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On the Zero Slice of the Sphere Spectrum
c©2004 г. V. Voevodsky1

Поступило в феврале 2004 г.

We prove the motivic analogue of the statement saying that the zero stable homotopy group of spheres
is Z. In topology, this is equivalent to the fact that the fiber of the obvious map from the sphere Sn

to the Eilenberg–MacLane space K(Z, n) is (n + 1)-connected. We prove our motivic analogue by
an explicit geometric investigation of a similar map in the motivic world. Since we use the model of
the motivic Eilenberg–MacLane spaces based on the symmetric powers, our proof works only in zero
characteristic.

1. INTRODUCTION

In [3], we introduced the slice filtration on the motivic stable homotopy category, which is a
motivic analogue of the filtration by the subcategories of n-connected spectra in topology. Since
the inclusion functors between different terms of the filtration have right adjoints, it makes sense to
speak of the projection sn(E) of a spectrum E to the nth quotient of this filtration. This projection,
which is again an object of the motivic stable homotopy category, is called the nth slice of E. Its
topological analogue is the spectrum ΣnHπn(E), where πn(E) is the nth stable homotopy group of
E and HA is the Eilenberg–MacLane spectrum corresponding to the abelian group A. In this sense,
slices provide a motivic replacement of stable homotopy groups.

The goal of this paper is to prove, over fields of characteristic zero, the main conjecture of [3],
which asserts that the zero slice of the sphere spectrum 1 is the motivic Eilenberg–MacLane spec-
trum HZ. Using the analogy between slices and stable homotopy groups, one may interpret this
result as a motivic version of the statement that πs

0(S
0) = Z. As an immediate corollary, one gets

that the slices of any spectrum are modules over HZ.
We obtain our main result from an unstable statement about the motivic Eilenberg–MacLane

spaces Kn. We introduce the notion of a (homotopically) n-thick space and show that, on the one
hand, the suspension spectrum of any n-thick space belongs to the nth stage of the slice filtration
and, on the other hand, for n > 0, the cone of the natural map T n → Kn is (n + 1)-thick.

The restriction on the characteristic of the base field k appears in our approach twice. Firstly,
we use the model of Kn based on the symmetric powers of T n = An/(An −{0}), which is only valid
over fields of characteristic zero. Secondly, in order to analyze the structure of the dth symmetric
power, we need the invertibility of d! in k. We expect that the main result of this paper remains
valid in any characteristic, even though the intermediate steps we use do not.

The first draft of this paper (with some mistakes) was announced at the Great Lakes K-theory
meeting in Evanston in 2001, and I would like to thank all the listeners for pointing out gaps in the
original argument.

2. THOM SPACES OF LINEAR REPRESENTATIONS
AND THEIR QUOTIENTS

We fix a base field k and let Sch/k denote the category of quasi-projective schemes over k. For
a finite group scheme G over k, we denote by G-Sch/k the category of G-objects in Sch/k. In [2],
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ON THE ZERO SLICE OF THE SPHERE SPECTRUM 107

we defined an analogue of the Nisnevich topology on G-Sch/k. We let (G-Sch/k)Nis denote the
corresponding site and Spc•(G) denote the category of pointed simplicial sheaves on (G-Sch/k)Nis.
Following [2], one introduces the class of A1-weak equivalences on Spc•(G) and defines the corre-
sponding A1-homotopy category as the localization with respect to this class.

We let Σ1
s and Σ1

T denote the suspensions by the simplicial circle and the sphere T =
A1/(A1 − {0}), respectively, and Σ̃s denote the unreduced s-suspension:

Σ̃sF = cone(F+ → S0).

For a G-equivariant vector bundle E over X, let Th(E) denote the Thom space E/(E − s0(X)),
where s0 is the zero section. For X = Spec(k), equivariant vector bundles are linear representa-
tions V of G and Th(V ) is the object V/(V − {0}). Note that Th(V ⊕ W ) ∼= Th(V ) ∧ Th(W )
and Th(0) = S0. Note also that, since V is A1-contractible as a G-scheme, there is a natural
A1-equivalence of the form

Th(V ) ∼= Σ̃s(V − {0}).

We let QuotG : Spc•(G) → Spc• denote the functor that commutes with colimits and such that
Quot(X+) = (X/G)+ (see [2, Section 5.1]).

In this section, we prove several general results about the structure of the quotients
QuotG(Th(V )). For simplicity, we assume in this section that G is a finite group. The following
lemma is straightforward.

Lemma 2.1. Let V1 and V2 be linear representations of G1 and G2. Then, there is a natural
isomorphism

QuotG1×G2
(Th(V1 × V2)) = QuotG1

(V1) ∧ QuotG2
(V2).

In particular, if On is the trivial representation of G of dimension n, then

QuotG(Th(V ⊕On)) = Σn
T QuotG(Th(V )).

For a subgroup H in G, we denote by V ≥H the closed subset of H-invariant elements in V and
by V >H the subset of elements whose stabilizer is strictly greater than H. Note that, for H1 �= H2,
one has V ≥H1 ∩ V ≥H2 ⊂ V >H1 ∩ V >H2 and, in particular,(

V ≥H1 − V >H1
)
∩

(
V ≥H2 − V >H2

)
= ∅.

For a closed subset Z of V , we let GZ denote the orbit of Z, i.e., the closed subset Im(Z × G →
V × G → V ), where the first map is the closed embedding and the second one is the action.

Lemma 2.2. Let H be a closed subgroup in G and N(H) be the normalizer of H. Then, one
has

QuotG
((

V − GV >H
)
/
(
V − GV ≥H

))
= QuotN(H)

((
V − V >H

)
/
(
V − V ≥H

))
. (2.1)

Proof. Let A = G/N(H) be the set of subgroups adjoint to H. The scheme GV ≥H − GV >H

is (noncanonically) isomorphic to (V ≥H − V >H) × A, and there is a G-equivariant map GV ≥H −
GV >H → A. Consider the section of the projection (GV ≥H − GV >H) × A → (GV ≥H − GV >H)
defined by this map. Since this projection is etale, the image of this section is open, and we may
consider the closed complement C to this image. Consider the square

(V − GV ≥H) × A → (V − GV >H) × A − C

V − GV ≥H

↓
j → V − GV >H

p↓

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2004, т. 246



108 V. VOEVODSKY

where the vertical morphisms come from the obvious projections and the horizontal morphisms,
from the obvious embeddings. Let us show that this is an upper distinguished square in G-Sch/k.
It is clearly a pullback square, p is etale, and j is an open embedding. It remains to verify that
p−1(GV ≥H − GV >H) → GV ≥H − GV >H is an isomorphism, which follows from our choice of C.
We conclude that

(
V − GV >H

)
/
(
V − GV ≥H

)
=

(
V − GV ≥H

)
× A/

((
V − GV >H

)
× A − C

)
and therefore

QuotG
((

V − GV >H
)
/
(
V − GV ≥H

))
= QuotG

((
V − GV ≥H

)
× A/

((
V − GV >H) × A − C

))
.

Further, we have
QuotG

((
V − GV ≥H

)
× A

)
= QuotN(H)

(
V − GV ≥H

)
and

QuotG
((

V − GV >H
)
× A − C

)
= QuotN(H)

(
V − GV >H −

(
GV ≥H − V ≥H

))
.

Since GV ≥H − GV >H = (V ≥H − V >H)
∐

(GV ≥H − V ≥H − GV >H), we have
(
V − GV >H −

(
GV ≥H − V ≥H

))
/
(
V − GV ≥H

)
=

(
V − V >H

)
/
(
V − V ≥H

)
,

and (2.1) follows.
Remark 2.3. An analogue of Lemma 2.2 holds for any finite etale group scheme G and any X

in G-Sch/k.
Let H be a normal subgroup of G. Then, we may consider the relative analogue of the Quot

functor
QuotG,H : Spc•(G) → Spc•(G/H)

that commutes with colimits and is such that Quot(X+) = (X/H)+, where X/H is considered with
the natural action of G/H. One easily verifies that QuotG = QuotG/H QuotG,H .

Lemma 2.4. If H is a normal subgroup of G of order prime to char(k), then one has

QuotG
((

V − V >H
)
/
(
V − V ≥H

))
= QuotG/H

((
V ≥H − V >H

)
+
∧ QuotG,H

(
Th

(
V/V ≥H

)))
.

Proof. Since
QuotG = QuotG/H QuotG,H ,

it is sufficient to show that QuotG,H((V − V >H)/(V − V ≥H)) is isomorphic to (V ≥H − V >H)+ ∧
QuotG,H(Th(V/V ≥H)) as a G/H-space. Since the order of H is prime to char(k), there is an
isomorphism V = V ≥H ⊕ (V/V ≥H). Using this isomorphism, we get an isomorphism

(
V − V >H

)
/
(
V − V ≥H

)
=

(
V ≥H − V >H

)
+
∧ Th

(
V/V ≥H

)
.

Since the action of H on V ≥H is trivial, we get

QuotG,H

((
V − V >H

)
/
(
V − V ≥H

))
=

(
V ≥H − V >H

)
+
∧ QuotG,H

(
Th

(
V/V ≥H

))
.

Combining Lemmas 2.2 and 2.4, we get the following result.
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ON THE ZERO SLICE OF THE SPHERE SPECTRUM 109

Proposition 2.5. Let G be a finite group of order prime to char(k). Let, further, V be a
linear representation of G over k such that V ≥G = 0. Then, QuotG(Th(V )) belongs to the smallest
class that is closed under cones, finite coproducts, and A1-equivalences and contains the following
objects:

(1) Σ̃s(QuotG(V0)), where V0 is the open subscheme in V where G acts freely ;
(2) QuotN(H)/H

(
(V ≥H − V >H)+ ∧ QuotN(H),H(Th(V/V ≥H))

)
for all subgroups H in G such

that H �= e,G.

Proof. Consider the sequence of open embeddings V0 → V1 → . . . → VN = V , where Vi is the
subscheme of points with the stabilizer of order at most i + 1 and N = |G| − 1. In particular, V0

is the open subscheme where G acts freely. Under our assumption, VN−1 = V − {0}, and hence
Th(V ) = Σ̃s(VN−1).

Lemma 2.6. Let X0 → X1 → . . . → Xm be a sequence of monomorphisms in Spc•(G). Then,
Σ̃s(Xm) belongs to the smallest class that is closed under simplicial weak equivalences and cones and
contains Σ̃s(X0) and Xi/Xi−1 for i = 1, . . . ,m.

Proof. Denote the smallest class satisfying the conditions of the lemma by B. Let us show by
induction on m that Σ̃s(Xm) is in B. For m = 0, the statement is obvious. By induction, we may
assume that Σ̃sXm−1 is in B. The diagram

pt → S0 → S0

Xm/Xm−1

↓
→ ΣsXm−1,+

↓
→ ΣsXm,+

↓

Xm/Xm−1

↓
→ Σ̃sXm−1

↓
→ Σ̃sXm

↓

whose rows and columns are cofibration sequences, shows that Σ̃sXm = cone(Xm/Xm−1 → Σ̃sXm−1)
and therefore Σ̃sXm is in B.

In view of Lemma 2.6, it is sufficient to show that the quotients Vi/Vi−1 for i = 1, . . . , N − 1
belong to the class we consider. This follows directly from Lemmas 2.2 and 2.4.

3. THICK SPACES

Definition 3.1. The class of n-thick objects is the smallest class An such that

(1) An is closed under A1-equivalences;
(2) An is closed under filtering colimits;
(3) if (Fi) is a simplicial object in ∆op Spc•(G) such that Fi ∈ An for all i and ∆ is the diagonal

functor, then ∆((Fi)) ∈ An;

(4) for any smooth X in G-Sch/k and Z closed in X everywhere of codimension ≥ n, X/(X−Z)
is in An.

We say that an object is thick if it is 1-thick.
Remark 3.2. Note that we have constructed our definition in such a way that an object of

Spc•(G) is 0-thick if and only if it can be build out of smooth schemes by means of homotopy
colimits. In particular, unless k has resolution of singularities, it is not clear that any object is
0-thick.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2004, т. 246



110 V. VOEVODSKY

Lemma 3.3. The class An of n-thick objects has the following properties :

(1) An is closed under coproducts;
(2) for a morphism f : X → Y, where X and Y are in An, one has cone(f) ∈ An;

(3) for X in An, one has Σ1
TX ∈ An+1.

Proof. Since An is closed under filtering colimits and any coproduct is a filtering colimit of
finite coproducts, it is sufficient to show that if X and Y are in An, then X ∨ Y is in An. Let us
show first that, for any space X in An, any smooth scheme U , and any Z of codimension at least
n + 1 in U , X ∨U/(U −Z) is in An. Indeed, the class of X for which this holds clearly satisfies the
conditions of Definition 3.1 and therefore contains An. Similarly, the class of all Y such that X ∨Y
is in An clearly satisfies the first three conditions of Definition 3.1, and we have just shown that it
satisfies the fourth. Hence, it contains An.

The cone cone(f : X →Y ) is the diagonal of a bisimplicial object with terms Y , Y ∨X, Y ∨X∨X,
etc. that one obtains if one writes the definition of the cone using the second dimension for the
simplicial interval ∆1

+. Hence, any class closed under finite coproducts and diagonals is also closed
under the cones.

To verify the last condition, observe that the class of X such that Σ1
T X is in An+1 satisfies the

first three conditions of Definition 3.1. It satisfies the fourth one since

Σ1
T (X/(X − Z)) = X × A1/(X ×A1 − Z × {0})

and codim Z × {0} = codim Z + 1.

For a finite etale G-scheme W , consider the functor F �→ F∧W introduced in [2].

Proposition 3.4. Let W be a finite etale G-scheme of degree d. Then, the functor F �→ F∧W

takes n-thick objects to nd-thick objects.

Proof. It is sufficient to show that the class of F such that F∧W is nd-thick satisfies the
conditions of Definition 3.1. The first condition follows from the fact that F �→ F∧W preserves
A1-equivalences (see [2, p. 63, Proposition 5.2.11]). The second condition follows from the fact that
F �→ F∧W commutes with filtering colimits. The third condition is obvious.

To see that it satisfies the fourth condition, consider X in G-Sch/k and Z closed in X everywhere
of codimension ≥ n. An easy generalization of [2, p. 63, Remark 5.2.8] shows that

(X/(X − Z))∧W = XW/
(
XW − ZW

)
,

and it remains to note that if W is etale, then codim ZW = d codim Z.

Lemma 3.5. Let X be a scheme with a free action of G and F be a pointed solid G-sheaf
that is n-thick. Then, QuotG(X+ ∧ F ) is n-thick.

Proof. Let R : Spc•(G) → Spc•(G) be the resolution functor introduced in [2, p. 43, Construc-
tion 3.6.3], which takes a simplicial sheaf to a weakly equivalent one with terms being coproducts of
representable sheaves. By [2, p. 57, Proposition 5.1.4], the functor Quot ◦R respects A1-equivalences,
and for a solid F , the natural morphism Quot(R(F )) → Quot(F ) is a weak equivalence. Hence, it
is sufficient to show that, for F satisfying the conditions of the lemma, Quot(R(X+∧F )) is n-thick.

Since F is assumed to be n-thick, it is sufficient to verify that the class of F such that
Quot(R(X+ ∧ F )) is n-thick satisfies the conditions of Definition 3.1. The first condition holds
since the functor Quot(R(X+ ∧ ·)) preserves A1-equivalences. To see the second one, recall that R
and Quot commute with filtering colimits. Similarly, the third condition follows from the fact that
both Quot and R commute with the diagonal functor.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2004, т. 246



ON THE ZERO SLICE OF THE SPHERE SPECTRUM 111

To check the fourth condition, we have to verify that Quot(R(X+ ∧ (Y/(Y −Z)))) is n-thick for
any closed pair (Y,Z), where codim Z ≥ n. Using again [2, p. 57, Proposition 5.1.4], we see that

Quot
(
R(X+ ∧ (Y/(Y − Z)))

)
→ Quot

(
X+ ∧ (Y/(Y − Z))

)
is an A1-equivalence. Further, we have

Quot
(
X+ ∧ (Y/(Y − Z))

)
= Quot(X × Y )/

(
Quot(X × Y ) − Quot(X × Z)

)
.

Since the action of G on X is free, the scheme Quot(X × Y ) is smooth, and since the projection
X × Y → Quot(X × Y ) is finite, codim(QuotG(X × Z)) = codim(X × Z) = codim Z.

In the following two results, G is the trivial group.
Proposition 3.6. Let X be an n-thick space over a perfect field k. Then, the suspension

spectrum Σ∞
T (X) is in Σn

T SHeff .
Recall (see [3]) that SHeff is the localizing subcategory in the motivic stable homotopy category

generated by the suspension spectra of smooth schemes. The following result is an immediate
corollary to our definitions and the motivic homotopy purity theorem.

Lemma 3.7. Let U be a smooth rational scheme over k. Then, Σ̃s(U) is thick.
Proof. Since U is rational, there is a dense open subscheme V in U such that V is an open

subscheme in An for some n. Then, Σ̃s(V ) ∼= An/V is thick and U/V is thick. We conclude by
Lemma 2.6 and Lemma 3.3(2) that Σ̃sU is thick.

4. SYMMETRIC POWERS OF T

Let Sn be the symmetric group. In this section, we assume that char(k) = 0 or n < char(k).
Consider the symmetric power

Symmn(Tm) := QuotSn
((Tm)∧n).

Our goal is to prove the following result.
Theorem 4.1. For any n ≥ 2 and m ≥ 1, the space Symmn(Tm) is (m + 1)-thick.
Consider the linear representations P (m,n) of Sn defined by the permutation action on (Am)n.

Then,
Symmn(Tm) = QuotSn

(Th(P (m,n))).

Let V (m,n) be the reduced version of P (m,n),

V (m,n) = ker(p : (Am)n → Am),

where p(x1, . . . , xn) = x1 + . . . + xm. Under our assumptions on char(k), there is an isomorphism

P (m,n) ∼= V (m,n) × Am,

where the action on Am is trivial. Therefore, by Lemma 2.1,

Symmn(Tm) = QuotSn
(Th(P (m,n))) = Σm

T QuotSn
(Th(V (m,n))),

and Theorem 4.1 follows from Lemma 3.3(3) and Theorem 4.3 below.
Let (n) be the standard set of n-elements and j1, . . . , jn be integers ≥ 0 such that

∑
iji = n. (4.1)

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2004, т. 246



112 V. VOEVODSKY

Then, there is a bijection
φ : (n) ∼= (1)j1 � (2)j2 � . . . � (n)jn , (4.2)

and any such bijection defines an embedding

eφ : Sj1
1 × Sj2

2 × . . . × Sjn
n → Sn.

The stabilizer in Sn of a point x in P (m,n) is determined by the set of diagonals xi = xj that
contain x, and subgroups of the form Im(eφ) are exactly the subgroups that occur as stabilizers of
different points.

The adjunction class of a subgroup of the form Im(eφ) is determined by the integers j1, . . . , jn.
The case j1 = n and ji = 0 for i �= 1 corresponds to a point with all components being different, and
the case jn = 1 and ji = 0 for i �= n, to a point with all components being the same. We choose one
isomorphism of the form (4.2) for each collection j1, . . . , jn satisfying (4.1) and let Hj1,...,jn denote
the corresponding subgroup.

The same classification of stabilizers applies to V (m,n) since V (m,n) is a subspace of P (m,n).
The normalizer of H = Hj1,...,jn is of the form Gj1,1 × . . . × Gjn,n, where Gj,i is the semidirect

product of Sj and Sj
i with respect to the obvious permutational action. The quotient N(H)/H is

of the form Sj1 × . . . × Sjn .
Consider now the quotient V (m,n)/V (m,n)≥H . One can easily see that it is isomorphic to the

sum
⊕

V (m, i)⊕ji , the action of N(H) on it is the direct product of actions of Gji,i on V (m, i)⊕ji ,
and the action of Gji,i is given by the product of the standard actions of ji copies of Si on V (m, i)
and the permutation action of Sji . Summing this up, we get the following result.

Lemma 4.2. One has an isomorphism of N(H)/H spaces of the form

QuotN(H),H

(
Th

(
V (m,n)/V (m,n)≥H

))
=

n∧
i=1

QuotSi
(Th(V (m, i)))ji .

Theorem 4.3. For n ≥ 2 and m > 0, the space QuotSn
(Th(V (m,n))) is thick.

Example 4.4. For n = 2, V (m,n) is Am with the sign action of S2 = Z/2. Over a field of
odd characteristic, one has

QuotS2
(V (m, 2) − {0}) = O(−2)Pm−1 − z(Pm−1),

where z is the zero section. In particular, it is a rational variety, and therefore

QuotS2
(Th(V (m, 2))) = Σ̃s

(
QuotS2

(V (m, 2) − {0})
)

is thick by Lemma 3.7.
Proof of Theorem 4.3. We proceed by induction on n ≥ 2. Let V0 be the open subscheme

of V (m,n) where Sn acts freely. By Lemma 4.5 below, Σ̃s QuotSn
(V0) is thick. In view of Propo-

sition 2.5 and Lemma 3.3(1) and (2), it remains to show that, for H = Hj1,...,jn , H �= e, Sn, the
space

QuotN(H)

((
V ≥H − V >H

)
+
∧ QuotN(H),H

(
Th

(
V/V ≥H

)))

is thick. For n = 2, any subgroup of Sn is e or Sn, and our statement is trivial. Hence, we may assume
inductively that n ≥ 3 and the theorem is proved for n−1. Since the action of N(H) on V ≥H−V >H

is free and the space F = QuotN(H),H(Th(V/V ≥H)) is solid, it is sufficient by Lemma 3.5 to see
that F is thick as an N(H)/H-space. Since H �= e, Sn, there exists n > i ≥ 2 such that ji �= 0.

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2004, т. 246



ON THE ZERO SLICE OF THE SPHERE SPECTRUM 113

By the inductive assumption, QuotSi
(Th(V (m, i))) is thick, and therefore QuotSi

(Th(V (m, i)))ji

is thick as an Sji-space by Lemma 3.4. By Lemma 4.2, F is the smash product of the form
F ′ ∧ QuotSi

(Th(V (m, i)))ji and N(H)/H = G × Sji , where G acts on the first factor and Sji on
the second, and we conclude that F is thick.

Lemma 4.5. The object QuotSn
(Σ̃sV0) is thick.

Proof. By Lemma 3.7, it is sufficient to show that QuotSn
(V0) is rational. Let V0,0 be an open

subset in V0 that consists of x1, . . . , xn such that the first components of all xi ∈ Am are different.
The projection to the first component,

V0,0(m,n) → V0(1, n), (4.3)

makes V0,0(m,n) into an equivariant vector bundle over V0(1, n). Since the action of Sn on V0(1, n)
is free, the map of quotient schemes defined by (4.3) is a vector bundle as well. Hence, it is sufficient
to show that Quot(V0(1, n)) or, equivalently, Quot(V (1, n)) is rational.

The quotient Quot(P (1, n)) = An/Sn can be identified in the standard way with An, where the
first coordinate is given on P (1, n) by the sum of components. It follows that Quot(V (1, n)) = An−1

and, in particular, that it is rational.

5. REFORMULATION FOR SMOOTH SCHEMES

Denote, for a moment, the (pointed, simplicial) sheaves on smooth schemes by Spc•(Sm) and
sheaves on all quasi-projective schemes by Spc•(Sch). Let An be the class of n-thick spaces in
Spc•(Sch) and ASm

n be the similarly defined class in Spc•(Sm). The functor

π∗ : Spc•(Sch) → Spc•(Sm)

that takes a sheaf on Sch/k to its restriction on Sm/k respects limits, colimits, and A1-equivalences.
This immediately implies that π∗ takes An to ASm

n . Therefore, all the results about thickness proved
above remain valid if we work in the context of sheaves on smooth schemes.

6. MOTIVIC EILENBERG–MACLANE SPACES

In this section, k is a field of characteristic zero and we work in the context of sheaves on smooth
schemes. Let Kn = Ztr(An)/Ztr(An − {0}) be the nth motivic Eilenberg–MacLane space over k.
Consider the obvious morphism T n → Kn, where T n = T∧n = An/(An − {0}). The goal of this
section is to prove the following theorem.

Theorem 6.1. For n > 0, the space Σs cone(T n → Kn) is (n + 1)-thick.
Example 6.2. Consider the case n = 1. It is easy to see, using Lemma 6.3 below, that K1

is A1-equivalent to (P∞, ∗), where ∗ is a rational point and the morphism T → K1 corresponds to
the standard embedding (P1, ∗) → (P∞, ∗). The cone is given by P∞/P1, and its s-suspension is
2-thick by the reduced analogue of Lemma 2.6 and Lemma 3.3(2).

Consider the sheaf Keff
n associated to the presheaf of the form

Keff
n : U �→ ceff(U × An/U)/ceff (U × (An − {0})/U), (6.1)

where ceff(X/U) is the monoid of effective finite cycles on X over U and the quotient on the right-
hand side means that two cycles Z1 and Z2 on U ×An are identified if Z1 −Z2 is in U × (An −{0}).

Lemma 6.3. The obvious map Keff
n → Kn is an A1-equivalence for n ≥ 1.

Proof. Let F eff be the presheaf (6.1) and let F be the presheaf given by

U �→ Ztr(An)(U)/Ztr(An − {0})(U)
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such that the sheaf associated with F is Kn. Consider the singular simplicial presheaves C∗(F eff)
and C∗(F ). The standard argument shows that the morphisms

Keff
n = aNisF

eff → aNisC∗(F eff ) and Kn = aNisF → aNisC∗(F )

are A1-equivalences. For any smooth U , the abelian group associated with the monoid F eff(U)
coincides with F (U). Therefore, aNisC∗(F ) is the sheaf of simplicial abelian groups associated with
the sheaf of simplicial monoids aNisC∗(F eff). Let us show that the natural map

aNisC∗(F eff ) → aNisC∗(F )

is a local equivalence in the Nisnevich topology, i.e., that, for any Henselian local S, the map of
simplicial sets

C∗(F eff)(S) → C∗(F )(S)

is a weak equivalence.
For any i, Ci(F eff)(S) = F eff(Ai

S) is the free commutative monoid generated by irreducible
closed subsets in ∆i

S × An that are finite and equidimensional over ∆i
S and have a nontrivial

intersection with ∆i
S × {0}.

Therefore, by Lemma 6.4 below, it is sufficient to show that

π0(C∗(F eff)(S)) = 0.

An element in C0(F eff)(S) may be represented by a cycle on An
S of the form Z =

∑
niZi, where Zi

are closed irreducible subsets of An
S and ni > 0. Since Zi are finite over S, they are local (since S is

Henselian), and therefore we may assume that the closed points of all Zi lie in {0}S . Consider now
the cycle H on A1

S × An obtained from Z by the pullback with respect to the map (t, x) �→ x − t.
This cycle is finite over A1

S . Its restriction to t = 0 is Z, and the restriction to t = 1 has all the
closed points in {1}S and therefore lies in (An −{0})S . Hence, the image h of H in C1(F eff )(S) has
the property ∂0h = Z and ∂1h = 0, and we conclude that π0 = 0.

Lemma 6.4. Let M be a commutative simplicial monoid and f : M → M+ be the canonical
map from M to the associated simplicial group. If, for any n, the monoid Mn is a free commutative
monoid and π0(M) is a group, then f is a weak equivalence.

Proof. If π0(K) is a group, the topological monoid |M | is a grouplike associative H-space. For
such H-spaces, the canonical map |M | → ΩB(|M |) is a weak equivalence (this follows from [1]).
The same argument shows that |M+| → ΩB(|M+|) is a weak equivalence. It remains to show
that B(|M |) → B(|M+|) is a weak equivalence. By construction, B(|M |) is the same as |B(M)|,
where B(M) is the diagonal of the bisimplicial object obtained by applying the classifying space
construction to each term of M . Since the class of weak equivalences of simplicial sets is closed
under taking diagonals, it remains to show that, for a free commutative monoid M , the map
B(M) → B(M+) is a weak equivalence. A free commutative monoid is a direct product of copies
of natural numbers, and the result follows from the obvious equivalence B(N) ∼= B(Z).

We are going now to analyze the structure of Keff
n . Let K≤d

n be the subsheaf in Keff
n associated

with the subpresheaf that takes U to the image in Keff
n (U) of the set of finite cycles on An

U/U
of degree everywhere ≤ d over U . Clearly, Keff

n = colimd K≤d
n . The sheaf K≤1

n coincides with
T n = An/(An − {0}) that is naturally embedded into Keff

n . Consider the quotients K≤d
n /K≤d−1

n .
Lemma 6.5. Let k be a field of characteristic zero. Then, there is an isomorphism

K≤d
n /K≤d−1

n
∼= Symmd(T n), (6.2)

where Symmd(T n) := QuotSd
((T n)∧d).
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Proof. Let c≤d(An) be the sheaf of finite cycles of degree ≤ d on An. By [4], for k of charac-
teristic zero, this sheaf is represented by∐

i≤d

Symmi(An) =
∐
i≤d

QuotSi
(Ani).

Since the right-hand side of (6.2) is given by QuotSd
(And/(And −{0})), it remains to show that the

restriction of the map
c≤d(An) → K≤d

n /K≤d−1
n

to QuotSd
(And) is surjective and that two sections of QuotSd

(And) over a Henselian local scheme S
project to the same section of K≤d

n /K≤d−1
n if and only if they project to the same section of

QuotSd
(And/(And − {0})).

The surjectivity is clear. Let Z =
∑

niZi and W =
∑

mjWj be two sections of c≤d(An) over S
of degree strictly d. By definition, they project to the same section of K≤d

n /K≤d−1
n if both Z and W

are equivalent, modulo the components lying in An −{0}, to a cycle of degree ≤ d−1. Since Zi and
Wj are local, this means that not all of the closed points of the Zi’s (respectively, Wj ’s) lie in {0}.
This is equivalent to the condition that Z and W lie in QuotSd

(And − {0}).
Proof of Theorem 6.1. By Lemma 6.3, it is sufficient to show that the space Σs(Keff

n /T n) is
(n + 1)-thick. Since T n = K≤1

n , the space Keff
n /T n has a filtration that starts with K≤2

n /K≤1
n and

has quotients of the form K≤d
n /K≤d−1

n for d ≥ 3. Since the class of thick objects is closed under
filtering colimits, by the obvious reduced analogue of Lemma 2.6 and Lemma 3.3(2), it is sufficient
to show that K≤d

n /K≤d−1
n are (n + 1)-thick for d ≥ 2. This follows immediately from Lemma 6.5

and Theorem 4.1.
As a corollary to Theorem 6.1, we can prove the main conjecture of [3] over fields of characteristic

zero.
Theorem 6.6. Let k be a field of characteristic zero. Then, s0(1) = HZ.
Proof. Consider the unit map e : 1 → HZ. Since s0(HZ) = HZ, it is sufficient to show that

s0(e) is an isomorphism, i.e., that s0(cone(e)) = 0. By the definition of s0, this would follow if we
could show that cone(e) belonged to Σ1

T SHeff . The map e is given on the level of spectra by the
maps T n → Kn considered above. In particular, we have

cone(e) = hocolimn Σ−n
T Σ∞

T (cone(T n → Kn)).

Since Σ1
T SHeff is closed under homotopy colimits, it remains to verify that

Σ−n
T Σ∞

T (cone(T n → Kn)) ∈ Σ1
T SHeff ,

i.e., that
Σ∞

T (cone(T n → Kn)) ∈ Σn+1
T SHeff .

Since Σn+1
T SHeff is stable under Σs, this follows from Theorem 6.1 and Proposition 3.6.
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