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Abstract
The simplicial extension of any functor from Sets to Sets which commutes
with directed colimits respects weak equivalences. In the present paper we

construct a framework which allows one to extend this result to a wide class
of model categories and functors between such categories.
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202 V. VOEVODSKY

Let F : Sets — Sets be any functor which commutes with directed colimits.
Then its extension to the category of simplicial sets takes weak equivalences to weak
equivalences

The goal of this paper is construct a framework which can be used to proof
results of this kind for a wide class of closed model categories and functors between
those categories. Originally I was interested in the proof that the symmetric power
functors respect A'-equivalences between simplicial schemes but it soon became
clear that similar problems arise for other categories (such as finite correspondences
or pointed schemes) and other functors (such as the forgetting functor from
correspondences to schemes) and that a new toolbox is required to tackle these
problems.

Let C be a category with finite coproducts LI and an initial object 4. A
contravariant functor F : C — Sets is called radditive if F(#) = pt and for
any X,Y in C the natural map F(X U Y) — F(X) x F(Y) is a bijection. In
model theory, categories which are equivalent to the categories of radditive functors
are known as finitary varieties. Examples of such categories include categories of
presheaves, categories of pointed presheaves and categories of additive functors on
additive categories.

The category of simplicial objects in the category Rad(C) of radditive functors
on C carries a natural finitely generated simplicial c.m.s. called the projective c.m.s.
Let H(C) be its homotopy category. For any set of morphisms £ in A°? Rad(C)
one defines in the usual way the class of (left) E-local equivalences c/;(E). The
localization H(C)[cl;(E)~'] always exists and we denote it by H(C,E). If the
projective c.m.s. is left proper then by Smith’s localization theorem c/;(E) is the
class of weak equivalences of E-local local c.m.s. which is the (left) Bousfield
localization of the projective c.m.s.. But many important results about H(C,E)
hold without the left properness assumption.

Let C* be the full subcategory in Rad(C) which consists of directed colimits of
representable functors. Any continuous functor (i.e. a functor which commutes with
directed colimits) F : C* — (C’)* defines a functor F"*? : Rad(C) — Rad(C)
which is not a left adjoint and does not commute with colimits unless F commutes
with coproducts. Given two sets of morphisms E and E’ in A°? Rad(C) and
A°P Rad(C’) respectively, we want to find a natural condition on E, E’ and F
and a sufficiently wide class of objects in A°? Rad(C) such that the simplicial
extension of F7¢ takes E-local equivalences between objects of this class to E-
local equivalences.

Since F™?¢ does not commute with colimits the class of cofibrant objects which
is usually considered in the constructions of homotopy derived functors does not
play any particular role in our approach. Instead one considers the class A% C*¥,
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The standard cofibrant replacement functor Cof of the projective c.m.s. takes
values in A°? C* which implies that any cofibrant object is a retract of an object
in A°?C* but most objects of A°?C* are neither fibrant nor cofibrant. Since any
object of A°? Rad(C) is projectively equivalent to an object of A°?C* we may
consider H(C) as a localization of the later category.

Corollary 4.9 of our first functoriality theorem asserts that projective equiva-
lences between objects of A°? C* are preserved by the simplicial extension of F for
any continuous functor F : C* — (C’)*. This is a direct generalization of the result
about simplicial sets mentioned at the beginning to categories of radditive functors.
From it we conclude that any continuous F : C* — (C’)* defines in a natural way a
functor

LF™: H(C)— H(C).

Given sets of morphisms E and E’ in A°? Rad(C) and A°? Rad(C’) respec-
tively we may now ask for a natural condition on E, E’ and F which would
guarantee that LF7%¢ takes E-local equivalences to E’-local equivalences. It is
done in Theorem 4.19 which asserts that for a continuous functor F : C* — (C’)*
and a set of morphisms E in A°?C* such that for any f € E and X € C the
morphism F(f[]Idx) isin cl;(E’), one has

F(cl;(E)UA°PC* C clj(E) (1)

and in particular
LF(cl;(E)) C cl;(E"). )

When F is a functor C — C’ which commutes with finite coproducts then
the functor F"%? has a right adjoint F,,; and Theorem 4.20 asserts under the
obvious necessary conditions that F7%? respects E-local equivalences between
objects from A°?C* and F,,4 respects E’-local equivalences between all objects
of A°? Rad(C").

The main technical tool which we use in the proofs is the notion of a A-
closed class of morphisms in the category of A°?C of simplicial objects over a
category C (see Definition 2.18) and the related notion of A-closure c/ AE). Tt
follows immediately from their definition that A-closures commute with simplicial
extensions of all continuous functors.

Our functoriality results are obtained from this property of A-closure and
Theorems 3.51 and 3.52 which express E-local equivalences in A°?C* and
AP Rad(C) respectively in terms of A-closures.

I am very grateful to Charles Weibel who made a great number of useful
suggestions both for the original version of the paper and for the new one.
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2. Elementary properties of A-closed classes

2.1. A-closed classes

Let C be a category and A°?C the category of simplicial objects over C. Following
[12], define a unit homotopy from a morphism f : A — B to amorphism g: A — B
in A°PC as a collection of morphisms i} : A, — B,, wheren >0andi = —1,...,n,
satisfying the following conditions:

1. h*| = fu, h}; = g, where f, and g, are the components of f and g
2. 8,']1]' =hj_1ai ifi §j,8,-h,- =hjai ifi > j
3. Sil’lj =]’lj+1Sl' ifi fj,sihj =hjS,' ifi > J.

If C has coproducts (resp. finite coproducts), K is a set (resp. a finite set) and X
an object of C then we let X ® K = Ll g X denote the coproduct of K copies of
X. Similarly for a simplicial set (resp. finite simplicial set) K and an object X of
A°?C we let X ® K denote the simplicial object with terms X, ® K,.

Example 2.1. 1If C is the category of sets then X ® K = X x K. If C is the category
of pointed sets then X @ K = X A (Ky).

One verifies easily (see [12, Prop. 2.1]) that if C has finite coproducts then a
unit homotopy from f to g in the sense of the definition given above is the same as
amorphism /4 : A® A' — B suchthat ho(Id ® dg) = f and ho (Id ® 3,) = g.

Two morphisms are called homotopic if they can be connected by a chain of
unit homotopies (going in either direction). A morphism f : A — B in A°PC is
called a homotopy equivalence if there exists a morphism g : B — A such that the
compositions g f and fg are homotopic to the corresponding identity morphisms.

Definition 2.2 Let C be a category. A class E of morphisms in A°PC is called
A-closed if the following conditions hold.

1. All homotopy equivalences are in E.

2. If f and g are morphisms such that the composition g f is defined and two
out of three morphisms f,g,gf are in E then the third is in E.

3. If f: B — B’is amorphism of bisimplicial objects over C such that the rows
or columns of f are in E then the diagonal morphism A(f) isin E

We denote the smallest A-closed class containing a class E by c/a(E).
Remark 2.3. The definitions of A-closed and A-closed classes given here are not
equivalent to the definitions of classes with the same names in [5]. However the
reader should have no problem connecting these definitions to each other.
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A functor F : C — D defines in the usual way a functor A°? C — A°P D which
we denote by the same symbol F and call the simplicial extension of F. Simplicial
extensions take homotopic morphisms to homotopic morphisms and if we define F
on bisimplicial objects by setting (F(X));; = F(X;;) we have F oA = Ao F. This
implies the following result.

Lemma 2.4 Let F : C — C’' be a functor. Then for any class of morphisms E in

A°PC one has
F(cIa(E)) Ccla(F(E)).

Proposition 2.5 Let C be a category with finite coproducts and E a class of
morphisms in A°PC. Let E 11 Idc be the class of morphisms of the form f U Idy
for f €e Eand X € C. Then cla(E U Idc) is closed under finite coproducts.

Proof: For a pair of morphisms f; : X1 — Y1, f2: X2 — Y, we have

fUg=dy U fr)o(f1 Uldy,)

and therefore it is sufficient to check that for a morphism f in cla(E L Id) and an
object X in A°’?C onehas f LU Idyx € cla(E U Id). Since f Ll Idy is the diagonal
of a morphism whose rows are of the form f II Idy, for X; € C it is sufficient to
show that for f € cla(E L Id)and X € C onehas f L Idy € cIn(E L Id). This
follows from Lemma 2.4 applied to the functor (—) LI /dy. O

Proposition 2.5 shows that c/a(E L Idc) is the smallest class which contains £
and is (A, <o )-closed i.e. A-closed and closed under finite coproducts. We will
denote it by ¢la 11_ (E).

Corollary 2.6 Let C be a category with finite coproducts. Then

clan.. () = cla(@).

Definition 2.7 A morphism e : A — X in a category C is called a coprojection if
it is isomorphic to the canonical morphism A — A L1 Y for some Y. A morphism
f:A— X in A°PC is called a term-wise coprojection if for any i > 0 the morphism
fi + A; — X; is a coprojection.

For any morphism f : B — A and any object X, the square

B2, BuUX

Lol

A Aux

is a push-out square. This shows that in a category with finite coproducts there exist
push-outs for all pairs of morphisms (e, f) such that e is a coprojection. Therefore
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the same is true for pairs of morphisms (e, /) in A°?C such that e is a term-wise
coprojection.

Definition 2.8 A square in A°”C is called an elementary push-out square if it is
isomorphic to the push-out square for a pair of morphisms (e, /) where e is a term-
wise coprojection.

Suppose that C has finite coproducts. For any commutative square Q of the
form
B,y

l l )

ALX

denote by K¢ the object defined by the elementary push-out square

BUUB —— B®A!

L

ALY —— Ko

and by pp : Ko — X the obvious morphism. For a morphism f : X — X’ the
object Ko defined by the square

X — X

Lo

S

X — X

is called the cylinder of f and denoted by cyl(f).

Lemma 2.9 The morphisms X' — cyl(f) and cyl(f) — X' are mutually inverse
homotopy equivalences.

Proof: The object cyl( f) is defined by the elementary push-out square

1d®3d
x 22%% y e Al

Il

X — cyl(f).

The composition X’ — cyl(f) — X’ is the identity. The homotopy from the
identity of cyl(f) to the composition cyl(f) — X' — cyl(f) is given by the



Simplicial radditive functors 207

morphism cyl(f) ® A' — cyl(f) which equals the projection X’ ® A! — X’ on
X’ ® A! and the morphism /d ® & on

X' @AHRA' =X @ (Al x Al

where i : Al x A1 — Al is the usual homotopy from the identity to the composition
a

Al - AO 3 AL O

Lemma 2.10 For an elementary push-out square Q of the form (4) in A°PC, the

morphism po : Ko — X belongs to clx(9).

Proof: The object K¢ is the diagonal of the bisimplicial object whose rows are
Ko, where Q; is the square formed by the i-th terms of A, B and Y and pg is
the diagonal of the morphism whose terms are pg, : Ko, — X;. Therefore, it is
sufficient to prove the statement of the lemma for a square in C of the form (3).
Since Kg,p, = Ko, I Kg, and a square of the form (3) is a coproduct of a
square of the form (6) and a transpose of such a square our result follows from
Lemma 2.9 and the fact that the coproduct of two simplicial homotopy equivalences
is a simplicial homotopy equivalence. O

Lemma 2.11 Let f = (fa,fB,fv,[fx): Q@ — Q' be a morphism of commutative
squares of the form (4). Then one has

(K(f):Kg — Kg)eclan_,({fa.fB. fY}).

Proof: The object K¢ is isomorphic to the diagonal of a bisimplicial object whose
rows are of the form A LI Y LI (LI, B) and this isomorphism is natural with respect
to morphisms of squares. 0

Combining Lemma 2.10 and Lemma 2.11 we get the following result.

Proposition 2.12 Let f = (f4, fB, fv. fx) : O — Q' be a morphism of elementary
push-out squares of the form (4). Then one has

fx €clau_ (A fa. /B, fr}).

Lemma 2.13 Let C be a category with finite coproducts. Then for any elementary
push-out square in A°? C of the form (4) one has

eqacciau_..({er})

veclau_ ({u}).
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Proof: To prove the first inclusion one applies Proposition 2.12 to the morphism
of squares of the form

B —— B B —— Y
L=l
A— A A—— X

To prove the second inclusion one applies Proposition 2.12 to the morphism of
squares

B——7Y B——Y
—
I it U
B——Y A—— X
O
Lemma 2.14 Consider a commutative diagram of the form
B Y Z
I ®
A X T.

Denote the left square by Q1, the right square by Q, and the big square by Q3.
Consider the canonical morphisms

p1:Kg, —X, pp:Kg,—T, p3:Kg,—>T
and let E be a (A,]].)-closed class. If two out of three morphisms pi, p», p3 are
in E then the third is in E.
Proof: Let Q4 be the square

Y — Z

L

Ko, —— Kp;.

One can easily see that it is elementary push-out. The identity morphisms ¥ — Y,
Z — Z and the morphism p; : Kg, — X define a morphism of squares f : Q4 —
0> and we get a commutative diagram

K(f)
0, — > Ko,

p{ lpz (10)

Ko, —2> T
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By Lemma 2.10 we have p4 € cla jj__ () and by Lemma 2.11 we have K(f) €
cla,11... (p1). This implies the statement of the lemma. O

2.2. A-closed classes

Definition 2.15 A class of morphisms £ in a category C is said to be closed under
filtered colimits if for any pair of filtered systems (X;);es, (Yi)iesr such that X =
colim; X; and Y = colim;Y; exist and any morphism of systems ( f;) : (X;) — (¥;)
such that f; € E, one has f = colim; f; € E.

We will say that a functor between any two categories C — C’ is continuous
(or finitary) if it commutes with filtered colimits which exist in the first category.
As shown in [1, p. 15] a functor is continuous if and only if it commutes with
directed colimits, and a functor whose domain is a category with directed colimits
is continuous if and only if it commutes with colimits of chains.

Let us recall the following definition (see [3, p. 452]).

Definition 2.16 Let C be a category and E be a class of morphisms in C. A
morphism f : X — Y is called a transfinite composition of morphisms from E
if there is an ordinal @ and a continuous functor F' : « — C such that colimF
exists, f is isomorphic to the morphism F(0) — colimF and for any i € « the
morphism F(i —i+1)isin E.

Lemma 2.17 Let E be a class closed under finite compositions and filtered colimits.
Then one has:

1. Let i — X(i) be a filtered system such that for all i — j the morphism
X(@@)— X(j)isin E. Then for anyi € I, the morphism X(i) — colim ; X(j)
isin E.

2. E itis closed under transfinite compositions.

Proof: To prove the first assertion observe first that by replacing [ with the
category i/l of morphisms i — j and our original system with the system
(i — j) — X, we do not change the colimit. The first assertion of the lemma
follows now by the application of Definition 2.15 to the obvious morphism from the
constant system (i — j) — X; to the system (i — j)— X;.

To prove the second assertion let / be an ordinal considered as a partially
ordered set and i — X (i) be a functor such that X takes all successor arrows to
elements of E and such that for j = lim;<;i one has X(j) = colim;<;X(i).
Consider the subset J C I which consists of J such that X(0) — X(j) is in E.
If j = colim;;i and for all i < j we have i € J then by the first assertion
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j € J. Since E is closed under finite compositions we conclude that if j € J then
j + 1 e J. Therefore J = I by the "transfinite induction" axiom. O

Definition 2.18 Let C be a category. A class in A°?C is called A-closed if it is
A-closed and closed under filtered colimits.

Remark 2.19. It follows from [1, Th. 1.5, p.14] that filtered colimits are equivalent
to directed colimits in a way which makes these two notions interchangeable in all
of our results and definitions.

We let clx(E) denote the smallest A-closed class which contains E. There is the
following obvious analog of Lemma 2.4.

Lemma 2.20 Let F : C — C’ be a continuous functor. Then for any class of
morphisms E in A°PC one has

F(clx(E)) C clx(F(E)).

Proposition 2.21 Let C be a category with coproducts and A a class of objects
in C which is closed under finite coproducts and such that any object of C is a
filtered colimit of objects of A. Then for any class of morphisms E in A°PC the
class clz3 (E L 1d ) is closed under coproducts.

Proof: Let f; : X; — Y;, i € I be a set of morphisms in A°’C. Choose a well-
ordering on / and for j € I + 1 set

Z;= (Hi<jYi) il (HiZ.iXi)'

Then j — Z; is a transfinite composition diagram such that Z; — Z;;; is
isomorphic to f; I Idw,_;y)u,.,;x;) and Zo — colimZ; is isomorphic to
LI f;. Therefore it remains to show that for f € clz(E I Id4) and X € A°PC
onehas f I Idy € clz(E1dy). Since f LI Idy is the diagonal of the morphism
of bisimplicial objects whose rows are of the form f II X;, we may assume that
X € C. By our assumption on A the morphism f LI Idy is a filtered colimit of
morphisms of the form f LI /dy for Y € A. Therefore it remains to show that for
fecly(ElNIdy)andY € Aonehas f I 1dy € cl3(E1lIdy). This follows from
Lemma 2.20 applied to the functor (—) LI Y. O

Proposition 2.21 shows that c/z (E L Idc) is the smallest class which is A-closed
and closed under coproducts. We denote it by ¢/ 11 (E).

Corollary 2.22 Let C be a category with coproducts. Then

clx 1y (0) = clz (D).

Theorem 2.23 The class of weak equivalences in A°P Sets coincides with cl z (9).
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Proof: Let us show first that any weak equivalence f belongs to c/z(9). Let
Ex = colim, E x, be the Kan completion functor. For a weak equivalence f the
map Ex(f)is a homotopy equivalence and by the 2-out-of-3-property it remains to
show that the maps X — Ex(X) are in c/z(9). Since any c/z(9) is closed under
countable compositions, it is sufficient to show that the maps

Exn(X) = Expy1(X)
belong to ¢/ z (9). By definition of Ex, (see e.g. [6]) we have a square of the form

U pni s g, ) A" ——  Exu(X)

! !

HA"-k—>Exn(X)An E— Exn+1(X)

which is clearly an elementary push-out. The left hand side vertical arrow is a
homotopy equivalence and by Lemma 2.13 the right hand side vertical arrow is in
cla .., (9) = cla(®).

To show that c/z(¥) is contained in the class of weak equivalences, it is
sufficient to verify that the class of weak equivalences is A-closed. The conditions
of Definition 2.2 are well known (for the proof of the third condition see e.g.
[9, Lemma 5.3.1 p.129], [7, Prop. 1.7, p.199]). The fact that the class of weak
equivalences is closed under filtered colimits follows easily from the fact that Ex
commutes with filtered colimits and the definition of weak equivalences of Kan
simplicial sets in terms of homotopy groups. O

Corollary 2.24 Let C be a category with small coproducts, f : K — K' a weak
equivalence of simplicial sets and X an object of C. Then one has

(Idx® f: X ®K > X ® K') € cl5(0).

Proof: It follows from Theorem 2.23 and Lemma 2.20 applied to the functor
K—X®K.O O

Let I be a small category and C be a category with coproducts. Let further
F : I — C be a functor. Define a simplicial object hocolim(F) in C setting

hocolim(F), = ]_[ F(io)

io—...—~>ip

where the coproduct is taken over all sequences of morphisms in / of length n + 1.
One defines the face and degeneracy morphisms in the obvious way (it is the same
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construction as in [4] or in [7, p.199] only now the target category is C instead of
Sets). Note that
hocolim(F)o = ]_[F(i)
iel

and in particular for any i in / we have a morphism F (i) — hocolim(F). There is
also an obvious morphism hocolim(F) — colim(F) if colim(F) exists.

If F is a functor I — A°PC then hocolim(F) is a bisimplicial object. By
abuse of notation we will often write hocolim(F) instead of A(hocolim(F)). The
definition of hocolim immediately implies the following lemma.

Lemma 2.25 Let C be a category with coproducts and I a small category. Let
further F,G : I — A°PC be two functors and f : F — G a natural transformation.
Then one has

hocolim(f) € clA’H({f(i)}iGI).

Proposition 2.26 Let C be a category with coproducts and F : I — A°PC afiltered
diagram such that colim(F) exists. Then one has

(hocolim(F) — colim(F)) € clz(9).

Proof: Since our morphism is the diagonal of a morphism of bisimplicial objects
whose rows are of the form hocolim(F,) — colim(Fy) for F, : I — C, we may
assume that F takes values in C.

Let I, be the set of objects of / considered as a category where all morphisms
are identities. We have an obvious functor ¢ : Iy — I which defines a functor
¢« : Funct(1,C) — Funct(lp,C). If C has coproducts then ¢, has a left adjoint
¢* which sends a family (X;);es to the functor

¢*((Xidier,) 1 j = Ui X;

where the coproduct is over all morphisms i — j in /. The adjoint pair
(¢*,p«) defines in the usual way a cotriple ® = ¢*¢p, on Funct(I,C). For
any F € Funct(I,C) we get a simplicial functor ®,(F) with terms &,(F) =
(P+*)°" D (F). An elementary computation shows that

P (F)(j) = ¢+ Pu(F)(j) = hocolim(F/j)

where F/j : (i — j) — F(i). By the standard properties of simplicial
objects defined by co-triples we conclude that the obvious map hocolim(F/j) —
colim(F/j) = F(j) is a simplicial homotopy equivalence.

Suppose now that [ is a filtered category. Then

hocolim(F) = colim(j + hocolim(F/J))
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and the morphism hocolim(F) — colim(F) is a filtered colimit of homotopy
equivalences and therefore belongs to ¢l (J). O

Proposition 2.27 Let C be a category with coproducts and filtered colimits. Then
a class E in A°PC is (A,)-closed if and only if it is A-closed, closed under
coproducts and contains clz(9).

Proof: The "only if" part is obvious. To prove the "if" part it is sufficient by [1,
Th. 1.5, p.14] to check that a class E satisfying the conditions of the proposition
is closed under directed colimits which follows immediately from Proposition 2.26
and Lemma 2.25. 0

3. Homotopy theory of simplicial radditive
functors

3.1. Radditive functors

Let C be a category with finite coproducts and an initial object 0. Denote by
Rad(C) the full subcategory of the category of contravariant functors from C to
sets which consists of functors F' such that F(0) = p¢ and for any finite family of
objects X;, i € I the map

F(Uier X;) — [ [F(X0)
iel
is bijective. The objects of Rad(C) will be called radditive functors.

Categories of radditive functors can be also thought of as categories of covariant
functors on categories with finite products which respect the products. Such
categories are known in model theory as finitary varieties. See [1, p.132].
Examples 3.1. 1. Recall that a presheaf on a small category is a contravariant

functor from this category to the category of sets. Let C be a small category
and CU=<e< the full subcategory of the category of presheaves on C which
consists of finite coproducts of representable presheaves. Then Rad(C Y<)
is equivalent to the category of presheaves on C.

2. For an object X of a category C let X be the pointed presheaf on C obtained
from the presheaf represented by X by the addition of a disjoint base point.
Let C£<°° be the full subcategory of the category of pointed presheaves on C
which consists of coproducts of objects of the form X . Then Rad (CJI;I<°°)
is the category of pointed presheaves on C.

3. If C is an additive category then Rad(C) is equivalent to the abelian category
of additive contravariant functors from C to abelian groups.
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4. Let A be a commutative ring and C the category of finitely generated free
algebras over A. Then Rad(C) is equivalent to the category of all algebras
over A. A similar result holds for categories of finitely generated free groups,
etc. See Proposition 4.6.

5. Let Cq, C, be two categories with finite coproducts. Then C; x C; has finite
coproducts given by (X1, X)L (Y;,Y,) = (X; LY, X, 10Y5) and the category
Rad(Cy x C5) is canonically equivalent to the category Rad(Cq) x Rad(C3).

Example 3.1(2) has a generalization which we will state as a lemma.

Lemma 3.2 Let C be a category with finite coproducts and a final object pt and
C the full subcategory of pointed objects in C which consists of objects of the form
X4+ = X U pt. Then Rad(Cy) is equivalent to the category of pointed objects in
Rad(C).

Proof: Note that pt = @4 is the initial object in C4. Therefore for any F €
Rad(C4) one has F(pt) = pt. Let Rad(C), be the category of pointed objects in
Rad(C). Define a functor

¢ : Rad(C4) — Rad(C)e

by the rule ¢ (F) : X — F(X4) with the distinguished point in F(X4) being the
image of F(pt) - F(X4).
Define a functor
¥ :Rad(C)e — Rad(Cy)

by the rule ¢ (G) : X4+ — G(X). For a morphism f : X4 — Y, we define ¢ (G)(f)
as the composition

GY)—=>GY)xG(pt)=G(Y4) > G(X1)=G(X)xG(pt) > G(X)

where the first morphism is the product of the identity with the distinguished point
in G(pt). One verifies easily that ¢ and 1 are mutually inverse equivalences.  [J

Remark 3.3. Lemma 3.2 may be considered as a particular case of Proposition 4.6
since pointed objects are exactly algebras over the monad X — X .

Any representable functor is radditive by definition of coproducts. Therefore
we have a full embedding of C to Rad(C) which sends an object X to the
corresponding representable functor.

Proposition 3.4 1. The category Rad(C) has all small limits. The limit of
a diagram F : 1 — Rad(C) is the same as its limit in the category of
presheaves of sets i.e.

(imF(i))(U) = 1lim(F@i)(U)).
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2. The functor C — Rad(C) commutes with finite coproducts.

3. Let f : F — G be a morphism of radditive functors and Im( f) be its image
in the category of presheaves. Then Im( ) is a radditive functor.

4. Let F : I — Rad(C) be a filtered system of radditive functors. Then the
colimit colimF (i) of F in the category of functors is radditive and gives a
colimit of F in the category of radditive functors.

5. Recall that a coequalizer diagram X = Y is called reflexive if both
morphisms have a common right inverse (section) Y — X. Let X ZY be
a reflexive coequalizer diagram of radditive functors. Then the coequalizer
of this diagram in the category of presheaves is a radditive functor and a
coequalizer of X = Y in the category of radditive functors.

Proof: The first three statements are obvious from the definitions. The fourth
and the fifth statements follow from the fact that filtered colimits and reflexive
coequalizers of sets commute with finite products. 0

Lemma 3.5 Let X;, i € I be a collection of objects of C. Denote by the same
symbols the radditive functors represented by X;. Define L1; X; as the functor given
by

U colimgcrHom(U,U;e4X;)

where A run through finite subsets of I. Then 1; X; is radditive and it is a coproduct
of the X in the category of radditive functors.

Proof: The fact that LI; X; is radditive follows from Proposition 3.4(4) which
together with 3.4(2) also shows that

L; X; = colimgcy Uieq X;

which obviously implies the statement of the lemma. O

For a set S and an object X of C we let X ® S denote the coproduct of S copies of
X in Rad(C).

Proposition 3.6 The inclusion functor
Rad(C) — Funct(C°,Sets)

has a left adjoint.
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Proof: Let F be a functor which is not necessarily radditive. Consider the
coequalizer diagram in Rad(C) of the form

Hpv-v)ecUQF(V) =2 UpecW @ F(W) (1)

where the first arrow maps the summand U corresponding to p: U — V and f €
F (V) to the summand corresponding to U and F(p)(f)) by the identity and the
second one maps it to the summand corresponding to V and f by p. Let r(F) be
the coequalizer of these two maps in the category of functors. Since (11) is reflexive
via W — Idw this functor is radditive by Proposition 3.4(5) and one verifies easily
that for any radditive G one has

Hom(F,G) = Hom(r(F),G).

O

Example 3.7. The functor r is not, in general, left exact i.e. it does not commute
with finite limits. In particular, radditive functors cannot be thought of as sheaves
with respect to some topology on C. Let C be the category of finitely generated free
abelian groups so that Rad(C) is equivalent to the category of all abelian groups.
Consider the functor F defined by the push-out square

217 —— ZxZ

! L

0 —— F

where Z is the functor represented by Z and LI and x are in the category of all
functors from C to Sets. Leti : Z — F be the composition of the diagonal Z —
Z x 7 with p. One verifies easily that it is a monomorphism. On the other hand
r(F) = 0 and therefore r (i) is not a monomorphism.

As a corollary of Proposition 3.4(4,5) and of the proof of Proposition 3.6 we get the
following characterization of radditive functors.

Lemma 3.8 A contravariant functor from C to Sets is radditive iff it is the
coequalizer of a reflexive pair whose terms are filtered colimits of representable
functors.

Remark 3.9. Lemma 3.8 allows one to define the notion of a radditive functor on
a category C without the assumption that C has finite coproducts. However in this
case it is unclear why Rad(C) has limits or colimits.

Lemma 3.10 The category Rad(C) (and therefore the category A°P? Rac(C)) is
cocomplete i.e. has all small colimits.
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Proof: For a diagram F : I — Rad(C) of radditive functors one gets colimF
by applying the radditivization functor of Proposition 3.6 to the colimit of F in the
category of functors. O

For two simplicial radditive functors (and in particular for simplicial sets) X, Y we
let S(X,Y) denote the simplicial set with terms S(X,Y), = Hom(X®A",Y). Fora
simplicial set K and X € A°’ Rad(C), let Homg (K, X) be the simplicial radditive
functor which takes U € C to S(K,X(U)). Then Homg(K,—) is right adjoint to
(—) ® K and A°? Rad(C) is a simplicial category with respect to these structures
(see [7, Def. 2.1, p.81)).

Recall (see e.g. [1]) that an object X in a category is called compact or finitely
presentable if Hom(X,—) commutes with filtered (directed) colimits.

Lemma 3.11 Representable functors are compact in A°’? Rad(C). If X be a
compact object of A°? Rad(C) and K is a finite simplicial set then the object X @ K
is compact.

Proof: The fact that representable functors are compact follows immediately from
Proposition 3.4(4). Since Homg(K,—) is right adjoint to (—) ® K, to prove the
second assertion it is sufficient to verify that for a finite simplicial set K the functor
Homg(K,—) commutes with filtered colimits. This follows immediately from the
definition of Homg(K,—) and Proposition 3.4(4). O

A category is called locally finitely presentable if it is cocomplete and there is a
set A of finitely presentable objects such that every object is a directed colimit of
objects from A.

Proposition 3.12 The category A°? Rad(C) is locally finitely presentable.

Proof: By [1,Th. 1.11, p.17] a category is locally finitely presentable if and only if
it is cocomplete and has a strong generator (see [1, p.2]) which consists of compact
objects. That the category A°? Rad(C) is cocomplete follows from Lemma 3.10.
The set of objects of the form X ® A" where X € C and n > 0 forms a strong
generator of A°? Rad(C) and by Lemma 3.11, the objects X ® A" are compact.

O

3.2. Projective closed model structure

Definition 3.13 Let C be a category with finite coproducts. A morphism f : X —
Y of simplicial radditive functors is called a projective equivalence if for any U in
C, the map of simplicial sets X(U) — Y(U) defined by f is a weak equivalence.

We denote the class of projective equivalences by W,,;.
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Example 3.14. 1. The equivalence
Rad(CY<=) - Funct(C°,Sets)

of Example 3.1(1) identifies projective equivalences of simplicial radditive
functors on C U< with section-wise equivalences of simplicial presheaves
onC.

2. The equivalence
Rad(C4+) — Rad(C)e

of Lemma 3.2 identifies projective equivalences of simplicial radditive
functors on C with projective equivalences of pointed simplicial radditive
functors on C.

3. The equivalence of Example 3.1(3) identifies projective equivalences with
quasi-isomorphisms of the corresponding normalized complexes.

4. The equivalences of Example 3.1(4) identify projective equivalences with the
usual notion of weak equivalences for simplicial algebras, groups etc.

Example 3.15. The radditivization functor r need not take projective equivalences
of simplicial presheaves to projective equivalences of radditive functors. Let i be a
morphism of Example 3.7. Since it is a monomorphism of presheaves, the natural
morphism p : cone(i) — mo(cone(i)) is a weak equivalence of presheaves. The
radditification r(p) of this morphism is not a projective equivalence since r (i) is
not a monomorphism and therefore r(cone(i)) = cone(r(i)) has a non-trivial 7.

Proposition 3.16 The class of projective equivalences is A-closed and in particular
contains clz(9).

Proof: It follows from Theorem 2.23 and Lemma 2.20 applied to the functors of
sections over U € C. O
Corollary 3.17 For an object X of A°’ Rad(C) and a weak equivalence of
simplicial sets K — L, the morphism X ® K — X ® L is a projective equivalence.
Proof: It follows from Proposition 3.16 and Corollary 2.24. O

Let Cy be the set of objects of C considered as a category where all morphisms
are identities and let ¢ : Cy — C be the obvious functor. Then ¢ defines a pair of
adjoint functors between Funct(CJ?,Sets) and Funct(C°P,Sets). Composing
the functors of this pair with the inclusion Rad(C) — Funct(C?,Sets) and its
left adjoint we get a pair of functors

¢y : Rad(C) — Funct(Cy”,Sets)
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¢! : Funct(CJP,Sets) — Rad(C)

where ¢, is the right adjoint and ¢/ the left adjoint. Consider the cotriple L = ¢/ ¢,
on Rad(C) defined by this adjunction. An object of Funct(Cg?,Sets) is a family
of sets (Fy)uec parametrized by objects of C and one has

¢! (Fv)vec) = UyecU ® Fy

where on the right hand side U is considered as an object of Rad(C). Therefore for
F € Rad(C) we have
L(F)=lyecU ®F(U) (12)

In particular, L takes values in A°?C where C is the full subcategory in Rad(C)
which consists of coproducts of representable functors. Let L, be the functor
Rad(C) — A°PC defined in the standard way by the cotriple L.

Proposition 3.18 Let C be a category with finite coproducts. Then one has:
1. for any U € C the morphism L«(U) — U is a simplicial homotopy
equivalence in A°PC,
2. for any F € Rad(C) and U € C the morphism L.(F)(U) — F(U) is a
homotopy equivalence of simplicial sets.

Proof: For U € C the radditive functor U is ¢!(U) and for F € Rad(C) and
U € C the simplicial morphism L.(F)(U) — X(U) is obtained by evaluation on
U of the morphism ¢, (L«(F) — F). Therefore both assertions of the proposition

follow from the standard properties of simplicial objects associated with cotriples.
O

Applying L, to a simplicial radditive functor X we get a bisimplicial radditive
functor which we also denote by L.(X). A simple explicit computation shows
the columns of L. (X) are of the form:

(L*(X))n = HU0—>...—>U,, Uo ® X(Un) (13)

where the coproduct is taken over all sequences of arrows in C of length n.
Let C* be the full subcategory of Rad(C) which consists of filtered colimits of
representable functors. Note that C C C*.

Proposition 3.19 One has:

1. AL, commutes with filtered colimits and reflexive coequalizers,
2. forany X € A°PC* the morphism AL.(X) — X isin clz(9),
3. forany X € A°’? Rad(C) the morphism AL (X) — X isin Wy,ej,

4. ALy takes projective equivalences to elements of clz ().
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Proof: The first assertion follows from Proposition 3.4(4, 5) and (13). The second
follows from the first and Proposition 3.18(1). The third follows from Proposition
3.18(2) and Proposition 3.16. The fourth one follows from (13) and Corollary 2.24.

O

Remark 3.20. The functor L, does not commute with finite coproducts. The
example where C is the category of finitely generated free abelian groups and
Rad(C) is the category of all abelian groups shows that in general it is not possible
to find a functor from Rad(C) to A°? C* which commutes with finite coproducts
and satisfies 3.19(3).

Theorem 3.21 The class of morphisms in A°P C* which are projective equivalences
as morphisms of simplicial radditive functors coincides with clz(9). In particular
it is (A, 11)-closed.

Proof: The second statement follows from the first one and Corollary 2.22. By
Proposition 3.16 it is sufficient to show that any projective equivalence f : X — Y
between objects of A°?C* lies in ¢z (9). Consider the square

AL(X) —— AL(Y)

l !

X —1——> Y.

The vertical arrows are in c¢/z(9) by Proposition 3.19(2). The upper horizontal
arrow is in ¢/z (9) by Proposition 3.19(4). Therefore the lower horizontal arrow is
inclz(9). O
Let A pon be the subcategory of monomorphisms in the standard simplicial category
A. A contravariant functor from Ajys,, to a category is a “simplicial object with no
degeneracies” (also called a semi-simplicial object, see [13, Section 8.1.9, 8.1.10]).
Let 7, be the obvious forgetful functor from A°?C to A‘;‘f; onC - A general argument
shows that if C has colimits then 7. has a left adjoint 7*. In fact, since any
morphism in A has a canonical decomposition into an epimorphism followed by
a monomorphism, one needs only finite coproducts to define 7*. For a functor
Z = (Z;) from Ao, to C the simplicial object 7*(Z) has terms of the form

n*(Z)i = Uy Z;

where [i] — [j] runs through epimorphisms from [i] to [j] in A (see [13, Ex.8.1.5]).
An object X in A°”? Rad(C) is called degeneracy-free if it belongs to the image of
this functor.

If Z = (Z,) is an object of Ai’,}on and X = n*(Z) is the corresponding
degeneracy-free simplicial object we say that X is based on (Z,). The composition
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Wr = m*m, is called the wrapping functor. For any simplicial object X the object
Wr(X) is degeneracy-free and its terms are given by the formula

Wr(X)i = U X, (14)

where [i] — [j] runs through epimorphisms from [i] to [j] in A and X, are the
terms of X. For any X, the adjunction defines a natural morphism Wr(X) — X.

Theorem 3.22 Forany X € A°?C* the morphism px : Wr(X) — X is a projective
equivalence.

Proof: Consider L.(X) as a bi-simplicial object whose rows are of the form
L.« (Xm). Then its n-th column is of the form

HUO—»..—)U,, UO ® X(Un)

where the coproduct is in Rad(C) over all sequences of morphisms Uy — ... — U,
in C. Let Wr? be the vertical wrapping functor i.e. the wrapping functor applied
column by column. Consider the following square:

AWF(Ly(X)) ——s AL.(X)

¢ |
Wr(X) LN X.
Let us show that the morphisms a,b,c are projective equivalences and therefore
p is a projective equivalence by the 2-out-of-3 property. We have ¢ € Wp,,; by
Proposition 3.19(3). The morphism b is the diagonal of the morphism whose i-th
row is of the form
UL (X)) = Ui X

where the coproduct is over all the order-preserving surjections [i] — [j]. These
morphisms are projective equivalences by Proposition 3.19(3) and Theorem 3.21.
Therefore b is a projective equivalence since the class of projective equivalences is
A-closed. The morphism « is the diagonal of the morphism whose columns are of
the form

Huy—..»0,Uo @ Wr(X(Un)) = Uyy—..v, Uo @ X (Un) (15)

where Wr(X(U,)) is the wrapping functor on the simplicial set X (U,). Since for a
simplicial set S, the morphism Wr(S) — S is a weak equivalence, we conclude by
Corollary 3.17 that the morphisms (15) are coproducts of projective equivalences
between objects of A°? C* and therefore projective equivalences by Theorem 3.21.
The theorem is proved. O
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Remark 3.23. The proof of Theorem 3.22 shows that for a category C such that
Wproj 1s closed under coproducts, the morphism py : Wr(X) — X is a projective
equivalence for any X.

Definition 3.24 Let C be a category with finite coproducts and f : X — Y be a
morphism of simplicial radditive functors.

1. f is called a projective fibration if for any U in C, the map of simplicial sets
X(U) — Y(U) defined by f is a Kan fibration,

2. f is called a projective cofibration if it has the left lifting property for
morphisms which are projective fibrations and projective equivalences.

We denote the classes of projective fibrations and cofibrations by Fib,,; and
Cof respectively. Let I be the set of morphisms of the form U ® dA" — U ® A" for
U € C andn > 0and let J,,o; be the class of morphisms of the form U ® Ak
U ® A" for U € C and A™* being the usual "horn" simplicial sets.

Theorem 3.25 The classes (Wyroj, Fibproj,Cof) form a finitely generated closed
model structure on A°? Rad(C) such that the classes of generating cofibrations and
generating trivial cofibrations are I and J,,; respectively.

Proof: For the definition of a finitely generated c.m.s. see [9, Def. 2.1.17, p.34].0]

The domains and codomains of the elements of / and J,,,; are compact and
a morphism is a projective fibration (resp. a projective fibration and a projective
equivalence) if and only if it has the right lifting property with respect to Jp,o;
(resp. I). We will show that the classes I and J,,; satisfy the conditions of [9, Th.
2.1.19, p.35] with respect to W,,,;. Standard reasoning shows that the elements
of Jproj are I-cells and in particular /-cofibrations and therefore J,,,;-cells are
I -cofibrations. It is also obvious that /-injective morphisms are J-injective and
projective equivalences and that a projective equivalence which is J,,,;-injective is
I -injective.

It remains to show that J,,,,-cells are projective equivalences. By Proposition
3.16 the class Wp,,; is closed under transfinite compositions. Therefore it is
sufficient to show that a push-out of an element of Jp,,; is in Wy,,;. Elements of
Jproj are term-wise coprojections and simplicial homotopy equivalences. Therefore
by Lemma 2.13 a push-out of an element of J,,,; belongs to c/z(¥) and by
Proposition 3.16 to Wp,,;. O
Example 3.26. The push-out squares of [7, Cor. 1.14, p.358] imply that for an object
X of A°?C* the object Wr(X) is projectively cofibrant.

Recall (see [8]) that for a class of morphisms A a morphism f is called a sequential
A-cell if it is a countable composition of push-outs of coproducts of elements of A.
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Since domains and codomains of elements of I (resp. Jp,,;) are compact, we can

use the small object argument to obtain for any morphism f : X — Y a functorial

decomposition of the form X ﬁ> Y ii Y where f; is a sequential 7-cell (resp.

Jproj-cell) and f> has the right lifting property for I (resp. Jp,o;). Let us define
the standard cofibrant and fibrant replacement functors Cof and Fib,,,; for the
projective c.m.s. using this construction. One verifies easily that if elements of A
are term-wise coprojections then sequential A-cells are term-wise coprojections as
well. In particular we get the following result.

Proposition 3.27 One has:
1. the standard cofibrant replacement functor Cof takes values in A°PC,

2. any cofibration is a domain preserving retract of a coprojection whose terms
are of the form X — X 1Y forY € C.

The following proposition gives an important sufficient condition for a class of
morphism in A°’ Rad(C) to be A-closed. In this proposition we let CofEnds
denote the class of morphisms between the cofibrant objects.

Proposition 3.28 Ler C be a small category with finite coproducts and E a class of
morphisms in A°? Rad(C) which satisfies the following conditions:

1. E contains Wyroj,

2. E satisfies the 2-out-of-3 property (i.e. the second condition of Definition
2.2),

3. ENA?C*NCofEnds is closed under coproducts,
4. for f e ENA?’C*NCofEnds andi > 1 one has f ® Idypi € E,

5. for a morphism of push-out squares

o X, —— X, X, — X}

1J/2

i B O
X3 —— X4 X, — X,

such that all the objects are in A°°C* N CofEnds, the morphisms g, g’
are cofibrations and term-wise coprojections and f1, f», f3 are in E, one has

f4 eE.
Then E is A-closed.
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Proof: The first two conditions of Definition 2.2 follow from the first two
conditions of our proposition. To prove the third one we start with the following
lemma.

Lemma 3.29 Let E be a class satisfying the conditions of the proposition. Then for
two sequences of morphisms (X; s Xit1)iso0, (X] i X/, 1)i=0 and a morphism
of sequences f; : X; — X such that X;, X! € A°’C* N CofEnds and f; € E, the
morphism colimf; : colimX; — colimX] is in E.

Proof: Let us recall in our context the standard construction of a telescope for the
sequence (X; s Xi+1)i»o0. Let t; be the canonical morphism X; — Ll;50X;.
Consider the morphism

(Hiz()Xi) ® AT — HizOXi

which is identity on (LI;>0X;) ® {0} and the "shift" morphism II;>¢¢;+18i+1 on
(d;>0X;) ®{1}. The telescope of the sequence (g;);>1 is defined by the elementary
push-out square

(Uj>0X;) @ AT ——  L;x0X;

1 1

(HizoXi) [ Al — Teloo((gi)).

There is an obvious morphism Tely((gi)) — colim;X;. We claim that this
morphism belongs to ¢/ (¥). Indeed, consider the partial telescopes given by

(Hn>i20Xi) ® N —— anizOXi

l l

(Hn>i20Xi) %9 Al — Tel,,((g,))

There are obvious morphisms Tel, — Tel,+1 and colim,Tel, = Tels. One
further observes that Tely = Xo, Tel; = cyl(g1) and more generally that for
each n there is a simplicial homotopy equivalence Tel,((g;)) — X, and these
equivalences form a morphism of sequences (Tel,)n>0 = (Xn)n>0 Whose colimit
is the morphism Telx((g;)) — colim; X; which is, therefore, in ¢z (9).

To finish the proof of the lemma it remains to show that the morphism
Teloo((gi)) = Telx((g})) is in E. This follows from the conditions 3, 4 and then 5
applied to the morphism of squares of the form (16) defined by the family ( f;) (note
that for f : X — Y in E the morphism f ® Id,: is in E by the first two properties
of E). O
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Proof of 3.30 (continued): Let f : B — B’ be a morphism of bisimplicial radditive
functors with columns f; : B;x — B, in E. Applying the standard cofibrant
replacement functor to each column of B and B’ we get a commutative square of

the form
Cofe(B) —— Cof.(B’)

! !

B — B’

where the columns of Cof.(B) and Cof,(B’) are cofibrant and belong to A°?C# N
CofEnds. In view of Proposition 3.16 the vertical arrows define projective
equivalences on the diagonal objects. Therefore, in order to prove the third property
of Definition 2.2 it is sufficient to show that the diagonal of the upper horizontal
arrow is in E.

Let Wr.Cof.(B) be the bisimplicial object obtained by the application of
the wrapping functor to each row of Cof.(B). Its columns are of the form
Z; = U)-[;1Cof (Bjx). In particular they are cofibrant and belong to A°?C*.
The diagonal of the projection Wr,Cof.(B) — Cof.(B) is in Wp,,; by Theorem
3.22 and Proposition 3.16. The same construction applies to B’. It remains to show
that the morphism

A(WrrCofe(B)) = A(Wr:Cofe(B")) amn

is in E. By [7, Cor. 1.14, p.358] applied to the simplicial objects formed by
columns, the morphism (17) is the colimit of the sequence of morphisms

A(ski(Wrr.Cof.(B))) = A(ski(Wr.Cof.(B))) (18)

which fit into morphisms of elementary push-out squares of the form

Zi ® A —— A(ski—1(Wr,Cof.(B))) Z! @A —— A(ski—y(Wr,Cof.(B')))
ZiQ ANl ——  A(ski(Wr,Cof.(B))) ZI®@ A ——  A(ski(Wr,Cof.(B)))

All of the objects in these squares are cofibrant and belong to A°?C# and the
vertical morphisms are cofibrations. Therefore the diagonals A(Wr,Cof.(B)) and
A(Wr,Cof.(B')) are in A°’C* N CofEnds as well. By Lemma 3.29 it remains
to show that the morphisms (18) are in E. The morphisms Z; — Z/ are in E by
property 3, the morphisms Z; ® IA' > Z/ ® A" and Z;  A' - Z/ ® A’ are in E
by properties 1,2 and 4 and we conclude that (18) is in £ by property 5.

It remains to show that E is closed under filtered colimits. Let F,G : I —
A°P Rad(C) be two directed diagrams and f : F — G a morphism between these
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diagrams such that for alli € I, f(i) € E. Applying to these diagrams the functors
Cof or AL, and taking into account that the class of projective equivalences is
closed under filtered colimits, we reduce the problem to the case when the diagrams
take values in A°?C*,

The class ENA°PC*is A-closed by the first part of the proof and by Proposition
3.16 it contains ¢!z (9). It is also closed under coproducts by condition 3. Applying
to it Proposition 2.27 we conclude that it is closed under filtered colimits which
finishes the proof of the proposition. O

Proposition 3.30 Let f : X — Y be a projective cofibration andi : K — L a
cofibration of simplicial sets. Then the morphism

h(fi):(X®L)Uxegxk (Y ®K) > Y QL

is a cofibration. If f is a projective equivalence or i is a weak equivalence then
h(f,i) is a projective equivalence.

Proof: As was mentioned above, any cofibration is a domain fixing retract of a
sequential I-cell. For a domain fixing retract f’ of f the morphism A(f”,i) is a
retract of i ( f,i) which implies that we may assume that f is a sequential /-cell.

To show that h(f,i) is a cofibration it is sufficient to show that the class of
morphisms f, such that /4( f,i) is a cofibration for all i, contains elements of 7,
i.e. morphisms of the form U ® dA” — U ® A", and is closed under coproducts,
push-outs and countable compositions. For f of the form U ® A" — U ® A"
the morphism % ( f,i) is of the form U ® K/ — U ® L’ where K/ — L' is a
monomorphism of simplicial sets. Any such morphism is a cofibration because
it has the right lifting property for trivial projective fibrations. The fact that our
class is closed under coproducts is straightforward. To prove that it is closed under
push-outs and countable compositions one has to consider more complex diagrams
(especially in the case of push-outs) but the proof remains straightforward.

Since f is a sequential /-cell it is a term-wise coprojection. If i is a projective
equivalence then Corollary 2.24 together with Lemma 2.13 imply that h(f,i) €
clz(9) and therefore is a projective equivalence by Proposition 3.16.

Assume that f is a projective equivalence. Then f ® Idg and f ® Id are
projective equivalences by Corollary 3.17and X ® L - Y @ K Uygx X ® L is a
projective equivalence as a push-out of a trivial cofibration. We conclude that /( f,i)
is a projective equivalence. O

Corollary 3.31 For any cofibrant X and any monomorphism of simplicial sets K —
L the map X @ K — X ® L is a projective cofibration. In particular for a cofibrant
X and a simplicial set K the object X ® K is cofibrant.
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Since Rad(C) has colimits we can define the skeletons sk, (X) of an object X in
A°? Rad(C) in the usual way such that X = colim,sk,(X) and for each n one has
a push-out square of the form

L,(X)® A" HL,,(X)@BA" Xn @ 0A" —— skp_1(X)

| L

X, @ A" —>  skn(X)

where L,(X) = (sk,—1(X))n is the n-th latching object of X. Since the left hand
side vertical arrows in (19) are as in Proposition 3.30 where the f in Proposition
3.30 is the morphism L, (X) — X,, we get the following result.

Corollary 3.32 Let X be an object of A°’? Rad(C) such that the morphisms
L,(X) — X, are projective cofibrations. Then X is projectively cofibrant.

Theorem 3.33 The projective closed model structure is simplicial i.e. it satisfies
the axiom SM7 (see e.g. [7, p.89]).

Proof: 'We have to show that for a projective cofibration j : A — B and a projective
fibration ¢ : X — Y the morphism

S(B,X) — S(A,X) XS(A4,Y) S(B,Y)

is a Kan fibration which is a weak equivalence if j or g is a weak equivalence. This
follows by adjunction from Proposition 3.30. O

We let H(C) denote the homotopy category of the projective c.m.s. on A°? Rad(C).
The product x in A°”? Rad(C) respects projective equivalences between all objects
and defines a product in H(C) which we also denote by x. Let us denote the
coproduct in H(C) by LIy, (or, in special cases, —, where — is the notation for the
coproduct in A°? Rad(C)) . In general it is computed by the formula

XULY = Cof (X)L Cof(Y).

Since the projective c.m.s. 1is simplicial, we also have an adjoint pair of endo-
functors (—) ®, K and RHomg (K,—) on H(C) defined by the formulas

X@LK=Cof(X)®K
RHomg(K,X) = Homg(K,Fiby, . (X)).
Proposition 3.34 For any C one has:
1. if X, Y arein A°C*then X LIy Y = X 117,

2. if X isin A°’?C* and K is a simplicial set then X @, K = X ® K.
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Proof: It follows easily from Theorem 3.21. O

Proposition 3.35 The following conditions on C are equivalent:

1. the projective closed model structure on A°? Rad(C) is left proper,

2. forany f € Wyroj and Z € C one has f U 1dz € Wy,y;,

3. forany f € Wyyo; and Z € A°PC* one has f U 1dz € Wpyro;,

4. forany X € A°’ Rad(C)and Z € A°°C* onehas X Iy, Z=X1 Z.
Proof: Recall that a c.m.s. is called left proper if for any push-out square

A%X

S

B —— Y

where f is a cofibration and g is a weak equivalence, g’ is a weak equivalence.
Since objects of C are cofibrant, this immediately implies that (1)=(2).

To prove that (2)=(1), assume that for any f € W,,,,; and Z € C one has
S U 1dz € Wproj. Then since Wy,,; is closed under filtered colimits, the same
holds for Z € C*. Consider a square of the form (20).

By Proposition 3.27, f is a domain preserving retract of a morphism f’ whose
terms are of the form A, — A, LI Z, where Z,, € C. Then g’ is a retract of the
push-out of g by f’ and since Wp,,,; is closed under retracts, we may assume that
the terms of f are of the form A, — A, U Z, for Z, € C. Then g’ is the diagonal
of a morphism whose rows are of the form g LI /dz,. This finishes the proof by
Proposition 3.16.

The implication (3)=-(2) is obvious. The implication (2)=(3) follows easily
from Proposition 3.16. The equivalence between (3) and (4) is obvious. O

Proposition 3.36 The following conditions on C are equivalent:
1. forany f € Wpyoj and Z € Rad(C) one has f U 1dz € Wp,o;,
2. the class Wy, is (A, 1I)-closed,

3. forany X, Y in A°’ Rad(C)onehas X LIy, Y = X LY.
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Proof: The implication (1)=-(2) follows immediately from Proposition 3.16. The
inverse implication and the equivalence between (2) and (3) are obvious. ]

Examples 3.37. 1. An example of a category C such that the projective c.m.s.
is not left proper is given in 3.48.

2. For any commutative ring A the category of finitely generated free commuta-
tive algebras over A satisfy the conditions of Proposition 3.35.

3. The category of finitely generated free commutative algebras over A satisfies

the conditions of Proposition 3.36 if and only if A is a field.

Let now C be a pointed category i.e. the initial object of C is also a final object.
We will denote this object by pt and the coproduct by V. Note that pt is also the
initial and final object in Rad(C). As usual we will write X/Y for the pushout of
a pair of morphisms ¥ — X, Y — pt. Since C is pointed, the category H(C) is
equipped with a functor ¥ which take values in co-monoids over H(C) with respect
to v, (see [11, 1.2] or [9, Ch. 6]) and with the class of cofibration "sequences".

For a pointed simplicial set K and X € A°” Rad(C) denote by X A K the object
defined by the elementary push-out square

X — X®K

l !

pt —— X AK

in A°? Rad(C), where the upper arrow is defined by the distinguished point of K.

Lemma 3.38 The suspension functor ' : H(C) — H(C) (see [11, 2.9]) may be
represented on A°PC* by X > X AS! where S' = A'/dA! is the simplicial circle.
Proof: Since the projective c.m.s. is simplicial the suspension functor X! on
H(C) may be defined as X — X A S! on cofibrant objects X. For any X the
standard cofibrant replacement Cof(X) of X lies in A°?C* and for X € A°?C* the
morphism p : Cof(X) — X is in ¢l (@) by Theorem 3.21. Therefore, p A S' is in
clz (@) by Lemma 2.20 and by Theorem 3.21 it is a projective equivalence. O

For a morphism f : X — X' define the cone(f) by the elementary push-out square
(in A’ Rad(C))
X —— XaAl

l l

X' —— cone(f).
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Definition 3.39 A (term-wise) coprojection sequence in A°? Rad(C) is a pair of
morphisms
X—>Y—>Z

such that the first morphism is a term-wise coprojection and ¥ — Z is isomorphic
toY > Y/X.

Clearly, any term-wise coprojection X — Y extends canonically to a term-wise
coprojection sequence X — Y — Y /X.

. oo f .
Lemma 3.40 For any term-wise coprojection sequence X — Y — Z there is a
commutative diagram

X —— cyl(f) —— cone(f)

| J |

where the arrows (1) and (2) are in cla(9) and therefore in Wp;,;.

Proof: By Proposition 3.16 it is sufficient to verify that the morphisms (1) and (2)
are in c/A (¥). Our diagram is a part of the morphism of elementary push-out squares
01— Q, where

X —— Cyl(f) X —— Y
o[l L el
pt —— cone(f) pt —— Z

The morphism CyIl(f) — Y is in cla 1. (9) by Lemma 2.9 and therefore the
morphism cone(f) — Z isin cla n__, (9) by Lemma 2.10, 2.11 and the 2-out-of-3
property of A-closure. By Proposition 2.5 we have c/a 11__(0) = c/a(9). g

For any f : X — X’ one has
cone(f)/X =(X'/X)V (X ASH. (21)

Let X 1> Y—Z be a term-wise coprojection sequence. Then cone(f) — Z
is a projective equivalence and (21) defines a morphism Z — Z Vv (X A S!) in
H(C). If Z and X are in A°?C* then Z v (X A S') is canonically isomorphic to
Z vy, 21(X) by Lemma 3.38. In particular any term-wise coprojection sequence in
A°P C* defines in a natural way a pair of the form

X—>Y—>Z,Z—>Zv,2(X)) (22)
in H(C).
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Theorem 3.41 A pair of the form
X' =Y =277 - Z vy (X)) (23)

in H(C) is a cofibration sequence (see [9, Def. 6.2.1, p.156]) if it is isomorphic in
H(C) to a pair (22) for a term-wise coprojection sequence in A°? C* and only if it
is isomorphic to such a pair for a term-wise coprojection sequence in A°?C.

Proof: "if" Using the standard decomposition of the morphism Cof(X) —> X —
Y into a cofibration and a trivial fibration, we get a square

Cof(X) —— ¥
| |
x L.y

where the vertical arrows are projective equivalences, the upper horizontal one is a
cofibration and a term-wise coprojection and all objects are in A°? C*, It remains to
show that the pair

(Cof(X) =Y —¥/Cof(X),Y/Cof (X) — (Y /Cof (X)) vi, B! (Cof (X))

is isomorphic in H(C) to (23). This follows easily from Lemmas 2.10, 2.11 and
Theorem 3.21.

"only if" This direction follows easily by an argument similar to the proof of
"if". O

3.3. E-local equivalences

The following results and definitions concerning E-local objects and E-local
equivalences are mostly standard. In particular our definitions agree with those
given in [8].

Definition 3.42 Let E be a class of morphisms in A°”? Rad(C). An object Y of this
category is called E-local if it is projectively fibrant and for any simplicial set K
and any element f : X — X’ in E, the map

HomH(C)(X’,H0m®(K, Y))— Hompgc)(X,Homg(K,Y)) 24)

defined by f is bijective.

Lemma 3.43 Let E be a class of morphisms in A°’ Rad(C). An object Y of this
category is E-local iff it is projectively fibrant and for any element f : X — X' of
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E and a representative f : X — X' of f such that X and X' are cofibrant, the map
of simplicial sets
S(X',Y)— S(X.Y)

defined by f , is a weak equivalence.

Proof: Note first that S(X’,Y) and S(X.Y) are Kan simplicial sets. A map
between two such sets is a weak equivalence iff for any K it induces a bijection on
homotopy classes of maps from K. These homotopy classes of maps are identified
with the sides of (24) by [7, Prop. 3.10, p.93]. U

Definition 3.44 Let E be a class of morphisms in A°” Rad(C). A morphism f :
X — X' is called a (left) E-local equivalence if for any E-local Y, the map

HomH(c)(X/,Y) —> HOmH(C)(X,Y)

defined by f is bijective.

Lemma 3.45 Let E be a class of morphisms in A°°? Rad(C). A morphism f : X —
X’ between cofibrant objects is an E-local equivalence if and only if for any E-local
Y the map of simplicial sets

S(X'.Y) = S(X,Y)

defined by f is a weak equivalence.
Proof: Similar to the proof of Lemma 3.43. O

We denote the class of E-local equivalences by cl;(E). Smith’s localization
theorem together with Proposition 3.12 gives the following result.

Theorem 3.46 Assume that the projective c.m.s. on A°? Rad(C) is left proper.
Then for any set of morphisms E in A°? Rad(C) there exists a closed model
structure on A°P Rad(C) with the classes of weak equivalences and cofibrations
being clj(E) and Cof respectively.

Proposition 3.47 Assume that the projective c.m.s. on A°? Rad(C) is left proper
and let E be such that the domains and codomains of its elements are cofibrant and
compact. Then the E-local c.m.s is almost finitely generated (see [10, Def. 4.1,
p.82]).

Proof: It follows from [10, Prop. 4.2, p.83] and Lemma 3.11. O

Example 3.48 shows that the projective c.m.s. is not always left proper and that
the pair (cl;(E),Cof) does not always define a c.m.s. Nevertheless a number of
important properties of cl;(E) can be proved for any C and E as will be shown
below.
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Example 3.48. Let C be the category {1,2}/ F sets whose objects are maps {1,2} —
X where X is a finite set and morphisms are the obvious commutative triangles.
This category has the initial object / = {1,2} and finite coproducts given by push-
out squares of sets under {1,2}, which we will denote by Vv by analogy with the
wedge of pointed sets.

Let pt = ({1,2} — {1}) be the final object of C and X = {1,2} C {1,2,3}.
Then any object of C is a coproduct of the form (v, X) Vv (Vy, pt) where n > 0
and m = 0,1. Therefore, a radditive functor F on C is determined by its values
on X and pt with F(pt) being pt or §. Two morphisms from X to / define a
map {1,2} — F(X) and explicit considerations show that Rad(C) can be described
as the subcategory of the category of pairs ((X;x;1,x2),¢) where (X;xq,x;) is a
bi-pointed set, ¢ = pt or ¢ = @, and either x; = x, or ¢ = 0.

The functor represented by a finite by-pointed set (X;x;,x2) is ((X,x1,x2),d)
if x; # x2 and ((X,x1,x2), pt) if x; = x,. Therefore all radditive functors except
for the ones of the form ((X;x,x),0) are in C*. Any monomorphism in C¥ is a
coprojection and in particular a projective cofibration.

However the canonical morphism / — pt is not a mono since there are two
morphisms X — [, but it is a projective cofibration as the morphism from the
initial object to a representable functor. Therefore not all projective cofibrations in
C are monomorphisms.

The coproduct of two radditive functors is given by

(X:x1.x2).0) V (X"1x7.x3).¢") = (X:x1.x2) vV (X'1x].x3).¢ U §').

A simplicial radditive functor on C is a pair ((X;x1,x2),¢) where now (X;x1,x2)
is a bi-pointed simplicial set and ¢ = @ or ¢ = pt with the condition that if x; # x,
then ¢ = @.

Let ¥ = ((pt; pt, pt),0) be the image of the canonical map / — pf and ¥ =
((A';x¢.x1),9) where xg, x; are the two vertices of Al. The morphism ¥ — W is a
projective equivalence. Using Corollary 3.32 one verifies easily that Y is cofibrant.
On the other hand

YV pt=((Stx,x),pt) > pt =WV pt

is not a projective equivalence, which shows that the projective c.m.s on
A°P Rad(C) is not left proper.

Let E ={f :I — pt}. Note that f is a cofibration between cofibrant objects.
An object ((X,x1,x2),¢) is E-local if and only if ¢ = pt and x; = x, and one
verifies easily that H(C,E) is equivalent to the homotopy category of pointed
simplicial sets.
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On the other hand we have a push-out square

I — ¥

AR

pt —> pt

and since W is isomorphic to Y v pt = (S, pt) in H(C, E), the morphism ¥ — pt¢
is not an E-local equivalence. We conclude that the class c/; (E)NCof is not closed
under push-outs and therefore the left Bousfield localization of the projective c.m.s.
by E does not exist.

Theorem 3.49 For any E in A°? Rad(C) the class cl;(E) is A-closed.

Proof: We apply to c/;(E) Proposition 3.28. The first two conditions are
obvious. Coproducts of E-local equivalences between cofibrant objects are E-
local equivalences, which implies condition (3). Condition (4) follows easily from
Lemma 3.45. The same lemma, together with the fact that a morphism of pull-back
squares of simplicial sets where vertical arrows are fibrations and which is a weak
equivalence on three generating vertices is also a weak equivalence on the fourth
vertex, implies condition (5). O

Theorem 3.50 For any set of morphisms E in A°P? Rad(C) there exists a functor
Exg : A’ Rad(C) — A°PC*
and a natural transformation 1d — E xg such that one has:
1. for any X the object Exg(X) is E-local,
2. for X in A°PC* the morphism X — Exg(X) isin clz(Cof(E) U Idc),
3. for X in A°PC* the morphism X — Exg(X) is in cl;(E).
Proof: For a morphism f : X — X' denote by i s : X — cyl(f) the composition

d®ad
x "B x @ Al = eyi(f).

For any f, if is a term-wise coprojection which is homotopy equivalent to f by
Lemma 2.9. Let further Ag be the class of morphisms of the form

(eyl(f)®dA") Uxgyai (X ® A) = cyl(f) @ A

defined by i for /' : X — X" in Cof(E).
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Let Y be an object such that the morphism Y — p¢ has the right lifting property
for AFUJ 0. ThenY is projectively cofibrant and forany f : X — X'in Cof(E)
the map S(cyl(f),Y) — S(X,Y) defined by f is a trivial Kan fibration. Since
cyl(f) is homotopy equivalent to X’ this implies that the map S(X’,Y) — S(X,Y)
defined by f is a weak equivalence and we conclude by Lemma 3.43 that Y is
E-local.

Therefore, by Proposition 3.12 and [3, Prop. 1.3, p.452] we can use the
transfinite small object argument to construct for any X a functorial decomposition
of the morphism X — pt of the form X — Exg(X) — pt where X — Exg(X) is
an (Ag U Jproj)-cell and Exg(X) is E-local.

Elements of Ag and J,,o; are term-wise coprojections between objects of
A°PC*. Applying Lemma 2.13 and the 2-out-of-3 property of A-closed classes
we conclude that any (Ag U Jp,0;)-cell which starts at an object of A°?C # lies in
clx(Cof(E)U C*) =clx(Cof(E) U Idc).

By Proposition 3.34(1) we conclude that Cof(E) U Id¢c C cl;(E) and therefore
by Theorem 3.49, that /3 (Cof(E) U Idc) C cl;(E). The theorem is proved. [

Theorem 3.51 Let E be a set of morphisms in A°? C*. Then one has
cli(E)YNAPC* = clx(E 1 Idc)

where the closure on the right is in AP C*.

Proof: "C" Let f : X — Y be an element of cl;(E) N A°’?C¥#. Consider the
diagram
X —— Exp(X)

! !

Y —— Exg(Y).

The horizontal arrows are in cl;(E) by Theorem 3.50(3). Therefore the right
hand side vertical arrow is in c/;(E). Since the objects in question are E-local
by Theorem 3.50(1) the right vertical arrow is a projective equivalence, and by
Theorem 3.21 it is an element of ¢/ (¥). By Theorem 3.50(2) the horizontal arrows
arein clz(E U Idc).

"D" By Theorem 3.49 we have c/z (E I Idc) C cl;(E U Idc) and Proposition
3.34 implies that c¢/;(E U Idc) = cl;(E). O

Corollary 3.52 For any set of morphisms E in A°PC* one has

cli(E)=cly(EU Idc)UWproj). (25)
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Proof: Let f: X — Y bein c/;(E). Taking the standard cofibrant replacement
of f and using the 2-out-of-3 property for c/o we may assume that X and Y are
in A°’C*. Then f € clx(E L Idc). The opposite inclusion immediately follows
from Theorem 3.51. O

Corollary 3.53 Let C be a pointed category and (X 1) v £z . Z = ZVvL 2 (X))
a cofibration sequence in H(C). Then one has:

gechi({X — pt})

(pt = Z)ecli{f}).

Proof: By Theorem 3.41 we may assume that there is an elementary push-out

square
f

X — Y

Lk

pt —— 7

in A°°C*. By Lemma 2.13 we conclude that g € clau_. ({X — pt}) and
(pt = Z) € clau_ ({f}). Applying Theorem 3.51 and Proposition 2.21 we
get the conclusion of the proposition. O

4. Functoriality results

Let C,C’ be two categories with finite coproducts and F : C — Rad(C’) be
a functor. Considering Rad(C’) as a full subcategory of Funct((C')°P,Sets)
we get a pair of adjoint functors F*,F, where F* : Funct(C°P, Sets) —
Funct((C")°7,Sets) is the left adjoint which extends F. As a left adjoint it
commutes with colimits and since it takes representable functors to radditive ones
we conclude by Lemma 3.8 that it defines a functor

F™4 : Rad(C) — Rad(C").

Lemma 4.1 For any F the functor F™®? commutes with filtered colimits and
reflexive coequalizers.

Proof: It follows from Proposition 3.4(4 ,5). O
We will use the notation F7%4 also in the case when F is a functor from C to C’,
considering C as a full subcategory of Rad(C'); or from C to (C’)* or equivalently

when F is a continuous functor from C* to (C’)*. Lemma 4.1 implies in particular
that for any F : C — C’ the functor F"%? takes C* to (C’)* and that the resulting
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functor C* — (C’)* is continuous. One observes easily that this construction
commutes with compositions of functors.

Example 4.2. Let C be the category of pointed finite simplicial sets, D the category
of free finite simplicial sets and F : C — D the forgetful functor. Then one can
easily see that F7?? does not take C to D since an infinite wedge of finite simplicial
sets cannot be represented as an infinite coproduct of finite simplicial sets.

F G
Lemma 4.3 Let C* = (C")* = (C")* be a composable pair of continuous functors

F G
(resp. a composable pair of functors C — C' — C”). Then there is a canonical
isomorphism (F o G)"%¢ = Frad o Grad,
Proof: It follows from Lemma 4.1 since any radditive functor on C is a reflexive
coequalizer of a diagram in C*, O

Lemma 4.4 Let F be a functor C — Rad(C’). Then the functor F™*? has a right
adjoint F,.q if and only if F respects finite coproducts. In that case the right adjoint
maps X € Rad(C") to the functor given by

Ur HomFunct((C’)”P,Sets)(F(U)yX)‘ (26)

Proof: "If" The functor F* : Funct(C°,Sets) — Funct((C')°?,Sets) always
has a right adjoint F, given by (26) and if F' commutes with finite coproducts then
F, takes radditive functors to radditive functors and defines a right adjoint to F"¢¢,

"Only if" It follows from the fact that a left adjoint preserves colimits and

therefore if F7%¢ has a right adjoint, F must commute with finite coproducts by
Proposition 3.4(2). O

Lemma 4.5 Let F : C — C’ be a functor which commutes with finite coproducts.
Then F,,4 commutes with filtered colimits and reflexive coequalizers.

Proof: The functor F,,4 is the restriction to Rad(C’) of the functor F, which
commutes with all colimits. The inclusion Rad(C’) — Funct((C')°?,Sets)
commutes with filtered colimits and reflexive coequalizers by Proposition 3.4(4,5).
Therefore F,,4 also commutes with these two types of colimits. L]

Note that the conclusion of Lemma 4.5 may be false for continuous functors C#* —
(€.

Let F : C — C’ be a functor which commutes with finite coproducts and
which is surjective on objects. Then we get an adjoint pair of functors (F"%¢ F,,4)
between Rad(C) and Rad(C’) such that F,,; reflects isomorphisms. By Lemma
4.5, F,,q commutes with reflexive coequalizers. Therefore, by Beck’s Theorem
(see [2]) in the reflexive coequalizer form we get the following result.
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Proposition 4.6 Under the assumptions made above the category Rad(C’) is
equivalent to the category of M -algebras, where M = F™@¢F,,, is the monad
(triple) defined by the adjoint pair (F™*? F,.q).

Corollary 4.7 A category is equivalent to the category of radditive functors if and
only if it is equivalent to the category of algebras over a continuous monad M on
the category Sets* of families of sets.

This is a reformulation in the language of radditive functors of [1, Th. 3.18,
p-149] where continuous functors are called finitary functors.

Theorem 4.8 Let C, D be categories with finite coproducts and F : C — Rad(C’)
a functor. Then F™% : A°PC* — A°PRad(C') takes projective equivalences to
projective equivalences.

Proof: It follows from Theorem 3.21, Lemma 2.20 and Proposition 3.16. g

Corollary 4.9 Let C, C' be categories with finite coproducts and let F : C* —
(C"Y* be a continuous functor. Then the simplicial extension F : A°PC* —
A°P(C"Y* of F takes projective equivalences to projective equivalences.

For a functor F denote by i so(F') the class of morphisms f such that F(f') is an
isomorphism. Recall that a functor is called a strict localization if it is a localization
and any morphism in the target category is isomorphic to the image of a morphism
in the source category.

Proposition 4.10 Let C be a small category with finite coproducts. Then the functor
®: A°?C* — H(C) is a strict localization and i so(®) = clz (9).
Proof: The fact that ® is a strict localization follows immediately from the fact that

the standard fibrant-cofibrant replacement of any object of A°”? Rad(C) belongs to
A°PC*. The fact that i so(®) = ¢l () follows from Theorem 3.21. O

Remark 4.11. Proposition 4.10 remains valid if we replace C* with C.

In view of Proposition 4.10 and Theorem 4.8 any functor F : C — Rad(C’)
defines a functor LF? : H(C) — H(C’). One verifies immediately that for any
composable pair of continuous functors F : C* — (C")* and G : (C)* — (C")*
there is a canonical isomorphism

L(G o F)rad — LGrad ° LFmd.

Lemma 4.12 Let F : C — C’ be a functor which commutes with finite coproducts.
Then F,,q takes projective equivalences between objects of A°P Rad(C’) to
projective equivalences and the corresponding functor RF, .4 is right adjoint to
LFrad.
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Proof: The fact that F,.,4 takes projective equivalences to projective equivalences
is obvious from the definitions. To prove that RF,,; and LF” ad gre adjoint
it is sufficient to construct natural transformations /d — RF,,qLF" and
LF"4RF,,q — Id such that the compositions

RFraq = RFyaLF " RF0q — RFraa
LFrad . LFradRFradLFrad N LFrad
are identities. Note first that LF"%? fits into a commutative square

rad o .
A? Rad(C) L2885 nor Raa(c?y

! l

H(C) L H(C')

where L, is the resolution functor defined in Section 3.2.

Leta : F"F,,; — Id and Id — F™F,,; be the adjunctions between
F,,q and F™@  Define the adjunctions between RF,.,; and LF" ad a5 follows. For
LF"RF,,q — Id we take

Fr%9 AL, Frag — F™F,,0 > 1d

and for Id — RF,,;LF 4 we take

b
Id — ALy — Fryg FT¢ AL,

where the first arrow is the inverse in H(C) of the morphism AL, — Id. That the
first composition is the identity follows from the diagram

AL=kFrad —_— FradFradAL*Frad e Frad

! ! !

Frad —_— Frad Frad Frad B Frad

and the fact that the pair (a,b) is an adjunction between F,,g and F"%?. For the
second composition consider the diagram

FradAL Id «—— F9AL AL, —— F™ AL, F,,sF" AL, ——> FTr4AL,

l l |

Frad AL, —— Fredp ,Fradpap, —— 5 Fradpaj,.
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The lower composition is the identity since (a,b) is an adjunction. To check that the
upper one is the identity in H(C') it remains to verify that the two morphisms

FradAL AL, — F9[4dAL,

Fr%4 AL AL, — FAL,Id

coincide in H(C’). Since all the functors involved respect projective equivalences,
it is sufficient to check it for X € A°?C*. For such an X it follows from the
commutative square

AL AL(X) ——> AL,Id(X)

! l

IdAL.(X) — X.
O

Remark 4.13. It is obvious from the definitions that in the context of Lemma 4.12
the pair (F”" ”d,Fmd) forms a Quillen adjunction and our functors LF” ad RF,4d
are canonically isomorphic to the standard derived functors for this adjunction.
Example 4.14. Even for F : C — C’ which commutes with finite coproducts
the functor F7%¢ need not respect all projective equivalences between all objects
of A’ Rad(C). Let F : CH<ee — (C be the obvious functor. Using the
equivalence between Rad(CY<>~) and presheaves on C one can see that F"¢¢
is the radditivization functor of Proposition 3.6. The fact that it need not respect
projective equivalences is demonstrated in Example 3.15.

Theorem 4.15 For any set of morphisms E in A°P? Rad(C) the localization
H(C.E)=H(C)[ch(E)™]

exists and the projection functor H(C) — H(C,E) has a right adjoint which

identifies H(C, E) with the full subcategory of E-local objects in H(C).

Proof: It follows easily by general arguments from Theorem 3.50(1,3). O

Corollary 4.16 For any E the functor

A°?C* - H(C,E)

is a strict localization i.e. any morphism in the target category is isomorphic to the
image of a morphism in the source category.

Proposition 4.17 The class cl;(E) is saturated i.e. it coincides with the class of
morphisms which become isomorphisms in H(C,E).
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Proof: A morphism in A°”? Rad(C') belongs to ¢/; (E) if and only if it is mapped to
isomorphisms by the family of functors Hom g(c)(—,Y) for E-local objects Y. By
the universal property of localization these functors factor through the projection to
H(C,E). Therefore, any morphism which maps to an isomorphism in H(C,FE) is
mapped to isomorphisms by these functors and therefore belongs to ¢/; (E). 0

Remark 4.18. The obvious analog of Corollary 4.16 holds for C instead of C*.

Theorem 4.19 Let F : C — Rad(C’) be a functor. Let further E be a set of
morphisms in A°?C* and E' a set of morphisms in A°? Rad(C') such that

Fr*d(E 1 Idc) C cli(E").

Then
Fred (cl;(E) N AP CHy C cli(E). (27)

In particular LE™4 (¢l;(E)) C c¢l;(E") and LF? defines a functor
H(C,E)— H(C',E).
Proof: 1t is sufficient to prove (27). By Theorem 3.51 we have
cli(E)NAPC* = clz(E U Idc).
By Lemma 2.20, our assumption and Theorem 3.49 we get
Frad(clz(E U Idc)) C clz(F™4(E U Idc)) C clz(cli(E")) = cli (E).

O]

Theorem 4.20 Let F : C — C' be a functor which commutes with finite coproducts.
Let E be a set of morphisms in A°’C* and E’ a set of morphisms in A°P(C’)*.
Assume further that one has:

Fred(E 11 I1dc) C cli(E")

Fraa(E'U Idcr) Ccli(E).

Then
Fr(cl;(E)N AP C*) C cl;(E") (28)

Fraa(cli(E") Ccli(E). (29)

In particular LF4 (cl;(E)) C cl;(E"), RF,qq4(cl;(E")) C cl;(E) and the resulting
functors between H(C,E) and H(C’,E’) are adjoint.
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Proof: It is enough to prove the inclusions (28) and (29). The first one follows
from Theorem 4.19. For the second inclusion we have

Frad(l(E")) = Fraa(clz((E' 1 1dcr) U Wpro))) C
C cl3(Frag(E' W Ider) U Wprop) C elx (el (E)) C cly(E)

where the first equality follows from Theorem 3.52, the first inclusion from Lemma
2.20, the second inclusion from our assumption and the fact that Fyqq (Wproj) C
Wproj and the last inclusion from Theorem 3.49. O

Corollary 4.21 Under the assumptions of the theorem one has:

1. the functor F,.4 takes E'-local objects to E-local objects.

2. if F is a full embedding then LF™? : H(C,E) — H(C',E') is a full
embedding and RF,,q : H(C',E') — H(C,E) is a localization,

3. if F is surjective on the isomorphism classes of objects then RF,,q4 reflects
isomorphisms i.e.
cli(E") = Fr;b (cli(E)).
Proof: For f:X — Y and Z’ we have
Hompcy(Y.Fraa(Z)) = Hompch(LF™*(Y).Z")
Hompc)(X, Fraa(Z')) = Hompcy(LF™(X),Z’)
and the map between the left hand sides defined by f coincides with the map on the
right hand sides defined by LF"%?(f). If f isin E then LF™*¢( f)isin E’ and if
Z' is E’-local this map is a bijection, which means that F,,;(Z’) is E-local. This
proves the first assertion.
To prove the second assertion it is sufficient to verify that the adjunction
Id — RF,,qLF™? is an isomorphism in H(C,E). Since any object of H(C,E)

is isomorphic to the image of an object from A°?C* and on such objects LF"%¢ =
Frad  the required verification follows from the fact that /d — F,,q F rad g an

isomorphism.
To prove the third assertion note first that since F is surjective on isomorphism
classes of objects one has Wyroj = F..!,(Wp,o;). Theorem 4.20 implies the

inclusion " C ". Let f': X’ — Y’ be such that F,,4(f’) € cl;(E). We need to
show that f’ € ¢l;(E’). Consider the commutative diagram

X' «——— Cof(X') —— Exg/(Cof(X"))

o b

/ Cof(Y) —— Exg/(Cof(Y")
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where Cof is the standard cofibrant replacement functor, the arrows going to the
right are in c¢l;(E’) and the arrows going to the left are projective equivalences.
Since F,,q(f) € clj(E), Theorem 4.20 implies that F,,;(h’) € cl;(E). Then by
the first assertion of the corollary F,,4 (k') is an E-local equivalence between E-
local objects and therefore a projective equivalence. Since F,,4 reflects projective
equivalences we conclude that /4’ is a projective equivalence and therefore f’ €
cli(E). O
Remark 4.22. For any adjoint pair of functors such that one functor of the pair is
surjective on isomorphism classes of objects, the other one reflects isomorphisms.
The issue in the proof of Corollary 4.21(3) is that while F is surjective on
isomorphism classes of objects, the simplicial extension of F’%? or even the
simplicial extension of F itself need not have this property since there may be many
more morphisms and therefore many more simplicial objects in C’ than in C.
Remark 4.23. Even when left Bousfield localizations of the projective c.m.s.’s with
respect to E and E’ exist, it is not clear in general whether or not (F ’“d,Fmd) isa
Quillen adjunction between the localized model categories.
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