
Introduction.

Eric M. Friedlander, A. Suslin and V. Voevodsky.

Our original goal which finally led to this volume was the construction of
“motivic cohomology theory” whose existence was conjectured by A. Beilin-
son and S. Lichtenbaum ([2], [3], [17], [18]). Even though this would seem
to be achieved at the end of the third paper, our motivation evolved into
a quest for a deeper understanding of various properties of algebraic cycles.
Thus, several of the papers presented here do not deal directly with motivic
cohomology but rather with basic questions about algebraic cycles.

In this introduction, we shall begin with a short reminder of A. Beilin-
son’s formulation of motivic cohomology theory. We then proceed to briefly
summarize the topic and contents of individual papers in the volume.

Let k be a field and Sm/k denote the category of smooth schemes over
k. A. Beilinson conjectured that there should exist certain complexes Z(n)
(n ≥ 0) of sheaves in the Zariski topology on Sm/k which have the following
properties:

1. Z(0) is the constant sheaf Z.

2. Z(1) is the sheaf O∗ placed in cohomological degree 1.

3. For a field F over k, one has

Hn(Spec(F ),Z(n)) = KM
n (F )

where KM
n (F ) is the n-th Milnor K-group of F .

4. For a smooth scheme X over k, one has

H2n
Zar(X,Z(n)) = An(X)

where An(X) is the Chow group of cycles of codimension n on X mod-
ulo rational equivalence.

5. For any smooth scheme X over k, there is a natural spectral sequence
with the E2-term of the form

Ep,q
2 = H

p
Zar(X,Z(q))
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and differentials dr : E
p,q
r → Ep+r−1,q+2r−1

r which converges to Quillen’s
K-groups K2q−p(X).

After tensoring with Q this spectral sequence degenerates and one has

Hi
Zar(X,Z(n))⊗Q = grnγK2n−i(X)⊗Q

where the groups on the right hand side are quotients of the γ-filtration
in Quillen’s K-theory of X .

Observe that the complexes Z(n) are determined rationally by the last of
above properties.

The hypercohomology groups Hi
Zar(X,Z(n)) are usually denoted by

H i
M(X,Z(n)) and called motivic cohomology groups of X .
This definition of motivic cohomology is not “topology free”. In particular

one may consider the corresponding hypercohomology groups in the etale
topology instead of the Zariski topology. S. Lichtenbaum ([17], [18]) has in
fact suggested axioms for the etale analog of Beilinson’s motivic cohomology.
We emphasize that everywhere in this volume “motivic (co-)homology” mean
motivic (co-)homology in the Zariski topology unless the etale topology is
explicitly specified.

In addition to the axioms given above, Beilinson’s original list contained
two further axioms. These we state below in the form of conjectures.

Beilinson-Lichtenbaum Conjecture. For a field F over k and a prime l
not equal to char(k), one has

Hi
Zar(Spec(F ),Z(n)⊗ Z/l) =

{

H i
et(F, µ

⊗n
l ) for i ≤ n

0 for i > n

Beilinson-Soule Vanishing Conjecture. For a smooth scheme X over k,
one has

Hi
Zar(X,Z(n)) = 0

for i < 0.

In conjunction with the spectral sequence relating motivic cohomology to
algebraic K-theory, these two “axioms” imply the validity of highly nontrivial
conjectures in algebraic K-theory.

All the approaches to motivic (co-)homology suggested in the last several
years can be roughly divided into two types depending on which of property
3 and 4 was considered to be “more fundamental”:
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1. To construct motivic cohomology (usually of a field) as cohomology
groups of certain complexes with terms being given by explicit genera-
tors and relations generalizing Milnor’s definition of Kn

M ([3],[4], [13]).

2. To construct motivic cohomology of a scheme as cohomology of a com-
plex defined in terms of algebraic cycles thus generalizing the classical
definition of Chow groups ([5],[6],[8] [14]1).

The basic problem with the first approach is that it is very difficult to
prove functorial properties of theories constructed in such a way; for exam-
ple, the proof that Milnor K-theory has transfer maps is quite non-trivial.
On the other hand, an important advantage of this first approach is that
from this point of view it is possible to construct natural looking com-
plexes (see [13]) satisfying the Beilinson-Soule vanishing property (saying
that H i

M(X,Z(n)) = 0 for i < 0 ).
The second approach was pioneered by S. Bloch in [5] who introduced

“higher” Chow groups with many good properties. In the papers of this
volume, we develop an alternative (and independent) theory of motivic ho-
mology and cohomology based upon algebraic cycles. (The reader should be
forewarned that many of our results apply only to varieties over a field for
which resolution of singularities is valid.)

A major difficulty which must be confronted in this approach is that
standard moving techniques used in the classical theory of algebraic cycles
are not sufficient to prove basic properties of such a theory. S. Bloch re-
cently solved this problem for his higher Chow groups by introducing an
ingenious but very complicated moving technique based on blow-ups and M.
Spivakovsky ’s solution of Hironaka’s polyhedron game ([7]). A similar prob-
lem was encountered by A. Suslin when attempting to prove some properties
of “algebraic singular homology theory”.

Our theory culminates in the fourth paper of this volume “Triangulated
categories of motives over a field”: this applies the results of the other papers
to construct a consistent triangulated theory of mixed motives over a field2.
We construct there a certain rigid tensor triangulated category DMgm(k) to-

1The construction of motivic cohomology given by D. Grayson does not refer explicitely
to algebraic cycles, but uses instead some version of algebraic K-theory with supports.

2Two other constructions of triangulated categories of mixed motives have been pro-
posed by M. Hanamura [15] and M. Levine [16].
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gether with an invertible object Z(1) called the Tate object and two functors

M : Sch/k → DMgm(k)

Mc : (Sch/k)prop → DMgm(k)

(where (Sch/k)prop is the category of schemes of finite type over k and proper
morphisms) which satisfy triangulated analogs of functorial properties of ho-
mology and Borel-Moore homology respectively. Aside from further “mo-
tivic” applications, the value of this theory is that it provides a natural
categorical framework for different kinds of “algebraic cycle (co-)homology”
type theories.

In particular Bloch’s higher Chow groups CH i(X, j) and Suslin’s alge-
braic singular homology Halg

i (X,Z) admit the following descriptions in terms
of DMgm(k):

CH i(X, j) = HomDM(Z(d− i)[2d− 2i+ j],Mc(X))

(where d = dim(X))

Halg
i (X,Z) = HomDM(Z[i],M(X)).

Similarly, one defines motivic cohomology by

H i
M(X,Z(j)) ≡ HomDM(M(X),Z(j)[i]).

In the case of a smooth scheme X , the motivic Poincare duality theorem
asserts that cohomology is canonically isomorphic to Borel-Moore homology
and thus isomorphic to higher Chow groups.

We prove that our motivic cohomology theory satisfies properties (1)-
(4) listed above. The comparison with higher Chow groups together with
the recent construction of a “motivic spectral sequence” by S. Bloch and S.
Lichtenbaum [9] and work in progress by Eric M. Friedlander, M. Levine, A.
Suslin and M. Walker gives us the fifth property3.

As was mentioned above, attempting to develop such a theory one en-
counters certain difficulties related to the fact that we do not yet know how
to work efficiently with algebraic cycles up to “higher homotopies”.

There are four main technical tools which we use to overcome these dif-
ficulties:

3We would like to mention that the existence of a “motivic spectral sequence” is not
strictly speaking a part of the theory discussed here, but rather of a yet to be constructed
stable homotopy theory of schemes.
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1. a theory of sheaves of relative cycles.

2. a theory of sheaves and presheaves with transfers.

3. the Nisnevich and cdh-topologies on the category of schemes.

4. the Friedlander-Lawson moving lemma for families of algebraic cycles.

The theory of sheaves of relative cycles is developed in the first paper
of this volume “Relative cycles and Chow sheaves”. The basic idea of this
theory comes from two independent sources - one is Lawson homology theory
and the classical theory of Chow varieties and another is the sheaf theoretic
approach to finite relative cycles used in [22] and [21].

An important aspect of the theory of relative cycles is that it is “elemen-
tary” in the sense that it only uses very basic properties of schemes. We
develope this theory in the very general context of schemes of finite type
over an arbitrary Noetherian scheme, although applications considered in
this volume concern varieties over a field.

Another of the main tools appearing in this paper is the cdh-topology.
This plays an important role in the theory, because different kinds of “lo-
calization” sequences for sheaves of relative cycles become exact in the cdh-
topology.

The theory of presheaves with transfers and more specifically homotopy
invariant presheaves with transfers is the main theme of the second paper
“Cohomological theory of preshaves with transfers”. The idea that transfers
should play an important role in motivic theory can be traced to two sources.
One is the use of transfers in the proof of a rigidity theorem by A. Suslin in
[20]; another is the theory of qfh-sheaves considered in [22]. These were first
combined in [21], leading to a proof of A. Suslin’s conjecture relating the
algebraic singular homology with finite coefficients and the etale cohomol-
ogy. The results on presheaves with transfers obtained in the second paper
together with the Nisnevich (or “completely decomposable”) topology [19]
enable us to prove the Mayer-Vietoris exact sequence for algebraic singular
homology; this result is an example of a solution to a “moving” probem in-
accessible to either classical methods or S. Bloch’s “moving by blow-ups”
techniques.

The Friedlander-Lawson moving lemma for families of algebraic cycles
([11]) appears in the third paper in which we construct a bivariant theory
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called bivariant cycle cohomology4. In this paper, duality between cohomol-
ogy and homology is studied, following duality studied by Eric M. Friedlander
and H.B. Lawson in the context of Lawson homology [10]. While the defini-
tion of our bivariant theory (at least in the case of a smooth first argument) is
very elementary, to prove basic properties such as Mayer-Vietoris and local-
ization requires all the machinery of the preceding papers together with the
moving lemma for families of algebraic cycles. As before, we have had two
main sources of inspiration. One is the theory of morphic cohomology which
is a bivariant analog of Lawson homology developed by Eric M. Friedlander
and H.B. Lawson. Another is the approach to localization problems based
on the theory of presheaves with transfers and the cdh-topology which was
developed by V. Voevodsky.

The fifth and last paper in the volume gives a proof of the fact that the
groups of the Borel-Moore homology component of the bivariant cycle coho-
mology are canonically isomorphic (in appropriate cases) to Bloch’s higher
Chow groups, thereby providing a link between our theory and Bloch’s orig-
inal approach to motivic (co-)homology.

The reader will find separate introductions at the beginning of each paper
in this volume. To obtain a broader view of motivic cohomology and its
relationship to Grothendieck’s original goal of a good category of motives,
the reader may wish to consult [1].

V. Voevodsky is pleased to acknowledge encouragement and useful con-
versations with A. Beilinson, A. Goncharov, and D. Kazhdan.
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