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Abstract. In this paper we give a direct proof of the fact that
for any schemes of finite type X , Y over a Noetherian scheme S the
natural map of presheaves with transfers

Hom(Ztr(X),Ztr(Y ))→ Hom(Ztr(X)⊗tr Gm,Ztr(Y )⊗tr Gm)

is a (weak) A1-homotopy equivalence. As a corollary we deduce that
the Tate motive is quasi-invertible in the triangulated categories of
motives over perfect fields.

2010 Mathematics Subject Classification: 14F42, 19E15

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
2 Finite correspondences . . . . . . . . . . . . . . . . . . . . . . . 672
3 Intersecting relative cycles with divisors . . . . . . . . . . . . . 675
4 Cancellation theorem . . . . . . . . . . . . . . . . . . . . . . . . 680

1 Introduction

Let SmCor(k) be the category of finite correspondences between smooth
schemes over a field k. Denote by Gm the scheme A1 − {0}. One defines
the sheaf with transfers S1

t by the condition that Ztr(Gm) = S1
t ⊕ Z where

Z is split off by the projection to the point and the point 1. For any scheme
Y consider the sheaf with transfers FY = Hom(S1

t , S
1
t ⊗ Ztr(Y )) which maps

a smooth scheme X to Hom(S1
t ⊗ Ztr(X), S1

t ⊗ Ztr(Y )). The main result
of this paper is Corollary 4.9 which asserts that for any Y the obvious map
Ztr(Y )→ FY defines a quasi-isomorphism of singular simplicial complexes

C∗(Ztr(Y ))→ C∗(FY )
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672 Vladimir Voevodsky

as complexes of presheaves i.e. for any X the map of complexes of abelain
groups

C∗(Ztr(Y ))(X)→ C∗(FY )(X)

is a quasi-isomorphism. We then deduce from this result the ”Cancellation
Theorem” for triangulated motives which asserts that if k is a perfect field
then for any K,L in DM eff

− (k) the map

Hom(K,K ′)→ Hom(K(1),K ′(1))

is bijective.
This result was previously known in two particular situations. For varieties
over a field k with resolution of singularities it was proved in [4]. For K ′ being
the motivic complex Z(n)[m] and any field k it was proved in [5]. Both proofs
are very long.
The main part of our argument does not use the assumption that we work with
smooth schemes over a field and we give it for separated schemes of finite type
over a noetherian base. To be able to do it we define in the first section the
category of finite correspondences for separated schemes of finite type over a
base. The definition is a straightforward generalization of the definition for
schemes over a field based on the constructions of [2] and can be skipped. In
the second section we define intersection of relative cycles with Cartier divisors
and prove the properties of this construction which we need. In the third we
prove our main theorem 4.6 and deduce from it the cancellation theorem over
perfect fileds 4.10.
In this paper we say “a relative cycle” instead of “an equidimensional relative
cycle”. All schemes are separated. The letter S is typically reserved for the
base scheme which is assumed to be noetherian. All the standard schemes P1,
A1 etc. are over S. When no confusion is possible we write XY instead of
X ×S Y .
I would like to thank Pierre Deligne who explained to me how to compute the
length function.

2 Finite correspondences

For a scheme X of finite type over a noetherian scheme S we denote by c(X/S)
the group of finite relative cycles on X over S. In [2] this group was denoted
by cequi(X/S, 0). If S is regular or if S is normal and the characteristic of X is
zero, c(X/S) is the free abelian group generated by closed irreducible subsets
of X which are finite over S and surjective over a connected component of S.
For the general definition see [2, after Lemma 3.3.9]. A morphism f : S′ → S
defines the pull-back homomorphism c(X/S) → c(XS′/S′) which we denote
by cycl(f).
For two schemes X,Y of finite type over S we define the group c(X,Y ) of finite
correspondences from X to Y as c(XY/X).
Let us recall the following construction from [2, §3.7]. Let X ′ → X → S be
morphisms of finite type, W a relative cycle on X ′ over X and Z a relative
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cycle on X over S. Then one defines a cycle Cor(W ,Z) on X ′ as follows. Let
Zi be the components of the support of Z present with multiplicites ni and
ei : Zi → X the corresponding closed embeddings. Let e′i : Zi ×X X ′ → X ′

denote the projections. We set

Cor(W ,Z) =
∑

i

ni(e
′
i)∗cycl(ei)(W)

where (e′i)∗ is the (proper) push-forward on cycles.

Let X , Y be schemes of finite type over S and

f ∈ c(X,Y ) = c(XY/X)

g ∈ c(Y, Z) = c(Y Z/Y )

finite correspondences. Let

pX : XY → Y

pY : XY Z → XZ

be the projections. We define the composition g ◦ f by the formula:

g ◦ f = (pY )∗Cor(cycl(pX)(g), f) (2.1)

This operation is linear in both arguments and thus defines a homomorphism
of abelian groups

c(X,Y )⊗ c(Y, Z)→ c(X,Z)

The lemma below follows immediately from the definition of Cor(−,−) and
the fact that the (proper) push-forward commutes with the cycl(−) homomor-
phisms ([2, Prop. 3.6.2]).

Lemma 2.1 Let Y → X → S be a sequence of morphisms of finite type, p :
Y → Y ′ a morphism over X, Y ∈ Cycl(Y/X, r)⊗Q and X ∈ Cycl(X/S, s)⊗Q.
Assume that p is proper on the support of Y. Then

p∗Cor(Y,X ) = Cor(p∗(Y,X )).

Lemma 2.2 For any f ∈ c(X,Y ), g ∈ c(Y, Z), h ∈ c(Z, T ) one has

(h ◦ g) ◦ f = h ◦ (g ◦ f).
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Proof: Consider the following diagram

XT
4

←−−−− XY T −−−−→ Y T

7

x 8

x 2

x

XZT
9

←−−−− XY ZT −−−−→ Y ZT −−−−→ ZT −−−−→ T
y

y
y

y

XZ
5

←−−−− XY Z
9

−−−−→ Y Z
1

−−−−→ Z
y

y

XY
3

−−−−→ Y
y

X

where the morphisms are the obvious projections. Note that all the squares
are cartesian. We will also use the projection 6 : XZ → Z.
We have f ∈ c(XY/X), g ∈ c(Y Z/Y ) and h ∈ c(ZT/Z). The compositions
are given by:

g ◦ f = 5∗Cor(cycl(3)(g), f)

h ◦ g = 2∗Cor(cycl(1)(h), g)

(h ◦ g) ◦ f = 4∗Cor(cycl(3)(h ◦ g), f) = 4∗Cor(cycl(3)(2∗Cor(cycl(1)(h), g)), f)

h ◦ (g ◦ f) = 7∗Cor(cycl(6)(h), g ◦ f) = 7∗Cor(cycl(6)(h), 5∗Cor(cycl(3)(g), f))

We have:
4∗Cor(cycl(3)(2∗Cor(cycl(1)(h), g)), f) =

= 4∗Cor(8∗cycl(3)Cor(cycl(1)(h), g), f) =

= 4∗8∗Cor(cycl(3)Cor(cycl(1)(h), g), f) =

= 4∗8∗Cor(Cor(cycl(1 ◦ 9)(h), cycl(3)(g)), f)

where the first equality holds by [2, Prop. 3.6.2], the second by Lemma 2.1 and
the third by [2, Th. 3.7.3]. We also have:

7∗Cor(cycl(6)(h), 5∗Cor(cycl(3)(g), f)) =

= 7∗9∗Cor(cycl(6 ◦ 5)(h), Cor(cycl(3)(g), f))

by [2, Lemma 3.7.1]. We conclude that (h ◦ g) ◦ f = h ◦ (g ◦ f) by [2, Prop.
3.7.7].

We denote by Cor(S) the category of finite correspondences whose objects are
schemes of finite type over S, morphisms are finite correspondences and the
composition of morphisms is defined by (2.1).
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For a morphism of schemes f : X → Y let Γf be its graph considered as an
element of c(XY/X). One verifies easily that Γgf = Γg ◦ Γf and we get a
functor Sch/S → Cor(S). Below we use the same symbol for a morphism of
schemes and its graph considered as a finite correspondence.
The external product of cycles defines pairings

c(X,Y )⊗ c(X ′, Y ′)→ c(XX ′, Y Y ′)

and one verifies easily using the results of [2] that this pairing extends to a
tensor structure on Cor(S) with X ⊗ Y := XY .

3 Intersecting relative cycles with divisors

Let X be a noetherian scheme and D a Cartier divisor on X i.e. a global
section of the sheaf M∗/O∗. One defines the cycle cycl(D) associated with
D as follows. Let Ui be an open covering of X such that DUi

is of the form
fi,+/fi,− ∈M

∗(Ui). Then cycl(D) is determined by the property that

cycl(D)|Ui
= cycl(f−1

i,+(0))− cycl(f
−1
i,−(0))

where on the right hand side one considers the cycles associated with closed
subschemes ([2, ]). One defines the support of D as the closed subset
supp(D) := supp(cycl(D)).
We say that a cycle Z =

∑
nizi on X intersects D properly if the points zi

do not belong to supp(D). Let Zi be the closure of zi considered as a reduced
closed subscheme and ei : Zi → X the closed embedding. If Z and D intersect
properly we define their intersection (Z, D) as the cycle

(Z, D) :=
∑

ni(ei)∗(cycl(e
∗
i (D)))

If p : X → S is a morphism of finite type and Z is a relative cycle of relative
dimension d over S, we say that D intersects Z properly relative to p (or
properly over S) if the dimension of fibers of supp(D) ∩ supp(Z) over S is
≤ d − 1. This clearly implies that Z intersects D properly and (Z, D) is
defined.

Proposition 3.1 Let p : X → S be a morphism of finite type, Z a relative
equidimensional cycle of relative dimension d on X over S and D a Cartier
divisor on X which intersects Z properly over S. Then:

1. (Z, D) is a relative cycle of relative dimension d− 1 over S,

2. let f : S′ → S be a morphism, X ′ = (X ×S S
′)red and let qred : X ′ → X

be the restriction of the projection to X ′. If q∗red(D) is well defined then

f∗(cycl(Z), D) = (f∗(cycl(Z)), q∗red(D)). (3.1)

where f∗ refers to the pull-back of relative cycles as defined in [2].
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Proof: Let Z =
∑

i nizi where zi are points on the generic fibers of p and
ni 6= 0. As usually we denote by [zi] the reduced closed subschemes with generic
points zi.
Since our problem is local in the Zariski topology on X and additive in D we
may assume that D = D(f) where f ∈ O(X) is a function on X which is not
zero divisor. The condition that D intersects Z properly over S is equivalent
to the condition that for each i and each point y of S the restriction of f to
([zi]×SSpec(ky))red is not a zero divisor. Localizing around [zi] we may assume
that the restriction of f to (X ×S Spec(ky))red is not a zero divisor for any y.
Under these assumptions q∗red(D) is well defined for any f : S′ → S. The
proposition follows now from Lemma 3.2.

Lemma 3.2 Let Z be an integral scheme, S a reduced scheme, p : Z → S an
equidimensional morphism and Spec(k)

s0→ Spec(R)
s1→ S a fat point over a

point s : Spec(k) → S of S (see [2, p.23]). Let Zs = Z ×S Spec(k) and let
q : Zs → Z be the projection. Let f ∈ O(Z) be a function such that the image
of f in O(Zs)red is not a zero divisor. Then

(s0, s1)
∗(D(f)) = ((s0, s1)

∗(η), f ◦ qred) (3.2)

where η is the generic point of Z considered as a cycle on Z and qred :
Zs,red → Z is the restriction of q to the maximal reduced subscheme of Zs.

Proof: Observe first the cycles on both sides of (3.2) are supported in points
of codimension 1 of Zs. Let z be such a point. We want to show that the
multiplicities of the left and right hand sides of (3.2) in z coincide.
To compute (s0, s1)

∗(η) one considers the surjection ψ : OZR
→ H such that

ker(ψ) is supported in the closed fiber of ZR → Spec(R) and H is flat over
R. Let pj be the minimal prime ideals of OZs

and Ai = OZs
/pi. Then by

definition (see [2, Lemma 3.1.2]),

(s0, s1)
∗(η) =

∑

j

lengthAj
(q∗0(H)⊗Aj)pj

Therefore, for a point z of codimension 1 on Zs we have

mltz(((s0, s1)
∗(η), f ◦ qred)) =

=
∑

j

lengthAj
(q∗0(H)⊗Aj)lengthOZs,z

((Aj/fj)⊗OZs,z)

where fj is the restriction of f ◦ qred to [pj ].
Let F = OZ/fOZ . We have D(f) =

∑
i lengthOZ,yi

(F ⊗OZ,yi
)yi where yi are

the generic points of the scheme Y = f−1(0). Let Fi = F⊗O[yi]. By definition,
we have

(s0, s1)
∗(D(f)) =

∑

i

lengthOZ,yi
(F ⊗OZ,yi

)Cycl(q∗0(Gi)).

Documenta Mathematica · Extra Volume Suslin (2010) 671–685



Cancellation Theorem 677

where Gi is a quotient of q∗1(Fi) which is flat over R and such that the ker-
nel of the projection φi : q∗1(Fi) → Gi is supported in the closed fiber of
ZR → Spec(R). Our conditions imply that this cycle is supported in points of
codimension 1 of Zs and for such a point z the multiplicity of (s0, s1)

∗(D(f))
in z equals

mltz((s0, s1)
∗(D(f))) =

∑

i

lengthOZ,yi
(F ⊗OZ,yi

) lengthOZs,z
(q∗0(Gi)⊗OZs,z) (3.3)

Let K∨
0 (Zs) be the Grothendieck group of the bounded derived category of

complexes of coherent sheaves Zs whose cohomology are supported in codimen-
sion ≥ 1. Then the formula

lZs,z(M) = lengthOZs,z
(M ⊗OZs,z)

defines an additive functional on this group and we need to show that

lZs,z(
∑

i

lengthOZ,yi
(F ⊗OZ,yi

) q∗0(Gi)) =

= lZs,z(
∑

j

lengthAj
(q∗0(H)⊗Aj)Aj/fj)

Let fs be the image of f in OZs
and let Ks = cone(OZs

·fs
→ OZs

). Since
fj are not zero divisors, we have Aj/fj = Aj ⊗ LK and the additivity
of length implies that lZs,z(M ⊗ LKs) is zero on any M which is sup-
ported in codimension ≥ 1. Since this condition holds for the difference
q∗0(H)− (

∑
j lengthAj

(q∗0(H)⊗Aj)Aj) we conclude that

lZs,z(
∑

j

lengthAj
(q∗0(H)⊗Aj)Aj/fj) = lZs,z(q

∗
0(H)⊗ LKs) =

= lZs,z(Lq
∗
0(cone(H

f
→ H)) = lZs,z(cone(q

∗
0(H)

f
→ q∗0(H))) (3.4)

Let u be a generator of the maximal ideal of R. Then ker(φi) and ker(ψ) are
just the u-torsion elements in q∗1(Fi) and OZR

respectively. In particular, Gi

are H-modules i.e. Gi = Gi ⊗H . Therefore, both (3.3) and (3.4) are zero if z
does not belong to Ws = Spec(q∗0(H)) ⊂ Zs and for z ∈Ws we have

mltz((s0, s1)
∗(D(f))) = lWs,z(

∑

i

lengthOZ,yi
(F ⊗OZ,yi

)Lq∗W (h∗(Gi)))

and

mltz(((s0, s1)
∗(η), f ◦ qred)) = lWs,z(Lq

∗
W (cone(H

f
→ H)))

where qW : Ws → Spec(H) and h : Spec(H) → Spec(ZR) are the obvious
morphisms. We claim that the difference

M = cone(H
f
→ H)− (

∑

i

lengthOZ,yi
(F ⊗OZ,yi

)h∗(Gi))
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as an element of K0 of H-modules is supported in points of Spec(H) of codi-
mension at ≥ 2 and therefore

lWs,z(Lq
∗
W (M)) = 0

by Lemma 3.4. Indeed, both sides are zero in the generic points of the generic
and of the closed fiber. The restriction of f to the generic fiber ZK of ZR is not
a zero divisor since the map qK : ZK → Z is flat (because S is reduced) and
since Z is integral f is not a zero divisor in OZ . Therefore, the generic fiber

of cone(H
f
→ H) coincides with q∗K(F ) which, as an element of K0, coincides

with
∑

i lengthOZ,yi
(F ⊗OZ,yi

) q∗K(Fi) up to codimension ≥ 2.

Lemma 3.3 Let p :W → Spec(R) be a flat morphism such that R is a discrete
valuation ring, let s : Spec(k) → Spec(R) be a morphism whose image is the
closed point of Spec(R), Ws = W ×Spec(R) Spec(k) and let qW : Ws → W be
the projection. Let further M be a coherent sheaf on W supported in the closed
fiber of p. Then

Lq∗W (M) ∼= q∗W (M)⊕ q∗W (M)[1]

Proof: Let s = is′ be the factorization of s where i : Spec(R/m)→ Spec(R)
is the closed embedding and s′ : Spec(k) → Spec(R/m) a flat morphism and
let qW = q′iq

′ be the corresponding factorization of qW . Then it is sufficient to
show that Lq∗i (M) ∼= q∗i (M)⊕ q∗i (M)[1]. Since (qi)∗ is an exact full embedding
it is further sufficient to show that (qi)∗Lq

∗
i (M) ∼= (qi)∗q

∗
i (M)⊕ (qi)∗q

∗
i (M)[1].

The functor (qi)∗q
∗
i is isomorphic to the functor (−)⊗B where B = OW /p∗(m).

Therefore, (qi)∗Lq
∗
i is isomorphic to the functor (−)⊗FB. Since R is a discrete

valuation ring m is a principal ideal. Let u be a generator of m. Since p is flat
the image of u in OW is not a zero divisor. Therefore

(−)⊗ LB = cone((−)
u
→ (−))

IfM is supported in the closed fiber of p thenM⊗B =M and the multiplication
by u on M equals zero.

Lemma 3.4 Under the assumptions of Lemma 3.3 let M be a coherent sheaf
on W supported in codimension ≥ 2 and let w be a point of codimension 1 on
Ws. Then

lengthOWs,w
(Lq∗W (M)⊗OWs,w) = 0 (3.5)

Proof: It is sufficient to show that (3.5) holds for M = OW /p where p is a
prime ideal of codimension ≥ 2. There are two types of prime ideals satisfying
this condition - the ideals lying over the generic point and the ideals lying over
the closed point. If p lies over the generic point and has codimension ≥ 2 then
the closed fiber of the corresponding closed subscheme has codimension at least
2 and Lq∗W (M)⊗OWs,w = 0 since w is of codimension 1.
If p lies in the closed fiber an has codimension ≥ 1 there then q∗W (M) has finite
length in w and (3.5) follows by additivity of length from Lemma 3.3.
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Corollary 3.5 Let X ′ f
→ X → S be morphisms of finite type, Z a relative

cycle on X over S and W a relative cycle on X ′ over X of dimension 0. Let
further D be a Cartier divisor on X ′ which intersectsW properly over X. Then
D intersects Cor(W ,Z) properly over S and one has:

(Cor(W ,Z), D) = Cor((W , D),Z) (3.6)

Proof: It is a straightforward corollary of the definition of Cor(−,−) and
(3.1).

Lemma 3.6 Let f : X ′ → X be a morphism of schemes of finite type over S,
Z a relative cycle on X ′ such that f is proper on supp(Z) and D a Cartier
divisor on X. Assume that f∗(D) is defined and Z intersects f∗(D) properly
over S. Then f∗(Z) intersects D properly over S and one has:

f∗(Z, f
∗(D)) = (f∗(Z), D) (3.7)

Proof: Let d be the relative dimension of Z over S. To see that f∗(Z)
intersects D properly over S we need to check that the dimension of the fibers
of supp(D)∩ supp(f∗(Z)) over S is ≤ d− 1. This follows from our assumption
and the inclusion

supp(D) ∩ supp(f∗(Z)) ⊂ supp(D) ∩ f(supp(Z)) =

= f(f−1(supp(D)) ∩ supp(Z)) = f(supp(f∗(D)) ∩ supp(Z))

To verify (3.7) it is sufficient to consider the situation locally around the generic
points of f(supp(f∗(D))∩supp(Z)). Therefore we may assume that D = D(g)
is the divisor of a regular function g and Z = z is just one point with the
closure Z. Replacing X ′ by Z and X by f(Z) we may assume that X , X ′

are integral, f is surjective and X is local of dimension 1. Let A = O(X),
B = O(X ′). Consider the function lg : M 7→ lA(M ⊗

LA/g) on K0(A −mod).
This function vanishes on modules with the support in the closed point which
implies that

lg(B) = deg(f)lg(A) = deg(f)lA(A/g)

On the other hand lg(A) = lA(B/(f
∗(g))). Let x′i be the closed points of X ′,

k′i their residue fields and k the residue field of the closed point of X . Let
further Mi be the part of B/(f∗(g)) supported in x′i. One can easily see that
lA(B/(f

∗(g))) =
∑

i[k
′
i : k]lB(Mi). Combining our equalities we get:

deg(f)lA(A/g) =
∑

i

[k′i : k]lB(Mi) (3.8)

which is equivalent to (3.7).
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4 Cancellation theorem

Consider a finite correspondence

Z ∈ c(GmX,GmY ) = c(GmXGmY/GmX).

Let f1, f2 be the projections to the first and the second copy ofGm respectively
and let gn denote the rational function (fn+1

1 − 1)/(fn+1
1 − f2) on GmXGmY .

Lemma 4.1 For any Z there exists N such that for all n ≥ N the divisor of
gn intersects Z properly over X and the cycle (Z, D(gn)) is finite over X.

Proof: Let f̄1 × q̄ : C̄ → P1X be a finite morphism which extends the
projection supp(Z) → GmX . Let N be an integer such that the rational
function f̄N

1 /f2 is regular in a neighborhood of f̄−1
1 (0) and the rational function

f2/f̄
N
1 is regular in a neighborhood of f̄−1

1 (∞). Then for any n ≥ N one has:

1. the restriction of gnf2 to supp(Z) is regular on a neighborhood of f̄−1
1 (0)

and equals 1 on f̄−1
1 (0)

2. the restriction of gn to supp(Z) is regular a neighborhood of f̄−1
1 (∞) and

equals 1 on f̄−1
1 (∞)

Conditions (1),(2) imply that the divisor of gn intersects Z properly over X
and that the relative cycle (Z, D(gn)) is finite over X .

If (Z, D(gn)) is defined as a finite relative cycle we let ρn(Z) ∈ c(X,Y ) denote
the projection of (Z, D(gn)) to XY .

Remark 4.2 Note that we can define a finite correspondence ρg(Z) : X → Y
for any function g satisfying the conditions (1),(2) in the same way as we
defined ρn = ρgn . In particular, if n and m are large enough then the function
tgn +(1− t)gm defines a finite correspondence h = hn,m : XA1 → Y such that
h|X×{0} = ρm(Z) and h|X×{1} = ρn(Z), i.e. we get a canonical A1-homotopy
from ρm(Z) to ρn(Z).

Lemma 4.3 (i) For a finite correspondence W : X → Y and any n ≥ 1 one
has ρn(IdGm

⊗W) =W

(ii) Let eX be the composition GmX
pr
−→ X

{1}×Id
−−−−−→ GmX. Then ρn(eX) = 0

for any n ≥ 0.

Proof: The cycle on GmXGmY over GmX which represents IdGm
⊗W is

∆∗(Gm×W) where ∆ is the diagonal embedding GmXY → GmXGmY . The
cycle (∆∗(Gm ×W), gn) is ∆∗(D ⊗W) where D is the divisor of the function
(tn+1 − 1)/(tn+1 − t) on Gm. The push-forward of ∆∗(D ⊗W) to XY is the
cycle deg(D)W . Since deg(D) = 1 we get the first statement of the lemma.
The cycle Z on GmXGmX representing eX is the image of the embedding
GmX → GmXGmX which is diagonal on X and of the form t 7→ (t, 1) on Gm.
This shows that the restriction of gn to supp(Z) equals 1 and (Z, D(gn)) = 0.
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Lemma 4.4 Let Z : GmX → GmY be a finite correspondence such that
ρn(Z) is defined. Then for any finite correspondence W : X ′ → X,
ρn(Z ◦ (IdGm

⊗W)) is defined and one has

ρn(Z ◦ (IdGm
⊗W)) = ρn(Z) ◦W (4.1)

Proof: Let us show that (4.1) holds. In the process it will become clear that
the left hand side is defined. We can write ρn(Z) ◦W as the composition

X ′ W
−→ X

(Z,D(gn))
−−−−−−→ GmGmY

pr
−→ Y

and ρn(Z ◦ (IdGm
⊗W)) as the composition

X ′ Y
−→ GmGmY

pr
−→ Y

where Y = (Z ◦ (IdGm
⊗W), D(gn)). Consider the diagram

GmX
′GmY

p1

←−−−− GmX
′XGmY −−−−→ GmXGmYy

y

X ′X
p2

−−−−→ X
y

X ′

where the arrows are the obvious projections. If we consider Z as a cycle of
dimension 1 over X then the cycle Z ◦ (IdGm

⊗W), considered as a cycle over
X ′, is (p1)∗Cor(cycl(p2)(Z),W) and we have

((p1)∗Cor(cycl(p2)(Z),W), D(gn)) =

= (p1)∗(Cor(cycl(p2)(Z),W), D(gn)) = (p1)∗Cor((cycl(p2)(Z), D(gn)),W) =

= (p1)∗Cor(cycl(p2)(Z, D(gn)),W)

where the first equality holds by (3.7), the second by (3.6) and the third by
(3.1).
The last expression represents the compositionW◦(Z, D(gn)) and we conclude
that

ρn(Z) ◦W = ρn(Z ◦ (IdGm
⊗W))

Lemma 4.5 Let Z : GmX → GmY be a finite correspondence such that ρn(Z)
is defined. Then for any morphism of schemes f : X ′ → Y ′, ρn(Z ⊗ f) is
defined and one has

ρn(Z ⊗ f) = ρn(Z)⊗ f (4.2)
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Proof: Consider the diagram

GmXX
′GmY Y

′ p1

←−−−− GmXX
′GmY −−−−→ GmXGmYy

y

XX ′ p2

−−−−→ X

where p1 is defined by the embedding X ′ f×Id
−−−→ X ′Y ′ and the rest of the

morphisms are the obvious projections. Consider Z as a cycle over X . Then
ρn(Z ⊗ f) is given by the composition

GmXX
′ Y1−−→ GmGmY

pr
−→ Y Y ′

where Y1 = ((p1)∗cycl(p2)(Z), gn) and ρn(Z)⊗ f by the composition

GmXX
′ Y2−−→ GmGmY

pr
−→ Y Y ′

where Y2 = (p1)∗(cycl(p2)((Z, gn))). The equality Y1 = Y2 follows from (3.7)
and (3.1).

For our next result we need to use presheaves with transfers. A presheaf with
transfers on Sch/S is an additive contravariant functor from Cor(S) to the
category of abelian groups. For X in Sch/S we let Ztr(X) denote the functor
represented by X on Cor(S). One defines tensor product of presheaves with
transfers in the usual way such that Ztr(X) ⊗ Ztr(Y ) = Ztr(X × Y ). To
simplify notations we will write X instead of Ztr(X) and identify morphisms
Ztr(X) → Ztr(Y ) with finite correspondences X → Y . Note in particular
that Gm denotes the presheaf with transfers Ztr(Gm) not the presheaf with
transfers represented by Gm as a scheme. To preserve compatibility with the
notation XY for the product of X and Y we write FG for the tensor product
of presheaves with transfers F and G.
Let S1

t denote the presheaf with transfers ker(Gm → S). We consider it as a
direct summand of Gm with respect to the projection Id− e where e is defined

by the composition Gm → S
1
−→ Gm. In the following theorem we let f ∼= g

denote that the morphisms f and g are A1-homotopic.

Theorem 4.6 Let F be a presheaf with transfers such that there is an epimor-
phism X → F for a scheme X. Let φ : S1

t ⊗ F → S1
t Y be a morphism. Then

there exists a unique up to an A1-homotopy morphism ρ(φ) : F → Y such that
IdS1

t
⊗ ρ(φ) ∼= φ.

Proof: Let us fix an epimorphism p : X → F . Then the morphism φ defines
a finite correspondence Z : GmX → GmY and for n sufficiently large we may
consider ρn(Z) : X → Y . Lemma 4.4 implies immediately that ρn(Z) vanishes
on ker(p) and therefore it defines a morphism ρn(φ) : F → X .
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Consider a morphism φ of the form IdS1

t
⊗ ψ. Then Z is of the form

(IdGm
− e) ⊗ W where W : X → Y corresponds to ψ. By Lemma 4.3 we

have ρn(Z) = W and therefore ρn(IdS1

t
⊗ ψ) = ψ for any n ≥ 1. If ρ, ρ′ are

two morphims such that IdS1

t
⊗ ρ ∼= φ and IdS1

t
⊗ ρ′ ∼= φ then for a sufficiently

large n we have

ρ = ρn(IdS1

t
⊗ ρ) ∼= ρn(IdS1

t
⊗ ρ′) = ρ′

This implies the uniqueness part of the theorem.
To prove the existence let us show that for a sufficiently large n one has
IdS1

t
⊗ ρn(φ) ∼= φ. Let φ̃ be the morphism GmF → GmY defined by φ and let

φ̃∗ : FGm → YGm

be the morphism obtained from φ̃ by the obvious permutation.

Lemma 4.7 The morphisms φ̃ ⊗ (IdGm
− e) and (IdGm

− e) ⊗ φ̃∗ are A1-
homotopic.

Proof: One can easily see that these two morphisms are obtained from the
morphisms

φ⊗ IdS1

t
, IdS1

t
⊗ φ∗ : S1

t FS
1
t → S1

t Y S
1
t

by using the standard direct sum decomposition. One can see further that
φ⊗ IdS1

t
= σY (IdS1

t
⊗φ∗)σF where σF and σY are the permutations of the two

copies of S1
t in S1

t FS
1
t and S1

t Y S
1
t respectively. Lemma 4.8 below implies now

that φ⊗ IdS1

t

∼= IdS1

t
⊗ φ∗.

Lemma 4.8 The permutation on S1
t S

1
t is A1-homotopic to {−1}Id⊗ Id where

{−1} : S1
t → S1

t is defined by the morphism Gm
x 7→x−1

−−−−−→ Gm.

Proof: The same arguments as the ones used in [1, p.142] show that for any

scheme X and any pair of invertible functions f, g on X the morphism X
f⊗g
−−−→

S1
t S

1
t is A1-homotopic to the morphism g ⊗ f−1. This implies immediately

that the permutation on S1
t S

1
t is A1-homotopic to the morphism Id⊗({−1}Id)

where {−1}Id : S1
t → S1

t is the morphism defined by the map Gm
x 7→x−1

−−−−−→ Gm.

For a sufficiently large n we have

ρn(φ⊗ (IdGm
− e)) = ρn(φ)⊗ (IdGm

− e)

by Lemma 4.5. On the other hand

ρn((IdGm
− e)⊗ φ∗) = φ∗

by Lemma 4.3. By Lemma 4.7 we conclude that

φ∗ ∼= ρn(φ) ⊗ (IdGm
− e)

which is equivalent to IdS1

t
⊗ ρn(φ) ∼= φ. Theorem 4.6 is proved.
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Corollary 4.9 Denote by FY the presheaf

X 7→ Hom(S1
tX,S

1
t Y )

and consider the obvious map Y → FY . Then for any X the corresponding
map of complexes of abelian groups

C∗(Y )(X)→ C∗(FY )(X)

is a quasi-isomorphism

Proof: Let ∆n ∼= An be the standard algebraic simplex and ∂∆n the sub-
presheaf in ∆n which is the union of the images of the face maps ∆n−1 → ∆n.
Then the n-th homology group of the complex C∗(F )(X) for any F is the group
of homotopy classes of maps from X⊗ (∆n/∂∆n) to F . Our result now follows
directly from 4.6.

Corollary 4.10 Let k be a perfect field. Then for any K,L in DM eff
− (k)

the map Hom(K,L)→ Hom(K(1), L(1)) is a bijection.

Proof: Since DM eff
− is generated by objects of the form X it is enough to

check that for smooth schemes X,Y over k and n ∈ Z one has

Hom(S1
tX,S

1
t Y [n]) = Hom(X,Y [n])

By Corollary 4.9 we know that the map

Y → FY = Hom(S1
t , S

1
t Y )

is an isomorphism in DM . Let us show now that for any sheaf with transfers
F and any X one has

HomDM (S1
tX,F [n]) = HomDM (X,Hom(S1

t , F )[n]) (4.3)

The left hand side of (4.3) is the hypercohomology group Hn(GmX,C∗(F ))
modulo the subgroup Hn(X,C∗(F )). The right hand side is the hyper-
cohomology group Hn(X,C∗Hom(Gm, F )) modulo similar subgroup. Let
p : GmX → X be the projection. It is easy to see that (4.3) asserts that
Rp∗(C∗(F )) ∼= C∗(p∗(F )). There is a spectral sequence which converges to the
cohomology sheaves of Rp∗(C∗(F )) and starts with the higher direct images
Rip∗(H

j(C∗(F ))). We need to verify that Rip∗(H
j(C∗(F ))) = 0 for i > 0

and that p∗(H
j(C∗(F ))) = Hj(C∗(p∗(F ))). Both statements follow from [3,

Prop. 4.34, p.124] and the comparison of Zariski and Nisnevich cohomology
for homotopy invariant presheaves with transfers.
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