr(G
∧n
m ) is also rationally contractible.

Corollary 9.7. For any z ∈ Hi
M(E,Z/l(n)) there exists an open subscheme

U ⊂ ∂∆n−i+1
E ×A1 containing ∂∆n−i+1

E ×{0, 1} and an element y ∈ Hn
M(U,Z/l(n))

such that y|∂∆n−i+1
E ×0 = 0, y|∂∆n−i+1

E ×1 = δn−i(z).

Proof. In view of Lemma 9.4 it suffices to show that for any element
z ∈ (Ztr(G

∧n
m )/l)(∆n−i)0 there exists an open subscheme U as above and a section

y ∈ (Ztr(G
∧n
m )/l)∼cdh(U) such that

y|∂∆n−i+1
E × 0 = 0 y|∆n−i

E × 1 = z y|σ∆n−i+1 × 1 = 0

According to Proposition 9.6 there exists an open subscheme ∆n−i
E × {0, 1} ⊂ V ⊂

∆n−i
E ×A1 and a section s(z) ∈ (Ztr(G

∧n
m )/l)(V ) such that

s(z)|∆n−i
E ×0 = 0 s(z)|∆n−i

E ×1 = z

Moreover for any 0 ≤ j ≤ n − i the restriction of s(z) to V ∩ ∂j∆
n−i
E dies in the

direct limit
lim−→

∆n−i−1
E ×{0,1}⊂W⊂∆n−i−1

E ×A1

Ztr(G
∧n
m )/l(W )

Hence decreasing V if necessary we may assume that this restriction is trivial for
all j. This shows immediately that ,denoting ∆n−i

E ×A1 \ V by T , one may extend

the section s(z) to a section y of (Ztr(G
∧n
m )/l)∼cdh over ∂∆n−i+1

E × A1 \ T which is

zero over σ∆n−i+1
E × A1 \ T .
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§ 10. Proof of the main Theorem.

Denote by S the scheme A1 with points 0 and 1 identied. We denote by pt ∈ S
the unique singular point of S.

Lemma 10.1. Let X ∈ Sch/F be a scheme of finite type over F and let U ⊂ X×A1

be an open subscheme containing X×{0, 1}. Denote by
∼

U the image of U in X×S

under the canonical projection X ×A1 p
−→ X ×S. Then

∼

U is an open subscheme in
X × S and for any complex C∗ ∈ DM−(F ) we have a natural long exact sequence
of motivic cohomology groups

... −→ Hn
M(

∼

U,C∗)
p∗

−→ Hn
M(U,C∗)

i∗0−i
∗
1−−−→ Hn

M(X,C∗)
∼

δ
−→ Hn+1

M (
∼

U,C∗) −→ ...

Proof. The first statement is trivial. To prove the second it suffices to note that
the sequence of Nisnevich sheaves with transfers

0 −→ Ztr(X)
(i0)∗−(i1)∗
−−−−−−−→ Ztr(U)

p∗
−→ Ztr(

∼

U) −→ 0

is exact (even as a sequence of presheaves).

Corollary 10.2. For any X ∈ Sch/F we have a natural isomorphism
∼

δ : Hn
M(X,C∗)

∼
−→ Hn+1

M (X × S/X,C∗) ⊂ Hn+1
M (X × S,C∗)

Lemma 8.2 and Corollary 10.2 give us (for any i < n and any finitely generated
field extension E/F ) a sequence of split monomorphisms of motivic cohomology
groups with coefficients in an arbitrary complex C∗ ∈ DM−(F )

Hi
M(E)

δn−i

−−−→ Hn
M(∂∆n−i+1

E )
∼
δ
−→ Hn+1

M (∂∆n−i+1
E × S)

We denote the composition
∼

δδn−i of the above split monomorphisms by ξ.

Proposition 10.3. For any z ∈ Hi
M(E,Z/l(n)) there exists an open subscheme

∼

U ⊂ ∂∆n−i+1
E × S, containing ∂∆n−i−1

E × pt such that the restriction of ξ(z) ∈

Hn+1
M (∂∆n−i+1

E × S,Z/l(n)) to
∼

U is zero.

Proof. Let X × {0, 1} ⊂ U ⊂ X × A1, y ∈ Hn
M(U,Z/l(n)) be an open subscheme

and a motivic cohomology class such that i∗0(y) = 0, i∗1(y) = δn−i(z) - see Corollary

8.6. Let further
∼

U be the image of U in ∂∆n−i+1
E × S. According to Lemma 10.1

we have a commutative diagram with exact rows (all motivic cohomology groups
are taken with Z/l(n) coefficients)

0 −−−−→ Hn
M(∂∆n−i+1

E )
∼

δ
−−−−→ Hn+1

M (∂∆n−i+1
E × S)



y =



y



y

Hn
M(U)

i∗0−i
∗
1−−−−→ Hn

M(∂∆n−i+1
E )

∼
δ

−−−−→ Hn+1
M (

∼

U)

The above diagram shows that the image of ξ(z) =
∼

δδn−i(z) in Hn+1
M (

∼

U) is zero.

We lieve the proof of the following Lemma as an easy exercise to the reader.
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Lemma 10.4. Every open subscheme of ∂∆n−i+1 × S, which contains all vertices
vi × pt (0 ≤ i ≤ n) is strictly dense.

Proof of the Theorem 7.4
According to Lemma 6.9 and Proposition 9.3 it suffices to show that for any i ≤ n

and any finitely generated field extension E/F the map in motivic cohomology

(αn)∗ : Hi
M(E,Z/l(n)) −→ Hi

M(E,Bl(n))

is injective. Note further that according to Lemma 9.2 and Corollary 10.2 the
motivic cohomology groups in question inject canonically to Hn+1

M (∂∆n−i+1
E ×

S,Z/l(n)) and Hn+1
M (∂∆n−i+1

E × S,Bl(n)) respectively. For any open subscheme

U ⊂ ∂∆n−i+1
E × S containing all the vertices vi × pt we have an exact sequence of

motivic cohomology groups (both with Z/l(n) and Bl(n)-coefficients)

Hn
M(U) −→ Hn+1

T (∂∆n−i+1
E × S) −→ Hn+1(∂∆n−i+1

E × S) −→ Hn+1
M (U)

where we denoted by T the closed subscheme ∂∆n−i+1
E × S \ U . Taking direct

limits of these sequences over all U ’s we get the following commutative diagram
with exact rows

Hn
M(U,Z/l(n)) −−−−→ lim−→T H

n+1
T (∂∆n−i+1

E × S,Z/l(n)) −−−−→

(αn)∗



y (αn)∗



y

Hn
M(U,Bl(n)(n)) −−−−→ lim−→T H

n+1
T (∂∆n−i+1

E × S,Bl(n)) −−−−→

−−−−→ Hn+1(∂∆n−i+1
E × S,Z/l(n)) −−−−→ Hn+1

M (U,Z/l(n))

(αn)∗



y (αn)∗



y

−−−−→ Hn+1(∂∆n−i+1
E × S,Bl(n)) −−−−→ Hn+1

M (U,Bl(n))

where the direct limit is taken over all closed subsets T of ∂∆n−i+1
E ×S containing no

vertices and U this time denotes the semilocalization of ∂∆n−i+1
E ×S at the points

vi × pt. Note finally that the first vertical arrow in the above diagram is surjective
according to Proposition 7.6 and the second one is an isomorphism according to
Theorem 8.5 and Lemma 10.4. An easy diagram chase shows that the intersection
of the kernels of homomorphisms

Hn+1(∂∆n−i+1
E × S,Z/l(n)) −→ Hn+1

M (U,Z/l(n))

Hn+1(∂∆n−i+1
E × S,Z/l(n)) −→ Hn+1(∂∆n−i+1

E × S,Bl(n))

is trivial. For any motivic cohomology class z ∈ Hi
M(E,Z/l(n)) its image ξ(z) ∈

Hn+1(∂∆n−i+1
E ×S,Z/l(n)) dies in Hn+1

M (U,Z/l(n)) according to Proposition 10.3.
Thus if z dies in Hi

M(E,Bl(n)) (in which case ξ(z) dies in

Hn+1(∂∆n−i+1
E × S,Bl(n))) then ξ(z) is zero and hence z itself is zero.
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§ 11. Bloch-Kato conjecture and vanishing

of the Bockstein homomorphisms.

In this section we fix a prime integer l different from charF . Note that validity
of the Weak Bloch-Kato Conjecture for a field F (modulo l) implies, in particular,
that all homomorphisms Hn

et(F, µ
⊗n
lk+1) −→ Hn

et(F, µ
⊗n
l ) are surjective and hence all

the Bockstein homomorphisms β1,k : Hn
et(F, µ

⊗n
l ) −→ Hn+1

et (F, µ⊗n
lk

) corresponding

to the short exact sequences of etale sheaves 0 → µ⊗n
lk
→ µ⊗n

lk+1 → µ⊗n
l → 0 are

trivial. The aime of this section is to show that vice versa vanishing of the above
Bockstein homomorphisms implies the validity of the Bloch-Kato Conjecture (and
hence of the Beilinson-Lichtenbaum Conjecture as well). In the special case l = 2
such kind of statement was proved previously by A. Merkurjev [Me] using very
different technique. We start with the following elementary Lemma.

Lemma 11.1. The following conditions are equivalent

(1) All Bockstein homomorphisms β1,k : Hn
et(F, µ

⊗n
l ) −→ Hn+1

et (F, µ⊗n
lk

) are triv-
ial.

(2) All homomorphisms Hn
et(F, µ

⊗n
lk+1) −→ Hn

et(F, µ
⊗n
l ) are surjective.

(3) All Bockstein homomorphisms βk,1 : Hn
et(F, µ

⊗n
lk

) −→ Hn+1
et (F, µ⊗n

l ) are triv-
ial.

(4) All homomorphisms Hn
et(F, µ

⊗n
lk+1) −→ Hn

et(F, µ
⊗n
lk

) are surjective.

(5) All Bockstein homomorphisms βk,s : Hn
et(F, µ

⊗n
lk

) −→ Hn+1
et (F, µ⊗n

ls ) are triv-
ial.

(6) The group Hn
et(F,Ql/Zl(n)) is l-divisible.

Proof. The equivalence of (1) and (2), the same as equivalence of (3) and (4) is obvi-
ous. Furthermore (4) clearly implies (2) and (5) implies (3). To end up the proof we
only have to prove the implications (2)⇒(6) and (6)⇒(5). To prove the first implica-
tion we note that the composition Hn

et(F, µ
⊗n
lk+1) −→ Hn

et(F, µ
⊗n
l )→ Hn

et(F, µ
⊗n
lk+1) co-

incides with the multiplication by lk. Thus (2) implies that the image ofHn
et(F, µ

⊗n
l )

in Hn
et(F,Ql/Zl(n)) consists of infinitly l-divisible elements. Since this image is ex-

actly the l-torsion subgroup of the l-primary group Hn
et(F,Ql/Zl(n)) we conclude

easily that the latter group is l-divisible. Finally (6) implies vanishing of the Bock-
stein homomorphisms β∞,s which implies the vanishing of all βk,s in view of the
commutative diagram

Hn
et(F, µ

⊗n
lk

)
βk,s
−−−−→ Hn+1

et (F, µ⊗n
ls )



y



y=

Hn
et(F,Ql/Zl(n))

β∞,s
−−−−→ Hn+1

et (F, µ⊗n
ls )

Lemma 11.2. Assume that the field F is infinite. Let s ∈ Hn
et(F,Z/l) (n > 0) be

an etale cohomology class. Then there exists an integer N , an open subscheme U ⊂
AN , an etale Galois covering p : U → V , an etale cohomology class s′ ∈ Hn

et(V,Z/l)



BLOCH-KATO CONJECTURE AND MOTIVIC COHOMOLOGY 65

and two rational points v0, v1 ∈ V such that v∗0(s′) = 0, v∗1(s′) = s (and v0 admits
a rational lifting u0 to U).

Proof. Note first of all that for any Galois covering p : U → V with a Galois group
G we have a natural homomorphism γp : Hn(G,Z/l) → Hn(G,H0

et(U,Z/l)) →
Hn
et(V,Z/l). We can always represent s as a cohomology class of the Galois group

G = Gal(E/F ) of an appropriate Galois extension E/F , i.e. right s in the form
s = γp1(s0), where p1 : SpecE → SpecF is a Galois covering with the group G
and s0 ∈ Hn(G,Z/l) is an appropriate cohomology class. Set N = |G|, let G
act on AN by permuting the coordinates and let U ⊂ AN be the open subscheme
consisting of points with all coordinates different. Thus the action of G on U is
free and hence p : U → V = U/G is a Galois covering. Finally set s′ = γp(s0).
Let u0 ∈ U be any F -rational point and let v0 = p(u0) be its image in V . The
cohomology class v∗0(s′) coincides with γp0(s0), where p0 : U0 = p−1(v0) → SpecF
is the induced Galois covering. To show that v∗0(s′) = 0 it suffices to note that
the fiber p−1(v0) consists of N different rational points hence H0

et(U0,Z/l) is the
induced G module and H∗(G,H0

et(U0,Z/l)) = 0 for ∗ > 0. Finally choose a normal
basis eg (g ∈ G) for the extension E/F . The family {eg}g∈G defines a point
u1 ∈ U with the residue field F (u1) = E, one checks immediately that this point is
G-invariant (and the induced action of G on F (u1) = E is the original one). This
shows that the image p(u1) = v1 is an F -rational point and the induced Galois
covering p1 : U1 = p−1(v1)→ SpecF coincides with what we denoted by p1 above.
Thus v∗1(s′) = γp1(s0) = s.

Proposition 11.3. Assume that resolution of singularities holds over F . As-
sume further that the Beilinson-Lichtenbaum Conjecture (modulo l) holds over F
in weights < n. Let finally U ⊂ AN be an open subscheme and let u ∈ U be an
F -rational point. In this case the canonical homomorphisms

(αlk)∗ : H∗
M(U/u,Z/lk(n)) −→ H∗

M(U/u,Blk(n))

are isomorphisms for all k > 0.

Proof. Set Z = AN \ U . One checks immediately that for any C• ∈ DM−(F ) we
have a natural isomorphism H∗

M(U/u, C•) = H∗+1
Z (AN , C•). Thus our statement

follows from Theorem 8.5.

Theorem 11.4. Assume that resolution of singularities holds over F . Assume
further that the Bockstein homomorphisms βi1,k : Hi

et(E, µ
⊗i
l ) −→ Hi+1

et (E, µ⊗i
lk

) are

trivial for all k, all i ≤ n and all finitely generated field extensions E/F . Then the
Beilison-Lichtenbaum Conjecture holds over F in weights ≤ n.

Proof. Proceeding by induction on n we may assume that Beilinson-Lichtenbaum
Conjecture is known to be true over F in weights < n. Define the complex Bl∞(n)
the same way the complex Blk(n) was defined in § 6. Thus Bl∞(n) = τ≤n(π∗(J

•))
where this time J• is the injective resolution of the h-sheaf Ql/Zl(n) = µ⊗n

l∞ =

lim−→k µ
⊗n
lk

. We first show that the homomorphism αn : Ql/Zl(n) = lim−→k Z/lk(n) =
Z(n) ⊗ Ql/Zl −→ Bl∞(n) is a quasiisomorphism. The proof repeats word by word
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that of the Theorem 7.4, provided we can show that for any finitely generated field
extension E/F the homomorphism in motivic cohomology

Hn
M(E,Ql/Zl(n)) −→ Hn

M(E,Bl∞(n)) = Hn
et(E,Ql/Zl(n))

is surjective. Note that both l-primary groups above are l-divisible: the one on
the left coicides with KM

n (E) ⊗ Ql/Zl and the one on the right is l-divisible ac-
cording to our assumptions. Thus to prove the surjectivity of the above map it
suffices to show that the elements of l-torsion in Hn

et(E,Ql/Zl(n)) admit a lifting
to Hn

M(E,Ql/Zl(n)). Note also that the l-torsion subgroup in Hn
et(E,Ql/Zl(n))

coincides with the image of Hn
et(E, µ

⊗n
l ). As always we may assume that E con-

tains a primitive l-th route of unity ξ (which allows to identify Hn
et(E, µ

⊗n
l ) with

Hn
et(E,Z/l)) and obviously we may assume that E is infinite. Start with a coho-

mology class s ∈ Hn
et(E, µ

⊗n
l ). Applying Lemma 12.2 we get an open subscheme

U ⊂ AN a Galois covering p : U → V , a cohomology class s′ ∈ Hn
et(V, µ

⊗n
l ) and two

rational points v0, v1 ∈ V such that v∗0(s′) = 0, v∗1(s′) = s. WriteN in the formN =
lkM where M is prime to l. Surjectivity of the homomorphism Hn

et(E, µ
⊗n
lk+1) →

Hn
et(E, µ

⊗n
l ) for all field extensions E/F implies immediately that the same holds

for any smooth semilocal scheme over F (this is another general property of homo-
topy invariant presheaves with transfers - see [V 1]). Thus decreasing if necessary
V we may assume that s′ may be lifted to a cohomology class s′′ ∈ Hn

et(V, µ
⊗n
lk+1).

Let u0 ∈ U be any rational point over v0. Applying Proposition 11.3 to the etale
cohomology class p∗(s′′)−p∗(s′′)(u0) = p∗(s′′)−s′′(v0) ∈ H

n
et(U/u0, µ

⊗n
lk+1) we get a

motivic cohomology class t′′ ∈ Hn
M(U/u0,Z/l

k+1(n)) whose image in Hn
et(U, µ

⊗n
lk+1)

equals p∗(s′′) − s′′(u0). Set t′ = p∗(t
′′) ∈ Hn

M(V,Z/lk+1(n)). The image of this
motivic cohomology class in Hn

et(V, µ
⊗n
lk+1) equals N(s′′ − s′′(u0)) and hence equals

M times the image of s′ − s′(u0) = s′ ∈ Hn(V, µ⊗n
l ) in Hn

et(V, µ
⊗n
lk+1). Setting

finally t = M ′v∗1(t′), where M ′M ≡ 1 mod lk+1 we get a motivic cohomology
class t ∈ Hn

M(E,Z/lk+1(n)) whose image in Hn
et(E, µ

⊗n
lk+1) equals the image of s

in this group. Thus the image of Hn(E, µ⊗n
l ) in Hn

et(E,Ql/Zl(n)) can be lifted to
Hn

M(E,Ql/Zl(n)) and hence the homomorphism

Hn
M(E,Ql/Zl(n)) −→ Hn

M(E,Bl∞(n)) = Hn
et(E,Ql/Zl(n))

is surjective. Finally to prove the Beilinson-Lichtenbaum Conjecture modulo l we
use the Bockstein distinguished triangles in DM−(F )

Z/l(n) −−−−→ Ql/Zl(n)
l

−−−−→ Ql/Zl(n) −−−−→ Z/l(n)[1]


y



y



y



y

Bl(n) −−−−→ Bl∞(n)
l

−−−−→ Bl∞(n) −−−−→ Bl(n)[1]

- cf. the proof of the Lemma 6.10.
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§ 12. Appendix: cdh-cohomological dimension of Noetherian schemes.

For any Noetherian scheme S we denote by Sch/S the category of separated
schemes of finite type over S. One defines the cdh-topology on Sch/S in the same
way it was done in § 5 in case S = SpecF . The proofs of Lemma 5.8 and Proposition
5.9 were given in such a way that they work without any changes over an arbitrary
Noetherian base scheme S.

Lemma 12.1. Let p : Y → X be a proper morphism (of separated schemes of finite
type over S) and let Z ⊂ X be a closed subscheme such that p is an isomorphism
over X \ Z. In this case we have an exact sequence of cdh-sheaves

0→ Zcdh(p
−1(Z)) −→ Zcdh(Z)⊕ Zcdh(Y ) −→ Zcdh(X)→ 0

and hence for any cdh-sheaf F ∈ (Sch/S)∼cdh we get an exact sequence of cdh-
cohomology groups

Hi
cdh(X,F) −→ Hi

cdh(Z,F)⊕Hi
cdh(Y,F) −→ Hi

cdh(p
−1(Z),F) −→ Hi+1

cdh (X,F)→ . . .

In particular for any X ∈ Sch/S we have a natural isomorphism

H∗
cdh(X,F) = H∗

cdh(Xred,F)

and for any closed covering X = Y ∪ Z we have a long exact Mayer-Vietoris
sequence

Hi
cdh(X,F) −→ Hi

cdh(Z,F)⊕Hi
cdh(Y,F) −→ Hi

cdh(Y ∩ Z,F) −→ Hi+1
cdh (X,F)→ . . .

Proof. Recall that the sheaf Zcdh(X) is defined as the cdh-sheaf associated to the
presheaf Z(X) : U 7→ Z[HomS(U,X)]. An immediate verification shows the
exactness of the following sequence of presheaves

0→ Z(p−1(Z)) −→ Z(Z)⊕ Z(Y ) −→ Z(X).

Since the sheafification functor is exact this proves the exactness of the above
sequence of sheaves without zero on the right. Finally the homomorphism Zcdh(Z)⊕
Zcdh(Y ) −→ Zcdh(X) is surjective since Y

∐
Z → X is a cdh-covering of X .

Ue used implicitly the second statement of the following Lemma several times
in § 5.

Lemma 12.2. 1) Let f : Y → X be a morphism of finite type. Assume that the
point x ∈ X admits a lifting y ∈ Y such that the residue fields at x and y coincide:
k(x) = k(y). Then there exists an open neighbourhood of x in x each point of which
has the same property.
2) Every Nisnevich covering {Ui → X}i∈I of a Noetherian scheme X admits a
finite subcovering.

Proof. 1) Consider y and x as closed integral subschemes in Y and X respectively.
The induced morphism f : y → x is still of finite type and is an isomorphism over
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the generic point x of x, hence it is an isomorphism over some open neighbourhood
of x in x.
2)Proceeding by Noetherian induction we may assume that for any proper closed
subscheme Z ⊂ X the induced Nisnevich covering {Ui ×X Z → Z}i∈I has a finite
subcovering. Let x1, ..., xn ∈ X be generic points of components of X and let
Ui1 , ..., Uin be members of our family such that xk admits a lifting to Uik with the
same residue field. According to part 1) there exist open neighbourhoods xk ∈ Vk
such that each point of Vk admits a lifting to Uik with the same residue field. Set
Z = X \ ∪nk=1Vk and consider Z as a (proper) closed reduced subscheme of X .
According to our induction hypothesis there exists a finite subset J ⊂ I such that
each point z ∈ Z admits a lifting with the same residue field to one of Uj j ∈ J .
Obviously the subfamily defined by the finite set J ∪{i1, ..., in} is a finite Nisnevich
subcovering of the original covering.

Corollary 12.2.1. Let I be a filtering partially ordered set and let i 7→ Xi be a
functor from I to the category of Noetherian schemes such that all the transition
morphisms pij : Xi → Xj (i ≥ j) are affine. Set X∞ = lim←−i∈I Xi, denote by
pi : X∞ → Xi the structure morphisms and assume that the scheme X∞ is again
Noetherian. Assume further that we are given an index i ∈ I and a morphism
of finite type Yi → Xi such that each point of X∞ admits a lifting with the same
residue field to Y∞ = Yi ×Xi

X∞. Then there exists an index j ≥ i for which the
morphism Yj = Yi ×Xi

Xj → Xj has the same property.

Proof. For any j ≥ i let Uj ⊂ Xj denote the subset of Xj , consisting of points
which admit a lifting to Yj with the same residue field. Lemma 12.2 shows that
the set Uj is ind-constructible in Xj - [EGA-4 (1.9.10)]. Note further that a point
xj ∈ Xj with the image xi = pji(xj) in Xi belongs to Uj if and only if the scheme
Yi ×Xi

Speck(xi) of finite type over the field k(xi) has a rational point over the
extension field k(xi) ⊂ k(xj). This remark shows easily that for j′ ≥ j we have an

inclusion p−1
j′j(Uj) ⊂ Uj′ and moreover

X∞ = U∞ =
⋃

j≥i

p−1
j (Uj).

Using finally [EGA-4 (8.3.4)] we conclude that there exists an index j ≥ i such that
Uj = Xj.

Corollary 12.2.2. In conditions and notations of (12.2.1) assume that Y∞ → X∞

is a Nisnevich covering (resp. cdh-covering) then there exists an index j ≥ i such
that Yj → Xj has the same property.

Proof. For Nisnevich coverings our statement follows immediately from [EGA-4
(17.7.8)] and Corollary 12.2.1. Assume now that Y∞ → X∞ is a cdh-covering.
According to Proposition 5.9 there exists a refinefent of this covering of the form
U∞ → X ′

∞ → X∞ where U∞ → X ′
∞ is a Nisnevich covering and X ′

∞ → X∞

is a proper cdh-covering. Furthermore, according to [EGA-4 (8.8.2)] we can find
an index j ≥ i and a tower of morphisms Uj → X ′

j → Xj of finite type such
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that U∞ = Uj ×Xj
X∞, X

′
∞ = X ′

j ×Xj
X∞. Using once again [EGA-4 (8.8.2)] we

see, that increasing j, we may assume also that there exists a morphism Uj → Yj
over Xj . Finally we conclude, using Corollary (12.2.1) above and [EGA-4 (8.10.5),
(17.7.8)] that increasing j we may assume that Uj → X ′

j is a Nisnevich covering
and X ′

j → Xj is a proper cdh-covering. This shows that Uj → Xj is a cdh-covering
and hence Yj → Xj is a cdh-covering as well.

The main goal of this Appendix is to show that the cdh-cohomological dimen-
sion of a scheme X ∈ Sch/S is finite provided that dimX is finite and moreover
cdcdhX ≤ dimX . The proof we are about to give was suggested to us by O. Gabber.
We start with a few standard remarks.

For any morphism of (Noetherian) schemes f : S′ → S we denote by the same
letter f the associated morphism of sites

(Sch/S′)cdh
f
−→ (Sch/S)cdh : X/S 7→ XS′/S′ = X ×S S

′/S′

and denote by f∗ and f∗ the corresponding functors on the categories of abelian
sheaves

(Sch/S′)∼cdh
f∗
−→←−
f∗

(Sch/S)∼cdh.

Thus the direct image functor f∗ is given by the formula (f∗F)(X/S) = F(XS′/S′).
This functor is left exact and preserves injectives. The inverse image functor
f∗ is left adjoint to f∗. This functor is exact (since the sites in question have
arbitrary fiber products) and satisfies the following property: f∗(Zcdh(X/S)) =
Zcdh(XS′/S′).

Assume that the morphism f : S′ → S is a separated morphism of finite type
(so that S′ ∈ Sch/S). In this case one checks easily that the inverse image functor
f∗ is given by the formula (f∗F)(X ′/S′) = F(X ′/S). Furthermoer the functor f∗

has an exact left adjoint , which is denoted f! and is called the extension by zero
functor. In the above situation the functor f∗ takes injectives to injectives, which
gives immediately for any scheme X ∈ Sch/S′ the following natural isomorphism
in cohomology

H∗
cdh(X/S

′, f∗F) = H∗
cdh(X/S,F).

The above formula shows that cdh-cohomology essentially does not depend on the
base scheme S: for any separated scheme f : X → S of finite type over S and
any cdh-sheaf F ∈ (Sch/S)∼cdh we have a natural isomorphism H∗

cdh(X/S,F) =
H∗
cdh(X/X, f

∗F).

Assume now that I is a filtering partially ordered set (i.e. I 6= ∅ and for any
i1, i2 ∈ I there exists i ∈ I such that i ≥ i1, i2). Assume further that we are
given a functor i 7→ Si from I to Sch/S, such that all transition morphisms Si →
Sj (i ≥ j) are affine. Set S∞ = lim←−i∈I Si and assume that the scheme S∞ is again
Noetherian. Denote by f∞ : S∞ → S the corresponding structure morphism.
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Proposition 12.3. For any abelian sheaf F ∈ (Sch/S)∼cdh we have a natural iso-
morphism lim−→i∈I H

∗
cdh(Si,F) = H∗

cdh(S∞, f
∗(F)).

Proof. Note that in the above situation the category Sch/S∞ is a direct limit of
categories Sch/Si in the sence that for any i ∈ I and any schemes X, Y ∈ Sch/Si
we have a natural bijection

HomS∞
(X ×Si

S∞, Y ×Si
S∞) = lim−→

j≤i

HomSj
(X ×Si

Sj , Y ×Si
Sj)

and furthermore for each X∞ ∈ Sch/S∞ there exists an index i ∈ I and a scheme
Xi ∈ Sch/Si such that X∞ = Xi ×Si

S∞ - see [EGA-4]. Moreover Corollary
12.2.2 shows that given a finite family of morphisms {Xk

i → Xi}
K
k=1 over Si, the

corresponding family {Xk
i ×Si

S∞ → Xi ×Si
S∞}

K
k=1 is a cdh-covering iff there

exists j ≥ i such that {Xk
i ×Si

Sj → Xi ×Si
Sj}

K
k=1 is a cdh-covering. Using these

remarks one checks easily that the sheaf f∗(F) is given by the formula

f∗(F)(Xi ×Si
S∞) = lim−→

j≥i

F(Xi ×Si
Sj).

Next one checks that the inverse image of an injective sheaf is at least acyclic.

(12.3.1). Assume that the sheaf F is injective. Then for any X ∈ Sch/S∞ the
cohomology groups H∗

cdh(X, f
∗(F)) vanish for ∗ > 0.

Proof. Let p : Y → X be a cdh-covering of X . According to what was said above
there exists an index i ∈ I and a cdh-covering pi : Yi → Xi in the category Sch/Si
such that pi ×Si

S∞ = p. The above explicit formula for the sheaf f∗(F) shows
immediately that the Čech complex of the sheaf f∗(F) corresponding to the covering
p coincides with the direct limit over j ≥ i of Čech complexes of F , corresponding
to the coverings pi×Si

Sj : Yi×Si
Sj → Xi×Si

Sj and hence is acyclic. Vanishing of

all Čech cohomology groups of the sheaf f∗(F) implies vanishing of all cohomology
groups H∗

cdh(X, f
∗(F)) in view of the Cartan-Leray spectral sequence.

In the general case pick up an injective resolution 0 → F → J• of the sheaf F .
Applying to this resolution the functor f∗ we get a resolution f∗(J•) of f∗(F) con-
sisting of acyclic sheaves. Hence the cohomology groups H∗

cdh(S∞, f
∗(F)) coincide

with cohomology of the complex

f∗(J•)(S∞) = lim−→
i∈I

J•(Si).

So it remains to use again that cohomology commutes with filtering direct limits.

In the situation of Proposition 12.3 we usually use notation H∗
cdh(S∞,F) instead

of H∗
cdh(S∞, f

∗(F)).
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Lemma 12.4. Let p : S′ → S be a birational morphism of finite type of integral
Noetherian schemes of finite Krull dimension. Then dimS′ ≤ dimS.

Proof. Since dimS′ coincides with the maximum of dimensions of local rings OS′,s′

(s′ ∈ S′) it suffices to note that for any point s′ ∈ S′ we have, according to
the ”Dimensions Formula” - [EGA-4 (5.5.8)], the following inequality (in which
we denote p(s′) ∈ S by s and denote by k(S) (resp. k(S′) )the field of rational
functions on S (resp. S′))

dimOS′,s′ ≤ dimOS′,s′ + tr.degk(s)k(s
′) ≤ dimOS,s + tr.degk(S)k(S

′) = dimOS,s.

Theorem 12.5. Let S be a Noetherian scheme of finite Krull dimension. Then
cohomological dimension of S with respect to the cdh-topology is finite and ≤ dimS.

Proof. We proceed by induction on dimS. The case dimS = 0 being trivial, assume
that dimS = d > 0 and the result is known to be true for schemes of dimension
< d. Using the Mayer-Vietoris exact sequences in cdh-cohomology, corresponding
to the closed coverings, one reduces easily the general case to the case when S is
integral. Denote by α the obvious morphism of sites

α : (Sch/S)cdh → (Sch/S)Nis

and consider the corresponding Leray spectral sequence

Epq2 = Hp
Nis(S,R

qα∗(F))⇒ Hp+q
cdh (S,F).

Note that the stalk of the sheaf Rqα∗(F) at a point x ∈ S is the direct limit of
cohomology groups Hq

cdh(U,F) over Nisnevich neighbourhoods (U, u) → (S, x) of
the point x. Moreover we may assume these neighbourhoods to be affine and con-
nected. Such neighbourhoods form a filtering partially ordered set and the resulting
functor from this poset to Sch/S satisfies the conditions of the Proposition 12.3.
Thus we conclude that for any x ∈ S Rqα∗(F)x = Hq

cdh(SpecO
h
x ,F). Induction

hypothesis gives us now the following conclusion

Rqα∗(F)x = 0 in case min(q, d) > dimOhx = codimSx.

Applying the same reasoning to an arbitrary scheme etale over S we see that for
q < d the Nisnevich sheaf Rqα∗(F) is supported in dimension ≤ d − q and hence
Hp
Nis(S,R

qα∗(F)) = 0 for p > d−q -see [Nis]. Furthermore for q ≥ d the Nisnevich
sheaf Rqα∗(F) is supported in dimension 0 and henceHp

Nis(S,R
qα∗(F)) = 0 for p >

0. The Leray spectral sequence shows now that for n > d we have an isomorphism
Hn
cdh(S,F) = H0

Nis(S,R
nα∗(F)) and ,in particular, each cohomology class h ∈

Hn
cdh(S,F) for which there exists a Nisnevich covering {Ui → S}ni=1 such that h|Ui

is trivial for all i is trivial itself.
To finish the proof start with an arbitrary cohomology class h ∈ Hn

cdh(S,F)
(n > d). There exists a cdh-covering {Xi → S} such that h dies being restricted to
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each Xi. Furthermore Proposition 5.9 shows that this covering has a refinement of
the form {U ′

i → S′ → S}ni=1, where S′ → S is a proper birational cdh-covering and
{U ′

i → S′}ni=1 is a Nisnevich covering of the scheme S′. Let S′′ ⊂ S′ be the closure
of the inverse image of the generic point of S and let {U ′′

i → S′′} be the induced
Nisnevich covering of the scheme S′′. Thus S′′ is an integral scheme of dimension
≤ d and the morphism S′′ → S is proper and birational. The cohomology class
h|S′′ dies being restricted to all U ′′

i and hence is trivial. Let finally Z ⊂ S be a
proper closed subscheme such that the morphism p : S′′ → S is an isomorphism
outside Z. The long exact cohomology sequence

0 = Hn−1
cdh (p−1(Z),F)→ Hn

cdh(S,F)→ Hn
cdh(S

′′,F)⊕Hn
cdh(Z,F) = Hn

cdh(S
′′,F)

shows that the restriction homomorphism Hn
cdh(S,F) → Hn

cdh(S
′′,F) is injective.

Thus h = 0.
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