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A possible new approach to the motivic spectral sequence 
for algebraic K-theory 

Vladimir Voevodsky 

ABSTRACT. We describe a simple construction of the spectral sequence relating 
algebraic K-theory and motivic cohomology modulo two general conjectures 
on the structure of the motivic homotopy category. The first conjecture is 
the motivic analog of the fact that the zero stage of the Postnikoff tower 
for the (topological) sphere spectrum is the Eilenberg-Maclane spectrum Hz. 
The second is the motivic analog of the fact that the functor 0 1 L 1 takes 
n-connected spaces to n-connected spaces. 

1. Introduction. Despite the considerable progress in motivic cohomology 
and motivic homotopy theory achieved in recent years we still do not have a simple 
construction of the spectral sequence relating motivic cohomology and algebraic K-
theory. The construction invented by Dan Grayson (see [3]) is simple and elegant 
but we are still unable to identify the E 2-term of the resulting spectral sequence 
with the motivic cohomology groups. The approach pioneered by Spencer Bloch and 
Steven Lichtenbaum in [1] and further developed by Eric Friedlander and Andrei 
Suslin in [2] gives a spectral sequence of the required form but is technically and 
conceptually very involved. 

In [9] we suggested a different approach to this problem. Its first ingredient 
is a construction of a canonical Postnikov tower for any motivic spectrum E. The 
quotients of this tower s; (E) are called the slices of E and, by construction, there is 
a spectral sequence whose E 2-term is given by the cohomology theories represented 
by the slices and which attempts to converge to the theory represented by E. For 
KGL, the spectrum representing algebraic K-theory, the main problem is to identify 
the slices with the motivic cohomology spectra Hz i.e. to prove the following 
conjecture: 

CONJECTURE 1. sn(KGL) ~ L,?}Hz 

Since algebraic K-theory is periodic 1.e. L,~KGL = KGL, it is sufficient to 
prove this conjecture for n = 0. 

At the end of [9] we outlined a possible approach to such an identification. It 
depends on two conjectures: 
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372 VLADIMIR VOEVODSKY 

CONJECTURE 2. Let 1 be the sphere spectrum. Then so(l) =Hz. 

CoNJECTURE 3. D'{'('E'!-}SHeff) C 'EfSH8 

The notations used in the second conjecture are explained below. Note that 
these conjectures concern only general properties of the motivic stable homotopy 
categories and do not refer to any specifics of the spectrum representing algebraic K-
theory. The main goal of this short paper is to give a complete proof that Conjecture 
2 and Conjecture 3 imply Conjecture 1. We will use freely the formalism of slices, 
and refer the reader to [9] for the corresponding discussion. 

This paper is an expanded version of the talk given at the Great Lakes Algebraic 
K-theory conference in Toronto (2000). It was written while I was a member of the 
Institute for Advanced Study in Princeton. I am very grateful to the Institute for 
its support. 

2. The s-stable motivic homotopy category. We denote by HS8 (S) the 
stable A 1-homotopy category of S!-spectra over a base schemeS and by SH(S) the 
stable A 1-homotopy category ofT-spectra over S. These categories are considered 
in detail in [4]. Given an S!-spectrum (Ei, S! 1\Ei ....... EiH), the sequence of pointed 
sheaves S1 1\ Ei together with the morphisms 

s; As; A (s: A Ei) ....... s:H As; A Ei ....... s:H A Ei+l 

form an Sjl\ S!-spectrum. Since the homotopy category of S! 1\ Sj-spectra is 
equivalent to the homotopy category ofT-spectra we get a functor 

'Ef' : SHs(S) ....... SH(S) 

This functor has the usual properties of a suspension spectrum functor. In partic-
ular, it has a right adjoint 

Of : SH(S) ---+ SHs(S) 

which takes a fibrant T-spectrum (Ei, T 1\Ei ....... Ei+l) to the s-spectrum with terms 
D~(Ei) and the structure maps adjoint to the composition 

1 1 i i i i St 1\ S8 1\ Dt(Ei) ....... T 1\ Dt(Ei) ....... Dt(T 1\ Ei) ---+ Dt(Ei+l) 

Let 
'E~ : H.(S) ....... SHs(S) 

be the usual suspension spectrum functor from the pointed unstable homotopy 
category to SH8 • Then 'E'{''E:;" = 'ET' where 'ET' is the suspension spectrum functor 
from H. to SH(S). 

Recall that SHeff is the smallest triangulated subcategory in SH which con-
tains suspension spectra and is closed with respect to all direct sums. 

LEMMA 2.1. Iff: E---+ F is a morphism in SHeff and D'{'(f) is an isomor-
phism then f is an isomorphism. 

PROOF. The definition of SHeff implies that a morphism f : E---> Fin this 
category such that for any pointed simplicial sheaf X. and any n E Z the map 

HomsH('E~'Er(X.), E)---> HomsH('E~"ET'(X.), F) 

defined by f is bijective, is an isomorphism. Since 'ET' = 'E'{''E:;", this map is 
isomorphic to 

H omsH.('E~'E:;"(X.), D'{'(E)) ---> H oms H. ('E~'E~(X.), D'f(F)). 
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D 

For n 2 0, let L-~SH 8 be the localizing subcategory of SH8 (S) generated by objects 
of the form 'L-~'L-:"x,(X.) for all pointed simplicial sheaves X •. We get a filtration: 

· · · c L-~SHs c y:,~- 1 SHs ···c ... L-~SHs = SHs 

All the categories appearing in this filtration are compactly generated triangulated 
categories with all direct sums and the functors respect direct sums and distin-
guished triangles. Therefore, by [6], the inclusion functors have right adjoints and 
we denote the composition 

SHs ___, L-~ SHs ___, SHs 

by fn· For any E in SH8 we get natural distinguished triangles 

fq+lE ___, fq(E) ___, sq(E) ___, L-~fq+l (E) 

where sq(E) belongs to L-jSHs and is right orthogonal to L-£+1 SH8 • These triangles 
form the SH8 -analog of the slice tower (see [9, Theorem 2.2]) in SH. 

It is clear that the functor 'L-r' maps the slice filtration in SH8 to the slice 
filtration in S H: 

L-'f'(L-~SHs) c 'L-rSHeff 

In particular, the whole SH8 is mapped to SHeff. It is also clear that the functor 
Or' respects the "adjoint" filtration i.e. that it maps objects in SH which are right 
orthogonal to L-Y,SHeff to objects which are right orthogonal to L-~SH 8 • We can 
now restate Conjecture 3 from the introduction: 

CONJECTURE 4. The functor nr respects the slice filtration i.e. 

O'f'('L-rSHeff) c L-~SHs 

Since all the functors involved in Conjecture 4 are triangulated and commute 
with direct sums it is sufficient to check that for a smooth scheme X over S one 
has 

O'f'(L-~(Tn 1\ X+)) E L-~SHs 

The object on the left hand side can be represented by a homotopy colimit of objects 
of the form n~y:,~+n('L-:;'(X+)) where both 'L-t and Ot are taken in SH8 • A simple 
inductive argument shows now that Conjecture 4 follows from the following: 

CONJECTURE 5. For any smooth scheme X over S and any n 2 0 one has 

OiL-iL-~(Sf 1\ X+) E 'L-~SHs 

The topological analog of this statement (where SH is replaced by the stable 
homotopy category and SH8 by the unstable one) asserts that OL- takes n-connected 
objects ton-connected objects. One way to see it is to use the fact that OL-(X) has 
a model ("James construction") possessing a filtration whose quotients are X 1\i. 

This is the starting point of the operadic theory of loop spaces and it appears that 
any such theory for t-loop spaces in SHs would provide a proof of Conjectures 4 
and 5. 

LEMMA 2.2. Assume that Conjecture 4 holds. Then for any E in SH one has: 

O'f'(fn(E)) = fn(Or'(E)) 

O'f'(sn(E)) = sn(O'f'(E)) 
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PROOF. To prove the first equality it is sufficient to show that rl'f' (f n (E)) is 
in '5:.~ S H s and that the cones of the morphism rl'f' (f n (E) ----+ E) is right orthogonal 
to '5:.~ S Hs. The former is Conjecture 4. The later is clear because rl'f' is adjoint 
to '5:.'{'. The second equality follows from the first one since Sn is the cone of the 
morphism fn+l ----> fn and nr commutes with cones. 0 

3. A connectivity result. The goal of this section is to prove Theorem 3.2. 
Its corollary 3.4 will be used below to prove the convergence of the slice spectral 
sequence for algebraic K-theory. Everywhere in this section we assume that S is the 
spectrum of a field. We need this assumption in order to have the following lemma. 

LEMMA 3.1. Let E be an s-spectrum such that 1r <o(E) = 0. Then one has, 

7r<o('5:.}E) = 0 

7r<o(D}E) = 0 

PROOF. See [4]. 0 

THEOREM 3.2. Let E be an object of '5:.£SH8 such that 7r<o(D£E) = 0. Then 
Jr<o(E) = 0. 

PROOF. Consider the adjunction morphism '5:.£rl£E ----> E and let E(l) be its 
cone. Applying this construction inductively we get a sequence of distinguished 
triangles 

(1) 
and therefore a sequence of morphisms 

E ----+ E(l) ----> ... ----> E(n) ----> ... 

Let E(oo) be the homotopy colimit of this sequence. This object is in '5:.£ SH8 • 

Applying the functor rl£ to the triangles (1) we get split triangles. Therefore, 
since rl£ commutes with the homotopy co limits of sequences, D£ E( oo) is zero as the 
homotopy colimit of a sequence of zero morphisms. The following straightforward 
lemma implies that E(oo) = 0. 

LEMMA 3.3. Let E be an object in '5:.{SH8 such that rl{E = 0. Then E = 0. 

PROOF. Under the assumptions of the lemma the class E of objects Fin '5:.jSHs 
such that H om('5:.~ F, E) = 0 for all n, contains objects of the form '5:.£'5:.~ (X+) and 
is closed under triangles and direct sums. Therefore, E coincides with '5:.£ SH8 • 0 

Since objects of the form '5:.~'5:.~(X+) are compact, the fact that E(oo) is zero implies 
that for any i one has 

colimn 1ri(E(n)) = 0 
It remains to show that for i < 0 the maps 

1ri(E(n))----> 1ri(E(n+l)) 

are monomorphisms. The long exact sequence defined by (1) implies that it is 
sufficient to check that 1r <D ('5:.£rli E(n)) = 0. Proceed by induction on n. By 
Lemma 3.1 it is sufficient to check that 7r<o(D£E(n)) = 0. For n = 0 this follows 
from our assumption on E. Assume that 7r<o(D£E(n-l)) = 0. Applying 1ri(Di(-)) 
to the triangle (1) we get a short exact sequence 

0----+ 1ri(rl£(E(n)))----+ 1ri-l(rl£'5:.£Di(E(n-l)))----+ 1ri-l(ni(E(n-ll))----> 0 
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Using again Lemma 3.1 and the inductive assumption we conclude that 7ri(O'f(E(n))) 
is zero. This finishes the proof of Theorem 3.2. D 

Recall that for E in S H ( S), 7r p,q (E) denote the sheaf associated to the presheaf 

X f----+ HomsH(Z:,'fz:,~-ql:,r(X), E) 

COROLLARY 3.4. Assume that Conjecture 4 holds and that S = Spec(k) where 
k is a field. Let E be an object of S H ( S) and q 2: 0 an integer such that 7r p,q (E) = 0 
for p < q. Then 7r<o,o(fq(E)) = 0. 

PROOF. By adjunction we have 7rn,o(fq(E)) = 7rn(O'{'(fq(E))). Since fq(E) is 
in Z:,}SHeff, Conjecture 4 implies that O'{'(fq(E)) is in Z:,'fSH8 • By Theorem 3.2 
it is sufficient to show that 7rn(O'fO'f'(fq(E))) = 0 for n < 0. By adjunction this 
group equals 

D 

4. Computation of s0 (0'f'(KGL)). The results of this section do not depend 
on any conjectures. We assume here that the base scheme S is regular. 

Denote the spectrum O'f'(KGL) by KGL 8 . Since Sis regular 

KGLp,q(X) = K~_v(X) 
where K;fJ is the usual (Quillen's) K-theory (see [7] where we use BGL instead of 
KGL), and therefore, 

HomsHs (Z:,":(X+), I:,~ KGLs) = KGLn,o(X) = K~n(X) 
For a sheaf of abelian groups A denote by HA,s the Eilenberg-MacLane s-spectrum 
defined by .A_, i.e. the sequence of the simplicial sheaves K(.A_, n) = K(.A_[n]) together 
with the obvious structure morphisms. The goal of this section is to prove the 
following theorem. 

THEOREM 4.1. There exists an isomorphism so(KGLs) = Hz,s which takes 
the identity map 1 ~ sa(KGL8 ) to the identity map of Hz,s· 

For any s-spectrum E, denote by 7ri(E), i E Z the Nisnevich sheaf associated 
with the presheaf 

X f----+ HomsHs (Z:,":(X+), z:,;i(E)). 

If 1ri(E) = 0 for i < 0 then we have a canonical morphism E ~ Hrro(E),s· In 
particular, since K-n(X) = 0 for X regular and n > 0 and the sheaf associated 
with K 0 is Z we get a canonical morphism¢: KGL8 ~ Hz,s· To prove the theorem 
it is sufficient to show that s0 (Hz,s) = Hz,s and that the fiber of¢ is in l:,iSH8 • 

The former is shown in Lemma 4.2, the later in Lemma 4.6. 

LEMMA 4.2. One has sa(Hz,s) = Hz,s· 

PROOF. We need to show that H z,s is orthogonal to I:,} S Hs, i.e. that for a 
smooth scheme X over S and any n E Z we have 

HomsHs (Z:,iZ:,":(X+), I:,~ Hz,s) = 0 

Since Nisnevich cohomology with coefficients in Z are homotopy invariant, Hz,s is 
A 1-local and this group equals ker(H'Nis(X x Gm, Z) ~ H'J.riJX, Z)). Since Sis 
regular, X and X X Gm are smooth and Hf.ris ( -, Z) can only be non zero for n = 0. 

Licensed to Princeton Univ.  Prepared on Sat Mar 28 17:50:05 EDT 2015for download from IP 128.112.203.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



376 VLADIMIR VOEVODSKY 

For n = 0 the kernel is zero because for a henselian local X the scheme X x Gm is 
connected. D 

REMARK 4.3. The assumption that S is regular is not necessary for the proof 
of Lemma 4.2. In the proof, for a general S, the reduction to HfJvis should be 
replaced by the fact that for a local henselian S one has Hjyis(S x Gm, Z) = 0 for 
i > 0. 

PROPOSITION 4.4. Let E = (En) be a fibmnt s-spectrum such that 1ri(E) = 0 
for i < 0. Then E belongs to the smallest subcategory closed under distinguished 
triangles, direct sums and smash products containing '5:.';' ( E 0 ). 

PROOF. Denote the smallest subcategory satisfying the conditions listed above 
by C. Note that E = hocolimn '5:.;n'5:.';'(En) and, since homotopy colimits of 
sequences can be expressed in terms of cones and direct sums, it is sufficient to 
show that '5:.';'(En) is in C. By induction we may assume that '5:.';'(En-d is in 
C. Since E is fibrant we have En- 1 = D~(En)· Using an appropriate model 
for loop spaces we may assume that En-1 has a monoid structure. Let B(En_1) 
be the classifying space of En_ 1 defined as the diagonal of the bisimplicial sheaf 
B •• ( En- 1) whose rows are E;;'_ 1. Our connectivity assumption on E implies that 
En = B(En-1)· The formula 

'5:.~(X. x Y.) = ('5:.~(X.) A '5:.~(Y.)) V '5:.~(X.) V '5:.~(Y.) 

implies that the suspension spectra of the rows of B •• (En-d are in C. By Lemma 
4.5 we conclude that the suspension spectrum of En is in C. D 

LEMMA 4.5. Let B •• be a pointed bisimplicial sheaf with rows Bi. Then the 
spectrum '5:.';'(~(B •• )) belongs to the localizing subcategory C generated by '5:.';'(Bi)· 

PROOF. Consider B =B •• as a simplicial object over ~oPShv. with terms Bi. 
Let W r(B) be the degeneracy free simplicial object obtained by first forgetting the 
degeneracies of B and then adding new ones freely (see [8, p.45]) such that 

Wr(B)i = V Bj 
[i]-t[j] 

where [i] --+ [j] runs through all monomorphisms in ~. We have a canonical map 
Wr(B) --+ B which is a weak equivalence column-wise because for a pointed 
simplicial set X the map Wr(X) --+ X is a weak equivalence. Therefore, it 
remains to check that the suspension spectrum of ~(Wr(B)) is in C. Since 
~(Wr(B)) = colimn ~(skn(Wr(B))) and Cis closed under triangles and direct 
sums it is sufficient to prove that the suspension spectrum of ~(skn(Wr(B))) is in 
C for each n. The simplicial object Wr(B) is a degeneracy free object based on 
the sequence Bi· Therefore, for each n we have a push-out square 

1 1 
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Applying the diagonal functor we get a push-out square in pointed simplicial objects 
of the form 

1 1 
Bn A~+ ------t ~(skn(Wr(B))) 

which implies that the cone of the morphism 

2:~ ~(skn-l(Wr(B))) ~ 2:~ ~(skn(Wr(B))) 

is isomorphic to the cone of the morphism 

I:~(Bn A 8~~) ~ I:~(Bn A~~) 

i.e. to 2:~2:?"(Bn)· This finishes the proof of the lemma. 

LEMMA 4.6. The fiber of¢ is in I:iSH8 • 

D 

PROOF. The fiber of ¢ satisfies the connectivity assumption of Proposition 
4.4. It remains to see that 2:?"(/iber(KGLs,o ~ Z)) is in I:iSH8 • Since KGLs,o 
represents K 0 it is A 1-weakly equivalent, by [5, Theorem 4.3.13], to BGL x Z where 
BGL is the geometric infinite Grassmannian. Our result follows now from Lemma 
4.7 and the fact that I:iSHs is closed under homotopy colimits of sequences. D 

LEMMA 4.7. Let BGL(n, m) be the Grassmannian of rank n submodules in om 
which we consider as a pointed scheme by means of any point. Then I:?"(BGL(n, m)) 
is in I:iSHs. 

PROOF. Let X be a smooth scheme over S and U be a dense open subscheme 
in X such that X - U is a divisor with normal crossings. A simple inductive 
argument together with the homotopy purity theorem ([5, Theorem 3.2.23]) shows 
that then the cone of the map I:?"(U+) ~ 2:?"(X+) is in EfSH8 • Let U be an open 
subscheme in BGL(n, m) such that: 

1. U contains the distinguished point 
2. U';;!;AN 
3. BGL(n, m) - U is a divisor with normal crossings. 

Applying the previous remark we conclude that 2:?"(BGL(n, m)) is in I:iSH8 • D 

5. The slice spectral sequence for algebraic K-theory. Consider the 
slice tower 

(2) 
By construction, the algebraic K-theory spectrum KGL is periodic i.e. we have an 
isomorphism 2:} A KGL = KGL. This isomorphism defines isomorphisms 

sq(KGL) = I:~so(KGL) 
fq(KGL) = I:~fo(KGL) 

For any smooth scheme X over S consider the spectral sequence for 

KGLp,q(X) = HomsH(I:'T(X+), 2:'f2:~-qKGL) 

defined by the tower (2). If we index this spectral sequence such that it starts with 
the E2- term then we have 

(3) 
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where so(KGL)*,* denotes the cohomology theory defined by the spectrum so(KGL). 
Theorem 5.1 below identifies s0 (KGL) with the integral motivic Eilenberg-MacLane 
spectrum and (3) becomes 

E~,q = Hp-q,-q(X, Z) 

Proposition 5.5 implies that our spectral sequence strongly converges to 
KGLP+q,O(X) = K-p-q(X). 

THEOREM 5.1. Assume that S = Spec(k) where k is a field and that Conjec-
tures 2 and 3 hold overS. Then there is an isomorphism so(KGL) =Hz in SH(S) 
which takes the unit of s0 (KGL) to the unit of Hz. 

PROOF. By Conjecture 2, we have s0 (1) = Hz. Therefore, the unit map 
1 ----> KGL defines a morphism Hz ----> so(KGL) which takes the unit morphism 
1 ----> Hz to the unit morphism 1 ----> KGL. We are going to prove that any such 
morphism is an isomorphism. 

Conjecture 2 implies in particular that Hz E SHeff. Therefore, by Lemma 2.1 
it is sufficient to prove that 

(4) D'f(Hz----> so(KGL)) 

is an isomorphism. 

LEMMA 5.2. Let S = Spec(k) where k is a field and let Hz be the motivic 
Eilenberg-MacLane spectrum. Then D'f(Hz) = Hz,s· 

PROOF. The spectrum Hz,s can be characterized by the property that 

1r·(H ) = { Z fori= 0 
• Z,s 0 for i =f. 0 

We have: 

( 
The sheaf associated ) 

7ri(D'f(Hz)) = 1ri,o(Hz) = to the presheaf 
X t-t H''0 (X, Z) 

and the lemma follows from the fact that for a smooth connected scheme X over a 
field one has: 

(5) Hi,o (X Z) = { Z for ~ = 0 
' 0 for z =f. 0 

0 

By Lemma 2.2 (this is where Conjecture 3 is used) we have D'f(s0 (KGL)) 
s0 (D'f(KGL)) and by Theorem 4.1 we have so(D'f(KGL)) = Hz,s· Therefore, (4) 
is a morphism from Hz,s to Hz, 8 • The fact that it is an isomorphism follows from 
the lemma below. 

LEMMA 5.3. Let f : Hz,s ----> Hz,s be an endomorphism which takes the unit 
map 1 ----> Hz,s to itself. Then f is the identity. 

PROOF. Since Hz,s is A 1-local the endomorphisms of this object in SH8 can 
be computed in the stable homotopy category of simplicial presheaves (without 
A 1-localization). Our result follows from the fact that in this category the endo-
morphisms of Hz,s are given by H 0 (S, Z). 0 

0 
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REMARK 5.4. The only place in the proof of Theorem 5.1 where we used the 
assumption that S is the spectrum of a field is in the proof of Lemma 5.2. If we 
knew that the motivic cohomology of weight zero of all regular connected schemes 
is given by (5) then we could prove Theorem 5.1 for any regularS. 

PROPOSITION 5.5. LetS be the spectrum of a field and assume that Conjecture 
4 holds. Then for a smooth scheme X over S of absolute dimension d and n > d- q 
one has: 

HomsH(L.'f'(X+), L.~ fq(KGL)) = 0. 

PROOF. The sheaf 1fp,q(KGL) is the sheaf associated to the presheaf Kp- 2q(- ). 
In particular it is zero for p < 2q. Applying Corollary 3.4 we conclude that 
1f<q(fq(KGL)) = 0 for all q 2: 0. The statement of the proposition follows from 
the Connectivity Theorem (see [4]). 0 
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