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1 Introduction.

Let X be a scheme. A cycle on X is a formal linear combination of points
of the Zariski topological space of X . A cycle is called an effective cycle if
all points appear in it with non negative coefficients. Suppose that X is a
projective scheme over a field k of characteristic zero. Then for any projective
embedding i : X → Pn the classical construction produces a projective
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variety Cr(X, i) called the Chow variety of effective cycles of dimension r on
X such that k-valued points of Cr(X, i) are in natural bijection with effective
cycles of dimesnion r on X . Moreover, for any field extension E/k an E-
valued point of Cr(X, i) defines a cycle on X ×Spec(k) Spec(E). In particular
for any Noetherian scheme S over k and any morphism φ : S → Cr(X) we
get a cycle Zφ on S ×Spec(k) X which lies over generic points of S. For any
such cycle Zφ and any morphism f : S ′ → S of Noetherian schemes over k
the composition f ◦ φ defines a new cycle cycl(f)(Z) on X ×Spec(k) S

′. Thus
existence of Chow verieties implies that for any Noetherian scheme S over k
there is a natural class of cycles on X ×Spec(k) S which are contravariantly
functorial with respect to all morphisms S ′ → S of Noetherian schemes over
k.

Let now X → S be any scheme of finite type over a Noetherian scheme
S. In this paper we introduce a class of cycles on X which are called relative
cycles on X over S. Their most important property is the existence of well
defined base change homomorphisms for arbitrary morphisms S ′ → S of
Noetherian schemes. In the case when X = Xk ×Spec(k) S where Xk is a
projective scheme over a field of characteristic zero and S is a semi-normal
Noetherian scheme over k the class of effective relative cycles on X over S
coincides with the class of cycles of the form Zφ considered above.

Informally speaking a relative cycle on X over S is a cycle on X which
lies over generic points of S and has a well defined specialization to any
fiber of the projection X → S. We denote the group of relative cycles of
relative dimension r on X over S by Cycl(X/S, r). Unfortunately if S is
not a scheme of characterstic zero the specializations Zs of a relative cycle
Z on X over S to points s of S do not have in general integral coefficients -
the characteristic of the residue field of s may appear in denominators. We
denote by z(X/S, r) the subgroup in Cycl(X/S, r) which consists of relative
cycles Z such that for any point s of S the specialization Zs of Z to s
has integral coefficients. The groups z(X/S, r) are contravariantly functorial
with respect to S, i.e. for any morphism of Noetherian schemes f : S ′ → S
there is a homomorphism cycl(f) : z(X/S, r) → z(X×S S

′/S ′, r) and for any
composable pair of morphisms f, g one has cycl(f ◦ g) = cycl(g) ◦ cycl(f). It
gives us a presheaf of abelian groups on the category of Noetherian schemes
over S which we also denote by z(X/S, r). These Chow presheaves are the
main objects of our study.

The paper is organized as follows. We start in sections 2.1, 2.2 with some
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elementary properties of equidimensional morphisms and equidimensional
closed subschemes. Besides the standard theorems of Chevalley (Theorem
2.1.1, Proposition 2.1.7(3)) our main technical tool here as well as in the rest
of the paper is the “platification theorem” (Theorem 2.2.2).

In section 2.3 we prove some basic results about cycles on Noetherian
schemes. All material here is well known and is included only for reader’s
convenience.

In section 3.1 we introduce the groups Cycl(X/S, r) of relative cycles on
a scheme X of finite type over a Noetherian scheme S. Relative cycles over
general Noetherian schemes demonstrate all kinds of “pathological” behav-
ior. For instance the group Cycl(X/S, r) is not necessarily generated by the
corresponding submonoid Cycleff(X/S, r) of effective relative cycles (see ex-
ample 3.4.7) and supports of noneffective relative cycles of relative dimension
r over S do not have to be equidimensional of relative dimension r over S
(example 3.1.9).

We also define in this section different versions of our main object - the
groups of relative cycles with proper support and the groups of relative cycles
with equidimensional support.

The main theorem 3.3.1 of section 3.3 says that for any morphism S ′ → S
of Noetherian schemes there is a well defined base change homomorphism
Cycl(X/S, r) → Cycl(X ×S S ′/S ′, r) ⊗ Q. It gives us a construction of
presheaves Cycl(X/S, r)Q on the category of Noetherian schemes over S
such that for any such scheme S ′ the group Cycl(X/S, r)Q(S

′) is the group
of relative cycles of dimension r on X×S S

′ over S ′ with rational coefficients.
An example of a relative cycle with integral coefficients whose specializa-

tion does not have integral coefficients which is due to A.Merkurjev is given
in 3.5.10(1).

In order to obtain a good definition of Chow presheaves with integral
coefficients we consider a formal condition on a cycle to be universally with
integral coefficients. It turns out that the corresponding groups z(X/S, r) are
subgroups in the groups Cycl(X/S, r) with torsion quotient for all Noetherian
schemes S (Proposition 3.3.14). We call the corresponding presheaves of
abelian grous z(X/S, r) the Chow presheaves of relative cycles on X over S.

We also define in the similar way the presheaves c(X/S, d) which corre-
spond to proper relative cycles and presheaves zequi(X/S, r), cequi(X/S, r) of
relative cycles (resp. proper relative cycles) with equidimensional support.

In section 3.4 we consider relative cycles over geometrically unibranch
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schemes (in particular over normal schemes). It turns out that over such a
scheme S the group of relative cycles with equidimensional support is gener-
ated by the cycles of integral closed subschemes of X which are equidimen-
sional over S (Theorem 3.4.2) which implies that in this case our definition
coincide with the naive one. On the other hand the corresponding statement
does not hold in generally for the groups z(X/S, r) as shown in example
3.5.10(2).

One of the important properties of presheaves z(X/S, r) is that for any
regular base scheme S the groups z(X/S, r) coincide with the groups
Cycl(X/S, r), i.e. in this case any relative cycle has universally integral
coefficients. Our base change homomorphisms over a regular base scheme
coincide with base change homomorphisms which one can define by means
of the Tor-formula (see the end of the section 3.5). We also show in section
3.5 that our base change homomorphisms coincide in the case of finite cycles
over normal schemes with base change homomorphisms defined in [16].

In section 3.6 we study functoriality of Chow presheaves z(X/S, r) and
c(X/S, r) with respect to X . We show in particular that for any morphism
(resp. any proper morphism) p : X → Y of schemes of finite type over S there
is a push-forward homomorphism of presheaves p∗ : c(X/S, r) → c(Y/S, r)
(resp. p∗ : z(X/S, r) → z(Y/S, r)) and for any flat (resp. flat and proper)
equidimensional morphism f : X → Y of relative dimension n there is a
pull-back homomorphism of presheaves f ∗ : z(Y/S, r) → z(X/S, r+n) (resp.
f ∗ : c(Y/S, r) → c(X/S, r + n)).

In the next section we define for Chow presheaves the correspondence
homomorphisms which were considered in context of Chow varieties by Eric
M. Friedlander. In particular we show that there is a well defined homomor-
phism of external product

z(X/S, r1)⊗ z(Y/S, r2) → z(X ×S Y/S, r1 + r2)

for any schemes of finite type X, Y over S.
In the last section we consider Chow presheaves as sheaves in the h-

topologies. In particular we construct in section 4.3 some exact sequences of
Chow sheaves which are important for localization-type theorems in algebraic
cycle homology and Suslin homology (see [17]). Finally in section 4.4 we
study representability of Chow sheaves. One can easily show that except for
some trivial cases the Chow presheaves are not representable as presheaves.

4



To avoid this difficulty we introduce a notion of the h-representability. We
construct then the Chow scheme Cr,d of cycles of degree d and dimension r on
Pn over Spec(Z) using essentially the classical construction due to Chow (see
also [14]) and show that it h-represents the Chow sheaf zeffd (Pn/Spec(Z), r)
of effective relative cycles of relative dimension r and degree d on Pn. A
rather formal reasoning shows then that for any quasi-projective scheme X
over a Noetherian scheme S and any r ≥ 0 the Chow sheaf c(X/S, r) is
h-representable by disjoint union of quasi-projective schemes over S. As an
application of this representability result we show that for a quasi-projective
scheme X over a Noetherian scheme S the group z(X/S, r)h of sections of
the h-sheaf associated with the Chow presheaf z(X/S, r) can be described
using the notion of “ continuous algebraic maps” introduced by Eric M.
Friedlander and O. Gabber ([3]) which generalizes a similar result obtained
in [2] for quasi-projective schemes over a field.

Everywhere in this text a scheme means a separated scheme.
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2 Generalities.

2.1 Universally equidimensional morphisms.

For a scheme X we denote by dim(X) the dimension of the Zariski topological
space of X . By definition dim(X) is either a positive integer of infinity. If
x ∈ X is a point of a locally Noetherian scheme X we denote by dimx(X) the
limit lim dim(U) taken over the partially ordered set of open neighborhoods
of x in X . One can easily see that it is well defined and equals dim(U) for a
sufficiently small U (see [8, Ch.0,14.4.1]).

For a morphism p : X → S denote by dim(X/S) the function on the
set of points of X of the form dim(X/S)(x) = dimx(p

−1(p(x))). The most
important property of the dimension functions is given by the following well
known theorem.

Theorem 2.1.1 (Chevalley) Let p : X → S be a morphism of finite type.
Then for any n ≥ 0 the subset {x ∈ X : dimX/S(x) ≥ n} is closed in X.

Proof: See [8, Th. 13.1.3].

Definition 2.1.2 A morphism of schemes p : X → S is called an equidi-
mensional morphism of dimension r if the following conditions hold:

1. p is a morphism of finite type.

2. The function dim(X/S) is constant and equals r.

3. Any irreducible component of X dominates an irreducible component
of S.

A morphism of schemes p : X → S is called universally equidimensional
of dimension r if for any morphism S ′ → S the projection X ×S S ′ → S ′ is
equidimensional of dimension r.

Finally, we say that p : X → S is a morphism of dimension ≤ r if
dim(X/S)(x) ≤ r for all points x of X.

One can easily see that in the definition of equidimensional morphism given
above one can replace the condition dim(X/S) = r by the condition that for
any point y of S the dimension of all irreducible components of the topological
space p−1(p(x)) equals r.
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Proposition 2.1.3 Let p : X → S be a morphism of finite type of Noethe-
rian schemes. Then p is equidimensional of dimension r if and only if for
any point x of X there is an open neighborhood U in X and a factorization
of the morphism pU : U → S of the form U

p0→ Ar
S → S such that p0 is

a quasi-finite morphism and any irreducible component of U dominates an
irreducible component of Ar

S.

Proof: See [8, 13.3.1(b)].

Definition 2.1.4 A morphism of schemes p : X → S is called an open
morphism if for any open subset U of X the subset p(U) is open in S. It is
called universally open if for any morphism S ′ → S the projection
X ×S S ′ → S ′ is an open morphism.

Definition 2.1.5 Let S be a Noetherian scheme. It is called unibranch
(resp. geometrically unibranch) if for any point s of S the scheme Spec(Oh

s,S)
where Oh

s,S is the henselization of the local ring of s in S (resp. the scheme
Spec(Osh

s,S) where Osh
s,S is the strict henselization of the local ring of s in S)

is irreducible.

Remark: Our definition is consistent with the one given in [8, 6.15.1] in
view of [8, 18.8.15].

Proposition 2.1.6 Let S be a Noetherian geometrically unibranch scheme
and f : S ′ → S be a proper birational morphism. Then for any point s of S
the fiber S ′

s of f over s is geometrically connected.

Proof: It follows from [7, 4.3.5] and [8, 18.8.15(c)].

Proposition 2.1.7 Let p : X → S be a morphism of finite type of Noethe-
rian schemes. Then the following implications hold:

1. If p is a universally equidimensional morphism then p is universally
open.

2. If dim(X/S) = r and p is open (resp. universally open) then p is
equidimensional (resp. universally equidimensional) of dimension r.
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3. If S is geometrically unibranch and p is equidimensional then p is uni-
versally equidimensional (and hence universally open).

Proof: (1) It follows from [8, 14.4.8.1 and 14.4.4].
(2) Obvious.
(3) It is known that any equidimensional morphism over a geometrically
unibranch scheme is universally open (see [8, 14.4.4]). It implies immediately
that for any morphism S ′ → S the projection p′ : X ×S S ′ → S ′ satisfies
the condition (3) of Defenition 2.1.2. Since the conditions (1) and (2) are
obviously stable under a base change the morphism p′ is equidimensional.

Remarks:

1. Note that an equidimensional morphism does not have to be open.

2. One can easily see that the inverse statement to the third part of this
proposition holds. Namely a Noetherian scheme X is geometrically uni-
branch if any equidimensional morphism over X is universally equidi-
mensional.

3. Let p : X → S be a morphism of finite type such that S = Spec(k)
where k is a field. Proposition 2.1.7(3) implies that p is universally
equidimensional of dimension r if and only if all irreducible components
of X have dimension r.

Proposition 2.1.8 Let p : X → S be a flat morphism of finite type. Then p
is universally equidimensional of dimension r if and only if for any generic
point y : Spec(K) → S of S the projection X ×S Spec(K) → Spec(K) is
equidimensional of dimension r.

Proof: Since any flat morphism of finite type is universally open ([11, I.2.12])
it is sufficient to verify that under the conditions of the proposition we have
dim(X/S) = r. It follows immediately from [8, 12.1.1(iv)] and Theorem
2.1.1.

Proposition 2.1.9 Let p : X → S be an equidimensional morphism of rel-
ative dimension r such that X is irreducible. Suppose that p admits a de-
composition of the form X

p0→ W
p1→ S such that p0 is surjective and proper

and p1 has at least one fiber of dimension r. Then p1 is equidimensional of
dimension r and p0 is finite in the generic point of W .
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Proof: It follows easily from Theorem 2.1.1.

Lemma 2.1.10 Let p : X → S be a morphism such that any irreducible
component of X dominates an irreducible component of S and i : X0 → X
be a closed embedding which is an isomorphism over the generic points of S.
Then i is defined by a nilpotent sheaf of ideals. In particular, p is a universally
equidimensional morphism of dimension r if and only if p0 : X0 → S is a
universally equidimensional morphism of dimension r.

Lemma 2.1.11 Let X → S be a scheme of finite type over a Noetherian
scheme S, Z ⊂ X be a closed subscheme universally equidimensional of
relative dimension r over S and S ′ → S be a blow-up of S. Let Z̃ be the
proper transform of Z in X ×S S

′. Then Z̃ is a closed subscheme of Z ×S S
′

defined by a nilpotent sheaf of ideals.

Proof: Since Z×S S
′ is equidimensional over S ′ and hence its generic points

lie over generic points of S ′ our statement follows from Lemma 2.1.10.

2.2 Universally equidimensional closed subschemes.

Let p : X → S be a morphism of finite type. We denote by Zi(X/S) (resp.
by Z≤i(X/S)) the set of closed reduced subschemes Z in X such that the
morphism p|Z : Z → S is universally equidimensional of relative dimension i
(resp. of dimension ≤ i).

For any morphism f : S ′ → S and any reduced closed subscheme Z
of X we denote by f−1(Z) the maximal reduced subscheme of the closed
subscheme Z ′ = Z ×S S ′ of X ′ = X ×S S ′. One can easily see that if Z is
an element of Z≤i(X/S) (resp. an element of Zi(X/S)) then f−1(Z) is an
element of Z≤i(X

′/S ′) (resp. an element of Zi(X
′/S ′)).

Lemma 2.2.1 Let p : X → S be a morphism of schemes and Z1, Z2 be a pair
of elements in Zi(X/S) (resp. in Z≤i(X/S)). Then Z1 ∪Z2 is an element of
Zi(X/S) (resp. of Z≤i(X/S)).

Proof: Obvious.

Theorem 2.2.2 Let p : S ′ → S be a morphism of Noetherian schemes and
U be an open subscheme in S such that p is flat over U . Then there exists
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a closed subscheme Z in S such that U ∩Z = ∅ and the proper transform of
S ′ with respect to the blow-up SZ → S of S with center in Z is flat over SZ .

Proof: See [13, 5.2].

Theorem 2.2.3 Let p : X → S be a morphism of finite type, U be an open
subscheme of X, Z be an element of Zi(U/S) and V be an open subscheme
of S such that the closure Z̄ of Z in X is flat over V . Then there exists a
blow-up f : S ′ → S of S such that the closure of f−1(Z) in X ′ = X ×S S ′

belongs to Zi(X
′/S ′) and the morphism f−1(V ) → V is an isomorphism.

Proof: By Theorem 2.2.2 there is a blow-up f : S ′ → S such that the proper
transform Z̃ of Z̄ with respect to f is flat over S ′. One can easily see now
that the closure Z̄ ′ of Z ′ = Z ×S S ′ in X ′ = X ×S S ′ is a closed subscheme
in Z̃ and the corresponding closed embedding is an isomorphism over the
generic points of S ′. Therefore, Z̄ ′ is universally equidimensional over S ′ by
Lemma 2.1.10.

Definition 2.2.4 Let f : S ′ → S be a morphism of Noetherian schemes.
We say that f is an abstract blow-up of S if the morphism f is proper,
any irreducible component of S ′ dominates an irreducible component of S
and there exists a dense open subscheme U in S such that the morphism
(f−1(U)red) → Ured is an isomorphism (here Xred denote the maximal reduced
subscheme of X).

Note that any abstract blow-up in the sense of Defenition 2.2.4 is surjec-
tive.

The following lemma lists some trivial properties of abstract blow-ups.

Lemma 2.2.5 1. A composition of abstract blow-ups is an abstract blow-
up.

2. If S is a Noetherian scheme and S ′ → S, S ′′ → S is a pair of abstract
blow-ups of S then the morphism S ′ ×S S ′′ → S is an abstract blow-up
of S.

Corollary 2.2.6 Let p : X → S be a morphism of finite type and U be
an open subscheme of X, Z be an element of Zi(U/S). Then there exists
an abstract blow-up f : S ′ → S of S such that the closure of f−1(Z) in
X ′ = X ×S S ′ belongs to Zi(X

′/S ′)
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Proof: It is sufficient to note that we may replace S by the disjoint union of
its reduced irreducible components and that in the case of integral S there
is an open nonempty subset V in S such that the closure Z̄ is flat over V .

Corollary 2.2.7 Let p : X → S be a universally eqidimensional quasi-
projective morphism of dimension r. Then there is an abstract blow-up
S ′ → S, a universally equidimensional projective morphism X̄ ′ → S ′ of
dimension r and an open embedding i : X ×S S ′ → X̄ ′ over S ′.

Proof: Obvious.

Theorem 2.2.8 Let p : X → S be a universally equidimensional morphism
and Z be an element in Z≤i(X/S). Then there exists an abstract blow-up
f : S ′ → S of S and an element W in Zi(X ×S S ′/S ′) such that f−1(Z) is
contained in W .

Proof: We start with the following lemma.

Lemma 2.2.9 Let S be a local Noetherian scheme and p : X → S be an
affine flat equidimensional morphism of dimension r. Let further Z be a
closed subscheme of the closed fiber of X over S which does not contain any
of the generic points of this fiber.

Then there exists a closed subscheme W of X which is flat and equidi-
mensional of dimension r − 1 over S such that Z lies in W .

Proof: There exists a finite set {x1, . . . , xk} of closed points of X such that
the following conditions hold:

1. {x1, . . . , xk} ∩ Z = ∅.

2. Any irreducible component of X contains at least one of the points
x1, . . . , xk.

3. Any irreducible component of the closed fiber Xs of X contains al least
one of the points x1, . . . , xk.

Since X is affine there is a regular function f on X such that f = 0 on Z
and f = 1 on the set {x1, . . . , xk}. The third property of this set implies that
the divisor W = (f) of f is flat over S (see [11, I.2.5]) and the second one
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that this divisor is equidimensional of dimension r− 1 over generic points of
S. By Proposition 2.1.8 we conclude that W is equidimensional of dimension
r − 1 over S. Lemma is proven.

To prove our theorem it is obviously sufficient to show that if Z is an
integral closed subscheme of X of dimension ≤ i over S where i < r then
there exist an abstract blow-up S ′ → S and an element W ∈ Zr−1(X

′/S ′)
such that Z ′ is contained in W .

Assume first that X is affine over S. By Theorem 2.2.2 it is sufficient
to consider the case of a flat morphism p : X → S. Let z be the generic
point of Z and s = p(z). Consider the fiber Xs of X over s. Since Zs is of
codimension at least one in Xs by Lemma 2.2.9 there is an open subscheme U
of S which contains s and a closed subscheme WU in p−1(U) which is flat and
equidimensional of dimension r−1 over U and which contains Z∩p−1(U). By
Theorem 2.2.3 there is an abstract blow-up f : S ′ → S such that f−1(U) → U
is an isomorphism and the closure W̄ ′ of W ′ = WU ×S S ′ in X ′ = X ×S S ′

belongs to Zr−1(X
′/S ′).

In particular the closure of the pre-image in X ′ of the generic point of
Z is contained in W̄ ′. Let Q be the complement to U in S and Z ′ be the
intesection Z ∩ p−1(Q). By our construction we have dim(Z ′) < dim(Z).
Using induction on dim(Z) we may assume that there is an abstract blow-
up S ′′ → S such that the Z ′′ = Z ×S S ′′ is contained in an element W1 of
Zd−1(X

′′/S ′′). Considering an abstract blow-up S ′′′ → S which dominates
both S ′ and S ′′ (Lemma 2.2.5) we conclude that the statement of our theorem
is correct for affine morphisms p : X → S.

Let now p : X → S be an arbitrary universally equidimensional morphism
of dimension r. Then there is a finite open covering X = ∪Ui such that the
morphisms pi : Ui → S are affine. Since our statement holds for affine
morphisms there is an abstract blow-up S ′ → S and a family of elements
Wi ∈ Zd−1(U

′
i/S

′) such that Z ′ ∩ U ′
i is contained in Wi. By Theorem 2.2.3

we may choose S ′ such that the closure W̄i of each Wi in X ′ is universally
equidimensional of dimension r − 1. It implies the result we need since one
obviously has Z ′ ⊂ ∩W̄i. Theorem is proven.
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2.3 Cycles on Noetherian schemes.

LetX be a Noetherian scheme. We denote by Cycl(X) (resp. by Cycleff(X))
the free abelian group (resp. the free abelian monoid) generated by points
of the Zariski topological space of X .

For any element Z of Cycl(X) we denote by supp(Z) the closure of the
set of points on X which appear in Z with nonzero coefficients. We consider
supp(Z) as a reduced closed subscheme of X .

Let Z be a closed subscheme of X and ζi, i = 1, . . . , k be the generic
points of the irreducible components of Z. We define an element CyclX(Z)
of the abelian monoid Cycleff(X) as the formal linear combination of the
form

cyclX(Z) =
k∑

i=1

miζi

where mi = length(OZ,ζi). Each number mi is a positive integer which is
called the multiplicity of Z in the point ζi.

This construction gives us a map from the set of closed subschemes of
X to the abelian monoid Cycleff(X) which can be canonically extended
to a homomorphism from the free abelian monoid generated by this set to
Cycleff(X). We denote this homomorphism by cyclX.

Let p : X → S be a flat morphism of Noetherian schemes and let Z =∑
nizi be a cycle on S. Denote by Zi the closure of the point zi which we

consider as a closed integral subscheme in S and set p∗(Z) =
∑

nicyclX(Zi×S

X). In this way we get a homomorphism (flat pull-back) p∗ : Cycl(S) →
Cycl(X). The following lemma is straightforward (cf. [4, Lemma 1.7.1]).

Lemma 2.3.1 1. If Z is any closed subscheme of S then p∗(cyclS(Z)) =
cyclX(Z ×S X).

2. supp(p∗(Z)) = (p−1(supp(Z)))red. In particular the homomorphism
p∗ : Cycl(S) → Cycl(X) is injective provided that p is surjective.

Let X → Spec(k) be a scheme of finite type over a field k and let L/k
be any field extension. The corresponding morphism p : XL → X is flat and
hence defines a homomorphism p∗ : Cycl(X) → Cycl(XL). The image of
a cycle Z ∈ Cycl(X) under this homomorphism will be usually denoted by
Z ⊗k L of ZL.
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Lemma 2.3.2 Let X → Spec(k) be a scheme of finite type over a field
k and let k′/k be a finite normal field extension with the Galois group G.
If Z ′ ∈ Cycl(Xk′)

G then there is a unique cycle Z ∈ Cycl(X) such that
[k′ : k]insepZ

′ = Zk′.

Proof: The uniqueness of Z follows immediately from Lemma 2.3.1(2). To
prove the existence note that the group Cycl(Xk′)

G is generated by cycles of
the form Z ′ =

∑
τ∈G/H τ(z′) where z′ is a point ofXk′ andH = StabG(z

′). Let
z be the image of z′ in X and let Z be the closure of z which we consider as
a closed integral subscheme of X . The points τ(z′) are precisely the generic
points of the scheme Z ′ = Z ×Spec(k) Spec(k

′) and the multiplicities with
which they appear in the cycle Zk′ are all equal to the length of the local
Artinian ring OZ′,z′. The elementary Galois theory shows that this length is
a factor of [k′ : k]insep. Thus the cycle Z = [k′ : k]insepz/length(OZ′,z′) has
the required property.

Corollary 2.3.3 In the assumptions and notations of the previous lemma
denote by p the exponential characteristic of the field k. Then the homomor-
phism

Cycl(X)[1/p] → (Cycl(Xk′)[1/p])
G

is an isomorphism.

Let X → Spec(k) be a scheme of finite type over a field k. Then we have
a direct sum decomposition Cycl(X) =

∐
Cycl(X, r) where Cycl(X, r) is a

subgroup of Cycl(X) generated by points of dimension r. Furthermore one
sees easily that for a field extension k′/k the homomorphism

Cycl(X) → Cycl(Xk′)

preserves this decomposition.
Let S be a Noetherian scheme and p : X → S be a proper morphism of

finite type. For any cycle Z =
∑

nizi ∈ Cycl(X) set

p∗(Z) =
∑

nimip(zi)

where mi is the degree of the field extension kzi/kp(zi) if this extension is
finite and zero otherwise. The proof of the following statement is similar to
that of Proposition 1.7 of [4] and we omit it.
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Proposition 2.3.4 Consider a pull-back square of morphisms of finite type
of Noetherian schemes

X̃
fX→ X

p̃ ↓ ↓ p

S̃
f
→ S

in which f is flat and p is proper. Then for any cycle Z ∈ Cycl(X) we have

f ∗(p∗(Z)) = p̃∗(f
∗
X(Z)).

The following lemma is straighforward.

Lemma 2.3.5 Let f : X → Y be a finite flat morphism of connected
Noetherian schemes. Denote by deg(f) the degree of f . Then f∗f

∗ =
deg(f)IdCycl(Y ).
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3 Relative cycles.

3.1 Relative cycles.

Definition 3.1.1 Let S be a Noetherian scheme, k be a field and
x : Spec(k) → S be a k-point of S. A fat point over x is a triple (x0, x1, R),
where R is a discrete valuation ring and x0 : Spec(k) → Spec(R),
x1 : Spec(R) → S are morphisms such that

1. x = x1 ◦ x0

2. The image of x0 is the closed point of Spec(R).

3. x1 takes the generic point of Spec(R) to a generic point of S.

Usually we will abbreviate the notation (x0, x1, R) to (x0, x1).

Lemma 3.1.2 Let S be a Noetherian scheme, X → S be a scheme over S
and Z be a closed subscheme in X. Let further R be a discrete valuation
ring and f : Spec(R) → S be a morphism. Then there exists a unique closed
subscheme φf(Z) in Z ×S Spec(R) such that:

1. The closed embedding φf(Z) → Z ×S Spec(R) is an isomorphism over
the generic point of Spec(R).

2. φf(Z) is flat over Spec(R).

Proof: See [8, 2.8.5].

Let S be a Noetheiran scheme, X → S be a scheme of finite type over S
and Z be a closed subscheme of X . For any fat point (x0, x1) over a k-point
x of S we denote by (x0, x1)

∗(Z/S) the cycle on X ×Spec(k) S associated with
the closed subscheme φx1(Z)×Spec(R) Spec(k).

If Z =
∑

mizi is any cycle on X we denote by (x0, x1)
∗(Z) the cycle∑

mi(x0, x1)
∗(Zi) where Zi is the closure of the point zi ( considered as a

reduced closed subscheme of X).

Definition 3.1.3 Let S be a Noetherian scheme and X → S be a scheme of
finite type over S. A relative cycle on X over S is a cycle Z =

∑
mizi on X

satisfying the following requirements:

16



1. The points zi lie over generic points of S.

2. For any field k, k-point x of S and a pair of fat points (x0, x1), (y0, y1)
of S over x one has:

(x0, x1)
∗(Z) = (y0, y1)

∗(Z).

We say that Z =
∑

nizi is a relative cycle of dimension r if each point
zi has dimension r in its fiber over S. We denote the corresponding abelian
groups by Cycl(X/S, r).

We say that Z is an equidimensional relative cycle of dimension r if
supp(Z) is equidimensional of dimesnion r over S. We denote the corre-
sponding abelian groups by Cyclequi(X/S, r).

We say that Z is a proper relative cycle if supp(Z) is proper over S. We
denote the corresponding abelian groups by PropCycl(X/S, r) and
PropCyclequi(X/S, r).

We will also use the notations Cycleff(X/S, r), PropCycleff(X/S, r) etc.
for the corresponding abelian monoids of effective relative cycles.

The following lemma gives us means to construct fat points.

Lemma 3.1.4 Let S be a Noetherian scheme, η be a generic point of S and
s be a point in the closure of η. Let further L be an extension of finite type
of the field of functions on S in η. Then there is a discrete valuation ring R
and a morphism f : Spec(R) → S such that the following conditions hold:

1. f maps the generic point of Spec(R) to η and the field of functions of
R is isomorphic to L over kη,

2. f maps the closed point of Spec(R) to s.

Proof: See [6, 7.1.7].

Let S be a Noetherian scheme, X → S be a scheme of finite type over S
and Z =

∑
nizi be a cycle on X such that the points zi lie over generic points

of S and are of dimension r in the corresponding fibers. Let Zi denote the clo-
sure of zi considered as a closed integral subscheme of X . It is clear from the
above definition that Z ∈ Cycl(X/S, r) if and only if Z ∈ Cycl(Xred/Sred, r).
Furthemore the schemes Zi are flat over generic points of Sred and according
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to Theorem 2.2.2 one can find a blow-up S ′ → Sred such that the proper
transforms Z̃i of Zi’s are flat over S ′. Now we can formulate the following
usefull criterion.

Proposition 3.1.5 Under the above assumptions the following conditions
are equivalent:

1. Z ∈ Cycl(X/S, r).

2. If x : Spec(k) → S is any geometric point of S and
x′
1, x

′
2 : Spec(k) → S ′ is a pair of its liftings to S ′ then the cycles W1,

W2 on Xx = X ×S Spec(k) given by the formulae

W1 =
k∑

i=1

nicyclXs(Z̃i ×x′
1
Spec(k))

W2 =
k∑

i=1

nicyclXs(Z̃i ×x′
2
Spec(k))

coincide.

Proof: (1=>2) the geometric points x, x′
1, x

′
2 give us set-theoretical points

s ∈ S, s′1, s
′
2 ∈ S ′ such that s′1, s

′
2 lie over s. We may assume that s (and

hence also s′1, s
′
2) is not generic. Using Lemma 3.1.4 we construct discrete

valuation rings R′
i and morphisms Spec(R′

i) → S ′ which map the closed point
of Spec(R′

i) to s′i and the generic point of Spec(R′
i) to a generic point of S ′.

Denote the residue fields of R′
i by k′

i. One checks easily that the scheme
(Spec(k′

1)×SSpec(k
′
2))×S′×SS′Spec(k) is not empty. Choosing any geometric

L-point of this scheme for a field L we get a commutative diagram

Spec(k′
1) → Spec(R′

1) → S ′

ր
x′
1

ր ց
Spec(L) → Spec(k)

x
→ S

ց
x′
2

ց ր
Spec(k′

2) → Spec(R′
2) → S ′

Thus we get a geometric point Spec(L) → S and two fat points
Spec(L) → Spec(R′

i) → S over it. The inverse images of the cycle Z with
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respect to these fat points are equal to
∑

nicycl[(Z̃i ×x′
1
Spec(k)) ×Spec(k)

Spec(L)] and
∑

nicycl[(Z̃i ×x′
2
Spec(k))×Spec(k) Spec(L)] respectively. These

cycles coincide according to the condition Z ∈ Cycl(X/S, r). Lemma 2.3.1
shows now that W1 = W2.
(2=>1) Let x : Spec(k) → S be a geometric point of S and let (x0, x1),
(y0, y1) be a pair of fat points over x. According to the valuative criterion of
properness (see [6, 7.3]) these fat points have canonical liftings to fat points
(x′

0, x
′
1), (y

′
0, y

′
1) of S

′. This gives us two geometric points

x′ = x′
1 ◦ x

′
0 : Spec(k) → S ′

y′ = y′1 ◦ y
′
0 : Spec(k) → S ′

of S ′ over x. Our statement follows now from obvious equalities:

(x0, x1)
∗(Z) = (x0, x

′
1)

∗(
∑

niZ̃i) =
∑

nicycl(Z̃i ×x′ Spec(k))

(y0, y1)
∗(Z) = (y0, y

′
1)

∗(
∑

niZ̃i) =
∑

nicycl(Z̃i ×y′ Spec(k)).

Corollary 3.1.6 Let k be a field and X → Spec(k) be a scheme of finite
type over k. Then the group Cycl(X/Spec(k), r) is the free abelian group
generated by points of dimension r on X, i.e one has

Cycl(X/Spec(k), r) = Cyclequi(X/Spec(k), r) = Cycl(X, r).

Proposition 3.1.7 Let S be a Noetherian scheme, X → S be a scheme of
finite type over S and Z =

∑k
i=1 nizi be an effective cycle on X which belongs

to Cycl(X/S, r) for some r ≥ 0. Denote by Zi the closure of the point zi
in X which we consider as an integral closed subscheme in X. Then Zi is
equidimensional of dimension r over S.

Proof: According to the Chevalley theorem 2.1.1 all components of all fibers
of the projection Zi → S are of dimension ≥ r. Assume that there exists
a point s of S such that the fiber (Z0)s of Z0 over s has a component of
dimension > r. Let η be the generic point of this component.

By Theorem 2.2.2 there is a blow-up f : S ′ → Sred of Sred such that the
proper transforms Z̃i of the subschemes Zi with respect to f are flat (and
hence equidimensional of dimension r over S ′). The morphism Z̃0 → Z0 is
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proper and dominant and hence surjective. Let τ be any point of Z̃0 over η
and let s′1 be its image in S ′. On the other hand let s′2 be any closed point
of the fiber (S ′)s. Choosing an algebraically closed field k which contains
a composite of the fields ks′1 and ks′2 over ks we get two geometric points
x′
1, x

′
2 : Spec(k) → S ′ over the same geometric point x : Spec(k) → S.

Consider the following cycles on Xk = X ×S Spec(k):

W1 =
∑

nicyclXk
(Z̃i ×s′1

Spec(k))

W2 =
∑

nicyclXk
(Z̃i ×s′2

Spec(k)).

In view of Proposition 3.1.5 it is sufficient to show that these cycles are dif-
ferent. We will do so by showing that the images of supp(W1) and supp(W2)
in Xs are different. The image of supp(W2) coincides with the image of
∪(Z̃i)s′2 ⊂ Xks′

2

in Xs and hence is of dimension ≤ r (since the morphism

Xs′2
→ Xs is finite). On the other hand the image of supp(W1) contains η

and hence is of dimension > r.

Corollary 3.1.8 Let S be a Noetherian scheme and X → S be a scheme of
finite type over S. Then one has:

Cycleffequi(X/S, r) = Cycleff(X/S, r)

PropCycleffequi(X/S, r) = PropCycleff(X/S, r).

Example 3.1.9 Proposition 3.1.7 fails for cycles which are not effective.
Consider the scheme X = P1

k ×A2 over S = A2
k where k is a field. Consider

the following two rational functions on S:

f(x, y) = y/x

g(x, y) = y/(x+ y2).

Let Γf ,Γg ∈ X be the graphs of these functions and let Z be the cycle on X
of the form Γf − Γg. Obviously supp(Z) is not equidimensional over S. We
claim that Z nevertheless belongs to Cycl(X/S, 0).

Let S ′ → S be the blow-up of the point (0, 0) in A2. Denote by f ′, g′

the rational functions on S ′ which correspond to f and g. One can easily
see that f ′, g′ are in fact regular on S ′ and moreover if S ′

0 ⊂ S ′ denotes the
exceptional divisor of S ′ we have f ′

S′
0
= g′S′

0
. Since the proper transforms of

the closed subschemes Γf ,Γg are the graphs of f
′ and g′ in S ′×SX = S ′×P1

k

Proposition 3.1.5 shows that Z indeed belongs to Cycl(X/S, 0).
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3.2 Cycles associated with flat subschemes.

Let p : X → S be a morphism of finite type of Noetherian schemes. We
denote by Hilb(X/S, r) (resp. by PropHilb(X/S, r)) the set of closed sub-
schemes Z of X ×S S which are flat (resp. flat and proper) and equidimen-
sional of dimension r over S.

Let N(Hilb(X/S, r)), N(PropHilb(X/S, r)) (resp. Z(Hilb(X/S, r)),
Z(PropHilb(X/S, r))) be the corresponding freely generated abelian
monoids (resp. abelian groups).

The assigment S ′/S → N(Hilb(X ×S S
′/S ′, r)) etc. defines a presheaf of

abelian monoids (groups) on the category of Noetherian schemes over S. If
Z =

∑
niZi is an element of Z(Hilb(X/S, r)) and S ′ is a Noetherian scheme

over S we denote by Z ×S S ′ the corresponding element
∑

ni(Zi ×S S ′) of
Z(Hilb(X×S S

′/S′, r)).

Lemma 3.2.1 Let p : X → S be a finite flat morphism of Noetherian
schemes of constant degree and S ′/S be any Noetherian scheme over S. Let
further τ ′ be a generic point of S ′ and η′1, . . . , η

′
k be all points of X ′ = X×S S

′

lying over τ ′. Then one has

k∑

j=1

length(OX′,η′j
)[kη′j : kτ ′ ] = deg(p)length(OS′,τ ′)

Proof: The module
∐
OX′,η′j

= [(p′)∗(OX′)]τ ′ is a free OS′,τ ′-module of rank

deg(p). Computing its length over OS′,τ ′ in two different ways we get the
desired equality.

Proposition 3.2.2 Let X → S be a scheme of finite type over a Noethe-
rian scheme S and S ′ → S be any Noetherian scheme over S. Let fur-
ther Z =

∑
niZi be an element of Z(Hilb(X/S, r)). If cyclX(Z) = 0 then

cyclX×SS′(Z ×S S ′) = 0.

Proof: Replacing X by ∪Zi we may assume that X is equidimensional of
relative dimension r over S. Generic points of Zi×S S

′ lie over generic points
of S ′ and are generic in their fibers. Let η′ ∈ X ′ = X ×S S ′ be any of these
generic points. Computing the multiplicity of η′ in cycl(Z ×S S ′) we may
replace X by any open neighborhood of the point η = pr1(η

′) ∈ X .
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Lemma 3.2.3 Let p : X → S be a flat equidimensional morphism of dimen-
sion r and x be a generic point of a fiber of p. Then for any decomposition of
p of the form X

p0→ Ar
S → S such that p0 is an equidimensional quasi-finite

morphism there exists an open neighborhood U of x in X such that (p0)|U is
a flat quasi-finite morphism.

Proof: It follows immediately from the fact that p is flat and [5, Ex. IV,
Cor. 5.9,p.99].

Using Lemma 3.2.3 and Proposition 2.1.3 and replacing S by Ar
S we see

that it is sufficient to treat the case r = 0. Furthemore replacing S ′ by
Spec(OS′,τ ′) and S by Spec(Os,τ ) (where τ = p(η) and τ ′ = p′(η′)) we may
assume that S and S ′ are local schemes, S ′ is Artinian and f : S ′ → S takes
the closed point of S ′ to the closed point of S.

Let Ssh (resp. (S ′)sh) denote the strict henselization of the local scheme
S (resp. S ′) in the closed point. Lemma 2.3.1 shows that cycl(Z×S S

sh) = 0
and moreover that it is sufficient to check that

cycl((Z ×S S ′)×S′ (S ′)sh) = cycl(Z ×S (S ′)sh) = 0.

Since there exists a morphism (S ′)sh → Ssh over S we see that we may replace
S and S ′ by Ssh and (S ′)sh and assume the schemes S and S ′ to be strictly
henselian.

Since η lies over the closed point of S and S is henselian we conclude that
Spec(OX,η) is an open neighborhood of η in X and is finite over S (see [11,
I.4.2(c)]). Thus replacing X by Spec(OX,η) we may additionally assume that
X is local and finite over S. In these assumptions η is the only point over
τ (and hence η′ is the only point over τ ′) and the schemes Zi are finite and
flat over S of constant degree deg(Zi/S). Lemma 3.2.1 shows now that the
multiplicity of η′ in cyclX′(Z ×S S ′) is equal to

∑

i

nilength(OZ′
i,η

′) = (
∑

i

nideg(Zi/S))length(OS′,τ ′)/[kη′ : kτ ′].

We only have to show that
∑

nideg(Zi/S) = 0. To do so let τ 0 be a generic
point of S and let η01, . . . , η

0
k be all points of X over τ 0. The multiplicity of

η0j in cycl(Z) is equal to
∑

nilength(OZi,η0j
). Using once again Lemma 3.2.1

we get

0 =
∑

j

[kη0j : kτ0]
∑

i

nilength(OZi,η0j
) = (

∑

i

nideg(Zi/S))length(OS,τ0).
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Proposition is proven.

Corollary 3.2.4 Let X → S be a scheme of finite type over a Noetherian
scheme S, Z be an element of Hilb(X/S, r) and (x0, x1, R) be a fat point
over a k-point x : Spec(k) → S of S. Then

(x0, x1)
∗(cyclX(Z)) = cyclX×SSpec(k)(Z ×S Spec(k)).

Proof: Let Zi be the irreducible components of Z, zi be their generic points
and ni be their multiplicities such that cyclX(Z) =

∑
nizi. One checks easily

that

cyclX×SSpec(R)(Z ×S Spec(R)) =
∑

nicyclX×SSpec(R)(φx1(Zi)).

Proposition 3.2.2 shows now that

(x0, x1)
∗(cyclX(Z)) =

∑
nicyclX×SSpec(k)(φx1(Zi)×Spec(R) Spec(k)).

Corollary 3.2.5 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the image of the cycle map Z(Hilb(X/S, r)) → Cycl(X) lies
in Cyclequi(X/S, r).

Corollary 3.2.6 Let R be a discrete valuation ring and X → Spec(R) be
a scheme of finite type over Spec(R). Then a cycle Z =

∑
niZi belongs to

Cycl(X/Spec(R), r) if and only if the points zi belong to the generic fiber of
X over Spec(R) and are of dimension r in this fiber.

3.3 Chow presheaves.

Theorem 3.3.1 Let X → S be a scheme of finite type over a Noetherian
scheme S, Z be an element of the group Cycl(X/S, r) and f : T → S be a
Noetherian scheme over S.

Then there is a unique element ZT in Cycl(X ×S T/T, r)⊗Z Q such that
for any commutative diagram of the form

y0
ր Spec(A)

y1→ T
Spec(k) ↓ f

x0

ց Spec(R)
x1→ S
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where (x0, x1) and (y0, y1) are fat k-points of S and T respectively one has:

(y0, y1)
∗(ZT ) = (x0, x1)

∗(Z).

Proof: The uniqueness of ZT follows easily form 3.1.4 and 2.3.1(2).
In the proof of existence we start with the special case T = Spec(ks)

where s is a set-theoretic point of S. In this case we have the following
slightly more precise statement.

Lemma 3.3.2 Denote by p the exponential characteristic of the field ks.
Then there exists a unique cycle Zs in Cycl(Xs, r)[1/p] such that for any
field extension k/ks and any fat point (x0, x1) over the k-point Spec(k) →
Spec(ks) → S one has (x0, x1)

∗(Z) = Zs ⊗ks k.

Proof: Denote by Zi the closure of zi which we consider as an integral
closed subscheme in X and choose a blow-up S ′ → Sred such that the proper
transforms Z̃i of Zi are flat over S ′. If k/ks is a field extension such that
the k-point Spec(k) → Spec(ks) → S admits a lifting to S ′ we get a cycle
Zk =

∑
nicycl(Z̃i×S′Spec(k)) ∈ Cycl(X×SSpec(k), r) which is independent

of the choice of the lifting according to Proposition 3.1.5. Moreover if L/k is
a field extension then the cycle ZL is also defined and we have

ZL = Zk ⊗k L

.
The morphism S ′ → S being a surjective morphism of finite type we

can find a finite normal extension k0/ks such that the point Spec(k0) →
Spec(ks) → S admits a lifting to S ′. The formula above shows that the cycle
Zk0 isGal(k0/ks)-invariant and hence descends to a cycle Zs ∈ Cycl(Xs, r)[1/p]
by Lemma 2.3.2.

Let now k be any extension of ks such that the point Spec(k) → Spec(ks) →
S admits a lifting to S ′ and let L be a composite of k and k0 over ks. Then

Zk ⊗k L = ZL = Zk0 ⊗k0 L = Zs ⊗ks L = (Zs ⊗ks k)⊗k L

and hence Zk = Zs ⊗ks k.
Finally let k/ks be a field extension and (x0, x1, R) be a fat point over

a k-point Spec(k) → Spec(ks) → S. The morphism x1 : Spec(R) → S has
a canonical lifting to S ′ (according to the valuative criterion of properness).
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This gives us a lifting to S ′ of our k-point Spec(k) → S and it follows
immediately from the construction of Zs that one has (x0, x1)

∗(Z) = Zk =
Zs ⊗ks k. Lemma is proven.

In the course of the proof of Lemma 3.3.2 we have established that the
cycle Zs has the following somewhat more general property.

Lemma 3.3.3 Let S ′ → S be a blow-up such that the proper transforms
Z̃i of Zi are flat over S ′ and let k/ks be a field extension such that the k-
point Spec(k) → Spec(ks) → S admits a lifting to S ′. Then Zs ⊗ks k =∑

nicycl(Z̃i ×S′ Spec(k)).

Let τ1, . . . , τn be the generic points of T and σ1, . . . , σn be their images
in S. Consider the cycles

Zσj
⊗kσj

kτj =
∑

l

njlzjl ∈ Cycl(X ×S Spec(kτj), r)⊗Z Q.

Here njl are rational numbers and zjl are points of X ×S T lying over τj and
having dimension r in their fibers. Set ZT =

∑
j,l njlzjl. We are going to show

that ZT belongs to Cycl(X ×S T/T, r) ⊗Z Q and has the desired property.
To do so we need the following lemma.

Lemma 3.3.4 Let f : S ′ → S be a proper surjective morphism of finite type
of Noetherian schemes, A be a discrete valuation ring and Spec(A) → S be a
morphism of schemes. Then there exists a commutative diagram of the form:

Spec(A′) → S ′

g ↓ ↓ f
Spec(A) → S

In which A′ is a discrete valuation ring and the morphism g is surjective.

Proof: Let K be the quotient field of A. Since f is a surjective morphism
of finite type there exists a finite extension K ′ of K such that the K ′-point
Spec(K ′) → Spec(K) → S admits a lifting to S ′. Let ν be the discrete
valuation of K which corresponds to A. It can be extended to a discrete
valuation ν ′ of K ′ and we take A′ to be the corresponding discrete valuation
ring. The valuative criterion of properness ([6, 7.3]) shows that the morphism
Spec(A′) → Spec(A) → S admits a lifting to S ′.
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Consider a commutative diagram of the form

y0
ր Spec(A)

y1→ T
Spec(k) ↓ f

x0

ց Spec(R)
x1→ S

in which (x0, x1) (resp. (y0, y1)) is a fat k-point of S (resp. of T ). Let as before
S ′ → Sred denote a blow-up of Sred such that the proper transforms Z̃i of Zi

are flat over S ′. Lemma 3.3.4 shows that there is a discrete valuation ring
A′ and a surjective morphism Spec(A′) → Spec(A) such that the morphism
Spec(A′) → S admits a lifting to S ′. Denote the residue field of A (resp. of
A′) by kA (resp. by kA′) and let k′ be a composite of k and kA′ over kA so
that we have the following commutative diagram:

Spec(k′) → Spec(A′) → S ′

↓ ↓ ↓

Spec(k)
y0→ Spec(A)

y1→ T → S

Assume that y1 maps the generic point of Spec(A) to τ1 and consider the
following two elements in Q(Hilb(X×S Spec(A

′)/Spec(A′), r)):

W =
∑

i

ni(Z̃i ×S′ Spec(A′))

W1 =
∑

j,l

njl(φy1(Zjl)×Spec(A) Spec(A
′)) =

∑

l

n1l(φy1(Z1l)×Spec(A) Spec(A
′))

where Zjl denotes the closure of the points zjl considered as a closed integral
subscheme of X ×S T .

Lemma 3.3.5
cycl(W) = cycl(W1)

Proof: Let K (resp. K ′) denote the quotient field of A (resp. of A′). Since
the map

Cycl(X×SSpec(A
′)/Spec(A′), r)⊗Q → Cycl(X×SSpec(K

′)/Spec(K′), r)⊗Q

is clearly injective we may replace A′ by K ′ everywhere. Furthermore

cycl(W ×Spec(A′) Spec(K)) =
∑

nicycl(Z̃i ×S′ Spec(K ′))
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and according to Lemma 3.3.3 this cycle is equal to Zσ1 ⊗kσ1
K ′.

On the other hand we have:

cycl(W1 ×Spec(A′) Spec(K
′)) =

=
∑

l

n1lcycl([φy1(Z1l)×Spec(A) Spec(K)]×Spec(K) Spec(K
′)) =

=
∑

l

n1lcycl((Z1l ×T Spec(K))×Spec(K) Spec(K
′)) =

= [
∑

l

n1lcycl(Z1l ×T Spec(kτ1))]⊗kτ1
K ′ =

= (
∑

l

n1lz1l)⊗kτ1
K ′ = (Zσ1 ⊗kσ1

kτ1)⊗kτ1
K ′

= Zσ1 ⊗kσ1
K ′.

Lemma is proven.

Proposition 3.2.2 implies now that

cycl(W ×Spec(A′) Spec(k
′)) = cycl(W1 ×Spec(A′) Spec(k

′))

i.e.
∑

nicycl(Z̃i ×S′ Spec(k′)) =
∑

l

n1lcycl(φy1(Z1l)×Spec(A′) Spec(k
′)) =

= (y0, y1)
∗(ZT )⊗k k

′.

On the other hand the cycle (x0, x1)
∗(Z) ⊗k k

′ is equal to
∑

nicycl(Z̃i ×S′

Spec(k′)) where this time the morphism Spec(k′) → S ′ is a lifting of the
same point Spec(k′) → Spec(k) → Spec(R) → S obtained using the canon-
ical lifting of the morphism Spec(R) → S. Proposition 3.1.5 shows that
(x0, x1)

∗(Z)⊗kk
′ = (y0, y1)

∗(ZT )⊗kk
′ and hence (x0, x1)

∗(Z) = (y0, y1)
∗(ZT ).

Theorem 3.3.1 is proven.

Remark: In general cycles of the form cycl(f)(Z) do not have integral
coefficients. See example 3.5.10(1) below.

Lemmas 3.3.6 and 3.3.8 below describe the behavior of supports of cycles
with respect to the base change homomorphisms.
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Lemma 3.3.6 In the notations and assumptions of Theorem 3.3.1 we have

supp(ZT ) ⊂ (supp(Z))T = supp(Z)×S T.

Proof: Since supp(ZT ) = ∪supp(Zkτj
) where τj are the generic points of T

it is sufficient to consider the case T = Spec(k) where k is a field. According
to Lemma 3.1.4 there exists an extension k′/k and a fat point (x0, x1, R) over
the k′-point Spec(k′) → Spec(k) → S. The defining property of the cycle Zk

shows that

supp(Zk)×Spec(k) Spec(k
′) = supp(Zk′) = supp((x0, x1)

∗(Z)) ⊂

⊂ ∪iφx1(Zi)×Spec(R) Spec(k
′) ⊂ ∪i(Zi ×S Spec(R))×Spec(R) Spec(k

′) =

= supp(Z)×S Spec(k′) = (supp(Z)×S Spec(k))×Spec(k) Spec(k
′).

Since the morphism Xk′ → Xk is surjective the above inclusion implies the
desired one supp(Zk) ⊂ supp(Z)×S Spec(k).

Lemma 3.3.7 Consider a pull-back square of morphisms of finite type of
Noetherian schemes of the form

X ′ → X
↓ ↓

S ′ f
→ S

and assume that the morphism f is universally open and any generic point
of X lies over a generic point of S. Then any generic point of X ′ lies over
a generic point of S ′.

Proof: Any generic point of X ′ obviously lies over a generic point of S.
Replacing S by this point we may assume that S = Spec(k) where k is a
field. Then the morphism X → S is universally open (being flat) and hence
the morphism X ′ → S ′ is open, which implies that it takes generic points to
generic points.

Lemma 3.3.8 Let X → S be a scheme of finite type over a Noetherian
scheme S, Z =

∑
nizi be an element of Cycl(X/S, r)⊗Q, f : S ′ → S be a

Noetherian scheme over S and Z ′ = cycl(f)(Z) be the corresponding element
of Cycl(X ×S S ′/S ′, r)⊗Q.
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1. If f is a universally open morphism then supp(Z ′) = (supp(Z) ×S

S ′)red.

2. If f is dominant then Supp(Z) is the closure of (X ×S f)(Supp(Z ′)).

Proof: 1. The inclusion

supp(Z ′) ⊂ (supp(Z)×S S ′)red

follows from Lemma 3.3.6. Lemma 3.3.7 implies immediately that generic
points of supp(Z)×SS

′ lie over generic points of S ′. We may assume therefore
that S ′ = Spec(k) and the image of S ′ in S is a generic point η of S. Then
k is an extension of kη and according to Lemma 2.3.1(2) we have

Supp(Z ′) = Supp(Zη ⊗kη k) = (SuppZη ×Spec(kη) Spec(k))red.

Now it suffices to note that

Zη =
∑

zi/η

nizi

(the sum being taken over those points zi which lie over η) and hence
Supp(Zη) = Supp(Z) ×S Spec(kη). 3. It suffices to show that zi ∈ (X ×S

f)(Supp(Z ′)). Denote by ηi the image of zi in S and let η′i be a generic point
of S ′ over ηi. Using Lemma 3.3.6 and the part (1) of the present lemma we
get

Supp(Z ×Spec(kηi)
Spec(kη′i))red = Supp(Zkη′

i

) =

= Supp(Z ′
kη′

i

) ⊂ Supp(Z ′)

It suffices to note now that the morphism

Supp(Z)×Spec(kηi)
Spec(kη′i) → Supp(Z)

is surjective.

Let f : T → S be a morphism of Noetherian schemes and X → S be a
scheme of finite type over S. We denote by

cycl(f) : Cycl(X/S, r)⊗Z Q → Cycl(X×S T/T, r)⊗Z Q
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the homomorphism Z → ZT constructed in Theorem 3.3.1. Lemma 3.3.6
shows that this homomorphism takes Cyclequi(X/S, r)⊗ZQ to Cyclequi(X×S

T/T, r)⊗Z Q, PropCycl(X/S, r)⊗Z Q to PropCycl(X×S T/T, r)⊗Z Q etc.
We use the same notation cycl(f) for the homomorphisms induced on the
corresponding groups and monoids.

It follows immediately from definitions and Lemma 3.1.4 that

cycl(g ◦ f) = cycl(f) ◦ cycl(g)

for any composable pair of morphisms of Noetherian schemes.
This shows that for any scheme of finite type X → S over a Noetherian

scheme S there is a presheaf of Q-vector spaces Cycl(X/S, r)Q on the cate-
gory of Noetherian schemes over S such that for any Noetherian scheme S ′

over S one has Cycl(X/S, r)Q(S
′) = Cycl(X ×S S ′/S ′, r)⊗Q.

Similarly we have presheaves of Q-vector spaces PropCycl(X/S, r)Q,
Cyclequi(X/S, r)Q, PropCyclequi(X/S, r)Q and presheaves of uniquely divis-
ible abelian monoids Cycleff(X/S, r)Q+, PropCycleff(X/S, r)Q+.

For any Noetherian scheme S ′ over S we have a canonical lattice
Cycl(X ×S S ′, r) in the Q-vector space Cycl(X/S, r)Q(S

′). Unfortunately
these lattices do not form in general a subpresheaf in Cycl(X/S, r)Q (see
example 3.5.10(1)).

Lemma 3.3.9 Let S be a Noetherian scheme, X → S be a scheme of fi-
nite type over S and Z be an element of Cycl(X/S, r). Then the following
conditions are equivalent:

1. For any Noetherian scheme T over S the cycle ZT belongs to Cycl(X×S

T/T, r).

2. For any point s ∈ S the cycle Zs belongs to Cycl(Xs, r).

3. For any point s ∈ S there exists a separable field extension k/ks such
that the cycle Zk = Zs ⊗ks k belongs to Cycl(X ×S Spec(k), r).

Proof: The implication (3=>2) follows from Lemma 2.3.2. The other im-
plications are obvious.

We denote by z(X/S, r) (resp. c(X/S, r), zequi(X/S, r), cequi(X/S, r)) the
subgroup of Cycl(X/S, r) (resp. of PropCycl(X/S, r), Cyclequi(X/S, r),

30



PropCyclequi(X/S, r)) consisting of cycles satisfying the equivalent condi-
tions of Lemma 3.3.9. It is clear that z(X/S, r) (resp. ...) is a subpresheaf
in the presheaf Cycl(X/S, r)Q. Moreover

c(X/S, r) = z(X/S, r) ∩ PropCycl(X/S, r)Q

etc.

Lemma 3.3.10 Let X → S be a scheme of finite type over a Noetherian
scheme S, T → S be a Noetherian scheme over S and W be an element of
Z(Hilb(X/S, r)). Then

[cyclX(W)]T = cyclX×ST (WT ).

Proof: It is sufficient to treat the case W = Z where Z is a closed subscheme
of X flat and equidimensional of relative dimension r over S. Consider any
commutative diagram of the form

Spec(A)
y1→ T

y0
ր

Spec(k) ↓ f
x0

ց

Spec(R)
x1→ S

in which (x0, x1) (resp. (y0, y1)) is a fat k-point of S (resp. of T ). Corollary
3.2.4 shows that

(y0, y1)
∗(cyclX×ST (Z ×S T )) = cyclX×SSpec(k)(Z ×S Spec(k)) =

= (x0, x1)
∗(cyclX(Z)).

Thus the cycle cyclX×ST (Z×S T ) satisfies the requirements defining the cycle
[cyclX(Z)]T .

Corollary 3.3.11 The homomorphisms cyclX define a homomorphism of
presheaves

cycl : Z(Hilb(X/S, r)) → zequi(X/S, r).
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Lemma 3.3.12 Let X → S be a scheme of finite type over a Noetherian
scheme S and f : S ′ → S be a flat morphism of Noetherian schemes. Assume
further that the schemes S, S ′ are reduced. Then for any element Z in
Cycl(X/S, r) one has

cycl(f)(Z) = f ∗
X(Z)

where fX = pr1 : X×S S
′ → X and f ∗

X is the flat pull-back defined in section
2.3.

Proposition 3.3.13 Let S be a Noetherian scheme of exponential charac-
teristic n and X → S be a scheme of finite type over S. Then the subgroups
Cycl(X×S T/T, r)[1/n] in Cycl(X×S T/T, r)⊗Q for Noetherian schemes T
over S form a subpresheaf Cycl(X/S, r)[1/n] in the presheaf Cycl(X/S, r)Q.

Proof: It follows easily from Lemmas 3.3.2 and 3.3.9.

Proposition 3.3.14 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the quotient presheaf Cycl(X/S, r)Q/z(X/S, r) is a presheaf
of torsion abelian groups.

Proof: We have to show that for any Z =
∑

nizi ∈ Cycl(X/S, r) there exists
an integer N > 0 such that NZ ∈ z(X/S, r). Using Noetherian induction
we may assume that for any closed subscheme T ⊂ S such that T 6= S there
exists an integer N(T ) such that N(T )ZT ∈ z(X ×S T/T, r). Denote by Zi

the closure of the point zi considered as an integral closed subscheme of X .
Let S ′ → Sred be a blow-up such that the proper transforms Z̃i of Zi are
flat over S ′. Let U be a dense open subset of S over which the morphism
S ′ → Sred is an isomorphism and let T be the closed reduced subscheme
S − U . We claim that N(T )Z ∈ z(X/S, r). By Lemma 3.3.9 it is sufficient
to verify that N(T )Zs ∈ Cycl(Xs, r) for any point s ∈ S. If s ∈ T it follows
from our choice of N(T ). If s ∈ U it follows from Lemma 3.3.3.

Proposition 3.3.15 Let S be a regular Noetherian scheme. Then for any
scheme of finite type X over S and any r ≥ 0 one has:

Cycl(X/S, r) = z(X/S, r)

Cyclequi(X/S, r) = zequi(X/S, r)

etc.
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Proof: Let Z be an element of Cycl(X/S, r) and let s ∈ S be a point of
S. We have to show that Zs ∈ Cycl(Xs, r). We proceed by induction on
n = dim(OS,s).

If n = 1 then OS,s is a discrete valuation ring so that we have a canonical
fat point Spec(ks)

x0→ Spec(OS,s)
x1→ S over the point Spec(ks) → S. Thus

Zs = (x0, x1)
∗(Z) ∈ Cycl(Xs, r).

If n > 1 choose a regular system of parameters t1, . . . , tn in OS,s. Re-
placing S by an appropriate open neighborhood of s we may assume that
S is affine , t1, . . . , tn ∈ O(S) and the closed subscheme T of S defined
by the equation t1 = 0 is regular and irreducible. Let τ be the generic
point of T . Since dim(OS,τ ) = 1 we conclude that Zτ ∈ Cycl(Xτ , r) and
hence ZT ∈ Cycl(X ×S T/T, r). The induction hypothesis shows now that
Zs ∈ Cycl(Xs, r).

3.4 Relative cycles over geometrically unibranch schemes.

Lemma 3.4.1 Let k be a field, X → Spec(k), S → Spec(k) be two schemes
of finite type over k and Z be a closed subscheme in X ×Spec(k) S defined by
nilpotent sheaf of ideals which is flat over S. Let further E be an extension
of k and s1, s2 be two E-points of S over k. If S is geometrically connected
then the cycles associated with the closed subschemes Z ×s1 Spec(E) and
Z ×s2 Spec(E) in X ×Spec(k) Spec(E) coincide.

Proof: We may replace E by its algebraic closure and thus assume that
E is algebraically closed. Next we may replace X by XE = X ×Spec(k)

Spec(E), S be SE = S ×Spec(k) Spec(E) and Z by ZE = Z ×Spec(k) Spec(E)
and thus assume that E = k. The scheme S being connected we may find
a chain of rational points of S starting with s1 and ending with s2 and
such that any pair of consecutive points belongs to the same irreducible
component of S. Thus we may assume that S is an integral scheme. Let
X1, . . . , Xn denote the irreducible components of X which are considered as
closed integral subschemes of X . Since S is integral and the base field is
algebraically closed we conclude that the schemes Xi × S are integral and
coincide with the irreducible components of X × S.

This shows that the cycle cyclX×S(Z) may be written (uniquely) in the
form

∑
nicyclX×S(Xi × S). Proposition 3.2.2 shows now that the cycles

cyclX(Z ×sj Spec(k)) both coincide with
∑

nicyclX(Xi).
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Theorem 3.4.2 Let S be a Noetherian geometrically unibranch scheme and
X → S be a scheme of finite type over S. Let further Z ⊂ X be a closed
subscheme which is equidimensional of relative dimension r over S. Then
cyclX(Z) ∈ Cyclequi(X/S, r).

Proof: Replacing Z by its irreducible components (which are also equidimen-
sional over S) we may assume that the scheme Z is integral. Choose a blow-
up S ′ → Sred such that the proper transform Z̃ of Z is flat over S ′. Let further
k be a field, s : Spec(k) → S be a k-point of S and s1, s2 : Spec(k) → S ′ be
two liftings of s to S ′. According to Proposition 3.1.5 we have to show that the
cycles cycl(Z̃×s1 Spec(k)), cycl(Z̃×s2 Spec(k)) coincide. Note that according
to Proposition 2.1.7 and Lemma 2.1.11 the closed subscheme Z̃ in Z ×S S ′

is defined by a nilpotent sheaf of ideals and hence Z̃ ×S Spec(k) is a closed
subscheme of (Z×S S

′)×S Spec(k) = (Z×S Spec(k))×Spec(k) (S
′×S Spec(k))

defined by a nilpotent sheaf of ideals. The scheme S ′ ×S Spec(k) is geomet-
rically connected according to Proposition 2.1.6. Thus our statement follows
from Lemma 3.4.1.

Corollary 3.4.3 Let S be a Noetherian geometrically unibranch scheme and
X → S be a scheme of finite type over S. Then the abelian group
Cyclequi(X/S, r) (resp. PropCyclequi(X/S, r)) is freely generated by cycles of
integral closed subschemes Z in X which are equidimensional (resp. proper
and equidimensional) of dimension r over S.

Corollary 3.4.4 Let S be a Noetherian geometrically unibranch scheme and
X → S be a scheme of finite type over S. Then the abelian group
Cyclequi(X/S, r) (resp. the abelian group PropCyclequi(X/S, r)) is generated
by the abelian monoid Cycleff(X/S, r) (resp. by the abelian monoid
PropCycleff(X/S, r)).

Corollary 3.4.5 Let S be a Noetherian regular scheme and X be a scheme
of finite type over S. Then abelian group zequi(X/S, r)(S) (resp. the abelian
monoid zeff (X/S, r)(S)) is the free abelian group (resp. the free abelian
monoid) generated by closed integral subschemes of X which are equidimen-
sional of dimension r over S.

Corollary 3.4.6 Let S be a Noetherian regular scheme and X be a scheme of
finite type over S. Then the abelian group cequi(X/S, r)(S) (resp. the abelian
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monoid ceff(X/S, r)(S)) is the free abelian group (resp. the free abelian
monoid) generated by closed integral subschemes of X which are proper and
equidimensional of dimension r over S.

Example 3.4.7 The statement of Corollary 3.4.4 is false for schemes S
which are not geometrically unibranch. Let us consider the following sit-
uation.

Let S = S1∪S2 be a union of two copies of affine line (i.e. S1
∼= S2

∼= A1)
such that the point {0} (resp. the point {1}) of S1 is identified with the
point {0} (resp. the point {1}) of S2.

We take X to be abstractly isomorphic to S, i.e. X = X1 ∪X2 also is a
union of two copies of affine line glued together in the same way. Consider the
morphism X → S which maps X1, X2 identically on S1. Using Proposition
3.1.5 one can easily see that:

Cycleff(X/S, 0) = 0

Cycl(X/S, 0) = Z

and hence the abelian group of relative cycles is not generated by abelian
monoid of effective relative cycles in this case.

Remarks:

1. The statement of Corollary 3.4.3 is false for the abelian groups
Cycl(X/S, r) and PropCycl(X/S, r) since if dim(S) > 1 there exist
elements Z in these groups such that supp(Z) is not equidimensional
over S (see exmple 3.1.9).

2. It is not true in general that for a geometrically unibranch scheme S the
groups zequi(X/S, r), cequi(X/S, r) (or abelian monoids zeff (X/S, r),
ceff(X/S, r) are generated by elements which correspond to integral
closed subschemes of X (see example 3.5.10(2)) but in view of Propo-
sition 3.3.15 it is true for regular schemes S.

Proposition 3.4.8 Let S be a normal Noetherian scheme and X → S be a
smooth scheme of finite type of dimension r over S. Then one has:

zequi(X/S, r − 1) = Cyclequi(X/S, r − 1)
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cequi(X/S, r − 1) = PropCyclequi(X/S, r − 1)

and the first group is isomorphic to the group of relative Cartier divisors on
X over S.

Proof: Note first that any normal scheme is geometrically unibranch by [8].
By Corollary 3.4.3 the group Cyclequi(X/S, r − 1) is generated by integral
closed subschemes Z in X which are equidimensional of relative dimension
r− 1 over S. By [8, 21.14.3] any such Z is flat over S and our result follows
from the definition of relative Cartier divisor (see [9]) and Corollary 3.3.11.

3.5 Multiplicities of components of inverse images of equidi-
mensional cycles over geometrically unibranch schemes.

Let S be a Noetherian geometrically unibranch scheme and X → S be a
scheme of finite type over S. Corollary 3.4.3 shows that the abelian group
Cyclequi(X/S, r) is the free abelian group generated by generic points of
closed integral subschemes Z ⊂ X of X which are equidimensional of relative
dimension r over S. Let now T → S be a morphism of Noetherian schemes.
Lemma 3.3.6 shows that the cycle [CyclX(Z)]T is a formal linear combina-
tion of generic points of Z ×S T with certain multiplicities. The aim of this
section is to give an explicit formula for these multiplicities. It is sufficient
to consider the case T = Spec(ks) where s is a certain point of S. Moreover
since the groups Cyclequi(X/S, r) and Cyclequi(Xred/Sred, r) coincide we may
assume that the scheme S is reduced and since irreducible components of
S do not intersect we may further assume that S is integral. The formula
we are going to provide involves multiplicities of certain ideals so we start
by recalling briefly the necessary definitions and results from commutative
algebra (see [10]).

Let O be a local Noetherian ring of dimension r and M be a finitely
generated O module. An ideal I ⊂ O is called an ideal of definition if I
contains a certain power of the maximal ideal. For any ideal of definition I
of O one may consider the so called Samuel function:

χI
M(n) = length(M/In+1M).

It is known that for n big enough χI
M(n) is a polynomial in n of degree at

most r. Furthermore it may be written in the form

χI
M(n) = (e/r!)nr + (terms of lower degree)
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where e is a nonnegative integer called the multiplicity of I with respect toM .
We will denote it by e(I,M). The integer e(I,O) is called the multiplicity
of I and is denoted e(I).

Proposition 3.5.1 Let µ1, . . . , µk be all minimal prime ideals of O such that
dim(O/µ) = r, then

e(I,M) =
k∑

i=1

e(I,O/µi)lengthOµi
(Mµi

) =
k∑

i=1

e(I(O/µi))lengthOµi
Mµi

.

Proof: See [10] Theorem 14.7.

Lemma 3.5.2 Let O → O′ be a local homomorphism of Noetherian local
rings. Let MO be the maximal ideal of O and suppose that O′ is a flat O-
algebra and MOO

′ is an ideal of definition of O′. Then for any ideal of
definition I of O the following formula holds

e(IO′) = e(I)lengthO′(O′/MOO
′).

Proof: Flatness of O′ over O implies that for any n we have

χIO′

O′ (n) = lengthO′(O′ ⊗O O/In) = lengthO(O/In)lengthO′(O′/MOO
′) =

= χI
O(n)lengthO′(O′/MOO

′).

The following property of multiplicities is obvious.

Lemma 3.5.3 Assume that O′ is a finite local O algebra such that
dim(O′) = dim(O) and M is a finitely generated O′-module. Let k and k′ be
the residue fields of O and O′. Then for any ideal of definition I of O the
following formula holds:

e(IO′,M) = e(I,M)/[k′ : k].

Let Z → S be a scheme equidimensional of relative dimension r over an
integral Noetherian geometrically unibranch scheme S. Let further s be a
point of S, I be an ideal of definition of the local ring OS,s and z be a generic
point of the fiber Zs = Z ×Spec(ks) S. We set nI(z) = e(IOZ,z)/e(I).
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Lemma 3.5.4 1. nI(z) is independent of the choice of I.

2. If Z is flat over S then nI(z) coincides with the multiplicity of z in the
cycle (cyclZ(Z))s = cyclZs(Zs).

Proof: The second statement follows immediately from Lemma 3.5.2. Re-
placing Z by an appropriate neighborhood of z we may assume that the
morphism Z → S admits a decomposition of the form Z

p0→ Ar
S → S where

p0 is an equidimensional quasi-finite morphism (see Proposition 2.1.3). De-
note p0(z) by x. Then x is the (unique) generic point of the fiber of Ar

S over
s and according to the part (2) of our proposition we have e(IOAr

S ,x
) = e(I).

This shows that nI(z) = e(IOZ,z)/e(IOAr
S
,x) so that we may replace S by

Ar
S and assume that r = 0.
Denote by S ′ the henselization of S at s and by s′ the closed point of

S ′. Set also Z ′ = Z ×S S ′. The fiber of Z ′ over s′ is isomorphic to the
fiber of Z over s and thus there exists exactly one point z′ lying over z.
Since OS′,s′ = Oh

S,s is ind-etale over OS,s and OZ′,z′ is ind-etale over OZ,z

we conclude from Lemma 3.5.2 that e(I) = e(IOS′,s), e(IOZ,z) = e(IOZ′,z′)
and hence nI(z) = nIOS′,s′

(z′). Thus replacing S by S ′ and Z by Z ′ we may
assume that S is a henselian local scheme (note that S ′ is integral since S
is geometrically unibranch). In this case OZ,z is a finite OS,s-algebra and
according to Lemma 3.5.3 and Proposition 3.5.1 we have

nI(z) =
e(IOZ,z)

e(I)
=

e(I,OZ,z)

[kz : ks]e(I)
=

e(I)dimF (S)(OX,x ⊗OS,s
F (S))

e(I)[kz : ks]
=

=
dimF (S)(OX,x ⊗OS,s

F (S))

[kz : ks]

where F (S) is the quotient field of the integral domain OS. Thus nI(z) does
not depend on the choice of I.

We will use the notation n(z) or nZ/S(z) for the common value of mul-
tiplicities nI(z). We will denote by [Z/S]s the element of Cycl(Zs, r) of
the form

∑
n(z)z where the sum is taken over all generic points of Zs =

Z ×S Spec(ks). In the course of the proof of Lemma 3.5.4 we have estab-
lished some useful properties of multiplicities n(z) which we would like to list
now for future use.
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Corollary 3.5.5 1. Assume that the morphism Z → S is factorized in
the form Z → Ar

S → S where the first morphism is quasi-finite and
equidimensional. Then for any point z ∈ Z generic in its fiber over S
one has nZ/S(z) = nZ/Ar

S
(z).

2. Let S ′ be the henselization of S at s, s′ be the closed point of S ′ and z′ be
the only point of Z ′ = Z×S S

′ lying over z. Then nZ′/S′(z′) = nZ/S(z).

3. Let Z → S be a finite equidimensional morphism. Assume that the
fiber Zs consists of only one point z. Then

n(z) =
dimF (S)(OZ,z ⊗OS,s

F (S))

[kz : ks]

where F (S) is the function field of the integral scheme S.

Proposition 3.5.6 Let p : Z → S be an equidimensional scheme of relative
dimension r over an integral Noetherian geometrically unibranch scheme S.
Let S ′ be another integral Noetherian geometrically unibranch scheme and let
f : S ′ → S be a dominant morphism. Set Z ′ = Z ×S S

′. Let finally s′ be any
point of S ′ and s be its image in S. Then [Z ′/S ′]s′ = [Z/S]s ⊗ks ks′.

In other words if z′ is a generic point of the fiber Z ′
s′ and z is its image in Z

then n(z′) = n(z)length((ks′⊗ks kz)µz′
) where µz′ is the ideal ker(ks′⊗ks kz →

kz′).

Proof: Replacing Z by an appropriate neighborhood of z we may assume
by Proposition 2.1.3 that the morphism Z → S admits a decomposition of
the form Z

p0→ Ar
S → S where p0 is an equidimensional quasi-finite mor-

phism. Corollary 3.5.5(1) shows that nZ/S(z) = nZ/Ar
S
(z) and nZ′/S′(z′) =

nZ′/Ar
S′
(z′). Furthermore denoting by x (resp. x′) the image of z (resp. z′)

in Ar
S (resp. Ar

S′) one checks easily that the local rings (ks′ ⊗ks kz)µz′
and

(kx′⊗kx kz)µz′
coincide. Thus we may replace S by Ar

S, S
′ by Ar

S′ and assume
that r = 0. We certainly may also assume S, S ′ to be local schemes and s, s′

to be their closed points.
Consider first the special case S ′ = Spec(Osh

S,s) where Osh
S,s is the strict

henselization of OS,s. Since OS′,s′ (resp. OZ′,z′) is ind-etale over OS,s (resp.
OZ,z) we conclude from Lemma 3.5.2 that e(IOZ′,z′) = e(IOZ,z), e(IOS′,s′) =
e(IOS,s) for any ideal of definition I of OS,s and hence n(z) = n(z′). On the
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other hand ks′ is a separable algebraic extension of ks. Thus (ks′ ⊗ks kz)µz′

is a reduced local Artinian ring and hence a field, i.e.

length((ks′ ⊗ks kz)µz′
) = 1.

In the general case there exists a morphism f ′ : Spec(Osh
S′,s′) → Spec(Osh

S,s)
such that the diagram

Spec(Osh
S′,s′)

f ′

→ Spec(Osh
S,s)

↓ ↓

S ′ f
→ S

commutes. In view of the special case considered above we may replace f
by f ′ and assume that S and S ′ are strictly henselian local schemes. Finally
replacing Z by Spec(OZ,z) we may assume that Z is finite over S and z is its
only point over s. In this situation kz is a purely inseparable extension of ks
and hence the Artinian ring ks′ ⊗ks kz is local (i.e. z′ is the only point of Z ′

over s′) and its residue field coincides with kz′. Using Corollary 3.5.5(3) we
conclude that

n(z) =
dimF (S)(OZ,z ⊗OS,s

F (S))

[kz : ks]

n(z′) =
dimF (S′)(OZ′,z′ ⊗OS′,s′

F (S ′))

[kz′ : ks′]

length((ks′ ⊗ks kz)µz′
) = length(ks′ ⊗ks kz) =

[kz : ks]

[kz′ : ks′]

Now it is sufficient to note that

OZ′,z′ ⊗OS′,s′
F (S ′) = (OZ,z ⊗OS,s

OS′,s′)⊗OS′,s′
F (S ′) =

= (OZ,z ⊗OS,s
F (S))⊗F (S) F (S ′)

and hence

dimF (S)(OZ,z ⊗OS,s
F (S)) = dimF (S′)(OZ′,z′ ⊗OS′,s′

F (S ′)).
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Lemma 3.5.7 Under the assumptions of Proposition 3.5.6 let Z ′ be a closed
subscheme of Z defined by a nilpotent sheaf of ideals and such that the closed
embedding Z ′ → Z is an isomorphism over the generic point of S. Then for
any point s of S the cycles [Z ′/S]s and [Z/S]s coincide.

Proof: Let z be a generic point of the fiber Zs. We have to show that
nZ/S(z) = nZ′/S(z). Let I be an ideal of definition of the local ring OS,s,
let µ1, . . . , µn be all minimal prime ideals of OZ,z and let ν be the kernel
of the natural surjective homomorphism OZ,z → OZ′,z. The ideal ν being
nilpotent is contained in µ1 ∩ . . . ∩ µn and the ideals µ1/ν, . . . , µn/ν are
the minimal prime ideals of OZ′,z. Furthermore our assumptions imply that
(OZ,z)µi

= (OZ′,z)µi/ν . Proposition 3.5.1 shows that

e(IOZ,z) =
∑

i

e(I(OZ,z/µi))length((OZ,z)µi
) =

=
∑

i

e(I(OZ′,z/(µi/ν)))length((OZ′,z)µi/ν) = e(IOZ′,z).

Theorem 3.5.8 Let X → S be a scheme of finite type over an integral
Noetherian geometrically unibranch scheme S. Let further Z be a closed
integral subscheme of X equidimensional of relative dimension r over S and
let Z be the corresponding element of Cycl(X/S, r). Then the cycles Zs and
[Z/S]s coincide for any point s ∈ S of S.

Proof: Let k be an extension of ks and let (x0, x1, R) be a fat point of S over
the k-point Spec(k) → Spec(ks) → S. To prove the theorem we have to show
that (x0, x1)

∗(Z) = [Z/S]s⊗ks k. Since Z×S Spec(R) is equidimensional over
Spec(R) and the closed embedding φx1(Z) → Z×SSpec(R) is an isomorphism
over the generic point of Spec(R) we conclude by Lemma 2.1.10 that φx1(Z)
is defined by a nilpotent sheaf of ideals. Let s′ be the closed point of Spec(R).
Since φx1(Z) is flat over Spec(R) we see from 3.5.4(2),3.5.7 and 3.5.6 that

(x0, x1)
∗(Z) = cycl(φx1(Z)×Spec(R) Spec(k)) = [φx1(Z)/Spec(R)]s′ =

= [Z ×S Spec(R)/Spec(R)]s′ = [Z/S]s ⊗ks k.

For cycles equidimensional over regular Noetherian schemes the above
formula for multiplicities of components of the inverse image reduces to the
usual Tor-formula as one sees from the following lemma.
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Lemma 3.5.9 Let Z → S be an equidimensional scheme of relative dimen-
sion r over a regular scheme S and s ∈ S be a point of S. If z is a generic
point of the fiber Zs of Z over s then one has

nZ/S(z) =
dim(OS,s)∑

i=0

(−1)ilengthOZ,z
(Tor

OS,s

i (OZ,z, ks)).

Proof: Let t1, . . . , tk be a regular system of parameters of the regular local
ring OS,s. Take I = M = t1OS,s+ . . .+tnOS,s to be the maximal ideal of this
ring. Since OS,s is regular the multiplicity e(I) equals one (see [10]). Thus
n(z) = e(IOZ,z). Theorem of Serre ([15]) shows that

e(IOZ,z) =
∑

i

(−1)ilengthOZ,z
(Hi(K(t,OZ,z)))

where K(t,OZ,z) is the Koszul complex corresponding to the sequence t =
(t1, . . . , tn). On the other hand K(t,OS,s) is a projective resolution of ks over
OS,s and hence

Hi(K(t,OZ,z)) = Hi(K(t,OS,s)⊗OS,s
OZ,z) = Tor

OS,s

i (OZ,z, ks).

Example 3.5.10 1. Let F be a field of characteristic p > 0 and let a, b ∈
F ∗ be elements independent modulo (F ∗)p. Set

A = F [T0, T1, T2]/(aT
p
0 + bT p

1 − T p
2 )

and let S = Spec(A). One verifies easily that A is an integrally closed
domain and hence S is a normal integral scheme. Let X be the nor-
malization of S in the field F (S)(γ) where γp = b/a. It is easy to check
that X is isomorphic to Spec(F (α, β)[T1, T2]) where αp = a, βp = b
and the homomorphism A = F [S] → F [X ] = F (α, β)[T1, T2] maps T0

to α−1T2 − γ−1T1.

Take s to be the only singular point of S (i.e. T0(s) = T1(s) = T2(s) =
0) and x to be the only point of X over s. Take I to be the maximal
ideal of OS,s. Then IOX,x is the maximal ideal of the regular local ring
OX,x and hence e(IOX,x) = 1. On the other hand one checks easily
that e(I) = p (see [10, 14.5]). Thus n(x) = 1/p. Therefore cycles of
the form cycl(f)(Z) do not have in general integral coefficients1.

1This example is due to A.S.Merkurjev.
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2. In the notations of previous example let Y be the scheme obtained by
gluing of p copies of X in the singular point. One can easily see that
the fundamental cycle on Y is an element of c(Y/S, 0) which can not be
represented as a sum of cycles which correspond to integral subschemes
of Y .

3.6 Functoriality of Chow presheaves.

Let f : S1 → S2 be a morphism of Noetherian schemes. We say that a closed
subscheme Z of S1 is proper with respect to f if the restriction of f to Z is
a proper morphism. We say that a point s of S1 is proper with respect to f
if the closure of s in S1 which we consider as a reduced closed subscheme is
proper whith respect to f .

Let S be a Noetherian scheme and f : X → Y be a morphism of schemes
of finite type over S. Let further Z =

∑
nizi be a cycle on X which lies

over generic points of S. We say that Z is proper with respect to f if all the
points zi are proper with respect to f . We define then a cycle f∗(Z) on Y as
the sum

∑
nimif(zi) where mi is the degree of the field extension kf(zi)/kzi

if this extension is finite and zero otherwise.

Theorem 3.6.1 Let S be a Noetherian scheme, p : X1 → X2 be a morphism
of schemes of finite type over S, and f : S ′ → S be a Noetherian scheme
over S. Set X ′

i = Xi ×S S ′ (i = 1, 2) and denote by p′ : X ′
1 → X ′

2 be
the corresponding morphism over S ′. Let further Z =

∑
niZi (resp. W =∑

mjWj) be an element of Z(Hilb(X1/S, r)) (resp. of Z(Hilb(X2/S, r))).
Assume that the closed subschemes Zi are proper with respect to p and

p∗(cyclX1(Z)) = cyclX2(W).

Then the cycle cyclX′
1
(Z ×S S ′) is proper with respect to p′ and we have

p′∗(cyclX′
1
(Z ×S S ′)) = cyclX′

2
(W ×S S ′).

Proof: Replacing X1 by ∪Zi and X2 by (∪Wj) ∪ (∪p(Zi)) we may assume
that p is proper, X1 is equidimensional of relative dimension r over S and all
fibers of X2 over S are of dimension ≤ r.

Both cycles in question are linear combinations of points of X ′
2 which

lie over generic points of S ′, are generic in their fibers over S ′ and are of

43



dimension r in these fibers. Let η′ ∈ X ′
2 be any of such points and let η be its

image in X2. Computing the multiplicities of η′ in our cycles we may replace
X2 by any open neighborhood of η. Let V be an irreducible component of X2

which is not equidimensional of dimension r over S. Then V ⊂ p(Zi) for a
certain i and hence V is dominated by a component of Zi. Proposition 2.1.9
shows that all fibers of V over S are of dimension < r and hence η does not
belong to V . Thus throwing away bad components we may assume that X2 is
equidimensional of relative dimension r over S. Proposition 2.1.9 shows also
that we may assume that p is a finite morphism. According to Proposition
2.1.3 we may assume further that the morphism X2 → S has a factorization
of the form X2 → Ar

S → S where the first arrow is an equidimensional
quasi-finite morphism. Since the morphism p maps components of X1 onto
components of X2 we conclude that the composition X1 → X2 → Ar

S is also
equidimensional (and quasifinite). Let Z0

i (resp. W 0
j ) be the closed subset

of Zi (resp. of Wj) consisting of points where Zi (resp. Wj) is not flat over
Ar

S. Lemma 3.2.3 shows that Z0
i and W 0

j contain no points generic in their
fibers over S. Thus η does not belong to (∪W 0

j ) ∩ (∪p(Z0
i )) and shrinking

X2 further around η we may assume that Zi and Wj are flat over Ar
S. This

shows that we may replace S by Ar
S and assume that r = 0.

Let τ ′ (resp. τ) be the image of η′ (resp. η) in S ′ (resp. S). We may
replace S ′ by Spec(OS′,τ ′) and assume that S ′ is a local Artinian scheme. Let
Osh

S′,τ ′ and Osh
S,τ be the strict henselizations of the local rings OS′,τ ′ and OS,τ

respectively. Find a morphism f0 : Spec(Osh
S′,τ ′) → Spec(Osh

S,τ ) making the
following diagram commute

Spec(Osh
S′,τ ′)

f0→ Spec(Osh
S,τ )

↓ ↓
Spec(OS′,τ ′) = S ′ → S.

In view of Lemma 2.3.1 it is sufficient to check that the flat pull-backs of
cycles in question to the scheme X ′

2 ×S′ Spec(Osh
S′,τ ′) coincide. Proposition

2.3.4 shows that these pull-backs are equal to p′∗(cycl(Z×SSpec(O
sh
S′,τ ′))) and

cycl(W×SSpec(O
sh
S′,τ ′)) respectively. Thus we may replace S ′ by Spec(Osh

S′,τ ′)
in the same way we may replace S by Spec(Osh

S,τ ) and thus assume that S
and S ′ are strictly henselian local schemes and τ , τ ′ are their closed points.
Finally replacing X2 by Spec(OX2,η) we may assume thatX2 is a local scheme
finite over S. Since S is strictly local it implies that X ′

2 is also local i.e. η′ is
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the only point of X ′
2. Let α′

1, . . . , α
′
k be all the points of X ′

1. Using Lemma
3.2.1 we see that the multiplicity of η′ in the cycle p′∗(cyclX′

1
(Z ×S S ′)) is

equal to
k∑

l=1

[kα′
l
: kη′ ]

∑

i

lengthOZ′
i,α

′
l
=

=
∑

i

ni

[kη′ : kτ ′]

∑

l

[kα′
l
: kτ ′]lengthOZ′

i,α
′
l
=

=
lengthOS′,τ ′

[kη′ : kτ ′]

∑

i

nideg(Zi/S).

On the other hand the multiplicity of η′ in the cycle cyclX′
2
(W ×S S ′) is

equal to

∑

j

mjlengthOW ′
j ,η

′ =
lengthOS′,τ ′

[kη′ : kτ ′]

∑

j

mjdeg(Wj/S).

Thus we have to show that
∑

nideg(Zi/S) =
∑

mjdeg(Wj/S). To do so
choose a generic point τ 0 of S, let α0

1, . . . , α
0
n be all points of X2 over τ 0 and

for each s = 1, . . . , n let α0
st(t = 1, . . . , ns) be the points of X1 over α0

s. Our
assumption imply that for every s = 1, . . . , n we have the following equality

∑

t

[kα0
st
: kα0

s
]
∑

i

lengthOZi,α0
st
=

∑

j

mjlengthOWj ,α0
s
.

Taking the sum of this equalities with coefficients [kα0
s
: kτ0] and using

once again Lemma 3.2.1 we get what we wanted.

Proposition 3.6.2 Let p : X → Y be a morphism of schemes of finite type
over a Noetherian scheme S and Z =

∑
nizi be an element of Cycl(X/S, r)

such that the points zi are proper with respect to p. Then the following state-
ments hold:

1. The cycle p∗(Z) on Y belongs to Cycl(Y/S, r).

2. For any morphism f : S ′ → S of Noetherian schemes the cycle cycl(f)(Z)
has the form

∑
mjz

′
j where the points z′j are proper with respect to

p′ = p×S S ′ and moreover

p′∗(cycl(f)(Z)) = cycl(f)(p∗(Z)).
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Proof: Denote by Zi (resp. Wi) the closure of zi (resp. p(zi)) considered as
an integral closed subscheme of X (resp. of Y ). Replacing X by ∪Zi we may
assume that the morphism p is proper. Let k be a field, x : Spec(k) → S be
a k-point of S and (x0, x1, R) be a fat point of S over x. Set

Z0 =
∑

niφx1(Zi) ∈ Z(Hilb(X ×S Spec(R)/Spec(R), r))

W0 =
∑

nimiφx1(Wi) ∈ Z(Hilb(Y ×S Spec(R)/Spec(R), r))

where mi = [kzi : kp(zi)] if this field extension is finite and zero otherwise.
It is clear from the definitions that cycl(W0) = (p×SSpec(R))∗(cycl(Z0)).

Theorem 3.6.1 implies now that

(x0, x1)
∗(p∗(Z)) = cycl(W0 ×Spec(R) Spec(k)) =

= (p×S Spec(k))∗cycl(Z0 ×Spec(R) Spec(k)) = (p×S Spec(k))∗((x0, x1)
∗(Z)).

Thus the cycle (x0, x1)
∗(p∗(Z)) is independent of the choice of fat point

(x0, x1, R) over x. The same argument shows now that for any morphism f :
S ′ → S of Noetherian schemes the cycle p′∗(cycl(f)(Z)) meets the property
defining the cycle cycl(f)(p∗(Z)) and hence is equal to this cycle.

Corollary 3.6.3 Let S be a Noetherian scheme and f : X → Y be a mor-
phism (resp. a proper morphism) of schemes of finite type over S. Then
there are homomorphisms:

f∗ : c(X/S, r) → c(Y/S, r)

f∗ : cequi(X/S, r) → cequi(Y/S, r)

f∗ : c
eff(X/S, r) → ceff(Y/S, r)

(resp. homomorphisms

f∗ : z(X/S, r) → z(Y/S, r)

f∗ : zequi(X/S, r) → zequi(Y/S, r)

f∗ : z
eff (X/S, r) → zeff (Y/S, r))

such that for any composable pair of morphisms X
f
→ Y

g
→ Z of schemes

of finite type over S one has (gf)∗ = g∗f∗.
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Let us consider now the contravariant functoriality of Chow presheaves.

Lemma 3.6.4 Let S be a Noetherian scheme and f : X → Y be a flat
equidimensional morphism of dimension n of schemes of finite type over S.
Then for any element Z in Cycl(Y/S, r)⊗Q one has f ∗(Z) ∈ Cycl(X/S, r+
n) and for any Noetherian scheme g : S ′ → S we have

cycl(g)(f ∗(Z)) = (f ×S S ′)∗(cycl(g)(Z)).

Proof: Easy.

Let S be a Noetherian scheme, f : X → Y be a flat (resp. flat and proper)
equidimensional morphism of relative dimension n of schemes of finite type
over S and F (−,−) be one of the presheaves z(−,−), zeff (−,−), zequi(−,−)
(resp. c(−,−), ceff (−,−), cequi(−,−)). If Z is a cycle on Y which belongs
to F (Y/S, r) then by Lemma 3.6.4 the cycle f ∗(Z) belongs to
F (X/S, r + n) and this construction gives us homomorphisms of presheaves

f ∗ : F (Y/S, r) → F (X/S, r + n).

For any composable pair X
f
→ Y

g
→ Z of flat (resp. flat and proper) equidi-

mensional morphisms of schemes of finite type over S we obviously have
(gf)∗ = f ∗g∗.

Proposition 3.6.5 Let S be a Noetherian scheme. Consider a pull-back
square of schemes of finite type over S of the form:

Y ′ g
→ Y

p′ ↓ ↓ p

X ′ f
→ X

such that the morphism f is flat and equidimensional of dimension r. Assume
further that f is proper and F (−,−) is one of the
presheaves c(−,−), ceff(−,−), cequi(−,−) or that p is proper and F (−,−)
is one of the presheaves z(−,−), zeff (−,−), zequi(−,−).

Then the following diagram of presheaves commutes:

F (Y/S, n)
g∗
→ F (Y ′/S, n+ d)

p∗ ↓ ↓ p′∗

F (X/S, n)
f∗

→ F (X ′/S, n + d)
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Proof: It follows immediately from our definitions and 2.3.4.

As an application of our construction of push-forward homomorphisms
we will show that for finite cycles over normal schemes our construction of
base change homomorphisms gives the same answer as the one used in [16].
To start we will recall briefly the latter construction. For an integral scheme
X we denote by F (X) its field of functions.

Definition 3.6.6 A finite surjective morphism of integral Noetherian
schemes f : Y → S is called a pseudo-Galois covering if the field extension
F (Y )/F (S) is normal and the canonical homomorphism

AutS(Y ) → AutF (S)(F (Y )) = Gal(F (Y )/F (S))

is an isomorphism.

Let S be a normal integral Noetherian scheme, X be an integral scheme
and p : X → S be a finite surjective morphism. Let g : S ′ → S be any
Noetherian integral scheme over S. Denote by X ′

i the irreducible components
of X ′ = X ×S S ′ and by xi (resp. x) denote the generic point of X ′

i (resp.
of X). Since any normal scheme is geometrically unibranch Theorem 3.4.2
implies that x ∈ Cyclequi(X/S, 0). Consider the cycle cycl(g)(x) =

∑
nix

′
i.

Assume that there exists2 a pseudo-Galois covering f : Y → S and an
S-morphism q : Y → X . Let G be the Galois group Gal(F (Y )/F (S)) =
AutS(Y ). Denote by Y ′

j the irreducible components of Y ′ = Y ×S S ′. It is
easy to check that the action of G permutes the components Y ′

j transitively
so that in particular the field extensions F (Y ′

j )/F (S ′) are all isomorphic.
Denote by l(i) the number of components Y ′

j lying over X ′
i and by l the total

number of components Y ′
j .

Proposition 3.6.7 In the above notations one has:

ni =
[F (X) : F (S)]l(i)

[F (X ′
i) : F (S ′)]l

.

2Such a covering always exists. For an excellent scheme S it follows trivially from the
finitness of normalizations of S in finite extensions of its field of functions. The proof in
general case is a little more complicated.
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Proof: Denote the generic point of Y (resp. of Y ′
j ) by y (resp. by y′j). The

cycle y is in Cycl(Y/S, 0) by Theorem 3.4.2 and has the following obvious
properties:

1. f∗(y) = [F (Y ) : F (S)]s where s is the generic point of S.

2. q∗(y) = [F (Y ) : F (X)]x

3. σ∗(y) = y for any σ ∈ G.

Consider the cycle cycl(g)(y) =
∑

mjy
′
j. Proposition 3.6.2 shows that

(f ×S S ′)∗(cycl(g)(y)) = [F (Y ) : F (S)]s i.e.
∑

mj [F (Y ′
j ) : F (S ′)] = [F (Y ) :

F (S)]. Moreover for any σ ∈ G we have

(σ ×S S ′)∗(cycl(g)(y)) = cycl(g)(σ∗(y)) = cycl(g)(y).

Since the action of G on the set y′1, . . . , y
′
l is transitive we conclude that all

multiplicities mj are the same and equal to [F (Y ):F (S)]
l[F (Y ′

j ):F (S′)]
. Finally cycl(g)(x) =

1
[F (Y ):F (X)]

(q ×S S ′)∗(cycl(g)(y)) and hence

ni =
1

[F (Y ) : F (X)]

∑

y′j/x
′
i

mj [F (Y ′
j ) : F (X ′

i)] =
[F (X) : F (S)]l(i)

[F (X ′
i) : F (S ′)]l

.

3.7 Correspondence homomorphisms.

Let Y → X be a scheme of finite type over a Noetherian scheme X . For any
cycle Y ∈ Cycl(Y/X, r)⊗Q define a homomorphism

Cor(Y ,−) : Cycl(X)⊗Q → Cycl(Y) ⊗Q

as follows. Let X =
∑

nixi be an element of Cycl(X)⊗Q. Denote by Xi the
closure of the point xi which we consider as an integral closed subscheme of
X . Let iXi

: Xi → X be the corresponding embedding. We set

Cor(Y ,X ) =
∑

ni(Xi ×X Y → Y )∗(cycl(iXi
)(Y)).

49



Lemma 3.7.1 Consider a pull-back square of Noetherian schemes of the
form

Y ′ q
→ Y

↓ ↓

X ′ p
→ X.

Assume that the morphism Y → X is of finite type and let Y be an element
of Cycl(Y/X, r)⊗Q and X ′ be a cycle on X ′ which is proper with respect to
p. Then one has:

Cor(Y , p∗(X
′)) = q∗(Cor(cycl(p)(Y),X ′)).

Proof: We may assume that X ′ = cyclX′(Z ′) where Z ′ is an integral closed
subscheme of X ′ and pZ′ : Z ′ → X is a proper morphism. We have

q∗(Cor(cycl(p)(Y),X ′)) = (Z ′ ×X Y → Y )∗cycl(Z
′ → X)(Y)

and
Cor(Y , p∗(X

′)) = n(p(Z ′)×X Y → Y )∗cycl(p(Z
′) → X)(Y)

where n = [F (Z ′) : F (p(Z ′))] if this extension is finite and zero otherwise.
We have further

(Z ′ ×X Y → Y )∗cycl(Z
′ → X)(Y) =

= (p(Z ′)×X Y → Y )∗(q ×X Y )∗cycl(q)cycl(p(Z
′) → X)(Y).

where q is the morphism Z ′ → p(Z ′). It is sufficient to show that

(Z ′ ×X Y → p(Z ′)×X Y )∗cycl(Z
′ → p(Z ′))(W) = n(W)

for any element W in Cycl(p(Z ′)×X Y/p(Z ′)). To prove the last statement
we may replace p(Z ′) by its generic point Spec(F (Z ′)) and assume that
W = cycl(W ) where W is an integral closed subscheme of Y ×X Spec(F (Z ′)).
For an infinite field extension F (Z ′)/F (p(Z ′)) we immediately conclude that
the left hand side of our equality equals zero (as well as the right hand side).
For finite field extension our equality follows from Lemmas 3.3.12 and 2.3.5.

The following lemma is straightforward.
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Lemma 3.7.2 Consider a pull-back square of Noetherian schemes of the
form

Y ′ q
→ Y

↓ ↓

X ′ p
→ X.

Assume that the morphism Y → X is of finite type, schemes X ′ and X are
reduced and the morphism p is flat. Then for any cycle X in Cycl(X)⊗Q
and any cycle Y in Cycl(Y/X, r)⊗Q one has:

q∗Cor(Y ,X ) = Cor(q∗(Y), p∗(X )).

Theorem 3.7.3 Let S be a Noetherain scheme and f : Y → X be a mor-
phism of schemes of finite type over S. Let further Y =

∑
niyi be an element

of Cycl(Y/X, n)⊗Q and X be an element of Cycl(X/S,m)⊗Q. Then the
element Cor(Y ,X ) belongs to the group Cycl(Y/S, n+m). Moreover for any
Noetherian scheme g : S ′ → S over S one has

cycl(g)(Cor(Y ,X )) = Cor(cycl(g ×S X)(Y), cycl(g)(X )).

Proof: We will first consider the following particular case of our theorem.

Lemma 3.7.4 The statement of the theorem holds if Y = cyclY (Y0), X =
cyclX(X0) where Y0 (resp. X0) is a closed subscheme of Y (resp. of X) which
is flat over X (resp. over S).

Proof: Set X ′ = X ×S S ′, Y ′ = Y ×S S ′. By Lemma 3.3.10 Cor(Y ,X )
coincides with the cycle associated with the closed subscheme Y0 ×X X0 in
Y which is clearly flat over S. Therefore Cor(Y ,X ) is a relative cycle over
S by 3.2.5. We have further

cycl(g)(Cor(Y ,X )) = cycl(g)(cyclY (Y0 ×X X0)) = cyclY ′((Y0 ×X X0)×S S ′)

and

Cor(cycl(g×SX)(Y), cycl(g)(X )) = Cor(cyclY ′(Y0×SS
′), cyclX′(X0×SS

′)) =

= cyclY ′((Y0 ×S S ′)×X′ (X0 ×S S ′))

Since
(Y0 ×S S ′)×X′ (X0 ×S S ′) ∼= (Y0 ×X X0)×S S ′
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we conclude that our equality holds.

Let k be a field, x : Spec(k) → S be a k-valued point of S and (x0, x1, R) be
a fat point of S over x. It is clearly sufficient to show that

(x0, x1)
∗(Cor(Y ,X )) = Cor(cycl(x×S X)(Y), cycl(x)(X )).

Let (x0, Id) be the obvious fat point of Spec(R). By Lemma 3.7.2 (and
Lemma 3.3.12) we have

(x0, x1)
∗(Cor(Y ,X )) = (x0, Id)

∗(Cor(cycl(x1 ×S X)(Y), cycl(x1)(X ))).

We may assume now that S = Spec(R) where R is a discrete valuation
ring. In this case all cycles which are formal linear combinations of points
over the generic point of S are relative cycles over S (by Corollary 3.2.6).
Thus we may assume that X = cyclX(X0) where X0 is a closed integral
subscheme of X which is equidimensional of relative dimension m over S
and we have to show that

cycl(x)(Cor(Y ,X )) = (Cor(cycl(x×S X)(Y), cycl(x)(X ))).

Denote by i the closed embedding X0 → X . We set

Y0 = Y ×Y X0

Xx = X ×S Spec(k) Yx = Y ×S Spec(k)
(X0)x = X0 ×S Spec(k) (Y0)x = Y0 ×S Spec(k)
u = pr1 : Y0 → Y ux = u×S Spec(k) : (Y0)x → Yx

v = pr1 : Xx → X v0 = pr1 : (X0)x → X0

We have
x∗(Cor(Y ,X )) = x∗(u∗(cycl(i)(Y))) =

= ((ux)∗(cycl(x)(cycl(i)(Y))) = (ux)∗(cycl(x)(Cor(cycl(i)(Y), cyclX0(X0))))

and
Cor(cycl(v)(Y), cycl(x)(X )) =

= (ux)∗(Cor(cycl(v0)cycl(i)(Y), cycl(x)(cyclX0(X0)))).

We may replace now X by X0 and assume further that X is integral and
equidimensional of relative dimension m over S and X is the fundamental
cycle of X .
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Denote by Yi the closures of the points yi which we consider as integral
closed subschemes of Y . Let fX : X̃ → X be a blow-up of Xred such that
the proper transforms of Yi with respect to fX are flat and equidimensional
of relative dimension n over X̃ . Consider the pull-back square

Ỹ
fY→ Y

↓ ↓

X̃
fX→ X.

Let X̃ be the fundamental cycle of X̃ . Since S is the spectrum of a discrete
valuation ring we have X̃ ∈ Cycl(X̃/S,m). Consider the following diagram
of abelian groups (we write Cycl(−) instead of Cycl(−,−)⊗Q):

Cycl(Y/X)
cycl(fX)
→ Cycl(Ỹ /X̃)

Cor(−,X̃ )
→ Cycl(Ỹ /S)

(fY )∗
→ Cycl(Y/S)

↓ cycl(j) ↓ cycl(j̃) ↓ cycl(x) ↓ cycl(x)

Cycl(Yx/Xx)
cycl(fXx)→ Cycl(Ỹx/X̃x)

Cor(−,X̃x)
→ Cycl(Ỹx/Sx)

(fYx )∗→ Cycl(Yx/Sx)

where
Ss = Spec(k)
Xx = X ×S Spec(k) Yx = Y ×S Spec(k)

X̃x = X̃ ×S Spec(k) Ỹx = Ỹ ×S Spec(k)

and
j : Xx → X j̃ : X̃x → X̃

are the obvious morphisms and X̃x = cycl(x)(X̃ ).
The composition of the upper horizontal arrows equals Cor(−,X ) by

Lemma 3.7.1. By Proposition 3.6.2

(X̃x → X̃)∗(X̃x) = cycl(x)(X )

and thus the composition of lower horizontal arrows equals
Cor(−, cycl(x)(X )) by Lemma 3.7.1. We have only to show now that our
diagram is commutative on Y ∈ Cycl(Y/X). The first square is commutative
since fX ◦ j̃ = j ◦ fXx . The last square is commutative by Proposition 3.6.2.
Finally the middle square is commutative on cycl(fX)(Y) by our choice of
the blow-up X̃ → X and Lemma 3.7.4.
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Corollary 3.7.5 Let S be a Noetherian scheme and X1 → X2
p
→ S be

a morphism of schemes of finite type over S. Let F (−,−) be one of the
presheaves z(−,−), zeff (−,−), zequi(−,−), c(−,−), cequi(−,−), ceff(−,−).
Then for any n,m ≥ 0 there is a canonical morphism of presheaves of the
form

CorY/X : p∗(F (X1/X2, n))⊗ F (X2/S,m) → F (X1/S,m+ n)

Lemma 3.7.1 implies immediately the following proposition.

Proposition 3.7.6 Let S be a Noetherian scheme. Consider a pull-back
square of schemes of finite type over S of the form:

Y ′ g
→ Y

↓ ↓

X ′ f
→ X

Denote by p : X → S, p′ : X ′ → S the structural morphisms of X
and X ′ respectively. Assume further that F (−) is one of the presheaves
c(−,−), ceff (−,−), cequi(−,−) or that f is proper and F (−,−) is one of the
presheaves z(−,−), zeff (−,−), zequi(−,−).

Then the following diagram of morphisms of presheaves commutes:

p∗F (Y/X)⊗ F (X ′/S)
Id⊗f∗→ p∗F (Y/X)⊗ F (X/S) ց

↓ F (Y/S)

p′∗F (Y ′/X ′)⊗ F (X ′/S)
CorY ′/X′

→ F (Y ′/S) ր

Proposition 3.7.7 Let Z → Y → X be a composable pair of morphisms of
finite type of Noetherian schemes. Let further X be an element of Cycl(X)⊗
Q and Z,Y be elements of Cycl(Z/Y, n)⊗Q and Cycl(Y/X,m)⊗Q respec-
tively. Then one has

Cor(Cor(Z,Y),X ) = Cor(Z, Cor(Y ,X )).

Proof: It follows easily from definitions and Theorem 3.7.3.

Corollary 3.7.8 Let S be a Noetherian scheme and Z
f
→ Y

g
→ X be a

composable pair of morphisms of schemes of finite type over S. Denote by
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h : Z → S the structural morphism and let F (−) be one of the presheaves
z(−,−), zeff (−,−), zequi(−,−), c(−,−), cequi(−,−), ceff (−,−).
Then the following diagram of morphisms commutes:

h∗g∗F (Z/Y )⊗ h∗F (Y/X)⊗ F (X/S) → h∗F (Z/X)⊗ F (X/S)
↓ ↓

h∗g∗F (Z/Y, n)⊗ F (Y/S) → F (Z/S).

Existence of correspondence homomorphisms for relative cycles allows
us to construct the homomorphism of external product (see [4]). Let pX :
X → S, pY : Y → S be two schemes of finite type over a Noetherian
scheme S. Let further F (−,−) be one of the groups z(−,−), zequi(−,−),
zeff (−,−), c(−,−), cequi(−,−), ceff(−,−). We define the external product
homomorphism

F (X/S, n)⊗ F (Y/S,m) → F (X ×S Y/S, n+m)

as the following composition

F (X/S,n)⊗F (Y/S,m)
cycl(pY )⊗Id

→ F (X×SY/Y,n)⊗F (Y/S,m)
CorX×SY/Y

→ F (X×SY/S,n+m).

One can verify easily using results of this section that it satisfies all the stan-
dard properties of external products of cycles and defines a homomorphism
of the corresponding Chow presheaves.
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4 Chow sheaves in the h-topologies.

4.1 The h-topologies.

In this section we will remind briefly the definitions and some basic properties
of three Grothendieck topologies (the h-topology, the qfh-topology and the
cdh-topology) on the categories of schemes. For more information on the h-
and the qfh-topologies see [18] or [16].

A morphism of schemes p : X → Y is called a topological epimorphism
if the underlying Zariski topological space of Y is a quotient space of the
underlying Zariski topological space of X (i.e. p is surjective and a subset
A of Y is open if and only if p−1(A) is open in X), p is called a universal
topological epimorphism if for any Z/Y the morphism pZ : X ×Y Z → Z is
a topological epimorphism.

An h-covering of a scheme X is a finite family of morphisms of finite
type {pi : Xi → X} such that

∐
pi :

∐
Xi → X is a universal topological

epimorphism.
A qfh-covering of a scheme X is an h-covering {pi} such that all the

morphisms pi are quasi-finite.
h-coverings (resp. qfh-coverings) define a pretopology on the category of

schemes, the h-topology (resp. the qfh-topology) is the associated topology.
The definition of the cdh-topology is a little less natural. Namely the cdh-

topology on the category of schemes is the minimal Grothendieck topology
such that the following two types of coverings are cdh-coverings.

1. Nisnevich coverings, i.e. etale coverings {Ui
pi→ X} such that for any

point x of X there is a point xi on one of the Ui such that pi(xi) = x
and the morphism Spec(kxi

) → Spec(kx) is an isomorphism.

2. Coverings of the form X ′ ∐Z
pX′

∐
pZ

→ X such that pX′ is a proper mor-
phism, pZ is a closed embedding and the morphism p−1

X′ (X−pZ(Z)) →
X − pZ(Z) is an isomorphism.

Obviously the h-topology is stronger than both the qfh- and the cdh-
topology, the cdh-topology is stronger than the Zariski topology and standard
results on flat morphisms show that qfh-topology is stronger than the flat
topology.
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Lemma 4.1.1 Let {Ui
pi→ X} be an h-covering of a Noetherian scheme X.

Denote by
∐
Vj the disjoint union of all irreducible components of

∐
Ui which

dominate an irreducible component of X. Then the morphism q :
∐
Vj → X

is surjective.

Proof: See [18].

Remark: In fact the property of h-coverings considered in Lemma 4.1.1 is
characteristic. Namely one can show that a morphism of finite typeX → S of
Noetherian schemes is an h-covering if and only if for any Noetherian scheme
T over S the union of irreducible components of X ×S T which dominate
irreducible components of T is surjective over T .

Proposition 4.1.2 Let X be a Noetherian scheme andU = {Ui → X} be an
h-covering of X. Then there is a refinement {Vj → X} of U such that each

morphism qj : Vj → X admits a decomposition of the form Vj

qfj
→ Wj

qpj
→ X

such that qfj is a faithfully flat morphism, Wj is irreducible and qpj is an
abstract blow-up (see Defenition 2.2.4) of an irreducible component of X.

Proof: To prove our proposition we may assume that X is integral and
our covering is of the form U → X . By Theorem 2.2.2 there is a blow-up
p : W → X such that the proper transform Ũ of U is flat over W . It is
sufficient to show that the morphism Ũ → W is surjective. Let Z be a
closed subscheme in X such that Z 6= X and the morphism p : W → X is
an isomorphism outside Z. Since W ×X U → W is an h-covering and the
closure of the complement W ×X U − Ũ lies over p−1(Z) and, therefore is
not dominant over any irreducible component of W , the surjectivity of the
morphism Ũ → W follows from Lemma 4.1.1.

Lemma 4.1.3 Let S be a Noetherian scheme and p : X → S be a scheme of
finite type over S. Suppose that there is an h-covering f : S ′ → S such that
the scheme X ′ = X ×S S ′ is proper over S ′. Then X is proper over S.

Proof: Denote the projections X ×S S ′ → X , X ×S S ′ → S ′ by f ′ and p′

respectively. Let Z be a closed subset in X . It is sufficient to show that p(Z)
is closed in S. Since f : S ′ → S is an h-covering p(Z) is closed in S if and only
if f−1(p(Z)) is closed in S ′. We obviously have f−1(p(Z)) = p′((f ′)−1(Z)).
Since p′ is proper we conclude that this set is closed.
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Lemma 4.1.4 Let S be a Noetherian scheme and φ : F → G be a morphism
of presheaves on the category of Noetherian schemes over S. Assume further
that for any integral Noetherian scheme T over S and any section a ∈ G(T )
of G over T there is an abstract blow-up f : T ′ → T such that f ∗(a) belongs
to the image of φT ′ : F (T ′) → G(T ′). Then φcdh : Fcdh → Gcdh is an
epimorphism of the associated cdh-sheaves.

Proof: It is sufficient to show that for any section a ∈ G(S) of G over S

there is a cdh-covering {Xi
pi→ S} such that p∗i (a) belongs to the image of

φXi
: F (Xi) → G(Xi). Our condition implies that there is a closed subscheme

S1 in S such that S1 6= S and a proper surjective morphism q : X1 → S
such that X1 − q−1(S1) → S − S1 is an isomorphism and q∗(a) belongs to
Im(φX1). Since X1

∐
S1 → S is a cdh-covering of S we reduced our problem

to S1. Repeating this construction we get a sequence of closed subschemes
. . . Si ⊂ Si−1 ⊂ . . . ⊂ S1 ⊂ S such that Si 6= Si−1. Since the scheme S is
Noetherian this sequence must be finite, i.e. Si = ∅ for i > n. The family
of morphisms {Xi → Si → S}i=1,...,n is then a cdh-covering of S with the
required property.

4.2 Sheaves in the h-topologies associated with Chow presheaves.

Lemma 4.2.1 Let X → S be a scheme of finite type over a Noetherian
scheme S and Z be an element of Cycl(X/S, r). Then there is an abstract
blow-up f : S ′ → S such that

cycl(f)(Z) =
∑

nicycl(Z
′
i) =

∑
nicycl((Z

′
i)red)

where Z ′
i are irreducible closed subschemes of X ×S S ′ which are flat and

equidimensional of relative dimension r over S ′.

Proof: It follows immediately from Theorem 2.2.2.

Theorem 4.2.2 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the presheaves Cycl(X/S, r)Q and Cycleff(X/S, r)Q are h-
sheaves and if S is a scheme of exponential characteristic p the same holds
for the presheaves z(X/S, r)⊗ Z[1/p] and zeff (X/S, r)⊗ Z[1/p].
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Proof: We will only consider the case of Cycl(X/S, r)Q. The proof for
Cycleff(X/S, r)Q is similar.

Note first that the presheaves Cycl(X/S, r)Q are separated with respect
to the h-topology, i.e. the canonical morphisms of presheaves
Cycl(X/S, r)Q → (Cycl(X/S, r)Q)h are monomorphisms. Therefore accord-
ing to the standard construction of the sheaf associated with a presheaf
(see [11],[1]) it is sufficient to show that for any cofinial class of h-coverings
{Ui → S}i=1,...,n of S the following sequence of abelian groups is exact:

Cycl(X/S, r)Q(S) →
⊕

i

Cycl(X/S, r)Q(Ui) →
⊕

i,j

Cycl(X/S, r)Q(Ui ×S Uj)

We may obviously replace the covering {Ui → S} by the covering

p : U =
∐

Ui → S

and hence assume that n = 1. By Lemma 4.1.1 we may also assume that
any irreducible component of U dominates an irreducible component of S.

We will use the following simple lemma.

Lemma 4.2.3 Let pY : Y → Spec(k), pX : X → Spec(k) be two schemes of
finite type over a field k. Then the sequence of abelian groups

Cycl(X/Spec(k), r)⊗Q
cycl(pY )
→ Cycl(X ×Spec(k) Y/Y, r)⊗Q

cycl(pr1)−cycl(pr2)
→

→ Cycl(X ×Spec(k) Y ×Spec(k) Y/Y ×Spec(k) Y, r)⊗Q

(where pri : Y ×Spec(k) Y → Y are the projections) is exact.

Let Y be an element of Cycl(X/S, r)Q(U) such that cycl(pr1)(Y) =
cycl(pr2)(Y). Since any irreducible component of U dominates an irre-
ducible component of S Lemma 4.2.3 implies that there exists a cycle Z
on X such that for any generic point η : Spec(L) → U of U one has
cycl(p ◦ η)(Z) = cycl(η)(Y). It is obviously sufficient to show that Z be-
longs to Cycl(X/S, r)⊗Q.

Let k be a field and (x0, x1, R), (y0, y1, Q) be two fat k points of S over
a k-point s : Spec(k) → S of S. We have to show that (x0, x1)

∗(Z) =
(y0, y1)

∗(Z).
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Lemma 4.2.4 Let R be a discrete valuation ring and p : X → Spec(R) be
an h-covering of Spec(R). Then there exist a discrete valuation ring Q, a
dominant morphism p0 : Spec(Q) → Spec(R) which takes the closed point of
Spec(Q) to the closed point of Spec(R) and a morphism s : spec(R) → X
such that p ◦ s = p0.

Proof: By Lemma 4.1.1 there is an irreducible component X0 of X which is
dominant over S and whose image contains the closed point of Spec(R) i.e.
X0 is irreducible and surjective over S. Then by [6] there is a discrete valu-
ation ring Q and a dominant morphism Spec(Q) → X0 such that the image
of the closed point of Spec(Q) lies in the closed fiber of X0 over Spec(R).

By Lemma 4.2.4 we may construct a commutative diagram of the form

Spec(R′)
x′
1→ U

f

ց
x′
0

ր Spec(R) ↓ p
x0

ր
x1

ց
Spec(L)

r
→ Spec(k) S

y0
ց

y1
ր

y′0
ց Spec(Q) ↑ p

g

ր

Spec(Q′)
y′1→ U

such that (x′
0, x

′
1, R

′), (y′0, y
′
1, Q

′) are fat points of U and f , g are domi-
nant morphisms. It is obviously sufficient to show that (x0, x1)

∗(Z)⊗k L =
(y0, y1)

∗(Z)⊗k L. We clearly have:

(x0, x1)
∗(Z)⊗k L = (x′

0, x
′
1)

∗(Y)

(y0, y1)
∗(Z)⊗k L = (y′0, y

′
1)

∗(Y).

It is sufficient to show that the right hand sides of these two equalities
coincide. Denote the L points x′

1◦x
′
0 and y′1◦y

′
0 of U by x′ and y′ respectively.

Since Y is an element of Cycl(X ×S U/U, r) we have

(x′
0, x

′
1)

∗(Y) = cycl(x′)(Y) = cycl(x′ ×S y′)(cycl(pr1)(Y))
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(y′0, y
′
1)

∗(Y) = cycl(y′)(Y) = cycl(x′ ×S y′)(cycl(pr2)(Y))

(where pri : U ×S U → U are the projections) and since

cycl(pr1)(Y) = cycl(pr2)(Y)

by our condition on Y we conclude that (x0, x1)
∗(Z) = (y0, y1)

∗(Z).

Proposition 4.2.5 Let X → S be a scheme of finite type over a scheme S.
Then the presheaves Cyclequi(X/S, r)Q are qfh-sheaves and if S is a scheme of
exponential characteristic p the same holds for the presheaves zequi(X/S, r)⊗
Z[1/p].

Proof: It is clearly sufficient to consider the case of Cyclequi(X/S, r)Q. Let
Z be an element of Cycl(X/S, r)⊗Q. In view of Theorem 4.2.2 it is suffi-
cient to show that if there exists a qfh-covering f : S ′ → S of S such that
supp(cycl(f)(Z)) is equidimensional of dimension r over S ′ then supp(Z)
is equidimensional of dimension r over S. By Theorem 2.1.1 we have only
to show that dim(supp(Z)/S) ≤ r. By Lemma 4.1.1 we may assume that
any irreducible component of S ′ dominates an irreducible component of S
and dim(supp(cycl(f)(Z))/S ′) ≤ r. Then supp(cycl(f)(Z)) is the closure in
supp(Z)×S S

′ of the fibers of this scheme over generic points of S ′. Since the
projection supp(Z) ×S S ′ → supp(Z) is a qfh-covering using again Lemma
4.1.1 we conclude that the morphism g : supp(cycl(f)(Z)) → supp(Z) is
surjective and hence dim(supp(Z)/S) ≤ r since the morphisms g and f are
quasi-finite.

Proposition 4.2.6 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the presheaves PropCycl(X/S, r)Q and
PropCycleff(X/S, r)Q are h-sheaves and if S is a scheme of exponential
characteristic p the same holds for the presheaves c(X/S, r) ⊗ Z[1/p] and
ceff(X/S, r)⊗ Z[1/p].

Proof: In view of Theorem 4.2.2 it is sufficient to show that if Z is an
element of Cyclequi(X/S, r) ⊗Q and there exists an h-covering f : S ′ → S
such that the support supp(cycl(f)(Z)) is proper over S ′ then supp(Z) is
proper over S.

We may obviously assume that S is reduced. By 4.1.2 we may assume

further that f admits a decomposition of the form S ′ f0→ S ′′ f1→ S such
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that f1 is an abstract blow-up and f0 is faithfully flat. Let cycl(f1)(Z) =∑
nicycl(Z

′′
i ) where Z ′′

i are irreducible closed subschemes of X ′′ = X ×S S ′′.
Since f0 is flat the closed subsets supp(cycl(f1f0)(Z)) and

supp(cycl(f1)(Z))×S′′ S ′ coincide. Since f0 in particular is an h-covering we
conclude by Lemma 4.1.3 that supp(cycl(f1f0)(Z)) is proper over S ′′.

Let Z =
∑

mjcycl(Zj) where Zj are integral closed subschemes of X and
mj 6= 0. We have to show that the morphism ∪Zj → S is proper. Consider
the commutative diagram:

∪Z ′′
i → ∪Zi

↓ ↓
S ′′ → S

The upper horizontal arrow is proper since it is a composition of a closed
embedding Z ′′

i → Zi×S S
′′ with a proper morphism Zi×S S

′′ → Zi. Being an
isomorphism in generic points it is surjective. Therefore ∪Zi → S is proper
since f1 is proper and ∪Z ′′

i → S ′′ is proper.

The following proposition follows immediately from Propositions 4.2.5, 4.2.6.

Proposition 4.2.7 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the presheaves PropCyclequi(X/S, r)Q are qfh-sheaves and if
S is a scheme of exponential characteristic p the same holds for the presheaves
cequi(X/S, r)⊗ Z[1/p].

Proposition 4.2.8 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then for any r ≥ 0 the h-sheaves Cycl(X/S, r)Q,
PropCycl(X/S, r)Q are the h-sheaves of abelian groups associated in the ob-
vious way with the h-sheaves of abelian monoids Cycleff(X/S, r)Q,
PropCycleff(X/S, r)Q. The same holds for the corresponding p-divisible
sheaves if S is a scheme of exponential characteristic p.

Proof: By 4.2.2, 4.2.6 the presheaves Cycl(X/S, r)Q,
PropCycl(X/S, r)Q and their effective versions are h-sheaves. By Lemma
4.1.4 it is sufficient to show that for any element Z of Cycl(X/S, r)Q(S)
there is an abstract blow-up f : S ′ → S such that cycl(f)(Z) is a linear
combination of elements of Cycleff(X/S, r)(S ′). It follows immediately from
Lemma 4.2.1.
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Theorem 4.2.9 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then one has:

1. For any r ≥ 0 the presheaves z(X/S, r), c(X/S, r), zeff (X/S, r),
ceff(X/S, r) are sheaves in the cdh-topology.

2. The cdh-sheaves associated with the presheaves zequi(X/S, r),
cequi(X/S, r) are isomorphic to z(X/S, r) and c(X/S, r) respectively.

Proof: Since we know already that Cycl(X/S, r)Q etc. are h-sheaves to
prove the first part of the theorem it is sufficient to show that for any element
Z of Cycl(X/S, r)Q(S) such that there exists a cdh-covering p : S ′ → S such
that cycl(p)(Z) ∈ z(X/S, r)(S ′) one has Z ∈ z(X/S, r)(S).

It follows immediately from 3.3.9 and the fact that any cdh-covering of a
spectrum of a field splits.

The second part follows trivially from the first part and Lemma 4.2.1.

Proposition 4.2.10 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then for any r ≥ 0 the cdh-sheaf z(X/S, r) (resp. c(X/S, r)) is
the cdh-sheaf of abelian groups associated in the obvious way with the cdh-
sheaf of abelian monoids zeff (X/S, r) (resp. ceff(X/S, r)).

Proof: It follows from Lemma 4.1.4 and Lemma 4.2.1.

Let p : X → S be a morphism of finite type of Noetherian schemes. For
any Noetherian scheme T over S consider an equivalence relation RT ⊂
N(Hilb(X/S, r))(T )×N(Hilb(X/S, r))(T ) such that (

∑
niZi,

∑
mjWj) be-

longs to RT if and only if cyclXT
(
∑

niZi) = cyclXT
(
∑

mjWj) where XT =
X ×S T . Proposition 3.2.2 implies that it gives us equivalence relations R
on the presheaves N(Hilb(X/S, r)), N(PropHilb(X/S, r)), Z(Hilb(X/S, r)),
Z(PropHilb(X/S, r)) which are obviously consistent with the additive struc-
ture of these presheaves.

Theorem 4.2.11 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then one has canonical isomorphisms of cdh-sheaves:

z(X/S, r) = (Z(Hilb(X/S, r))/R)cdh

zeff (X/S, r) = (N(Hilb(X/S, r))/R)cdh
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c(X/S, r) = (Z(PropHilb(X/S, r))/R)cdh

ceff (X/S, r) = (N(PropHilb(X/S, r))/R)cdh

Proof: We will only consider the first isomorphism. Proof in the other
cases is similar. Note first that by 3.3.11 there is a morphism of presheaves
Z(Hilb(X/S, r)) → z(X/S, r) and clearly the presheaf Z(Hilb(X/S, r))/R
is the image of this morphism. The fact that the corresponding associated
cdh-sheaf coincides with z(X/S, r) follows immediately from Lemma 4.1.4
and Lemma 4.2.1.

Theorem 4.2.12 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then one has:

1. The sheaf cequi(X/S, 0)qfh is canonically isomorphic to the qfh-sheaf
Zqfh(X/S) of abelian groups freely generated by the sheaf of sets repre-
sentable by X.

2. The sheaf ceff(X/S, 0)qfh is canonically isomorphic to the qfh-sheaf
Nqfh(X/S) of abelian monoids freely generated by the presheaf of sets
representable by X.

Proof: We will only consider the first statement. The prove of the second
one is similar.

Let δ ∈ ceff(X/S, 0)(X) ⊂ Cycl(X ×S X/X, 0) be the element which
corresponds to the diagonal ∆ : X → X ×S X . By the universal property
of the freely generated sheaves it gives us a morphism of sheaves Zqfh(X) →
ceff(X/S, 0)qfh. We have to show that it is an isomorphism. Note that it
is a monomorphism since the functor of associated sheaf is exact and the
corresponding morphism from the presheaf of abelian groups freely generated
by X to the presheaf c(X/S, 0) is obviously a monomorphism.

To show that it is an epimorphism it is sufficient to verify that for any
element Z of ceff (X/S, 0)(S) there is a qfh-covering p : S ′ → S such that
cycl(p)(Z) is a formal linear combination of S ′-points of X ×S S ′ over S ′.
We may assume that S is integral and Z =

∑
nicycl(Zi) where Zi 6= Zj are

integral closed subscheme of X which are finite and surjective over S. We
will use induction on deg(Z/S) =

∑
|ni|deg(Zi/S). If N = 0 then Z = 0

and there is nothing to prove.
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Set Z =
∐
Zi. Since pZ : Z → S is finite and surjective it is a qfh-

covering. It is sufficient (by the induction hypothesis) to show that there
exists a cycle Z1 in cequi(X ×S Z1/Z1, 0) which is a linear combination of
Z1-points of X ×S Z1 over Z1 and such that

deg(cycl(pZ1)(Z)−Z1) < deg(Z/S).

The cycle cycl(pZ1)(Z) is of the form
∑

ni(
∑

mjWij) where Wij are the irre-
ducible components of the schemes Z1 ×S Zi. We obviously have

∑
mjdeg(Wij/Z1) = deg(Zi/S)

and hence ∑
nimjdeg(Wij/Z1) = deg(Z/S).

Let W11 be the irreducible component of Z1 ×S Z1 which is the image of the
diagonal embedding Z1 → Z1 ×S Z1. One can easily see that cycl(W11) ∈
cequi(X ×S Z1/Z1, 0) and hence we may set Z1 = n1m1cycl(W11).

Lemma 4.2.13 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the h-sheaf zequi(X/S, r)h (resp. the sheaf cequi(X/S, r)h) is
isomorphic to the h-sheaf z(X/S, r)h (resp. to the sheaf c(X/S, r)h).

Proof: It follows trivially from Lemma 4.2.1

Proposition 4.2.14 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then one has:

1. The sheaf c(X/S, 0)h is canonically isomorphic to the h-sheaf Zh(X/S)
of abelian groups freely generated by the sheaf of sets representable by
X.

2. The sheaf ceff(X/S, 0)h is canonically isomorphic to the h-sheaf
Nh(X/S) of abelian monoids freely generated by the presheaf of sets
representable by X.

Proof: It follows immediately from Theorem 4.2.12 and Lemma 4.2.13.
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Proposition 4.2.15 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then the canonical morphisms of presheaves:

z(X/S, r)qfh → z(X/S, r)h

c(X/S, r)qfh → c(X/S, r)h

etc.
are isomorphisms.

Proof: To prove this proposition we need the following two lemmas.

Lemma 4.2.16 Let S be a Noetherian scheme and {x1, . . . , xn} be a finite
set of points of S. Let E1, . . . , En be finite extensions of the fields kx1, . . . , kxn.
Then there is a finite surjective morphism S ′ → S such that for any i =
1, . . . , n and any point y over xi the field extension ky/ki contains Ei.

Proof: Replacing S by the disjoint union of its irreducible components we
may assume that S is integral. Using Zariski’s main theorem [11] one can
reduce the problem to the case when S is a semi-local scheme and xi are the
closed points of S. We may obviously assume that Ei are normal extensions
of kxi

and since Ei are finitely generated over kxi
using induction on the

minimal number of generators we may further assume that Ei = kxi
(zi) for

some elements zi in Ei. Let

fi(z) = zdi + ai1z
di−1 + . . .+ aidi

be the minimal polinomial of zi over kxi
and

gi = f
d1...dn/di
i .

Then gi are of the same degree d = d1 . . . dn. Let bij , i = 1, . . . , n, j = 1, . . . , d
be the coefficients of gi. We will find then elements Bj in O(S) such that the
reduction of Bj in the point xi equals bij . We set R = O(S)[z]/(Zd+B1z

d−1+
. . . + Bd). It is a finite algebra over O(S) and the morphism Spec(R) → S
satisfies the required conditions.

Lemma 4.2.17 Let p : X → S be a scheme of finite type over a Noetherian
scheme S. Assume further that p is surjective. Then there exists a finite
surjective morphism S ′ → S such that for any field k and any k-point s′ :
Spec(k) → S ′ there is a lifting of s′ to a k-point of X ′ = X ×S S ′.
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Proof: Let Z be a closed subscheme of S. We say that our lemma holds
outside Z if there is a finite surjective morphism SZ → S such that for any
field k and any k-point s′ of SZ ×S (S−Z) there is a lifting of s′ to SZ ×S X .

Our lemma obviously holds for Z = X . By Noetherian induction it is
sufficient to show that if our lemma holds for Z then it holds for a closed
subset Z ′ ⊂ Z such that Z ′ 6= Z.

Let η1, . . . , ηk be all generic points of Z. Since the morphism p is of finite
type there are finite extensions E1, . . . , Ek of the fields kη1 , . . . , kηk such that
the points Spec(Ei) → S of S admit liftings to X . By Lemma 4.2.16 there
is a finite surjective morphism f : S ′ → S such that for any field k and any
k-point s′ of S ′ over one of the points ηi there is a lifting of s′ to X ×S S ′.
Since p is of finite type this condition also holds for any point s′ of S ′ which
belongs to f−1(U) for a dense open subset U of Z. Let Z ′ = Z − U . Setting
SZ′ = SZ ×S S ′ we conclude that our lemma holds for Z ′.

Let us now prove Proposition 4.2.15. We will only consider the case
of z(X/S, r). Note first that by Proposition 4.2.2 both z(X/S, r)qfh and
z(X/S, r)h are subpresheaves in Cycl(X/S, r)Q. We have only to show that
if Z is an element of Cycl(X/S, r)⊗Q and there is an h-covering f : S ′ → S
such that cycl(f)(Z) belongs to z(X/S, r)(S ′) then there is a qfh-covering
with the same property. It follows from 3.3.9 and Lemma 4.2.17.

Corollary 4.2.18 Let X → S be a scheme of finite type over a Noetherian
scheme S. Then for any r ≥ 0 the qfh-sheaves Cyclequi(X/S, r)Q,
PropCyclequi(X/S, r)Q are isomorphic on the category of excellent Noethe-
rian schemes over S to the qfh-sheaves of abelian groups associated in the
obvious way with the qfh-sheaves of abelian monoids Cycleff(X/S, r)Q,
PropCycleff(X/S, r)Q and the same holds for the corresponding p-divisible
sheaves if S is a scheme of exponential characteristic p.

Proof: Note first that one has by 3.1.7:

Cycleff(X/S, r)Q ⊂ Cyclequi(X/S, r)Q

PropCycleff(X/S, r)Q ⊂ PropCyclequi(X/S, r)Q

As in the proof of 4.2.8 it is sufficient to show that for any element Z =
∑

nizi
in Cyclequi(X/S, r)Q there is a qfh-covering f : S ′ → S such that cycl(f)(Z)
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is a linear combination of elements of Cycleff(X/S, r)Q(S
′). Since S is an

excellent scheme its normalization is a qfh-covering and our statement follows
from Corollary 3.4.3.

Remark: Corollary 4.2.18 remains true without the excellency assumption.

4.3 Fundamental exact sequences for Chow sheaves.

Theorem 4.3.1 Let p : X → S be a scheme of finite type over a Noetherian
scheme S, i : Z → X be a closed subscheme of X and j : U → X be
the complement to Z in X. Then for any r ≥ 0 the following sequence of
presheaves is left exact and it is also right exact as a sequence of cdh-sheaves:

0 → z(Z/S, r)
i∗→ z(X/S, r)

j∗
→ z(U/S, r) → 0.

Proof: This sequence is obviously left exact as a sequence of presheaves. It
is sufficient to show that the last arrow is a surjection in the cdh-topology.
Let Z =

∑
nizi be an element of z(U/S, r). By Lemma 4.1.4 it is sufficient

to show that there is an abstract blow-up (2.2.4) of the form f : S ′ → S such
that cycl(f)(Z) belongs to the image of z(X/S, r)(S ′) in z(U/S, r)(S ′). Let
Zi be the closures of the points zi in X wich we consider as closed integral
subschemes. We may assume that S is reduced. Then by Theorem 2.2.2
there is a blow-up f : S ′ → S such that the proper transforms Z̃i of Zi

are flat over S ′. We set Z ′ =
∑

nicyclX×SS′(Z̃i). Then by Corollary 3.3.11
one has Z ′ ∈ z(X/S, r)(S ′) and its restriction to U ×S S ′ obviously equals
cycl(f)(Z).

Corollary 4.3.2 Let p : X → S be a scheme of finite type over a Noetherian
scheme S and X = X1∪X2 be an open covering of X. Denote the inclusions
Xi ⊂ X,X1 ∩ X2 ⊂ Xi by fi and gi respectively. Then for any r ≥ 0 the
following sequence of presheaves is left exact and it is also right exact as a
sequence of cdh-sheaves:

0 → z(X/S, r)
(f1)∗+(f2)∗

→ z(X1/S, r)⊕ z(X2/S, r)
(g1)∗−(g2)∗

→

→ z((X1 ∩X2)/S, r) → 0.
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Remark: Note that the sequence of Theorem 4.3.1 is in fact already exact
in the topology where coverings are proper cdh-coverings.

Proposition 4.3.3 Let S be a Noetherian scheme, p : X → S be a scheme
of finite type over S, i : Z → X be a closed subscheme of X and f : X ′ → X
be a proper morphism such that the morphism f−1(X − Z) → X − Z is an
isomorphism.

Consider the pull-back square

f−1(Z)
i′
→ X ′

fZ ↓ ↓ f

Z
i
→ X

Denote by F (−, r) one of the cdh-sheaves z(−, r), c(−, r). Then the following
sequence of presheaves is left exact and it is also right exact as a sequence of
cdh-sheaves

0 → F (f−1(Z)/S, r)
i′∗⊕(fZ )∗
→ F (X ′/S, r)⊕ F (Z/S, r)

f∗⊕(−i∗)
→

→ F (X/S, r) → 0.

Proof: It is clearly sufficient to consider the case of the sheaves z(−,−).

Lemma 4.3.4 In the notations of Proposition 4.3.3 the following sequence
of abelian groups is exact:

0→Cyclequi(f
−1(Z)/S,r)

i′∗⊕(fZ )∗
→ Cyclequi(X

′/S,r)⊕Cyclequi(Z/S,r)
f∗⊕(−i∗)

→ Cyclequi(X/S,r).

Proof: The first arrow is a monomorphism since i′ : f−1(Z) → X ′ is a
monomorphism.

Let us show that the sequence is exact in the middle term. Let Y =∑
niyi be an element of Cyclequi(Z/S, r) and W =

∑
mjwj be an element of

Cyclequi(X
′/S, r) such that f∗(W) = i∗(Y). The cycle W can be represented

(uniquely) as a sum W = W0 + W1 such that supp(W0) ⊂ f−1(Z) and
supp(W1) ∩ f−1(Z) = ∅. By our condition on W we have

f∗(W0) = i∗(Y)

f∗(W1) = 0
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and since f is an isomorphism outside f−1(Z) we conclude that W1 = 0 and
hence W ⊕Y belongs to the image of the homomorphism i′∗ ⊕ (fZ)∗.

One can easily see that Lemma 4.3.4 implies that the sequence of abelian
groups

0 → zequi(f
−1(Z)/S, r)

i′∗⊕(fZ )∗
→ zequi(X

′/S, r)⊕ zequi(Z/S, r)
f∗⊕(−i∗)
→

→ zequi(X/S, r).

is also exact. Hence, our sequence of sheaves is left exact and it is sufficient
to show that the homomorphism

zequi(X
′/S, r)⊕ zequi(Z/S, r)

f∗⊕(−i∗)
→ zequi(X/S, r)

is surjective as a homomorphism of cdh-sheaves. By Lemma 4.1.4 we may
assume that S is integral and it is sufficient to show that for any element W
of the group zequi(X/S, r) there is a blow-up g : S ′ → S such that cycl(g)(W)
belongs to the image of zequi(X

′×SS
′/S ′, r)⊕zequi(Z×SS

′/S ′, r). By Lemma
4.2.1 we may assume that W = cyclX(W ) where W is an integral closed
subscheme of X which is equidimensional of relative dimension r over S. If
W ⊂ Z our statement is obvious. Let w be the generic point of W and
W ′ be the closure of f−1(w) in X ′. By Theorem 2.2.2 there is a blow-
up g : S ′ → S such that the proper transform W̃ ′ of W ′ is flat over S ′.
Denote by f ′ the morphism f ×S S ′ : X ′ ×S S ′ → X ×S S ′. Since g is an
isomorphism in generic points and f is an isomorphism ouside Z we clearly
have f ′

∗(cycl(W̃
′)) = cycl(g)(W). To finish the proof it is sufficient to note

that W̃ ′ belongs to z(X ′ ×S S ′/S ′, r) by Corollary 3.3.11.

Corollary 4.3.5 Let S be a Noetherian scheme, p : X → S be a scheme
of finite type over S and X = Z1 ∪ Z2 be a covering of X by two closed
subschemes. Denote the inclusions Z1 ∩ Z2 ⊂ Zi, Zi ⊂ X by fi and gi
respectively and let F (−, r) be one of the cdh-sheaves z(−, r), c(−, r).

Then the following sequence of cdh-sheaves is exact

0 → F (Z1 ∩ Z2, r)
(f1)∗+(f2)∗

→ F (Z1, r)⊕ F (Z2, r))
(g1)∗−(g2)∗

→ F (X, r) → 0.

Proof: It is sufficient to apply Proposition 4.3.3 in the case X ′ = Z1
∐
Z2,

Z = Z1 ∩ Z2.
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Proposition 4.3.6 In the notations of Proposition 4.3.3 assume in addition
that f is a finite morphism and S is a geometrically unibranch scheme. Then
the following sequence of abelian groups is exact:

0→Cyclequi(f−1(Z)/S,r)
i′∗⊕(fZ )∗

→ Cyclequi(X′/S,r)⊕Cyclequi(Z/S,r)
f∗⊕(−i∗)

→ Cyclequi(X/S,r)→0.

The same statement holds for the groups PropCyclequi(−,−).

Proof: It is clearly sufficient to consider the case of Cyclequi(−,−). By
Lemma 4.3.4 our sequence is left exact.

Let W be an element of Cyclequi(X/S, r). By Corollary 3.4.3 we may
assume that W = cyclX(W ) where W is an integral closed subscheme of X
which is equidimensional of relative dimension r over S. If W ⊂ Z then
W belongs to the image of the homomorphism i∗. Otherwise let w be the
generic point of W and let W ′ be the closure of w′ = f−1(w) in X ′. Since w
belongs to X − Z we have f∗(cyclX′(W ′)) = W. To finish the proof of our
proposition it is sufficient to show that cyclX′(W ′) ∈ Cyclequi(X

′/S, r). It
follows from the fact that f is finite and Theorem 3.4.2.

Remark: Note that in Proposition 4.3.6 one can not replace in general the
groups Cyclequi(−,−) by the groups zequi(−,−). An example of the situation
when the corresponding sequence is not right exact for the groups zequi(−,−)
can be easily deduced from example 3.5.10(2).

Proposition 4.3.7 Let S be a Noetherian scheme, p : X → S be a scheme
of finite type over S and X = U1 ∪U2 be an open covering of X. Denote the
inclusions U1 ∩ U2 ⊂ Ui, Ui ⊂ X by fi and gi respectively.

Then the sequence of presheaves

0 → cequi(U1 ∩ U2/S, 0)
(f1)∗+(f2)∗

→ cequi(U1/S, 0)⊕ cequi(U2/S, 0)
(g1)∗−(g2)∗

→

→ cequi(X/S, 0) → 0.

is exact in the Nisnevich topology.

Proof: Note that our sequence is left exact as a sequence of presheaves by
obvious reason. To prove that the last arrow is a surjection in the Nisnevich
topology it is sufficient to show that the map

cequi(U1/S, 0)⊕ cequi(U2/S, 0)
(g1)∗−(g2)∗

→ cequi(X/S, 0)
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is surjective if S is a local henselian scheme (see [12]). It follows trivially
from the fact that for any element Z of cequi(X/S, 0) its support is finite over
S and the existence of decomposition of schemes finite over local henselian
schemes into a disjoint union of local schemes (see [11, I.4.2.9(c)]).

Corollary 4.3.8 In the notations of Proposition 4.3.7 the sequence of cdh-
sheaves

0 → c(U1 ∩ U2, 0)
(f1)∗+(f2)∗

→ c(U1, 0)⊕ c(U2, 0)
(g1)∗−(g2)∗

→ c(X, 0) → 0.

is exact.

Proof: It follows immediately from Proposition 4.3.7, Theorem 4.2.9 and
exactness of the functor of associated sheaf.

Remark: Note that the exact sequence of Proposition 4.3.7 is quite different
from the exact sequence of Corollary 4.3.2. In particular while the sequence
for finite cycles requires only Nisnevich coverings to be exact the sequence
for general cycles requires only abstract blow-ups, i.e. proper cdh-coverings
to be exact.

Proposition 4.3.9 Let p : X → S be a scheme of finite type over a Noethe-
rian scheme S, Z → X be a closed subscheme of X and f : X ′ → X be an
etale morphism such that the morphism f−1(Z) → Z is an isomorphism. Let
further U be the complement to Z in X and U ′ be the complement to f−1(Z)
in X ′. Then the canonical morphism of quotient sheaves in the Nisnevich
topology

cequi(X
′/S, 0)/cequi(U

′/S, 0) → cequi(X/S, 0)/cequi(U/S, 0)

is an isomorphism.

Proof: It is sufficient to show that for a local henselian scheme S the mor-
phism of abelian groups

cequi(X
′/S, 0)/cequi(U

′/S, 0)
f∗
→ cequi(X/S, 0)/cequi(U/S, 0).

is an isomorphism. The following lemma is an easy corollary of the standard
properties of henselian schemes (see [11]).
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Lemma 4.3.10 Let q : X → S be an etale morphism such that the scheme
S is henselian and let x be a closed point of X over the closed point s of S
such that the morphism Spec(kx) → Spec(ks) is an isomorphism. Then q is
an isomorphism in a neighborhood of x.

(Injectivity.) Let W ′ be an element of cequi(X
′/S, 0) and assume that

f∗(W
′) belongs to cequi(U/S, 0). Since S is henselian the support W ′ =

supp(W ′) of W ′ is a disjoint union of local henselian schemes and we may
assume that the closed points of W belong to f−1(Z) and f∗(W) = 0.

Since f is an isomorphism on f−1(Z) we may further assume that W ′ is
local. Then by Lemma 4.3.10 the morphism supp(W ′) → supp(f∗(W

′)) is an
isomorphism and hence W ′ = 0.
(Surjectivity.) Let W be an element of cequi(X/S, 0). As above we may
assume that W = supp(W) is local and its closed point belongs to Z. Let
W ′ be the local scheme of the closed point of f−1(W ) over the closed point
of W . Then by Lemma 4.3.10 the morphism W ′ → W is an isomorphism.
Denote by W ′ the cycle on W ′ (and hence on X ′) which corresponds to W.
We obviously have f∗(W

′) = W and W ′ ∈ cequi(X
′/S, 0).

Corollary 4.3.11 In notations of Proposition 4.3.9 there is a canonical iso-
morphism of quotient sheaves in the cdh-topology of the form:

c(X ′/S, 0)/c(U ′/S, 0) → c(X/S, 0)/c(U/S, 0).

Proof: It follows from Proposition 4.3.9 and Theorem 4.2.9.

4.4 Representability of Chow sheaves.

In this section we consider representability of Chow sheaves of effective proper
cycles on quasi-projective schemes over a Noetherian scheme S. Let us begin
with the following definition.

Definition 4.4.1 Let S be a Noetherian scheme and F be a presheaf of
sets on the category of Noetherian schemes over S. We say that F is h-
representable by a scheme X over S if there is an isomorphism Fh → Lh(X)
of the h-sheaf associated with F with the h-sheaf associated with the presheaf
represented by X.
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Note that the scheme X which h-represents a presheaf F is not uniquely
defined up to isomorphism since the h-topology is not subcanonical. Never-
theless as was shown in [18] X is well defined up to a universal homeomor-
phism. In particular if for some X which h-represents F all generic points of
X are of characteristic zero then there exists a unique semi-normal scheme
which h-represents F .

Let S be a Noetherian scheme and F be a presheaf on the category of
Noetherian schemes over S. A k-point of F is a pair of the form
(Spec(k) → S, φ) where k is a field and φ ∈ F (Spec(k)/S) is a section of
F over Spec(k). We say that a k-point φ of F is equivalent to a k′-point
φ′ of F if there is a field k′′ a morphism Spec(k′′) → S and morphisms
u : Spec(k′′) → Spec(k), u′ : Spec(k′′) → Spec(k′) over S such that the
sections u∗(φ) and (u′)∗(φ′) of F over Spec(k′′) coincide. A point of F is
by definition an equivalence class of k-points of F . Denote the set of points
of F by Top(F ). One can easily see that for any morphism of presheaves
f : F → G one has a map of sets Top(f) : Top(F ) → Top(G) which is a
monomorphism (resp. an epimorphism) if f is a monomorphism (resp. an
epimorphism). In particular for any subpresheaf F0 in F we get a subset
Top(F0) in Top(F ).

The following lemma is trivial.

Lemma 4.4.2 Let t be a Grothendieck topology on the category of Noethe-
rian schemes over S such that for any algebraically closed field k any mor-
phism Spec(k) → S and any t-covering p : U → Spec(k) there exists a
section s : Spec(k) → U of p. For a presheaf F on the category of Noethe-
rian schemes over S denote by Ft the associated t-sheaf. Then the map
Top(F ) → Top(Ft) is a bijection.

Note that all topologies we use in this paper satisfty the condition of Lemma
4.4.2.

For any presheaf of sets F on the category of Noetherian schemes over S,
any Noetherian scheme S ′ over S and any section φ of F over S ′ denote by
Top(φ) the obvious map of sets S ′ → Top(F ).

Let now A ⊂ Top(F ) be a subset in Top(F ). Denote by FA the sub-
presheaf in F such that for any Noetherian scheme S ′ over S the subset
FA(S

′) ⊂ F (S ′) consists of sections φ such that Top(φ)(S ′) ⊂ A. If a sub-
presheaf F0 in F is of the form FA for a subset A in Top(F ) we say that F0

is defined by a pointwise condition. One can easily see that F0 is defined by
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a pointwise condition if and only if for any Noetherian scheme S ′ over S and
a section φ of F over S ′ such that Top(φ)(S ′) ⊂ Top(F0) one has φ ∈ F0(S

′).
Let A be a subset in Top(F ). We say that A is open (resp. closed,

constructible) if for any Noetherian scheme S ′ over S and any section φ of T
on S ′ the set Top(φ)−1(A) is open (resp. closed, constructible ) in S ′. We will
say further that a subpresheaf F0 of F is open (resp. closed, constructible)
if F0 is of the form FA for an open (resp. closed, constructible) subset in
Top(F ).

One can easily see that open subsets of Top(F ) form a topology on this
set and that a subset is closed if and only if its complement is open. Note
also that for any morphism of presheaves f : F → G the corresponding
map Top(f) : Top(F ) → Top(G) is a continuous map with respect to this
topology. The following lemma is straightforward.

Lemma 4.4.3 Let X → S be a Noetherian scheme over a Noetherian scheme
S. Denote by L(X/S) the presheaf of sets represented by X on the category
of Noetherian schemes over S.

1. The map Top(φ) : X → Top(L(X/S)) defined by the tautological sec-
tion of L(X/S) over X is a homeomorphism of the corresponding topo-
logical spaces.

2. Let t be a topology on the category of Noetherian schemes over S sat-
isfying the condition of Lemma 4.4.2 and such that for any Noethe-
rian scheme S ′ over S the morphism S ′

red → S ′ is a t-covering. Then
for any open (resp. closed) subset A ⊂ Top(Lt(X/S)) the subpresheaf
Lt(X/S)A is t-representable by the corresponding open (resp. closed)
subscheme in X.

Note that the h-topologies (h-,cdh-,qfh-) satisfy the conditions of Lemma
4.4.3(2).

We say that a presheaf F on the category of Noetherian schemes over a
Noetherian scheme S is topologically separated if for any Noetherian scheme
T over S and any dominant morphism T ′ → T the map F (T ) → F (T ′) is
injective. Note that all the Chow presheaves considered in this paper are
topologically separated.

Lemma 4.4.4 Let S be a Noetherian scheme, F be a topologically sepa-
rated presheaf on the category of Noetherian schemes over S, X → S be a
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scheme of finite type over S and f : z(X/S, r) → F be a monomorphism of
presheaves. Consider a closed subset A in Top(z(X/S, r)). Then the subsheaf
f(z(X/S, r)A)h of Fh is a closed subpresheaf of F if and only if Top(f)(A)
is a constructible subset in Top(F ) = Top(Fh).

Proof: We obviously have Top(f)(A) = Top(f(z(X/S, r)A)) ⊂ Top(F )
which proves the “only if” part.

Assume that Top(f)(A) is a constructible subset in Top(F ). Let us show
first that f(z(X/S, r)A)h is a subpresheaf in Fh given by a pointwise con-
dition. Let T be a Noetherian scheme over S and φ ∈ Fh(T ) be a section
of Fh such that for any geometrical point x : Spec(k) → T of T we have
x∗(φ) ∈ z(X/S, r)A. We have to show that φ ∈ f(z(X/S, r)A)h(T ). Our
problem is h-local with respect to T . Replacing T by the union of its ir-
reducible components we may assume that T is an integral scheme. Let η
be the generic point of T , k̄η be an algebraic closure of the function field
of T and η̄ : Spec(k̄η) → T be the corresponding geometrical point of T .
Then η̄∗(φ) corresponds to an element Z in z(X ×T Spec(k̄η)/Spec(k̄η), r).
Since X is of finite type over S and A is a closed subset of Top(Z(X/S, r))
there is a quasi-finite dominant morphism p : U → T and an elememt ZU in
z(X/S, r)A(U) such that the restriction of ZU to Spec(k̄η) equals Z. Theo-
rem 2.2.2 implies easily now that there is an h-covering p̄ : Ū → T which is
finite over the generic point of T and a section ZŪ of z(X/S, r)A over Ū such
that its restriction to Spec(k̄η) equals Z. Since F is topologically separated
we conclude that p̄∗(φ) = ZŪ and hence f(z(X/S,A))h is indeed defined by
a pointwise condition. To prove that Top(f(z(X/S,A))h) is a closed subset
in Top(F ) = Top(Fh) is trivial.

Proposition 4.4.5 Let X → S be a scheme of finite type over a Noetherian
scheme S and X0 be a closed subscheme in X. Then the sheaf z(X0/S, r) is
a closed subpresheaf in the sheaf z(X/S, r) .

Proof: Note first that the sheaf z(X0/S, r) is a subpresheaf in z(X/S, r)
given by a pointwise condition. Moreover a section of z(X/S, r) belongs to
z(X0/S, r) if and only if it belongs to z(X0/S, r) over the generic points of
S. It implies easily that the only thing we have to show is that for any
cycle Z in z(X/S, r) which does not belong to z(X0/S, r) in a generic point
η of S there is a neighborhood U of η in S such that Zs does not belong to
z((X0)s/Spec(ks), r) for any point s in U . It is obvious.
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Proposition 4.4.6 Let X → S be a scheme of finite type over a Noetherian
scheme S and X0 be an open subscheme in X. Then the sheaf ceff(X0/S, r)
is an open subpresheaf in the sheaf ceff(X/S, r) .

Proof: Let us show first that the subpresheaf ceff(X0/S, r) is given by a
pointwise condition. Let Z be an element of ceff(X/S, r). Assume that
for any geometrical point x : Spec(k) → S of S we have cycl(x)(Z) ∈
ceff(X0 ×S Spec(k)/Spec(k), r). We have to show that Z ∈ ceff(X0/S, r).
Since ceff(X0/S, r) is a cdh-subsheaf in ceff(X/S, r) it is sufficient to show
that there is a blow-up f : S ′ → S such that cycl(f)(Z) ∈ ceff (X0 ×S

S ′/S ′, r). We may assume therefore that Z =
∑

nicycl(Zi) where Zi are
irreducible closed subschemes of X which are flat over S. It is sufficient
to show that our condition on Z implies that supp(Z) ⊂ X0. It follows
immediately from the fact that Z is effective since supp(cycl(x)(cycl(Zi))) =
Zi ×S Spec(k) for any geometrical point Spec(k) → S of S.

Let now Z be an arbitrary element of ceff (X/S, r). We have to show that
the set of points s of S such that Zk̄s ∈ ceff (X0 ×S Spec(k̄s)/Spec(k̄s), r) is
open in S. Again we may replace S by its blow-up and assume that Z =∑

nicycl(Zi) where Zi are irreducible closed subschemes of X which are flat
over S. Then clearly our subset is the intersection of subsets Ui where s ∈ Ui

if and only if Zi×SSpec(ks) ⊂ X0×SSpec(ks). Then Ui = S−p(Zi∩(X−X0))
and since p : Zi → S is proper we conclude that Ui are open subsets of S.

Example 4.4.7 The analog of Proposition 4.4.6 for the sheaves c(X/S, r) is
false. Let us consider the scheme X = P2

k × A1 → A1 over the affine line.
Let further Z1 (resp. Z2) be the closed subscheme given by the equation
x0+x1+ tx2 = 0 (resp. x0+x1− tx2 = 0) where xi are the coordinates on P2

and t is the coordinate onA1. Let Z = Z1−Z2 andX0 = A2×A1 ⊂ P2
k×A1.

Then the set of points t ∈ A1 where Zt ∈ (X0)t consists of one point t = 0.

Let S be a Noetherian scheme. For any multi-index I = (i1, . . . , ik) denote
by PI

S the product of projective spaces Pi1
S ×S . . . ×S Pik over S. Let Z be

an element of Cycleff(PI
S/S, r). For any point s of S denote by degs(Z) the

(multi-)degree of the cycle Zs on PI
ks (note that apriory degs(Z) is sequence

of rational numbers).

Proposition 4.4.8 Let S be a Noetherian scheme and Z be an element of
Cycleff(PI

S/S, r). Then the function s → degs(Z) is locally constant on S.
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Proof: It is sufficient to show that if η is a generic point of S and s is a point
in the closure of η then degη(Z) = degs(Z). Since for any cycle W on PI

k

and any field extension k′/k we have deg(Z) = deg(Z ⊗k k
′) it is sufficient

to show that for some field extensions L, E of kη and ks respectively the
cycles ZSpec(L) and ZSpec(E) have the same degree. Let (x0, x1, R) be a fat
point on S such that the image of x1 is {η, s}. Replacing S by Spec(R)
we may assume that S is the spectrum of a discrete valuation ring. In this
case Z =

∑
nicycl(Zi) where Zi are closed subschemes of PI

S which are flat
and equidimensional over S and our statement follows from the invariance of
(multi-)degree in flat families.

Corollary 4.4.9 Let S be a connected Noetherian scheme. Then for any cy-
cle Z in Cycl(PI

S/S, r) and any point s of S the degree degs(Z) is a sequence
of integers which does not depend on s.

For a Noetherian scheme S, a multi-index I = (i1, . . . , ik) and a sequence
of nonnegative integers D = (d1, . . . , dn) denote by zeffD (PI

S/S, r) the subset
in z(PI

S/S, r) which consists of cycles Z such that for any point s of S
one has degs(Z) = D. One can easily see that zeffd (PI

S/S, r) is in fact a
cdh-subsheaf in zeff (PI

S/S, r). Proposition 4.4.8 implies further that for a
connected Noetherian scheme one has

zeff (PI
S/S, r) =

⋃

D

zeffD (PI
S/S, r).

The proof of the following lemma is standard.

Lemma 4.4.10 Let S be a Noetherian scheme. Then for any multi-index
I = (i1, . . . , ik) and any sequence of nonnegative integers D = (d1, . . . , dk)
the sheaf zeffD (PI

S/S, (
∑

ij)−1) is h-representable by the projective space PN
S

for some N = N(I,D).

Denote by G the product (Pn)∗ ×Spec(Z) . . .Spec(Z) (P
n)∗ of r + 1-copies of

the projective space dual to the standard projective space (i.e (Pn)∗ is the
scheme which parameterizes hyperplanes in Pn). Let further L ∈ Pn×Spec(Z)

G be the closed subscheme of points (x,H1, . . . , Hr+1) such that x ∈ Hi for all
i = 1, . . . , r+1. It is smooth over Pn and fibers of the projection f : L → Pn

are isomorphic to (Pn−1)r+1.
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Denote further by Divd(G) the projective space which parametrizes cycles
of codimension 1 and degree (d, . . . , d) on ((Pn)∗)r+1 (see Lemma 4.4.10). Let
Divirrd (G) be the open subspace in Divd(G) which parametrizes irreducible
divisors on G and let Γ ∈ G×Divirrd (G) be the support of the corresponding
relative cycle on G×Divirrd (G) over Divirrd (G). Set

U = L×Divirrd (G)− (L×Divirrd (G) ∩Pn × Γ)

Let finally Φ be the subset (pr : L×Divirrd (G) → Pn×Divirrd (G))(U). Since
L is smooth (and hence universally open) over Pn this subset is open in
Pn×Divirrd (G). We define C irr

r,d to be the subset in Divirrd (G) which consists
of points s such that dim((Pn×Divirrd (G)−U)×Divirr

d
(G)Spec(ks)) ≥ r. Since

the projection Pn × Divirrd (G) → Divirrd (G) is proper Chevalley theorem
(2.1.1) implies that C irr

r,d is a closed subset in Divirrd (G).

Theorem 4.4.11 For any Noetherian scheme S and any r, d ≥ 0 the sheaf
of sets zeffd (Pn

S/S, r) is h-representable by a projective scheme Cr,d over S.

Proof: Note that it is obviously sufficient to prove our theorem for S =
Spec(Z). We will use the notations which we introduced in the construction
of C irr

r,d above. Let Z be an element of zeff (Pn
S/S, r). Let

f : L → Pn

p : L → G

be the obvious morphisms. Since f is smooth and p is proper we get a
homomorphism of presheaves

Chow = p∗f
∗ : zeff (Pn/Spec(Z), r) → zeff(G/Spec(Z), (n− 1)(r + 1) + r)

The following lemma is straighforward.

Lemma 4.4.12 1. The homomorphism Chow is a monomorphism.

2. The homomorphism Chow takes the subsheaf zeffd (Pn
S/S, r) to the sub-

sheaf zeffD (((Pn
S)

∗)r+1/S, (n− 1)(r + 1) + r) where D = (d, . . . , d).

In view of Lemma 4.4.12 and Lemma 4.4.10 the homomorphism Chow gives
us an embedding of the sheaf zeffd (Pn

S/S, r) to the cdh-sheaf representable by
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the projective space Divd(G). Since zeffd (Pn/Spec(Z), r) is clearly a closed
subpresheaf in the sheaf z(Pn/Spec(Z), r) it is sufficient by 4.4.3 and 4.4.4
to show that the subset Cr,d = Im(Top(Chow)) in Divd(G) is constructible.

Denote by Fd the subpresheaf in zeffd (Pn/Spec(Z), r) such that for a
Noetherian scheme S the subset Fd(S) in zeffd (Pn

S/S, r) consists of cycles Z
such that for any algebraically closed field k and a k-point x : Spec(k) → S
the cycle cycl(x)(Z) on Pn

k is of the form cycl(Z) for a closed integral sub-
scheme Z in Pn

k of dimension r and degree d. Let further

Fd =
d∐

k=1

∐

d1+...+dk=d

∏

i=1,...,k

Fdi .

We have the following diagram of morphisms of presheaves

Fd
Chow
→

∐d
k=1

∐
d1+...+dk=d

∏
i=1,...,k L(Divirrdi

(G))
↓ ↓

zeffd (Pn/Spec(Z), r) → L(Divd(G))

The first vertical arrow is a surjection on the corresponding topological spaces
and the second vertical arrow being induced by a morphism of schemes of
finite type takes constructible sets to constructible sets. It is sufficient there-
fore to show that the image of Top(Chowirr) where Chowirr is the morphism

Fd → L(Divirrd (G))

is constructible. Let us show that in fact Im(Top(Chowirr)) = C irr
r,d .

(“ Im(Top(Chowirr)) ⊂ Cirr
r,d”) Let k be an algebraically closed field

and Z ∈ Fd(P
n
k). We have to show that the point x on Divirrd (G)k which

corresponds to Chowirr(Z) belongs to C irr
r,d . It follows immediately from our

definition of C irr
r,d since in this case the fiber of the projection Pn×Divirrd (G)−

U → Divirrd (G) over x contains the support of Z.

(“Cirr
r,d ⊂ Im(Top(Chowirr)) ”) Let k be an algebraically closed field

and x : Spec(k) → Divirrd (G) be a point of Divirrd (G) which belongs to C irr
r,d ,

i.e. such that dim((Pn ×Divirrd (G)− U)×Divirr
d

(G) Spec(k)) ≥ r. Let Dx be
the divisor on Gk which corresponds to x. One can verify easily that fibers
of Pn × Divd(G) − U over Divd(G) are of dimension ≤ r. Denote by Zi

the irreducible components of the fiber of Pn × Divd(G) − U over x which
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have dimension r. Then p(f−1(Zi)) is an irreducible divisor in G which is
obviously contained in supp(D). Since p(f−1(Zi)) 6= p(f−1(Zj)) for i 6= j
(Lemma 4.4.12(1)) and supp(D) is irreducible we conclude that there is only
one component Z of dimension r and p(f−1(Z)) = supp(D). It implies easily
that D = Chowirr(cycl(Z)). Theorem is proven.

Let S be a Noetherian scheme and i : X → Pn
S be a projective scheme

over S. Denote by zeffd ((X, i)/S, r) the subpresheaf in the Chow presheaf
zeff (X/S, r) such that for a Noetherian scheme T over S the subset
zeffd ((X, i)/S, r)(T ) in zeff (X/S, r)(T ) consists of relative cycles of degree d
with respect to the embedding i ×S IdT . If U ⊂ X is an open subset of X
we denote by ceffd ((U, i)/S, r) the preimage of zeffd ((X, i)/S, r) with respect
to the obvious morphism ceff(U/S, r) → zeff (X/S, r).

Corollary 4.4.13 For any Noetherian scheme S and a projective scheme
i : X → Pn

S over S the presheaf zeffd ((X, i)/S, r) is h-representable by a
projective scheme Cr,d(X, i) over S and

zeff (X/S, r) =
∐

d≥0

zeffd ((X, i)/S, r).

If U is an open subscheme in X then ceffd ((U, i)/S, r) is representable by
an open subscheme Cr,d(U, i) in Cr,d(X, i) and

ceff (U/S, r) =
∐

d≥0

ceffd ((U, i)/S, r).

Proof: It follows immediately from Theorem 4.4.11, Propositions 4.4.5, 4.4.6
and Lemma 4.4.3.

Let X → S be a scheme of finite type over a Noetherian scheme S. A
(closed) equivalence relation on X is a closed subscheme R ⊂ X ×S X such
that for any Noetherian scheme T over S the subset HomS(T,R) of the set
HomS(T,X ×S X) = HomS(T,X)×HomS(T,X) is an equivalence relation
on HomS(T,X). An equivalence relation R is called a proper equivalence
relation if the projections R → X are proper morphisms.

Let R be an equivalence relation onX and Y be a Noetherian scheme over
S. Let Γ → Y ×S X be a closed subset of Y ×S X . Denote by pY : Γ → Y ,
pX : Γ → X the obvious morphisms. We call Γ a graph-like closed subset
(with respect to R) if the following conditions hold:
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1. The morphism pY : Γ → Y is a universal topological epimorphism (i.e.
an h-covering).

2. For any algebraically closed field k̄ and a k̄-valued point ȳ : Spec(k̄) →
Y all the elements of the subset pX(p

−1
Y (ȳ)) in X(k̄) are equivalent with

respect to R(k̄).

Any such Γ defines for any algebraically closed field k̄ a map of sets
fΓ : Y (k̄) → X(k̄)/R(k̄). We say that two graph-like subsets Γ1, Γ2 are
equivalent if for any algebraically closed field k̄ the corresponding maps fΓ1

and fΓ2 coincide. A continuous algebraic map from Y to X/R (over S) is an
equivalence class of graph-like closed subschemes of Y ×S X with respect to
this equivalence relation3. We denote the set of continuous algebraic maps
from Y to X/R over S by Homa.c.

S (Y,X/R).
Let now R be a proper equivalence relation. Denote the projections R →

X by pr1 and pr2 respectively. For any closed subset Γ in Y ×S X which is
of finite type over Y consider the subset ΓR ⊂ Y ×S X of the form (IdY ×S

pr2)(IdY ×S pr1)
−1(Γ). Since R is proper ΓR is a closed subset. One can

verify easily that if Γ is a graph-like subset with respect to R then ΓR is
graph-like and Γ is equivalent to ΓR. Moreover two graph-like closed subsets
Γ1 and Γ2 are equivalent if and only if (Γ1)R = (Γ2)R.

Lemma 4.4.14 Let X → S be a scheme of finite type over a Noetherian
scheme S and R ⊂ X×SX be a proper equivalence relation on X. Let Lh(X)
be the h-sheaf represented by X on the category of Noetherian schemes over
S and let Lh(X)/R be the quotient sheaf (in the h-topology) of Lh(X) with
respect to the equivalence relation defined by R. Then for any Noetherian
scheme Y over S there is a canonical bijection:

Homa.c.
S (Y,X/R) = (Lh(X)/R)(Y ).

Proof: Clearly Homa.c.
S (Y,X/R) is a presheaf on the category of Noetherian

schemes over S with respect to Y . Let us show that it is in fact an h-sheaf.
Consider an h-covering p : U → Y of Y . Note first that if Γ1, Γ2 are two
graph-like closed subsets in Y ×S X such that (p×S IdX)

−1(Γ1) is equivalent
to (p×S IdX)

−1(Γ2) then Γ1 is equivalent to Γ2.

3Our definition of continuous algebraic maps is a natural generalization of the definition
given in [3].
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Let now Γ ⊂ U ×S X be a graph-like closed subset such that pr−1
1 (Γ) is

equivalent to pr−1
2 (Γ) where pri : U×Y U×SX → U×SX are the projections.

We may assume that Γ = ΓR. Then the same obviously holds for pr−1
i (Γ)

and we conclude that pr−1
1 (Γ) = pr−1

2 (Γ). Since p is a universal topological
epimorphism it implies trivially that Γ = (p×S IdX)

−1(Γ0) for a closed subset
Γ0 in Y ×S X . Since Γ0 is obvioulsy graph-like with respect to R it proves
that Homa.c.

S (−, X/R) is indeed an h-sheaf.
Let us construct a morphism of sheaves

φ : Homa.c.
S (−, X/R) → Lh(X)/R.

Let Γ be a graph-like closed subset in Y ×S X . We have a morphism Γ → X .
Since Γ → Y is an h-covering our definition of a graph-like subset implies
trivially that the corresponding section of Lh(X)/R on Γ can be descended
to a section of Lh(X)/R on Y which does not depend on the choice of Γ in
its equivalence class.

The proof of the fact that φ is an isomorphism is trivial.

Let X → S be a quasi-projective scheme over a Noetherian scheme S
and i : X̄ → Pn

S be a projective scheme over S such that there is an open
embedding X ⊂ X̄ over S. Consider the scheme Cr,d(X̄, i) which h-represents

the presheaf zeffd (X̄/S, r) by Corollary 4.4.13. Set

Cr,≤d(X̄, i) =
∐

i≤d

Cr,i(X̄, r).

Consider the canonical section Z of z(X̄/S, r)h over Cr,≤d(X̄, i) and let Z̃
be the section (pr∗1(Z) − pr∗2(Z)) − (pr∗3(Z) − pr∗4(Z)) of z(X̄/S, r)h over
the product (Cr,≤d(X̄, i))4S . Denote by RX

d the closed subset of points of
(Cr,≤d(X̄, i))4S where Z̃ belongs to z((X̄ −X)/S, r) ⊂ z(X̄/S, r) (see 4.4.5).
One can easily see that RX

d is an equivalence relation on (Cr,≤d(X̄, i))2S and
since Cr,≤d(X̄, i) is proper over S it is a proper equivalence relation. Note
further that the obviuos embeddings Cr,≤d(X̄, i) → Cr,≤(d+1)(X̄, i) take RX

d

to RX
d+1 and hence for any Noetherian scheme T over S there is a family of

maps

Homa.c.
S (T, (Cr,≤d(X̄, i))2S/R

X
d ) → Homa.c.

S (T, (Cr,≤(d+1)(X̄, i))2S/R
X
d+1).
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Proposition 4.4.15 For any Noetherian scheme T over S there is a canon-
ical bijection

colimdHoma.c.
S (T, (Cr,≤d(X̄, i)×S Cr,≤d(X̄, i))/RX

d ) = z(X/S, r)h(T ).

Proof: It follows immediately from Lemma 4.4.14 and our definition of the
equivalence relations RX

d .
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