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1. Introduction 

The main objective of the present paper is to construct a reasonable singular 
homology theory on the category of schemes of finite type over an arbitrary 
field k. 

Let X be a CW-complex. The theorem of Dold and Thorn [3] shows that 
Hi(X, Z)  coincide with ~, of the simplicial abelian group 

Homtop A;o p, H Sd(X ' 
d=0 / 

where Sd(X) is the d-th symmemc power of X, Aio p is the usual/-dimensional 
topological simplex and for any abelian monoid M we denote by M + the 
associated abelian group. 

1 Supported by grant MOG 000 from the International Science Foundation, 
2 Supported by NSF grant DMS-9100383. 
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Let now X be any scheme of finite type over a field k. Define H;~'g(X) 
as ni of the simplicial abelian group 

Hom A a 
d=0 / 

where this time A i denotes the linear subvariety of A ~+1 given be the equation 

t o + . . . + t i =  1. 

Note further that for any normal connected scheme S the abelian monoid 
Hom(S, I_[~'-o s d ( x ) )  coincides (after localization by p = exponential charac- 
teristic of  k ) with the monoid of effective cycles in S • X each component of 
which is finite and surjective over S. Thus, (after localization by p) H~'ing(X) 
coincide with 

~ . (C . (X) )  = H . ( C . ( X ) , d  = ~ ( - 1 ) i ~ i ) ,  

where C.(X)  is the simplicial abelian group generated by closed integral sub- 
schemes Z C A i • X such that the projection Z ---+ A i is finite and surjective. 

This construction appeared first in the talk given by A.Suslin at the Lu- 
rainy conference on algebraic K-theory (1987) as a part of a program towards 
the computation of higher algebraic K-theory of varieties over C. Two main 
conjectures relating singular algebraic homology to other homology theories 
were made. 

Conjecture 1.1. I f  X is a variety over C then the evident homomorphism 

Hom A ~ s d ( x  ~ Homtop A p, Sd(X 
d : 0  / d=0 / 

induces isomorphisms 

nT'ng(X,Z/n) ~ Hi(X(C),Z/n). 

Conjecture 1.2. Let X be a complete irreducible variety of  dimension n over 
a field k. Then the evident embedding o f  complexes 

c , ( x )  --~ ~n(x, , )  

is a quasi-isomorphism, i.e. HTing(X) ~- CHn(X,i), where CH*(X,*) are the 
higher Chow groups introduced by XBloeh [1]. 

Here we prove that the first conjecture is true. 3 The method of the proof is 
close to the methods developed previously by A. Suslin [21], [22], O. Gabber 
(unpublished), H. Gillet and R. Thomason [7] and R. Jardine [12] for the 
computation of algebraic K-theory of algebraically closed fields. In section 4 
we prove a rather general version of the rigidity theorem of Suslin, Gabber, 

31t was proven after this paper was written that the second conjecture also holds, see [23]. 
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Gillet and Thomason (theorem (4.4) below). The crucial role in the application 
of this rigidity theorem to the problem in question is played by h-topology of 
Voevodsky [24]. One of the main results of the paper (theorem (7.6) and 
corollary (7.7) below) shows that if F is any qfh-sheaf on the category of 
schemes of finite type over an algebraically closed field k of characteristic 
zero, then 

H~*,nq(F, Z/n) = Extqlh(F, Z/n). 

Applying this theorem to the sheaf Zqlh(X) and using some topological com- 
putations parallel to theorem (7.6) we conclude the proof of conjecture 1 in 
section 7. The last section contains a generalization of the main theorem to 
cycles of positive dimension: we prove that for projective varieties over C al- 
gebraic Lawson homology with finite coefficients coincides with the usual one 
[14]. This answers a question raised by E. Friedlander (see also [4]). 

For reader's convenience we have included an appendix where we discuss 
briefly the definition and some of the main properties of  h-cohomology (for 
more details see ([24]). There we give in particular a corrected version of the 
proof of  the comparison theorem relating h-, qffi- and etale cohomology (the 
proof of this theorem in ([24]) contains an error). 

2. The relative Picard group 

Let X be a scheme and let Y be a closed subscheme of X. Set U = X -  Y 
and denote by i : Y ~ X, j : U , X the corresponding closed and open 
embeddings. 

Denote by Pic(X, Y)  the group, whose elements are isomorphism classes of 
pairs of the form (L, qS), where L is a linear bundle on X and ~b : Lit ~- Cr is 
a trivialization of L over Y and the operation is given by the tensor product. 
There is an evident exact sequence: 

F(X,&*x) ~ F(Y,e<'}) , Pic(X, Y)  ----+ Pic(X)  , Pic(Y)  (I 

Let Gx be the sheaf of invertible functions on X. The homomorphism Gx 
i , (Gy)  is surjective both in etale and Zariski topologies and we will denote 
by Gx, y its kernel. 

Lemma 2.1. 

Pic(X, Y) = Hla,.(X, Gx, r ) = l i l t (x ,  Gx, r ). 

Proof  Any relative linear bundle (L, qS) is locally trivial in the Zariski topol- 
ogy and the automorphism group of the trivial relative bundle (C~,,Id: 
(Cc)rY ~- C!JYnc) is canonically isomorphic to F(U, Gx, y). This implies the 
first formula. The second follows from the Hilbert theorem 90 ([17],[Ch.3]) 
and the five lemma. 
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Corollary 2.2. Assume that n i~ invertible on X ,  then 

Pic(X, Y)/nPic(X, Y) ~ H2(X,j!(#,  )) 

(here j! Ls' the extension by zero f u n c t o r -  see [17]). 

Proof  This follows from the lemma 2.1 in view of  the exact sequence of  etale 
sheaves: 

0 ~ j!(/~n) ---+ Gx, r _2~ Gx, r ~ 0. 

Assume that X is integral and denote by K the field of  rational func- 
tions on X. A relative Cartier divisor on X is a Cartier divisor D such 
that Supp(D)V/Y = 0. I f  D is a relative divisor and Z = Supp(D), then 
C~x(D)lx-z = Cx- z .  Thus D defines an element in Pie(X, Y). Denoting the 
group of  relative Cartier divisors by Div(X,Y)  we get a homomorphism 
c l : D i v ( X , Y )  , Pic(X, Y). The image of  this homomorphism consists of  
pairs (L , r  such that r admits an extension to a trivialization o f  L over an 
open neighbourhood of  Y. In particular this map is surjective provided that Y 
has an affine open neighbourhood. Finally set 

G = { f  E K* : f E ker(((Pf;) v ~ (C})y)  for any y E Y} 

= { f  E K* : f is defined and equal to one at each point o f  Y}. 

The following two lemmas are straightforward from definitions 

Lemma 2.3. Assume that Y has an affine open neighbourhood in X. Then 
the following sequence is exact: 

0 - -~  F(X, Gx, r ) ~ G ~ Div(X, Y) > Pie(X, Y) -----+ O. 

Lemma 2.4. Assume that U is normal and every closed integral subscheme o f  
U o f  codimension one which is closed in X is" a Cartier divisor (this" happens 

jbr  example when U is factorial) . Then Div(X, Y) is a Ji'ee abelian group 
generated by closed integral subschemes T C U o f  codimension one which 
are closed in X.  

Finally we will mention the homotopy invariance o f  the relative Picard 
group. 

Lemma 2.5. Assume that X is normal and Y is reduced. Then Pic(X, Y) 
Pic(X • A 1, Y • A 1). 

Proof  It follows from the exact sequence (1), the five lemmas and the ho- 
motopy invariance of  the Picard group for normal schemes. 
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3. Singular homology of curves 

Let k be a field. All  schemes considered in this section are assumed to be of  
finite type over k. Denote by A" the closed subscheme of  A "+1 given by the 
equation to + . . .  + tn ---- 1. There are obvious coface and codegeneracy maps 

A t : A n i A n 

(;i : An+ l An 

making A ~ a cosimplicial  scheme. 
Suppose, that S is irreducible and X Is any scheme over S. Denote by 

Cn(X/S) the free abelian group generated by closed integral subschemes Z c 
X x A" such that the projection Z , S x A n is finite and surjective. One 
verifies immediately that if  Z is as above, then each component of  ( A ' ) - l  (Z)  C 
X • A n-j  is finite and surjective over S x A n-t  and hence has the "correct" 
dimension, so that the cycle-theoretic inverse image (A~)*(Z) is well defined 
and lies in Cn_I(X/S). This gives us the face operators 

~i = ( ~ ' ) *  : c n ( x / s )  ~ C n - l ( X / S ) .  

In the same way one defines degeneracy operators 

si = (~')* : C n ( X / S )  ~ Cn+I(X/S) ,  

thus making C,(X/S) a simplicial abelian group. The homotopy groups of  this 
simplicial abelian group, i.e. the homology of  the complex 
(C, (X/S), d = ~ ( -  1 )i ~i ) will be denoted by H~ 'nr 

Assume that S is a normal affine scheme and X is a smooth affine irre- 
ducible scheme of  relative dimension one over S. By a good compactification 
of  X/S we' l l  mean an open embedding of  schemes over S, X ~-+ )~ such that 
the following conditions hold: 

1. The scheme Y = 2 - X has an affine open neighbourhood in 37 (here and 
in the sequel we consider Y as a closed reduced subscheme of  X) .  

2. )~ is normal, 

3. X ~ S is a proper morphism with fibers of  dimension one. 

Theorem 3.1. Let S,X,X,  Y be as above, then 

Ho'in~ = Pic(X, Y) 

HT'ng(x/s) = 0 for i > 0. 

Proof Let Z C X • A" be a closed integral subscheme. The projection Z ---+ 
S x A" is finite and smjective i f  and only i f  Z is closed and of  codimension 
one in 2 • A n. Since S is normal and X is smooth over S any such Z is in 
fact a Cartier divisor on ) (  x A n (see [11, 21.14.3]). Thus Cn(X/S) = Div()( • 
A n, Y • A n) (see lemma 2.4). Let U be an an affine open neighbourhood of  
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Y in X. Then U x A n is an affine open neighbourhood of  Y x A n in )? x A n. 
According to the lemma 2.3 we have an exact sequence o f  simplicial abelian 
groups: 

0 ,A. ~G. ~C.(X/S) ~ P i c ( X x A ~  ~ ~0 (2) 

where 

An = F(X x An,Gj~xA,,YxA,,) 
G, = { f E  k(J~ x A")* : f  is defined and equal to 1 at each point of  

Y x  A n } 

and k()( x A")* is the multiplicative group of  the field o f  rational functions 
on the scheme )( x A". 

Let us show that A, = 0 for all n. Consider an element f E F() (  x 
A",G2x~,,,YxA,, ). The restriction of  f to any geometric fiber o f X  x A" 
S x A n is a regular function on a complete curve and hence has to be a constant 
on each component o f  the fiber. On the other hand each component contains at 
least one point of  Y x A n where f is equal to one. This shows, that f ( x )  = l 
for any x E J? x A" and hence f = 1 since )( • A n is reduced. 

Consider now the simplicial abelian group G.. Let us show, that it is acyclic, 
i.e. ~ , ( G . ) =  0. It suffices to check that for any f C Gn such that ~? , ( f )=  
1 for i = 0  . . . . .  n there exists gEGn+j such, that (?,(g) = 1 for i = 0  . . . . .  n 
and (?n+l(g) = f .  Define functions gi E Gn+j for i = 0 . . . . .  n by means of  the 
formula: 

gj = (t~+l + . . .  + tn+l ) + (to + ... + t,)si(f) 

These functions satisfy the following equations: 

1 if j , # i , i + l  
(? j (g , )=  ( t i + ' . ' + t n ) + ( t o + " . + t i - z ) f  if j = i  

( t i + l + ' - ' + t n ) + ( t 0 + - ' - + t i ) f  if j = i + l  

In particular (?o(9o) = 1, (?n+J(gn) = f .  Finally we set 

g gngp711gn_2 , ( - 1 ) "  
= " �9 " ,q0 " 

This function obviously satisfies the conditions we need. Note now that the 
lemma (2.5) implies that 

Pic(X x A n, Y x A n) = Pic(X, Y) 

and we conclude from the exact sequence (2) that 

Hiring(x/s ) = { Pic(X,o Y) ifif i=l=0i = 0 

Remark. A result similar to our theorem (3.1) was proved independently by 
S. Lichtenbaum [15]. 
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4. The rigidity theorem 

Denote by Sch/k the category of  schemes o f  finite type over k. Let 
~ : Sch/k ~ Ab be a presheaf of  abelian groups on Sch/k, i.e. a contravariant 
functor from Sch/k to the category o f  abelian groups. 

Definition 4.1. A presheaJ ,~  is said to admit tramfer maps iJ'Jor an), finite 
surjective morphism p : X ----+ S in Sch/k, where X L~ reduced and irreducible 
and S is irreducible and regular we are given a homomorphism: 

Trx/s : ,~-(X) > ~ ( S )  

such that the following conditions hold." 

1. I f  p is an isomorphism than Trx/s o p* = Id. 

2. Let  V C S be a closed irreducible regular subscheme. Denote by Wi the 
components o f  p - l ( V )  and let 

0<3 

n, = ~( -1)k lc , , , , , (Tor~  ~' (Ex, w , ,k (Z) ) )  
k=0 

be the multiplicity o f  Wi. Then the .following diagram commutes: 

Tr~ s 
,~ (x )  , .~(s) 

L + 

~.<~(~) > . ~ ( v ) .  

Let S be a regular irreducible scheme and let X be any scheme over S. We 
have a pairing 

Co(X/S) @ .~-(X) <'>> ,~-(S) 

given by the formula 

(Z, qb) = Trz/s( qSiz ) 

(here q~ E o~-(X) and Z is a reduced irreducible subscheme o f  X which is finite 
and surjective over S). 

Proposition 4.2. Assume in addition that oT & homotopy invariant, i.e. 
~ ( X  x A 1 ) = ~ ( X )  for any X E Seh/k Then the above pairing factors 
through Ho 'in'q (X/S)  @ ~-(X) .  

Proof  Let W C X x A 1 be a closed integral subscheme such, that W is finite 
and surjective over S x A 1 . Denote by W' the cycle W ~ (X x i). We have 
to show, that (W 1 - W~ = 0 for any ~b E ,~-(X). Let ~/ denote the inverse 
image of  q5 in ~ ( X  x A1). Consider <W,~b) E ~ ( S  x A~). The homotopy in- 
variance o f  ~ shows, that 

(W,I / / ) [Sx  0 = <~V,I]/>[sx 1. 

On the other hand the properties of  the transfer map imply that 

(W, ff/)lsxi = (mi,~tlx• > = <mi,~). 
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From now on we will assume that ~ is homotopy invariant. Extend ~- to 
pro-objects in Sch/k setting 

~ ( l i m X i )  = lim(~(X~)). 
+ - -  - - +  

Theorem 4.3. Assume that n g  = 0 where n is prime to char(k). Let S be a 
henselization o f  a smooth variety over k in a closed point. Let further X/S 
be a smooth affine scheme over S o f  relative dimension one and assume, that 
X admits a good compactification 2 ~ S. 

/ f g l , g 2  : S - - ~ X  are two sections which coincide in the closed point of  
S then g~ = g~ " s  ~ ~ (S ) .  

Proof  We may suppose, that X is irreducible. Let Y denote the closed reduced 
subscheme 2 - X  of 2 .  The sections gi are closed embeddings and we will 
denote by W, the corresponding subschemes of X. The properties of the transfer 
map imply that gT(~b)= (W~,~b) for any q~ C ~ ( Y ) .  Thus our statement is 
equivalent to the fact that W1 - W2 E Co(X/S) is in the kernel of the above 
pairing. In view of the proposition (4.2) it is sufficient to show, that image of 
W j  - W2 in Ho'inr is zero. According to (2.2) and (3.1) we have: 

Hoin~'(X/S)/n = Pic(X, Y)/n ~ H~2,(2,j!(/~n 1). 

The proper base change theorem implies that 

H2et(2,j!(~tn )) = H2t( X o, (J'o )!(#n ) ), 

where 20 is the closed fiber of  2 and Jo :Xo > 20  is the corresponding 
open embedding. The diagram 

Pie(2, Y)/n , H2,(X,j!(Itn)) 

1 + 
Pic(Xo, Yo)/n ~ H~2t(2o,(jo)!(/x,,)) 

commutes. This shows that Pic(X, Y)/n ~ Pic(Xo, Yo)/n. On the other hand 
the image of  W1 - W2 in Pic(Xo, Yo) is trivial since gJ,g2 coincide in the 
closed point. 

Theorem 4.4. Let $l be the henselization o f  A ? in O. Then 

5 ( S t )  = ~ ( S p e e ( k ) )  

(still assuming that n ~  = O, where n is prime to char(k)) . 

Proof  We will proceed by induction on l. For 1 = 0 the statement is ev- 
ident. In the general case it is sufficient to show, that the homomorphism 
Y ( S p e c ( k ) )  ~ ~ ( S t )  is surjective. According to our definition ~ ( S t ) =  
lim ~ ( X ) ,  where (X, xo) runs through all etale neighbourhoods of (AI,0). 

(iv, x0 ) 
So it is sufficient to show, that i f f  : (X, x0) ~ (AZ,0) is an affine etale neigh- 
bourhood, then the image of Y ( X )  in ~-($/) lies in ~(Spec(k ) ) .  Let us show 
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that there exists a linear projection r : A / , A t - l  such that the relative curve 
p ' '  X '  ~ Sz defined by the Cartesian square 

X I > X 

p~ l ,.or 

Sl > A t I ~ A l I 

admits a good compactification. It clearly suffices to construct r such that 
r o f : X > A l I admits a good compactification. Let Z C A r be a divisor 

such that f : X  > A / is finite over A I - Z .  There exists a linear projection 
r : A / , A t - I  such that rlz : Z > A I 1 is finite. We are going to show that 
any such r has the desired property. To simplify notations assume that r is 
the standard coordinate projection. The morphi sm X > A ~ = A ~-~ • A l ~-~ 

AI- I  • pI is quasifinite and according to the Zariski Main Theorem it may be 
factored in the form X ~ )~ ---+ A l 1 • p1 where the first arrow is an open 

embedding and the second one is a finite morphism. Moreover we may assume 
X" to be normal. Set Y = P C -  X. One checks easily that the image of Y in 
A / - I  • pI is contained in Z O A t-1 • ~ and that the last scheme admits an 
open affine neibourhood in A l-1 • p1. 

Let now Sl :&  , X ~ be the section defined by the canonical morphism 
$1 ~ X and s2 : S1 > X ~ be the section defined by the composition 

SI ~ S1 I ----+ SI > X. 

They obviously coincide in the closed point of $l and to finish the proof it is 
sufficient now to apply theorem 4.3. 

Theorem 4.5. Assume that k is an algebraically closed f ield o f  characteris- 
tic' zero. Assume fur ther  that ,~  is a homotopy invariant presheaf  on Sch/k 
equipped with tramfer  maps. Denote by ~ , ~  (re~sp. o Y ~ h , ~ )  the sheaf  as- 
sociated with ~ in the h-topology (resp. in the qJh-topology, etale topology).  
Then Jot  any n > 0 we have canonical isomorphisms: 

= Exth ( ~  h , Z /n)  Exter(,~ e t ,Z /n)  Extq/h(~ qt~ ,Z/n)  = * ~ 

= Ext]b( ,~(Spec(k) ) ,  Z/n) .  

Proo f  The first two i somorphisms follow from the corollary (10.10). To prove 
the last one denote , ~ ( S p e c ( k ) )  by ,~-0. We will use the same notation ,70 
for the corresponding constant presheaf and constant h-sheaf. Consider the nat- 
ural monomorphism of presheaves ~ 0  ----+ ~ and denote by ,~-' its cokernel. 
Applying theorem (4.4) to the presheaves ~ / n  and n ~  we conclude that 

( g ' / , ) ( x ) )  = o = ( . 5 ' ) ( X Y )  

for any smooth scheme X and any closed point x on X (here X~ denotes the 
henselization of X in x). Let now X be any object of Sch/k. Resolving sin- 
gularities we construct a proper surjective morphism Y ~ X with Y smooth. 
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If  u E (.,~'/n)(X) is any section, then vanishing of the groups (.~:'/n)(Y~) im- 

plies that we can find an etale covering {Y, ~ Y}~=I such that ulr ' = 0. Since 
{Yi ~ X}  is an h-covering of X this shows, that (~,~'/n)~ = 0. The same ar- 
gument shows that ( , Y ' ) ~  = 0. Thus the sheaf (.r is uniquely n-divisible 
and hence Ext[,((Y')~, Z/n) = 0. Now the exact sequence of sheaves 

shows, that 

o , . ~ o - - - + ~  , ( S ) ~ - - ~ o  

Exth ( ~  h , Z/n) Ext~ ( : f  o, Z/n) = = EXt~b(.~" o, Z/n). 

Remark. Resolution of singularities for varieties over a field of characteristic 
p > 0 was announced recently by M. Spivakovsky. This would imply that one 
can drop the restriction on char(k) in theorem (4.5) (demanding instead that 
n is prime to char(k)). 

5. qfh-sheaves 

The main objective of this section is to show that any qfh-sheaf admits transfer 
maps satisfying the conditions of definition 4.1. Let ~ be a qfh-sheaf of abelian 
groups and let X ~ S be a finite surjective morphism such that X is integral 
and S is normal. Let further Y be the normalization of X in a normal extension 
of k(S) which contains k(X). Denote the Galois group Gal(k(Y)/k(S)) by G. 
One checks immediately (lemma 5.16) that ~ ( S )  coincides with .~-(y)G. This 
enables us to define the transfer map 

by the formula 

Trx/s : ~ ( X )  , ~ ( S )  

rrx/s(a) = [F(X) : F(S)]insep" ~ q*(a) 
qEHoms( Y,X ) 

(here [F(X) :F(S)]i,~.ep is the inseparable degree of the field extension F(S) C 
F(X)) .  

The main difficulty is to check that these transfer maps are compatible 
with the base change homomorphisms, i.e. satisfy the property 4.1(2). To do 
so we have to interpret the multiplicities ni appearing in 4.1(2) in similar 
terms. Actually we do it in more general situation. Suppose that S'/S is any 
integral scheme over S. We ascribe using elementary Galois theory, certain 
multiplicities n, to all irreducible components X/ of X '  = X Xs S' which, in 
the case of a regular scheme S coincide with multiplicities given by the Tor- 
formula and (in the case when S' is also normal) make the following diagram 
commutative 

,~ (x)  , U s ( x / )  
T,x.~ I J. E,,T,.~., s, 

l 

g ( s )  , ~ ( s ' ) .  
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The explicite formula for multiplicities n, shows that they belong to Z[1/p] 
where p is the exponential characteristic of k. Moreover n i E Z if S is a regular 
scheme. However, A.S. Merkurjev produced recently an example showing that 
for an arbitrary normal S the multiplicities need not be integers. 

In the next section this construction is used to show that i f X  is any scheme 
of finite type over k and S is a normal irreducible scheme then Co(X x S/S) | 
Z[1/p] coincides with the group of sections of the free qfh-sheaf of Z[ l /p ] -  
modules Z[l /p]q/h(X) generated by X. 

Fix a field k. All schemes considered in this section are assumed to be of 
finite type over k. We denote by p the exponential characteristic of  k. 

We start with some elementary results concerning finite morphisms. 

Lemma 5.1. Let q : X ~ S be a .finite morpism and let G be a finite group 
acting on X/S. The Jollowing conditions are equivalent 

1. For an)' s E S the action o f  G on q- I (s )  is transitive, Jor any x E q-~(s) 
the field extension k(x)/k(s)  is normal and the natural homomorphism 
G~ = StabG(x) ~ Gal(k(x)/k(s))  is surjective. 

2. For any algebraically closed field (2 and any geometric point ~ : Spec (2 
S the action of  G on the geometric .fiber X~ = X Xs Spec (2 is transitive. 

Corollary 5.2. Assume that the equivalent conditions of" lemma 5.1 are ful- 
filled and assume further that S is irreducible and q is surjective. Then G acts 
transitively on the set o f  irreducible components o f  X and each component 
o f  X maps surjectively onto S. 

Lemma 5.3. Let X ~ S and Y ---+ S be finite surjective morphisms o f  inte- 
gral schemes. Then the canonical map Homs(Y,X)  ~ Homkts)(k(X) ,k(Y))  
is injective. I f  Jurther the scheme Y is normal then this map is bi/ective. 

Corollary 5.4. In assumptions and notations of  lemma 5.3 the canonical ho- 
momorphism Auts(Y) > Gal(k(Y) /k(S))  is injective. It is bijective i f  the 
scheme Y is normal. 

Definition 5.5. Let q : Y > S be a finite surjective morphism o f  integral 
schemes. We'll be saying that q is a pseudo-Galois covering (or that Y is a 
pseudo-Galois covering o f  S) i f  the field extension k (Y) /k (S )  is normal and 
the natural homomorphism Auts(Y)  ~ Gal(k(Y) /k(S))  is an isomorphism. 

We derive immediately from lemma 5.3 the following result: 

Lemma 5.6. Let S be an integral scheme and let Y be the normalization o f  
S in a finite normal extension o f  the field k(S). Then Y > S is a pseudo- 
Galois covering. 

Lemma 5.7. Let Y > S be a pseudo-Galois covering o f  an integral scheme 
S. Further, let X be an integral scheme and X ~S be a finite sur- 
jective morphism. Assume that Homs(Y ,X)r  Then the canonical 
map Homs(Y,X)----+HOmk(s)(k(Y) ,k(Y))  is bijective and, in particular, 
[Homs(Y,X)] = [k(X) : k(S)]s~p. 
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Proof Denote the group A u t s ( Y ) =  Gal(k(Y)/k(S))  by G. The map Horns 
(Y ,X)  ~ Homk(s)(k(X),k(Y)) is G-equivariant and the action of G on 
Homk(s~(k(X), k (Y) )  is transitive according to elementary Galois theory. This 
shows that the above map is surjective. Injectivity of this map follows from 
lemma 5.3 

Corollary 5.8. In conditions and notations of  lemma 5.7, let Z be another 
integral scheme and let Z , Y be a finite surjeetive morphism. Then the 
induced map Homs(Y,X) ~ Homs(Z,X)  is bijective. 

Proof This follows immediately from the commutativity of the following di- 
agram. 

Homs(Y,X)  , Homs(Z,X) 

Homk(s)(k(X),k(Y)) ~, Homk(s)(k(X),k(Z)) 

Lemma 5.9. Let Y ----+ S be a pseudo-Galois covering of  a normal integral 
scheme S and let G be the group Auts(Y) = Gal(k(Y)/k(S)).  Then the pair 
(Y----+ S, G) satisfies the equivalent conditions o f  lemma 5.1. 

Proof  Let 17 denote the normalization of the scheme Y. Lemma 5.6 shows that 
Auts(Y) = Gal(k(17)/k(S)) = Gal(k(Y)/k(S))  = G. Thus we have a canonical 
action of G on 17 and the projection 17 ~ Y is G-equivariant. It is well- 
known (see [2, Ch.5, Section 2, n.3]) that the pair (~7 ~ S, G) satisfies the 
condition (1) of lemma 5.1 and and hence also satisfies the condition (2). 
Let now ~ : Spec ~ ~ S be any geometric point of S. Since the morphism 
/~ ---+ Y~ is surjective and the action of G on 17~ is transitive, we conclude 
that the action of G on Y~ is transitive as well. 

Corollary 5.10. In conditions and notations of  5.9 let S' be an), integral 
scheme over S. Set Y' = Y • s S', then 

(1) The action o f  G on the set of  irreducible components of  Y' is transitive 
and each o f  these components maps surjectively onto S'. 

(2) I f  Y~ is' a component o f  Y~ (considered as a closed integral subscheme 
o f  Y')  then Yd , S ~ is' a pseudo-Galois covering. 

Proof Let ~ : Spec s ----* S' be a geometric point of S ~. Lemma 5.9 shows 
that the action of G on Y~ = Y~ • Spec ~2 = Y Xs Spec f2 is transitive, i.e., 
the pair (Y~ ~ S~,G) satisfies the equivalent conditions of lemma 5.1. The 
first statement follows now from corollary 5.2. Furthermore validity of condi- 
tion (1) of lemma 5.1 shows that k(Y~)/k(S') is a finite normal extension and 
the homomorphism Stabc(Y~) ~ Gal(k(Y~)/k(S')) is surjective. Since this 
homomorphism factors through Auts,(Y~) ~ Gal(k(Y~)/k(S')) we conclude 
that the last homomorphism is surjective as well. 
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Assume that X ~ S is a finite surjective morphism from an integral 
scheme X to a normal integral scheme S. Choose a pseudo-Galois covering 
Y ~ S such that H o m s ( K X ) + ~  (for example one can take Y to be the nor- 
malization of  X in any finite normal extension Elk(S)  containing k(X) ) .  Let 
further S ~ be any integral scheme over S. Set X ~ = X Xs S ~ and denote by X/ 
the irreducible components of  X r (considered as closed integral subschemes 
of  Xt).  Let further Y~ be any irreducible component of  Y' = Y xs  S ~. Any 
S-morphism q : Y ~ X defines an SP-morphism qr : yr ~ X ~. The image 
under q' of  Y~ coincides with one of  the closed subschemes X/ of  X ~. In this 
way we get a canonical map 

c "Homs(Y ,X)  ~ H ' ' Homs,(Yd,X, ). 
t 

Fix an S-morphism q0 : Y > X and for any i denote by l(i) the number o f  
irreducible components of  Y' mapped onto X/ by q~. Finally denote by l the 
total number of  irreducible components of  Y~. 

Lemma 5.11. a) For any i Homs,(Y~,X/):# [0 (and in particular the morphism 
X/  ~ S t is" surjective) . 
b) The number o f  elements in the .fiber o f  the map c over an)' element o f  
Homs,(Yc~,X/) is' equal to 

[k(X) : k(S)lsep " l(i) 

[ k ( x / )  : k(S ' ) lsep.  / 

Proc~ Set G = Auts(Y) ,  H = Stabc(Yg), V~ = c - I (Homs , (Yg ,X / ) )  = {q : Y 
) X : q ' ( Y g ) = X / } .  The morphism qto:Y'  ) X '  is surjective and hence 

x /=  q'o(y() for a certain component Y( of  yr. Corollary 5.10 shows that there 
exists a E G such that a(Yg) = Y(. Thus (qoa)'(Yg) = X/, i.e. q0o" E V~ and 
hence V~. r ~. 

To prove the second statement note that the map ci = cl~5 :Vi 
Homs,(Yg,X/)  is H-equivariant and the action of  H on H o m s , ( Y d , X / ) =  
Homk(s,)(k(X/) ,k(Yg))  is transitive since H maps onto Gal(k(Yg)/k(S ' )) .  This 
shows that all fibers of  c~ have the same cardinality equal to ]V,I/[k(X/): 
k(S~)],~ep. To compute I V,.I consider the G-equivariant map G ~ H o m s ( K X )  
(or ~ q0a). Since the action of  G on Homs(Y ,X )  = Homk(s) (k (X) ,k (Y) )  is 
transitive we see that all fibers of  this map consist of  ]G]/[k(X) : k(S)],ep el- 
ements. The inverse image of  V, in G is equal to {~ E G �9 q~o(~(Y~)) = X / } ,  
i.e. consists of  those a E G which take Y~ to one of  l(i) components of  yt 
lying over X/. To compute the number of  such ~r use the same trick once 
again. The map G - - ~  {components o f  Y~} (or ~ cr(Y~)) is G-equivariant and 
the action of  G on the set o f  components is transitive. Hence all fibers of  this 
map consist IG]/l elements. Thus cardinality of  the inverse image o f  V, in G 
is equal to IGI- l ( i ) / l  and hence 

[k(X) : k(S)]sep " l(i) 
IV, I - -  l 
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Definition 5.12. In the above notations set 

( n i ) s e p  = Ifiber of  cil = 
[k(X) " k(S)]sep " l(i) 

[ k ( L ' )  : k ( s ' ) ] s e p -  l ' 

[ k ( X )  " k(S)]i.s~p 
(n,)insep = [ k ( X / )  " k(S')]in~ep 

[k(X) : k(S)] . l(i) 
ni -= (ni)sep" (ni)insep = [k(X/) " k(S ' ) ]  �9 l " 

The number n, 6 Z[1/p] is called the multiplicity of  the component X/. 

L e m m a  5.13. The number (ni)~ep and hence also ni is" independent of the 
choice of the pseudo-Galois coverin9 Y ~ S (such that Homs(Y,X) # 0) 
and the component Yd of  Y'. 

Proof Let Z , S be another pseudo-Galois covering such that 
Homs(Z,X) r 0 and let Z~ be a component of  W =  Z Xs S t. Assume first 
that there exists an S-morphism f : Z ~ Y such that ft(Z~) = Y~. In this 
case our assertion follows from the commutativity of  the diagram 

t t Homs(Y,X) ----+ I_[ Homs,(Y~,X i ) 
i 

Homs(Z,X) ----* [I Homs,(Z;,Xi' ) 
i 

and corollary 5.8. In the general case let T be the normalization of  S in a 
finite normal extension of  k(S) containing both k(Y) and k(Z) and let T~ 
be any component of  T t =  T x s S s  Lemma 5.3 shows that Homs(T,Y)4:O, 
Homs(T,Z) + 0. Moreover corollary 5.10 shows that there exist S-morphisms 
f : T ----* Y, 9 : T ~ Z such that f ' (T~) = Y~, 9'(T~) = Z~. Thus multiplic- 
ities computed using (Y, Y~), (T, T~) or (Z,Z~) are all the same. 

The following property of  multiplicities is evident from definition 5.12. 

L e m m a  5.14. In the above notations and assumptions the followin9 Jormula 
holds 

~ ni . [k(Xi') : k(S')] = [k(X) : k(S)]. 
i 

Let S"  ~ S'  ~ S be a tower of  morphisms of integral schemes. Assume 
that the schemes S and S'  are normal. Let further X ~ S be a finite surjective 
morphism from an integral scheme X to S. Set X '  = X Xs S' ,  X "  = X Xs 
S"  = X '  Xs, S" and denote by X/ (resp. Xj ' )  the irreducible components of  
X '  (resp. X" ) .  Denote by ni (resp. nj) the multiplicity of  X / ( r e sp .  Xj ' ) .  Finally 
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denote by n) the multiplicity o f  X/t considered as a component of  X / X s ,  S" 

(setting n) = 0 if X]' is not a component of  X; Xs, S"). 

Lemma 5.15 (Transitivity of  multiplicities). In the above notations we have 
the Jollowin9 Jbrmulae: 

Ell t (nj),,,p = ~ (  j),up. (ni)sep; nj = E nj. n i .  
i i 

Proof It suffices to establish the first formula. Choose a pseudo-Galois cover- 
ing Y > S such that Homs(Y,X)+(~, let Y~ be a component of  Y' = Y Xs S'  
and let Y~' be a component o f  Y~ Xs, S". Note that Y~ is a pseudo-Galois cov- 
ering o f  S ' and Homs,(Y~,X,')7 k 0 for all i (see 5.10 5.11). Thus the scheme 
Y~ may be used to compute the multiplicities n~. Our statement follows now 
from the commutativity of  the diagram 

Homs(Y,X) , H Homs,(Y~,X,') 
i 

H Homs,,( rd',X]') 
J 

Lemma 5.16. Assume that q : Y ---+ S is" a pseudo-Galois covering of  an in- 
tegral normal scheme S. Set G = Auts(Y). For any qfh-sheaf of  sets ,~ the 
map q* : .~(S)  > .N(Y) gives a b(jection -~(S)  ~> ~ ( y ) a .  

Proof Consider the morphism f : Y x G , Y Xs Y such that the restriction 
of  f to Y x cr coincides with ( l r , a ) .  The morphism f is finite and it follows 
easily from 5.9 and 5.1 that it 's also surjective. Thus f is a qfh-covering 
and hence f *  : . ~ ( Y  Xs Y) ~ Y ( Y  • G) = .~(Y) • G is an injective map. 
Since q : Y -----+ S is a qfh-covering we have an exact sequence 

,N(S) ' ~-(Y) ~ ~ ( Y  • Y) 

We conclude immediately from the previous discussion that the kernel of  the 
pair of  maps (pr~, pr~) coincides with ~ ( y ) C .  

Assume that X ~ S is a finite surjective morphism from an integral 
scheme X to an integral normal scheme S. Choose a pseudo-Galois cover- 
ing Y ~ S such that Homs(Y,X)4~) and set G = Auts(Y). Let finally .~  be 
a qfh-sheaf of  abelian groups. The homomorphism 

[k(X)" k(S)Ji~.~p" C\qcHo~m~ x) q*) "~W(X)---+,Y(Y) 

is G-invariant and according to lemma 5.16 defines a homomorphism Y ( X )  ---+ 
~ ( S )  which we denote Trx/s. The same procedure as in the proof of  lemma 
5.13 shows easily that this homomorphism is independent o f  the choice of  Y. 

Assume now that S'  ----+ S is a morphism of  integral normal schemes. 
Set X '  = X •  S' and denote by X,.' and ni the components of  X '  and their 
multiplicities. Assume finally that .~- is a qfh-sheaf of  Z[l /p]-modules .  
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Lemma 5.17. The following diagram commutes 

~ s 
. ~ - ( x )  ) g ( s )  

+ 1 
LI g(x,') ~n,r~,,,, 

' ~ , ~ ' ( S ' )  
! 

Proof  Choose a pseudo-Galois covering Y - - ~  S such that Homs(Y,X)~:O. 
Let Y~ be any irreducible component of  Y' = Y •  S '  and denote the canonical 
morphism Y~ ~ Y by f .  For any a C ~ we have: 

( Trx,s( a )Is, )ly~ = ( T~x/s( a )ly )ly,; 

* a : f* ()) 

~ i ( n ,  )" [k(Xi') " k(S')]in,ep " ~,.e#o,,,s(r,~,x,f*(alx' ) 

~m, ) " rrx:,,'s'(aI~' )I~& 

homomorphism J ( S ' )  ---+ ,~(}'~) is injective we conclude Since the restriction 
that 

Trx/s(a)ls, = Z n , "  Trx//s,(alx,).  

Lemma 5.18. Let f �9 X > S be a finite surjective morphism from an #,te- 
gral scheme X to a regular scheme S. Let.further S' "-+ S be a closed integral 
subscheme o f  S. Set X '  = X • s S' and denote by X /  and n~ the components 
o f  X '  and their multiplicities. Then ni coincides with the multiplicity with 
which [X/] appears in the cycle f * ( [ S ' ] )  ((computed for  example using the 
Tor-formula see [19]) .  

Proof  Choose a pseudo-Galois covering g �9 Y ~ S, an S-morphism q : Y > 
X and a component Y~ of  Y' = Y •  X ' .  All components o f  Y' appear in 
the cycle g*([S '])  with the same multiplicity (see 5.10). Using the projec- 

g,g ([S ]) [ k ( Y ) ' k ( S ) ]  [S'] we see that tion formula (see [19, Chap. 5]) * ' = 
[k(Y):k(S)] where t is the total number this common multiplicity is equal to [k(Y,~):k{S')V' 

of  components of  Y'. Using now the projection formula q,g*([S']) = [k(Y) �9 
k (X) ] -  f * ( [ S ' ] )  we see that multiplicity with which [X/] appears in f * ( [ S ' ] )  
is equal to 

1 [k (Y~) ' k (S ' ) ]  [ k ( Y ) ' k ( S ) ]  [ k ( X ) : k ( S ) ] .  l(i)  
[k(Y)  " k (X)]  l( i) .  [k(X/)  . k(S,)] [k(Y~) " k(S')] . l = [ k ( ~ ' ) ' k ( S ' ) ] . I  =n ,  

The previous lemma shows, in particular, that the multiplicities ni are in- 
tegers provided that the scheme S is regular. In general however multiplicities 
need not be integers as one can see from the following example due to A.S. 
Merkurjev: 
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Assume that char k : p > 0 and let a, b E k* be two elements independent 
modulo (k*) p. Set A : k[To, T1,Tz]/(aT p + bT( ~ - TP), S : Spec A. One ver- 
ifies easily that A is an integrally closed domain so that S is a normal integral 
scheme. Let X be the normalization o f  S in the field k(S)(7), where 7 p = b/a. 
It 's easy to check that X = Spec k(~,/~)[TI, Tz](~ p = a, [~P = b) and the image 
of  To in k(~,[1)[Tt,T:] is equal to ~ - 1 T 2 -  yTI. Set finally S t =  S p e c k  and 
let S t -+ S be the only singular point of  S (To = Ti = T2 : 0). The scheme 
X '  = Spec k(~, [~) is irreducible and the multiplicity of  the only component of  
X '  is given by the formula 

[k(Y) : k(S)]i~sep p -1 
n = (n),,,s~p : [k(X')  " k(gt)]insep p2 P 

6. Free qfh-sheaves 

We preserve the notations and assumptions of  the previous section. Let Sch/k 
denote the category of  all schemes o f  finite type over k. In this section we 
consider Sch/k as a site in qfh-topology and we denote by (Sch/k) A (resp. 
(Sch/k) ~ )  the category of  presheaves of  sets on Sch/k (resp. the category o f  
qfh-scheaves of  sets on Sch/k).  For any presheaf of  sets .Y we denote by , ~  
the associated qfh-sheaf of  sets. 

Let Nor/k denote the full subcategory of  Sch/k consisting of  integral nor- 
mal schemes and let (Nor/k)  A denote the category of  presheaves of  sets 
on Nor/k.  The restriction functor (Sch/k) A ~ (Nor~k) A has a right adjoint 
e : ( N o r / k )  A > (Sch/k)  A defined by the following formula, Here hr is a 
presheaf on the category Nor/k given by the formula h r (S )  : Homs~h/k(S, T) 
and Nor/T  is a category whose objects are integral normal schemes S together 
with a morphism S - - ~  T 

Definition 6.1. We'll  be saying that ~ E (Nor/k )A is a q fh-sheaf  o f  sets on 
the category Nor/k  i f  it satisfies the following two properties 

(6.1.1) For any S E Nor/k  ~ defines a sheaf  in the Zariski  topology o f  
S. 

(6.1.2) I f  S t is the normalization o f  S in a finite normal extension o f  the 
f ield k (S )  with Galois group G (so that Auts(S ' )  = G - see 5.4) then the 
canonical map J~f(S) ~ ~ ( S ' )  c is bijective. 

We denote by (Nor/k)  ~ the category of  qfh-sheaves of  sets on Nor/k. 

Theorem 6.2. The restriction functor  defines an equivalence o f  categories 
(Sch/k) ~ ~ (Nor/k)  ~. The quasiinverse equivalence is defined by the func-  
tor e. 

Proof  Note first o f  all that if g E (Sch/k)  ~ is a qfh-sheaf of  sets then its 
restriction to the category Nor/k  is again a qfh-sheaf of  sets (see lemma 5.16). 
Note further that for any ~'~ E (Nor/k)  A the restriction o f  the presheaf oZf~ ~ C 
(Sch/k) A to Nor/k coincides with ~{~ (Ioneda lemma). 
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Lemma 6.3. Assume that o ~ E (Sch/k) ~ and denote by oYf~ the restriction 
o f  ~ to the cate,qory Nor/k. Then the adjunction map ~----* o;4 ~e is an 
isomorphism. 

Proof Let T E Sch/k be any scheme. Denote by T, the irreducible com- 
ponents of  T (considered as closed integral subschemes of  T) and denote 
by /~, the normalization of  /1,. The family {iri ~ T}i is a qfh-covering of  
T and hence the map ,~- (T)- - -~  I I i . ~ ( /~ , )  is injective. This implies that 
the map o ~ - ( T ) ~  J ge (T )=  lira #*--(S) is injective as well. Let further 

*-- N o r / T  

q5 = {qbs}s---.r E lira ,~-(S) be any element of  ~;r 
+-- N o r / T  

For any pair o f  indices i , j  the images of  

((ot,)[t,x,t,(got,)l~,xTt, ~ ~ (T ,  • ~j) 

in ~e(/~,  x r / ~ / )  are both equal to ~blt, xTt ' 

Since the map ,~(Ti x r  Tj) ~ ggge(Ti x r  Tj) is injective we conclude 
that (~bf,)[f, xrf,  = (q~f,)i:~,x~t," Since the family {/~, ----, T} is a qfh-covering 

of  T this shows that there exists a unique element ~ E .~-(T) with the property 
6IL = q~t, for each i. A direct inspection shows that moreover 6[s = q~s for 
any normal scheme S over T and hence q5 E ~ e ( T )  is the image of 6 E ;g (T) ,  
i.e. the map . ~ ( T )  ~ Jt~e(T) is surjective. 

To conclude the proof o f  the theorem 6.2 it suffices now to establish the 
following lemma. 

Lemma 6.4. I f  ;gte E (Nor/k) ~ then d4P r E (Sch/k) ~. 

Proof In view o f  lemma 6.3 it suffices to show that ~ ~ ~ for an 
appropriate ~,~ E (Sch/k) ~. Let 5 ;  be the sheaf associated with the presheaf 
/t# e. The sheaf ,~- may he constructed in two steps. On the first step one con- 
structs a separated presheaf Y l  setting ~ - ~ ( T ) =  J{e(T)/, '~, where ,-~ is the 
following equivalence relation: q9 ,-~ q5 ~ iff there exists a qfh-covering {it, , 

T} such that ~blr, = (911T,. Finally one defines .~-(T) to be / q ~  

lim /~~ $ 1 ) ,  where ~ runs through the filtered ordered (by the rela- 

tion "refinement") set of  equivalence classes of  qfh-coverings of T. Any qfh- 
covering of  a normal scheme S admits a refinement of the form "//" = { Y, , 
S}iEZ where Y is the normalization o f  S in a finite normal extension of the 
field k(S) and {Y/}i~1 is a Zariski open covering of  the scheme Y (see lemma 
10.4 ). We conclude immediately from definition 6.1 that the map ~.~. (S) , 
fig.(Y) ----+ 1-I ffta(Y, ) is injective and hence o~I(S)  = ~*'~(S) = ff{~(S). Further- 
more 

i,j 

Denote by G the group Gal (k (Y) / k (S ) )=  Auts(Y). One sees immediately 
that the family o f  closed embeddings f ~  = (1 ,~)  : Y , Y Xs Y (~r E G) is 
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a qfh-covering of Y Xs Y. Since f 2~(Y i  Xs Yj) = ~ n a - l (Yj )  we conclude 
that the family {J'~ �9 Yi n ~r-a(Yt) ~ Y, Xs Yj}~G is a qfh-covering of  Y/ Xs 
Yj and hence ,~-~(Y/ Xs Yj) ~ [I~ ~ I ( Y ,  n a - I ( Y j ) )  = ri~ ,xf(Y~ N a - l ( Y j ) ) .  

Thus to give an element in H ~  is the same as to give a family q~ C 
,~l ( Y, ) = ,~(I1, ) with the following property: 

for any i , j  and r E  G. Taking cr to be the identity of  G we see that 
~bilr, nr, = ~bi r, ng, and hence there exists a unique q~ C .~(Y)  such that qSi = 

q~lr," Furthermore varying cr we check easily that q~ E 4f,'(Y) c = ~r Thus 

12l~ and hence the canonical map W ( S ) - - - - + Y ( S ) =  

lira H~ ) is a bijection. 

Let X E Sch/k be any scheme. For a normal integral scheme S set z~(X)(S)  
= Co(X x S/S)[1/p] = {a free Z[1/p]-module  generated by closed integral 
subschemes Z C X x S for which the projection P21z " Z ----+ S is a finite sur- 
jective morphism}. Let f '  S' ~ S be a morphism in the category Nor/k.  
For Z as above set Z ~ = Z Xs S ~ and let Z, t, ni be the components of  Z ~ and 
their multiplicities. Lemma 5.1 l(a) shows that the projection P Z l Z '  " Zt'  > S t  

is finite and surjective. Now we define a homomorphism f *  : z~ (X) (S )  
z~(X)(S ' )  by setting f * ( Z )  -- ~ n~Z~'. Lemma 5.15 implies that if  9 ' S" 
S t is another morphism then ( f g )*  = g*J'*. Thus we have made z~(X) into 
a presheaf o f  Z[ l /p] -modules  on the category Nor/k. We want to show that 
actually z~(X)  is a sheaf. Validity o f  (6.1.1) for z~(X)  is straightforward. To 
prove that (6.1.2) also holds we need the following lemma. 

Lemma 6.5. Let  S be a normal integral scheme and let S t be the normal- 
ization o r S  in a finite normal extension o f  the .field k(S)  with the Galois 
group G. Le t  further Z ~ S be a finite surjective morphism f rom an in- 
tegral scheme Z to S. Set  Z'  = Z Xs S ~ and let Z~,, n i  ( i  = 1 . . . . .  l ) ,  be the 
components o f  Z ~ and their multiplicities. Then 

1. G acts transitively on the set {Z/t}f=l 
2. 1 -  [k(s'):k(s)M, [k (Z ) : k (S ) ] , , ,  I, 

[k(Z~):k(Z)] , , , i  ' - -  [ k ( Z ~ ) : k ( S t ) ] , r  

[k(S ' ) :k(S)] , , , , r  [k(Z):k(S)], , , ,~,p 
3 .  n i - [k(Z~):k(Z)], , , , ,~,  - -  [k (z~) :k(S ' ) ] , , , , , ,p  

ProqF The first statement was proved earlier (see corollary 5.10). Since the 
components Z[ map surjectively onto S' we conclude that they are in one to one 

Z'  = Spec k (S ' )  x s Z correspondence with components o f  Spec k ( S  t) Xs, = 
Spec (k(S t) @k(s) k(Z)) .  This makes evaluation of the number o f  components 
an easy exercise in the Galois theory, which we leave to the reader. Since the 
group G acts transitively on the set of  components we conclude further that 
multiplicities ni are all the same. Denoting their common value by n we derive 
from lemma 5.14 the following formula: 

[k(S ')  �9 k(S)] = n . l .  [k(Z;)  " k(Z)].  
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Corollary 6.6. z~(X) E (Nor!k) ~. 

Proof Let S be an integral normal scheme and let S ~ be the normaliza- 
tion of S in a finite normal extension of the field k(S) with the Galois 
group G. Denote the canonical morphism S r ~S by f .  Since f is a fi- 
nite surjective morphism we have a well-defined direct image homomorphism 
J', "z~(X)(S') ~ z~)(X)(S). Lemma 5.14 shows that the composition f , f *  
coincides with the multiplication by [k(S ~) : k(S)] and, in particular, f*  is in- 
jective. Note further that z~(X)(St) a is generated by expressions of the form 
~ c a / / 4  ~r(V), where V C X x S' is a closed integral subscheme such that the 
projection V ~ S ~ is finite and surjective and H = Stabc(V). Denote the 
image of V in X x S by Z. Then Z E z~(X)(S) and lemma 6.5 shows that 

Z a ( V ) = f *  {[k(V) 'k(Z)]insep'z)  
a~G/H \ [k~7) " k(S)]insep 

According to theorem 6.2 the sheaf zg(X) c (Nor!k) ~ extends uniquely to 
a qfh-sheaf on the category Sch/k. We'll use the same notation zg(X) for this 
extension. On the other hand we may consider the qfh-sheaf of  Z[l/p]-modules 
freely generated by X. More precisely Z[1/p]q/h(X) is a qfh-sheaf associated 
with the presheaf T ~ Z [ 1/p] (Homsch/k (T, X)). 

Theorem 6.7. Assume that the scheme X is separated. Then Z[1/p]q/h(X) = 
z;(X). 

Proof Associating to a morphism f �9 S ----+ X its graph F! E z~(X)(S) we get 
a canonical homomorphism from the restriction of the presheaf 
{T ~-+ Z[i/p](Homs~h/k(T,X))} to the category Nor/k to z~(X) C (Nor!k) ~, 
which defines (since the functor e is right adjoint to the restriction functor) 
a homomorphism {T ~ Z[1/pl(Homsch/k(T,X))} ~ z~(X) of presheaves on 
the category Sch/k. Finally, since z~(X) is a qfh-sheaf, we get a homomorphism 
of qfh-sheaves Z[1/p]qlh(X ) ~ z~(X). Assume further that S is an integral 
normal scheme and Z C X x S is a closed integral subscheme finite and sur- 
jective over S. Associating to Z the element Trz/s(pllz)E Z[1/p]qfh(X)(S) 
we get a homomorphism z~(X)(S) ~ Z[1/p]qjh(X)(S). Lemma 5.17 implies 
immediately that these homomorphisms are compatible with the base change. 
Thus we get, using once again theorem 6.2, a homomorphism of qfh-sheaves 
z~(X) ~ Z[1/p]qjh(X). Verification that the composition Z[1/p]q./h(X) 
z~(X) , Z[1/p]q.ih(X) coincides with the identity map is straightforward. 
Let 's  check that the composition z~(X) , Z[1/p]qfh(X) ~ z~(X) is also 
the identity map. In view of theorem 6.2 we may work with integral normal 
schemes only. So let S be an integral normal scheme and let Z C X x S be 
a closed integral subscheme finite and surjective over S. Let Y be the nor- 
malization of S in a finite normal extension of the field k(S) containing k(Z) 
(so that Homs(Y,Z) r 0). Denote the Galois group Gal(k(Y)/k(S)) by G. The 
image of Z under the above composition is equal to Trz/s(Fp, )E z~(X)(S). 
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The pull-back of  this section to Y is equal (according to the definition of  the 
transfer maps) to 

[k (Z )  : k(S)lmsep " ~ Cp,q 
qGHoms( Y,Z) 

Note further that identifying Z Xs Y with the closed subscheme of  X • Y we 
identify / 'q  C Z •  Y with I'p,q C X • Y and finally that the graphs Fq are 

precisely the components of  Z Xs Y. Thus lemma 6.5 shows that the above 
expression coincides with the pull-back of  Z E z~(X)(S) to Y. Since the homo- 
morphism z;(X)(S) ~ z~(X)(Y) is injective, we conclude that rrz:S(rp, ) = 
z ~ z ; (x) (s ) .  

Finally we want to establish a relation between cycles and morphisms to 
symmetric powers. Assume that X > Y is a finite flat morphism of  constant 
degree d. Thus X = Spec ~d where o~ is a locally free sheaf of  (0r-algebras 
of  constant rank d. Multiplication in ~,~d defines an (~r-bilinear pairing 

(,~t| A d ,d , Ad~w ', 

making Ad~d a module over an (ry-algebra (~d| s''. In this way we get a 
homomorphism of  ((.y-algebras 

Gd| ~ Ende, (Ad.4)  = Cr 

and hence a canonical section for the projection sd(x /Y)  ~ Y. Assume 
now, that X ~ Y is a finite surjective morphism, X is integral and Y is 
normal connected. Set d = [k (X) :k (Y)]  and X = Spec ~ .  According to 
the above construction we get a canonical homomorphism of  k(Y)-algebras 
( k ( X ) |  z" , k(Y). For any y C Y the image of  (~d~d) z'r in k(Y)  is inte- 
gral over g,y and hence is contained in 6y.  This shows that in this situation 
we still have a canonical homomorphism of  (~ r-algebras (s~| z'' --~ (?y and 
hence a canonical section for the projection Sd(X/Y) ~ Y. 

Let Z be a scheme of  finite type over k such, that any finite subset o f  Z 
is contained in an affine open set, so that one can consider symmetric pow- 
ers sd(z )  of  Z. Let S be a normal connected scheme and let X C Z • S be 
a closed integral subscheme for which the projection X ~ S is finite and 
surjective. Set d = [k(X) : k(S)]. The subscheme X defines an S-morphism 

s ~ U ( x / s )  

and hence a morphism f x  :S 
momorphism of  monoids 

c ~ l ( z  •  

U ( z  x s /s)  = sd(z)  x s / s  

sd(z) .  In this way we get a canonical ho- 

>Hom , d 

where C4ol(Z x S/S) c Co(Z x S/S) is the submonoid of  effective cycles. Lo- 
calizing at p we finally get a homomorphism 

z~(z)eH(s) ,Horn S, sd(z )  [ I /p] .  
\ d=0 / 
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Theorem 6.8. The above homomorphism 

4(z)~r(s)  ~ I-Iota s, sd(z) [1/p] 

is an isomorphism for any normal connected S. 

Proof. Set Y = Z a. The group Xd acts admissibly on Y and Y/Zd ~ sd(z) .  
I f  t2 is an algebraically closed field and (9 : Spec (2 ~ Sa(Z) is any t2-point 
then Zd acts transitively on the set o f  f2-points of  Y over ~o. This implies 
that the natural morphism Y x Xd ---+ Y XsJ(zt Y is surjective (and finite) and 
hence defines a qfh-covering of  Y XsJ(z ) Y. This shows that for any qfh-sheaf 

one has ~ ( S d ( Z ) ) =  #~(y)S,,. 
Let p, : Y , Z be the projection on the i-th factor. The element 

d 

p, E -F(Y,Z[1/p]q/h(Z))  
i=1 

is Sd-invariant and hence defines a canonical element 

Ud E F ( s d ( z ) , z [ 1 / p ] q j h ( Z ) ) .  

Let now f : S - - ~  sd(z )  be any morphism. It defines an element f * (ud)E  
F(S,Z[1/p]qfh(Z)) = z~(Z)(S). One verifies easily that f*(ua) E z~)(Z)a~ (S) 
and that the resulting map 

Hom S, Sd(Z) [ l /p ]  , z~(Z)eL/(S) 
\ d=O 

is inverse to the one constructed before. 

7. Singular cohomology of qfh-sheaves 

In this section we consider Sch/k as a site in qfh-topology. We denote by ,~-~ 
the qfh-sheaf associated with a presheaf Y .  

Let .~- be a presheaf o f  abelian groups. Applying ~ to the cosimplicial 
scheme A" we get a simplicial abelian group C . ( ~ ) .  The homotopy groups o f  
C . (~ - )  coincide with the homology of  the complex ( C . ( ~ ) , d  = ~ ( - 1 ) ' 0 i )  
and will be denoted H~'in~(~). For any abelian group A we set further: 

L 
H2 '%~,A)  = H , ( C , ( g )  | A) 

Hs*~n~t(~,A) = H*(RHom(C.(g) ,A)) .  

L 
Note that if o~- has no torsion then C . ( ~ )  | Z/n = C , ( ~ )  ~ Z/n and RHom 
(C. ( ,~) ,Z /n)  = Hom(C. (~ ) ,Z /n )  for any n > 0. 
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Define a presheaf +~q by the formula ,~q(X) = ,r x Aq). Thus +~. is a 
simplicial presheaf of  abelian groups and the complex C.(o~-) coincides with 
the complex of  global sections of  the corresponding complex of  presheaves 
~N.. Applying the functor of  associated sheaf to this complex of  presheaves 
we get a complex of  sheaves (+~-.)~. Note that +~q is a sheaf provided that +~- 
is, however (o~q) ~ need not coincides with the sheaf (,N~)q. 

Suppose, that n is prime to char(k) and consider the hypercohomology 
spectral sequences corresponding to the complex ( ~ . ) ~  

I ( '  q -~- ExtP((,~q )~, Z/n) ~ ExtP+q((+~'. )~, Z/n)  

I12 p'q = ExtP(Hq((,~. )~ ), Z/n) ~ ExtP+q((.~. )~, Z/n). 

The following theorem shows that the first spectral sequence degenerates. 

Theorem 7.1. For any ,~- and an)' q the canonical homomorphism , ~  > 
( ~ q ) ~  induces isomorphisms on Ext*(- ,  Z/n). 

Proof  Using the fact that A q ~- A q and proceeding by induction on q we 
reduce the general case to the case q = 1. 

Lemma 7.2. The natural homomorphism o f  sheaves Z(A t ) ----+ Z induces iso- 
morphisms 

Ext*(Z, Z/n) ----+ Ext*(Z(A l ), Z/n). 

In other words Hom(Z(A 1 ), Z/n) = Z/n and Ext+(Z(A 1 ), Z/n)  = 0 for i > O. 

Proof  By definition the sheaf Exti(Z(A l ) ,Z/n)  is the sheaf associated with 
the presheaf 

X > Ext~sch/x(Z( AI )lSch/X, Z/n). 

The sheaf Z (A  j )IS~h/X coincides with Z(A~:/X) and hence we have 

t 1 Extsch/x(Z(A )lS+h/x, Z/n) = Hi(Alx, Z/n) = H'(X, Z/n). 

It is clear that the associated sheaf is isomorphic to Z/n for i = 0 and is trivial 
for i > 0. 

This lemma implies easily that for any sheaf of  abelian groups G the natural 
homomorphism G G Z(A 1) > G induces isomorphisms 

Ext*CG, Z/n) ---+ Ext*CG ~ ZCA I ), Z/n). 

Consider the embeddings i0, il : G > G @ Z(A I ) defined by the points 0, 1 E 
A 1 respectively. These morphisms induce the same isomorphism 

i~ =i~ :Ex t* (G@Z(AI ) ,Z /n )  >Ext*(G,Z/n). 

We will say that the sheaf G is contractible if there exists a homomorphism 
q5 : G Q Z(A 1 ) > G such, that 05 o i0 = 0 and 05 oi l  = IdG. We conclude im- 
mediately from previous remarks that for any contractible sheaf G we have 
Ext*(G, Z/n)  = 0. To finish the proof  it is sufficient to note that the kernel o f  
the natural morphism of  sheaves (~.~l) + > ,N+ is contractible. 
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Corollary 7.3. 

ip, q : { E x t P ( , ~ , Z / n )  q = 0 
0 q > 0  

and hence Ex tP( (Y .  )~, Z/n) = ExtP(,~ ~, Z/n). 

Now let us investigate the second spectral sequence. From now on we will 
assume that ~ is equipped with transfer maps Trx/s satisfying the properties 
(4.1). The sheaf H q ( ( Y . )  ~)  is associated with the p re shea fX ~ Hq(,~(X x 
A*)). We will denote this presheaf by ~g'q. 

Lemma 7.4. For any scheme X consider the embeddings io, il : X ~ X • A I 
defined by the points O, 1 of  A j. The induced homomorphisms o f  complexes 

i~,i~ : ,~-(X x A 1 • A ~ ---+ ~ ( X  x A ~ 

are homotopic. 

Proof  One can use the usual topological homotopy operator (see [16], [Ch. 
2, Sect. 8]). Define a homomorphism 

Sp : ~ ( X  x A 1 x A p) 

by the formula 
p 

where ~ : A p+I 

~ ( X  X A p+I ) 

Sp = ~--~A-1)'(Idx • ~)* 
i=0 

d p x A 1 is the linear isomorphism taking vj to vj x 0 
i f j  =< i or to vj - i  x 1 i f j  > i (here vj = ( 0  . . . . .  1 . . . . .  0) is the j- th vertex 
of  A p+I (resp. AP)). A staraightforward computation shows that sd + ds = 
i~ - i~. 

The usual reasoning now proves the following: 

Corollary 7.5. The presheaf ~ q  is homotopy invariant. 

Assume that f : X ~ S is a finite surjective map with X integral and S 
regular. For any i we have a homomorphism 

Trx• : ~ ( X  x d i) ~ o~(S x A'). 

The properties of  transfer maps imply in particular that the resulting map 

Trx/s : Y ( X  x A*) ~ ~ ( S  x A*) 

is a homomorphism of  complexes and hence induces homomorphisms on ho- 
mology groups 

Trx/S : ~ q ( A  I )  ~ ,~q(S) .  
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It is clear that these maps satisfy the conditions of definition (4.1). Assuming 
now that our base scheme is the spectrum of an algebraically closed field of 
characteristic zero we deduce from theorem (4.5) that 

112 p'q = EXtPAb ( Hq'mq ( ~  ), Z/F/). 

Comparing this spectral sequence to the hyperhomology spectral sequence cor- 
responding to the complex of abelian groups C.( ,N) we conclude that (iden- 
tifying C.(,~-) with the corresponding complex of constant sheaves) the natu- 
ral homomor-phism C , ( Y )  ~ (o~.)~ induces isomorphisms on Ext*(- ,Z/n) .  
Thus we have proven the main result of  this paper. 

Theorem 7.6. Let k be an algebraically closed field o f  characteristic zero. Let 
#T be a presheaf on Sch/k which admits transfer maps. Then both arrows in 
the diagram 

c , ( ~ )  , ( ~ . ) ~  , ~ ~  

induce isomorphisms on Extqih(- ,Z/n  ). In particular for any n > 0 we have 
canonical isomorphisms 

H ~ q ( J ,  Z/n) = Extqth(,~ ~, Z/n). 

Corollary 7.7. For any qflT-sheaf Y both arrows in the diayram 

C . ( , ~ )  ---~ . f .  ~ ~ 

induce isomorphisms on Extq f h( - ,  Z/n ) = Extet(-, Z/n ). 

Proof One has only to note that qfh-sheaves admit transfer maps according 
to results of  Sect. 5 (and use the comparison theorem 10.10 for the equality 
of the Ext-groups). 

Applying corollary (7.7) to the free qfh-sheaf Z(X)  and using the theorem 
6.7 we come to the following result. 

Corollary 7.8. Let X be a separated scheme of  finite type over an alge- 
braically closed,field k of  characteristic zero. Then 

HLg(x,  Z / n )  = Hqth(X, Z/n)  = HI(X,  Z/n). 

Remark. Resolution of singularities for varieties over an algebraically closed 
field of characteristic p > 0 would imply that all results of this section are 
valid in positive characteristic as well (with n prime to p). 
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8. Singular homology of varieties over C 

Denote by CW the category of  topological spaces which admit a triangula- 
tion. Note that the product in CW is the usual product equipped with the 
compactly generated topology. We will he considering CW as a site with the 
Grothendieck topology defined by local homeomorphisms. To distinguish the 
usual topological simplices from the schemes A i used above we will use the 
notation Alo p for the topological simplices. 

The spaces Aio p form a cosimplicial topological space. If ~- is any presheaf 
of abelian groups on CW then we will denote by C.(,~-) the simplicial 
abelian group .~(A~op) and for any abelian group A we will denote by 

L 
H~.i"{I(,{,A) (resp. H~*~y(~,A)) the homology of the complex C.(~{)<gA 
(resp. RHom(C.(,~),A)).  For any presheaf ~- we will be also considering 
(the same as above) the presheaves ,~-q defined by the formula J q ( X ) =  
,~-(X x Aqop). Thus ~ is a simplicial presheaf of abelian groups and C.(,~-) 
coincides with the complex of global sections of the associated complex of 
sheaves. Our main theorem (7.6) has the following easy topological version. 

Theorem 8.1. For any presheaf ~ on CW and any abelian group A both 
arrows in the diagram 

c , ( ,~- )  > ( ,~- ,)~ +----,~-~ 

induce isomorphisms on Ext*(- ,A) ,  so that 

E x t * ( , ~ , A )  : H~*.i,~,(~{,A ). 

Proof The proof of this theorem is strictly parallel to that of theorem (7.6). 
One considers the hypercohomology spectral sequences 

I pq : ExtP((,~q)~,A) =~ ExtP+q((,~-, )~,A) 

II2 pq : ExtP(Hq((,~. )~ ), A ) ~ ExtP+q((,~. )~, A ). 

Repeating the argument of (7.1) one shows that Ext* ((~,~q)% A ) = Ext* ( ~  ~, A ) 
and hence the first spectral sequence degenerates and provides isomorphisms 
Ext*( ,~%A) ----+ Ex t* ( (Y . )%A) .  Furthermore the sheaf Hq((,~-.) ~) is asso- 
ciated with the presheaf .~q of the form ~ q ( X )  : Hq(,~(X • At*p) ). The 

presheaf  -~r is homotopy invariant and hence Jtgq(X) = ~ q ( p t )  = Hqi"g(,{) 
for any contractible space X. Since any object of CW is locally contractible 
this implies that the sheaf H u ( ( ~ . )  ~) is a constant sheaf equal to Hq""~(,~). 
Thus C.(,~-) > (o~-.)~ is a quasi-isomorphism and in particular induces iso- 
morphisms on any Ext-groups. 

For any abelian monoid M denote by M + the associated abelian group. If 
M. is a simplicial abelian monoid then applying the functor + componentwise 
we get a simplicial abelian group M. +. 

Let X be an object of CW. Consider the abelian topological monoid 
]_[~=0Su(X) and the corresponding simplicial abelian monoid Sin.(]J Sa(X)). 
The following result is a variant of the Dold-Thom theorem [3]. 
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Theorem 8.2. The evident embedding 

)+ 
Z(Sin.(X)) ---+ Sin. s d ( x )  

d=0 

is a weak equivalence of  simplicial abelian groups, i.e. 

( I+1 re, Sin. s d ( x )  = 7r,(Z(Sin.(X))) = H,(X,Z) .  
\ d = 0  / / 

Denote by j �9 CW ----+ (Sch/C) the canonical morphism of sites such that 
j - I ( X )  = X(C)  for any object X of Sch/C. The classical comparison theorem 
[9] states that j , ( Z / n )  = Z/n, Rqj , (Z/n)  = 0 for q > 0 and hence the natural 
map 

Ext*(,~, Z/n) ~ Ext*(j*(,~), Z/n) 

is an isomorphism for any etale sheaf of  abelian groups Y on Sch/C. 
Let Z be an object of Sch/C. Denote by J/r (resp. ~#top) the etale (resp. 

topological) sheaf represented by the ind-scheme I_[~_0 Sd(Z) (resp. by the ind- 
topological space H~-'0 Sd(X(C))) �9 Since j* commutes with direct limits one 
sees immediately that j * ( # )  . . . .  gtop. Let further ~ (resp. Ytop) denote the 
presheaf of abelian groups X ~ Jg(X)  + (resp. X ~ ~g~op(X)+). Let finally 
,//~+ (resp. + ~#top) be the sheaf of abelian groups associated with the presheaf ,~ 
(resp. ,Stop). The homomorphism ,~// ~ ~/g+ (resp. ,#top ) ~,#top)+ is uni- 
versal for homomorphisms from J# (resp. J/top) to sheaves of abelian groups 
and the universal property of j* shows immediately that j * G g  +) = j*Gg{) + = 

+ ~J#,top. The canonical homomorphism of sheaves M ~ j , (~{ top )  together with 
an evident embedding of cosimplicial spaces A~p ----+ A*(C) defines a homo- 
morphism of simplicial abelian monoids 

, /~(A �9  > J , ( ~ t o p ) ( A  ) = o ,# top(A�9  ~ ,~f/top(Atop). 

Applying the functor + we get further a homomorphism of simplicial 
abelian groups (and hence of the corresponding complexes of  abelian groups) 

(n )+ C,(Z)  = dg(A�9 + ----, Sin. Sd(Z(C)) 
d=0 

Thus for any n > 0 we have the induced homomorphisms on homology and 
cohomology with Z/n-coefficients 

HU'q7 Z/n) ~ H,(Z(C),Z/n)  

H*(Z(C),  Z/n) ) H~*ing(Z , Z/n). 

Theorem 8.3. For any separated scheme Z E Sch/C the above homomor- 
phisms are isomorphisms. 
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Proof  Note first o f  all that the presheaf ,~- coincides (according to theorems 
(6.7) and (6.8)) with the qfh-sheaf Zqfh(Z) and hence admits the transfer 
maps. The theorem (7.6) implies now that both arrows in the diagram 

C.(Z)  = C . ( ~ )  , J .  , ,Y = 7~+ 

induce isomorphisms on Ext ( - ,Z /n ) .  Applying the functor j* we get a dia- 
gram of  sheaves on CW which has the same property. Consider finally the 
commutative diagram 

j*(C,(Z)) > j *O~-, )  + - -  j *O/ / /+)  = .Wt+p 

C , ( Y t o p )  ' ~ ~ + (Jz. top )* +------ ~- ('~ ,op ) = JC,op. 

All horizontal arrows induce isomorphisms on Ext*( - ,Z /n) .  The right hand 
side vertical arrow is an isomorphism. Thus the left hand side vertical arrow 
induces isomorphisms on Ext*(- ,  Z/n). In other words the homomorphism of  
complexes of  abelian groups 

(n )+ C,(Z)  ~ Sin, Sd(Z(C))  
d = O  

induces isomorphism on cohomology and hence also on homology with finite 
coefficients. 

9. Algebraic Lawson homology 

Let Z C pX be an integral projective scheme over C. Denote by C~,j(Z) the 
(not nesessary connected) projective algebraic set o f  effective cycles of  dimen- 
sion r and degree d on Z [20]. We will be considering C~,d(Z) as a reduced 
projective scheme. The Chow monoid of  effective r-cycles on Z is a disjoint 
union 

o c  

c~(z) = I _ I  c~,d(z) 
d=O 

provided with the operation determined by addition of cycles. Thus C,(Z) is 
an abelian topological monoid (to simplify notations we do not distinguish 
between a reduced scheme over C and the topological space of  its C-valued 
points). 

The Lawson homology of  Z are defined by means of  the formula 

LrH2r+i(Z) = 1-c,( Cr(Z)  +) 

where for any topological monoid M we denote by M + its homotopy-theoretic 
group completion i.e M + = ~B(M)  (for its relation to the "naive" group com- 
pletion as well as for a more detailed account on Lawson homology see [6]). 

Let M be any abelian topological monoid. The canonical monoid map 
[Sin.(M)l ~ M is a weak equivalence and hence induces an equivalence of  



Singular homology of abstract algebraic varieties 89 

group completions ISin.(M)l + ~ M +. On the other hand ISin.(M)l + is canon- 
ically homotopy equivalent to ISin.(M) +] where Sin.(M) + is the component- 
wise group completion of the simplicial abelian monoid Sin.(M). Thus we get a 
weak equivalence NSin.(M)+I ~ M +. This shows in particular that the groups 
L,H2r+,(Z) coincide with the homotopy groups of a simplicial abelian group 
S in . (C(Z) )  +. One can consider also the algebraic version of this construction: 
consider the simplicial abelian monoid Hom(A,C~(Z)) ,  apply to it the group 
completion functor and finally set 

a lg  L,.tt~r+,(Z ) = 7r,(Hom( A ~ C,.(Z) ) + ). 

Since every algebraic morphism zl q ~ Cr(Z) defines by restriction a con- 
tinious map Aqop ~ C,.(Z) we get a homomorphism of simplicial abelian 
groups 

Hom(A ~ Cr(Z)) + ~ Sin.(Cr(Z)) + 

and hence the induced maps from algebraic to topological Lawson homology 
with finite coefficients 

L r4a#j (Z Z /n)  ---+ LrHzr+,(Z,Z/n). r * ' 2 r + i  ~, , 

The simplicial abelian groups used to define LrH2}~,(Z ) may be given a 
slightly different description. E. Friedlander and H. Lawson [5] proved that for 
any normal connected scheme S the abelian monoid Horn(S, C,.(Z)) coincides 
with the monoid of effective cycles on S • Z every component of which is 
equidimensional of relative dimension r over S. Thus Hom(Aq, G ( Z ) )  + coin- 
cides with the group of cycles in A q • Z every component of which is equidi- 
mensional of relative dimension r over z] q. 

Theorem 9.1. For any Z and an)' n > 0 we have a canonical isomorphism 

a l#  LrH2,.+,(Z, Z/n)  ~ LrH2r+t(Z, Z/n).  

Proof  Let r (resp. ,~#top) denote the etale (resp. topological) sheaf of abelian 
monoids represented by C~(Z). Let further ,~- denote the presheaf of abelian 
groups X ~ ,//g(X) + and let ~#+ denote the sheaf associated with g .  It is 
clear that j*(~/4') ,,/{lop and hence j*(Jr = '~+ = ~#top. Notice further that ,Zr 
(and hence also Y )  admits transfer maps: suppose that we have a diagram 

g 
x - - ~  C ( z )  

S 

with f finite and surjective, X integral and S normal. Set d = [k(X) : k(S)]. 
According to Sect. 6 f defines a morphism S ~ sd ( x / s ) .  Define Trx/s(g) as 
the composition 

s , U ( x / s )  , sd(x)s , ' r  s a ( c ( z ) )  , G ( z )  
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where the last morphism is defined by the monoid structure on C,.(Z). It is 
easy to check that 

Trx/s : Hom(X, Cr(Z)) ~ Horn(S, Cr(Z)) 

is a monoid homomorphism and further that it satisfies the conditions (4.1). 
Proceeding now exactly as in the proof of the theorem (8.3) we get a com- 
mutative diagram 

C. (~- )  ~ j * ( ( ~ - . ) ~ )  +--- j * ( ~ + )  

C.(Y,op) > (~,op)7 < ~'#top.+ 

All the horizontal arrows and the right hand side vertical arrow induce iso- 
morphisms on Ext*(- ,  Z/n). Thus the homomorphism of complexes of abelian 
groups 

Hom(A', Cr(Z)) + = C . ( ~ )  ' C.(gt, ,p) = Sin.(C,-(Z)) + 

induces isomorphisms on cohomology with finite coefficients and hence also 
on homology with finite coefficients. 

I0. Appendix: h-cohomology 

A morphism of schemes p : X ~ Y is called a topological epimorphism if the 
underlying Zariski topological space of Y is a quotient space of the underlying 
Zariski topological space of X (i.e. p is surjective and a subset A of Y is 
open if and only if p - l ( A )  is open in X),  p is called a universal topological 
epimorphism if for any Z/Y the morphism Pz : X x v Z , Z is a topological 
epimorphism. 

An h-covering of a scheme X is a finite family of morphisms of finite 
type {pi : )(i- ~ X} such that I_I pi : i j x i  ~ x is a universal topological 
epimorphism. 

A qfh-covering of a scheme X is an h-covering {Pi} such that all the 
morphisms pi are quasi-finite. 

h-coverings (resp. qfh-coverings) define a pretopology on the category of 
schemes, h-topology (resp. qfh-topology) is the associated topology. 

Using the theorem of Chevalley (see [8, p.24]) one proves easily the fol- 
lowing lemma. 

Lemma 10.1. Let X be a normal connected scheme and let { f  i : Xi - -~  X } i ~  
be a finite family o f  quasi-finite morphisms of  finite type. Assume that all Xi 
are irreducible and denote by J the set o f  those i jor which X, dominate X.  
The above family is a qfh-coverin9 i f  and only i f  X = Ui~j f i(X~ ). 
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Let S be a fixed base scheme (which will be assumed noetherian). Denote 
by Sch/S the category of  schemes of  finite type over S and consider Sch/S as 
a site in h- qfh- or etale topology. We have evident morphisms of  sites 

(Sch/S)h ~ ~ (Seh/S)q/h ~ (Sch/S)~,. 

Theorem 10.2. Let A be any abelian group. Denote by the same letter A 
the corresponding constant sheaf in Zariski topology (which happens to be a 
sheaf er'en in h-topology), then [~,(A) = A, Rqfl,(A) = 0 for q > O. 

Proof It suffices to show that if X is a strictly henselian scheme then 
H~ and Hqqih(X,A)=0 for q > 0. The first formula is obvi- 
ous. To prove the second one we proceed by induction on q. Let u E 
tt~th(X,A) be any cohomology class. There exists a qfh-covering {Y, 
X},el  such that ulr ' = 0 for all i. The standard properties of  quasifinite 
schemes over a henselian scheme (see [17], [Ch.1]) show that there ex- 
ists i C I and a component Y of  Y, which is finite over X and maps sur- 
jectively onto X. Note that the scheme Y is also strictly henselian and 
the field extension k ( x ) c  k(y)  is purely inseparable (here x and y are 
closed points of  X and Y respectively). This implies immediately that all 
the schemes Y •  •  Y are strictly henselian. Consider now the spectral 
sequence 

El/ i r+t = Hqih(Y • ... • Y,A) ~ Hqth(X,A ) 

The terms E ~ are all equal to A and the differential dl "E~ ~ ~lF0"/+l is ei- 

ther zero or identity map depending on parity o f j .  This shows that E ~ = 0 for 

j > 0. On the other hand El I = 0 for 0 < i < q in view of  the induction hy- 
pothesis. Thus the edge homomotphism Hqlh(X,A ) ~ Hqfh(Y,A) is injective 
and hence u = 0. 

Lemma 10.3. Let X be a normal connected excellent scheme. An), qJh- 
covering o['X admits a refinement of  the form { Vi ~ V ---+ X}i~l where V 
is" the normalization of X in a finite normal extension of its field of functions 
and { V~. ~ V} is a Zariski open covering of V. 

Proq[; Let { p l : U j - - - ~ X } j c j  be a qfh-covering of  X. Replacing each U, 
by the family of  its irreducible components we may assume that all Uj are 
integral. Using lemma (10.1) we may assume that U/ dominate X for any j .  
According to the Zariski main theorem each pj admits a factorization o f  the 

form Uj ~ Uj P'~ X,  where Uj is integral, Uj ~ ~Tj is an open embedding 
and /Yj is finite and surjective. Let E be the composite of  normal closures 
of  the fields k(l,,Tj) over k(X). Let V denote the normalization of  X in E 
and let q : V ----* X be the canonical morphism. For each j the morphism q 
factors through ~Tj and we will denote by Vj the inverse image of  Uj in V. 
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Finally set G = Gal(E/k (X) ) ,  I = J  • G and for i = ( j ,o ' )  C I set V,. = Vf. 
One checks easily (using lemma 5.9) that Ui~l V / =  V and that {Vi ~ X}i~l 
is a refinement of  the original covering {Uj --- ,  X } j c j .  

An h-covering { P i  : Ut ~ X }  is said to be of  normal form if the mor- 
phisms Pi admit a factorization of the form Pi = s o f  o ini ,  where {in, : 
Ui ~ U}, is a Zariski open covering of  U, f : U  > Y is a finite sur- 
jective morphism and s : Y  ~ X  is a blow up of  a closed subscheme 
of  X. 

Lemma (10.3) and the "platification par eclatement" theorem of [18] imply 
easily: 

Corollary 10.4. An)' h-covering o f  a reduced noetherian excellent scheme ad- 
mits a refinement o f  normal form. 

Lemma 10.5. Assume that k is a separably closed field and Y/k is' a non- 
empty proper scheme over k. Then for  any prime p the following sequence 
is exact 

0 ----+ I-I~*t(Spee(k),Zlp ) , Hs  --+ H~t(Y xk Y , Z / p )  - -~  . . . .  

Proo f  Denote the graded Z/p-a lgebra  ft~*t(Y,Z/p ) by R. According to the 
Kunneth formula ([17], [Ch.6, Sect. 8]) we have H ~ ( Y k , Z / p )  = R | so that 
the above sequence takes the form 

> R ~ R | J > . . .  0 ~ Z / p  

where 
k 

d(rl @ . . . @ r k ) =  Z ( - l ) i ( r ~  |  l ~r,+, Q . . . ~ r k ) .  
/=0 

Choose a closed point y E Y and consider the augmentation 

e ' R  * = H ; , ( r , Z / p )  ~ * = H ; , ( ~ ( y ) ,  Z / p )  Z / p .  

Finally define s " R | , R | by means of  the formula 

s(rt |  @ rk ) = e(rl )(r2 |  @ rk). 

A straightforward verification shows that s is a contracting homotopy for the 
complex in question. 

Corollary 10.6. Assume that X is a strictly henselian scheme and f �9 Y 
X is a surjective proper morphism. Then Jor any prime p the following se- 
quence is" exact 

o - - ~  H ~ ( X , Z / p )  , H i * , ( r , Z / p )  , * X x  H i , ( r  r , Z / p )  , . . .  
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Proof This follows immediately from the proper base change theorem ([17], 
[Ch. 6, Sect. 2]) and lemma (10.5). 

Theorem 10.7. Assume that S is excellent and n > O. Then ( f i~) , (Z/n)= 
Z/n and Rq(flc~),(Z/n) = 0 jbr q > O. 

Proof We may assume that n = p  is a prime integer. The first formula is 
evident, to prove the second one we will use induction on q. Assume that 
R'(fl~),(Z/n) : 0 for 1 _< i _< - 1 .  The hypercohomology spectral sequence 
gives (for any X C ob(Sch/S)) an exact sequence 

0 , H~q(x,Z/p) ~ HT(X,Z/p ) ~ He~ Rq(flcQ,(Z/p)). 

This shows that X ~ Hq(x, Z/p)/Hq(X, Z /p)  is a separated presheaf in etale 
topology and implies: 

Lemma 10.8. Suppose that u E Hq(x, Z /p )  and there ex&ts an etale covering 
{Xi ~ X}  such, that u[x, E Hq(x~, Z/p) ,  then u E H~(X, Z/p) .  

Proof To prove that Rq(flcQ,(Z/p) = 0 it is sufficient to show that i f  X is 
an excellent strictly henselian noetherian scheme, then q H~ (X, Z /p)  = 0. Fix an 
element u E Hq(x, Z /p)  and find (using (10.4)) a proper surjective morphism 
Y >X and an open covering Y = UY, such that Ulr ' = 0. Lemma (10.8) 
shows that ulr C Hq(Y,Z/p) .  Since 

pr~(ulr) - pry(ulY) = 0 ~ H~q(Y • Y ,Z /p )  C Hq(Y x x  Y ,Z /p )  

corollary (10.6) implies that u I r = O. Finally consider the spectral sequence 

E~ = H; ( r  •  • r , Z / p )  ~ H;+J(X,Z/p). 

Induction hypothesis and corollary (10.6) show that 

E~ t = 0 for 0 _< i _< q -  l , ( i , j ) 4= (0 ,0 ) .  

This spectral sequence shows that Hff(X,Z/p) ~ H[(Y,Z/p) .  Thus u = 0. 

Corollary 10.9. 

, ( Z / n )  = Z/n 

Rq~.(Z/n) = 0 for q > O. 

Corollary 10.10. Let ,~ be an etale sheaf and let ~ be a qfh-sheaf, then 

Exq , (g ,  z / n )  = Ext~ih(fl*g, Z/n)  

Extq/h( (q, Z/n) = Ext~ ( o~* ~, Z/n). 
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