Homotopy Type Theory MPIM-Bonn 2016

Dependent Type Theories

Lecture 3.
 Presheaf extensions of C-systems.
 B-sets of C-systems and C-subsystems theorem.

By Vladimir Voevodsky
from Institute for Advanced Study in Princeton, NJ.

February, 2016

In the last lecture we have outlined, for each category T, the construction of functions

$$
\begin{aligned}
& L w C s: L w(T) \rightarrow C s_{\mathbf{N}}\left(T^{o p}\right) \\
& C s L w: C s_{\mathbf{N}}\left(T^{o p}\right) \rightarrow L w(T)
\end{aligned}
$$

and stated the lemma that they are mutually inverse bijections. From these functions we derived the functors

$$
\begin{aligned}
& L C: L W(U) \rightarrow C S_{\mathrm{N}}(U) \\
& C L: C S_{\mathrm{N}}(U) \rightarrow L W(U)
\end{aligned}
$$

and, using the lemma, proves the theorem stating that these functors a mutually inverse isomorphisms of categories for any universe U.
This provides a description, in terms familiar to categorical logic, of the simplest class of C-systems - the l-bijective C-systems, i.e., the C-systems for which the length function $l: C C \rightarrow \mathbf{N}$ is a bijection.

There is a larger class of C-systems that can be described in similar terms.

Definition $1 A C$-system is called 1-generated if it coincides with its smallest subsystem that contains all objects of length 1.

I expect to be able to construct, for any set S, an isomorphism between the category of S-sorted Lawvere theories and pairs of the form $(C C, \Phi)$ where $C C$ is 1-generated C-system and $\Phi: O b_{1}(C C) \rightarrow S$ a bijection between the set of objects of $C C$ of length 1 and S.

This will provide a classical description for the class of 1-generated Csystems.

Intuitively, 1-generated C-systems correspond to type theories without dependent types. So their connection with more classical objects of categorical logic is not entirely unexpected.
We now proceed to the description of a construction that generates Csystems that are not 1-generated and takes us out of the realm of classical categorical logic. It is called the presheaf extension of a C-system.

Let $C C$ be a C-system and $F: C C^{o p} \rightarrow$ Sets a presheaf on the category underlying $C C$. We will construct a new C-system $C C[F]$ which we call the F-extension of $C C$.

We will first construct a $C 0$-system $C C[F]$ and then show that it is a C-system.

Problem 2 Given a C-system $C C$ and a presheaf

$$
F: C C^{o p} \rightarrow \text { Sets }
$$

to construct a C0-system that will be denoted $C C[F]$ and called the F-extension of $C C$.

Construction 3

We set

$$
\begin{equation*}
O b(C C[F])=\amalg_{X \in C C} F\left(f t^{l(X)}(X)\right) \times \ldots \times F\left(f t^{2}(X)\right) \times F(f t(X)) \tag{1}
\end{equation*}
$$

where the product of the empty sequence of factors is the one element set.

We will write elements of $O b(C C[F])$ as (X, Γ) where $X \in C C$ and $\Gamma=\left(T_{0}, \ldots, T_{l(X)-1}\right)$.
Note that $f t^{l(X)}(X)=p t$ for any X and therefore all the products in (1) start with $F(p t)$.

We set

$$
\operatorname{Mor}(C C[F])=\amalg_{(X, \Gamma),\left(Y, \Gamma^{\prime}\right)} \operatorname{Mor}_{C C}(X, Y)
$$

We will write elements of $\operatorname{Mor}(C C[F])$ as $\left((X, \Gamma),\left(Y, \Gamma^{\prime}\right), f\right)$. When the domain and the codomain of a morphism are clear from the context we may write f instead of $\left((X, \Gamma),\left(Y, \Gamma^{\prime}\right), f\right)$.
We define the composition function by the rule

$$
\left.\left((X, \Gamma),\left(Y, \Gamma^{\prime}\right), f\right)\right) \circ\left(\left(Y, \Gamma^{\prime}\right),\left(Z, \Gamma^{\prime \prime}\right), g\right)=\left((X, \Gamma),\left(Z, \Gamma^{\prime \prime}\right), f \circ g\right)
$$

and the identity morphisms by the rule

$$
I d_{C C[F],(X, \Gamma)}=\left((X, \Gamma),(X, \Gamma), I d_{C C, X}\right)
$$

The associativity and the identity conditions of a category follow easily from the corresponding properties of $C C$. This completes the construction of a category $C C[F]$.

We define the length function as

$$
l((X, \Gamma))=l(X)
$$

If $l((X, \Gamma))=0$ then $X=p t_{C C}$ and $\Gamma=()$ where () is the unique element of the one point set that is the product of the empty sequence, i.e., $p t_{C C[F]}=\left(\left(p t_{C C},()\right)\right)$.

We define the ft-function on (X, Γ) such that $l(X)>0$ as

$$
f t\left(\left(X,\left(T_{0}, \ldots, T_{l(X)-1}\right)\right)=\left(f t(X),\left(T_{0}, \ldots, T_{l(X)-2}\right)\right)\right.
$$

which is well defined because $l(f t(X))=l(X)-1$. We will write $f t(\Gamma)$ for $\left(T_{0}, \ldots, T_{l(X)-2}\right)$ so that $f t((X, \Gamma))=(f t(X), f t(\Gamma))$.
We define the p-morphisms as

$$
p_{(X, \Gamma)}=\left((X, \Gamma), f t(X, \Gamma), p_{X}\right)
$$

For $\left(Y, \Gamma^{\prime}\right)$ such that $l\left(\left(Y, \Gamma^{\prime}\right)\right)>0$ and $f:(X, \Gamma) \rightarrow f t\left(Y, \Gamma^{\prime}\right)$ where $\Gamma=\left(T_{0}, \ldots, T_{l(X)-1}\right)$ and $\Gamma^{\prime}=\left(T_{0}^{\prime}, \ldots, T_{l(Y)-1}^{\prime}\right)$ we set

$$
\begin{equation*}
f^{*}\left(\left(Y, \Gamma^{\prime}\right)\right)=\left(f^{*}(Y),\left(T_{0}, \ldots, T_{l(X)-1}, F(f)\left(T_{l(Y)-1}^{\prime}\right)\right)\right) \tag{2}
\end{equation*}
$$

In the same context as above we define the q-morphism as

$$
q\left(f,\left(Y, \Gamma^{\prime}\right)\right)=\left(f^{*}\left(\left(Y, \Gamma^{\prime}\right)\right),\left(Y, \Gamma^{\prime}\right), q(f, Y)\right)
$$

This completes the construction of the elements of the structure of a C0-system.

For the proof that they satisfy the axioms of a C0-structure see "Csystem of a module over a $J f$-relative monad."

Lemma 4 The functions

$$
\begin{aligned}
O b(C C[F]) & \rightarrow O b(F) \\
\operatorname{Mor}(C C(F)) & \rightarrow M o r(C C)
\end{aligned}
$$

given by

$$
(X, \Gamma) \mapsto X
$$

and

$$
\left((X, \Gamma),\left(Y, \Gamma^{\prime}\right), f\right) \mapsto f
$$

form a functor $\operatorname{tr}_{F}: C C[F] \rightarrow C C$ and this functor is fully faithful.
Proof: Straightforward from the construction.

Lemma 5 The C0-system of Construction 3 is a C-system.
Proof: By Proposition 3 from the first lecture it is sufficient to prove that the canonical squares of $C C[F]$, i.e., the squares

$$
\begin{array}{ccc}
f^{*}\left(\left(Y, \Gamma^{\prime}\right)\right) & \xrightarrow{q\left(f,\left(Y, \Gamma^{\prime}\right)\right)} & \left(Y, \Gamma^{\prime}\right) \\
p_{f^{*}\left(\left(Y, \Gamma^{\prime}\right)\right) \downarrow} & & p_{\left(Y, \Gamma^{\prime}\right) \downarrow} \\
(X, \Gamma) & \xrightarrow{f} & f t\left(\left(Y, \Gamma^{\prime}\right)\right)
\end{array}
$$

are pull-back squares. The functor of Lemma 4 map these square to canonical squares of the C-system $C C$ that are pull-back squares. Since this functor is fully faithful we conclude that the canonical squares in $C C[F]$ are pull-back squares. The lemma is proved.

This completes the construction of the presheaf extension of a C-system.

For any two objects of $C C[F]$ of the form $(X, \Gamma),\left(X, \Gamma^{\prime}\right)$ the formula

$$
\operatorname{can}_{X, \Gamma, \Gamma^{\prime}}=\left((X, \Gamma),\left(X, \Gamma^{\prime}\right), I d_{X}\right)
$$

defines a morphism which is clearly an isomorphism with $\operatorname{can}_{X, \Gamma^{\prime}, \Gamma}$ being a canonical inverse. Therefore, all objects of $C C[F]$ with the same image in $C C$ are "canonically isomorphic".

If $F\left(p t_{C C}\right)=\emptyset$ then $C C[F]=\left\{p t_{C C[F]}\right\}$. On the other hand, the choice of an element y in $F\left(p t_{C C}\right)$ defines distinguished elements

$$
y_{X}=F\left(\pi_{X}\right)(y)
$$

in all sets $F(X)$ and therefore distinguished objects

$$
\left(X, \Gamma_{X, y}\right)=\left(X,\left(y, \ldots, y_{f t^{2}(X)}, y_{f t(X)}\right)\right)
$$

in the fibers of the object component of tr_{F} over all X.

Mapping X to $\left(X, \Gamma_{X, y}\right)$ and $f: X \rightarrow Y$ to $\left(\left(X, \Gamma_{X, y}\right),\left(Y, \Gamma_{Y, y}\right), f\right)$ defines, as one can immediately prove from the definitions, a functor $t r_{F, y}^{!}: C C \rightarrow C C[F]$.
This functor clearly satisfies the conditions $t r r_{F, y} \circ \operatorname{tr}_{F}=I d_{C C}$.
One verifies easily that the morphisms

$$
\operatorname{can}_{X, \Gamma, \Gamma(X, y)}:(X, \Gamma) \rightarrow \operatorname{tr}_{F, y}^{!}(X, \Gamma)
$$

form a natural transformation. We conclude that $t r_{F}$ and $t r r_{F, y}$ is a pair of mutually inverse equivalences of categories.
However these equivalences are not isomorphisms unless $F(X)$ is a one element set for all X and as a C-system $C C[F]$ is often very different from $C C$, for example, it may have many more C-subsystems.

The proofs of the following two lemmas are straightforward:
Lemma 6 The functor tr : $C C[F] \rightarrow C C$ is a homomorphism of C-systems.

Lemma 7 For any $y \in F(p t)$, the functor $\operatorname{tr}_{F, y}: C C[F] \rightarrow C C$ is a homomorphism of C-systems.

Next we will explain a method for constructing subsystems of C-systems that leads us to a very important area of exploration - the theory of Bsystems. A similar method exists for constructing sub-quotients but we will restrict our attention to the case to subsystems and refer to "Subsystems and regular quotients of C-systems" for the sub-quotients.

Let $C C$ be a C-system. Define $B(C C)$ as $O b(C C)$ and $\widetilde{B}(C C)$ as the subset in $\operatorname{Mor}(C C)$ of the form:

$$
\widetilde{B}(C C)=
$$

$\left\{s \in \operatorname{Mor}(C C) \mid \operatorname{dom}(s)=f t(\operatorname{codom}(s))\right.$ and $\left.s \circ p_{c o d o m(s)}=I d_{d o m(s)}\right\}$ that is, elements of $\widetilde{B}(C C)$ are sections of the p-morphisms of $C C$.
The sets $B(C C)$ and $\widetilde{B}(C C)$ are called the B-sets of $C C$.
Note that $B(C C)$ is another notation for $O b(C C)$ that we also abbreviate sometimes to $C C$. In some of my papers I write $\widetilde{O b}(C C)$ instead of $\widetilde{B}(C C)$.
We let $\partial: \widetilde{B}(C C) \rightarrow B(C C)$ denote the function $s \mapsto \operatorname{codom}(s)$ such that

$$
s: f t(\partial(s)) \rightarrow \partial(s)
$$

Define the relation \geq on $C C$ by the condition that $Y \geq X$ if and only if $l(Y) \geq l(X)$ and

$$
f t^{l(Y)-l(X)}(Y)=X
$$

Define the relation $>$ on $C C$ by the condition that $Y>X$ if and only if $Y \geq X$ and $l(Y)>l(X)$.

Lemma 8 For any C-system CC one has

1. the relation \geq is a partial order relation, i.e., it is reflexive, transitive and antisymmetric,
2. the relation $>$ is a strict partial order relation, i.e., it is transitive and asymmetric.

An object Y is said to be an object over X if $Y \geq X$. In this case the composition of the canonical projections $Y \xrightarrow{p_{Y}} f t(Y) \xrightarrow{p_{f t(Y)}} \ldots \rightarrow X$ is denoted by $p_{Y, X}$.
For a morphism $f: X^{\prime} \rightarrow X$ one defines $f^{*}(Y)$ by induction using the f^{*} structure of the C-system. One also defines by induction a morphism $q(f, Y): f^{*}(Y) \rightarrow Y$.
For $Y, Y^{\prime} \geq X$ a morphism $g: Y \rightarrow Y^{\prime}$ is said to be a morphism over X if $p_{Y, X}=g \circ p_{Y^{\prime}, X}$. For such a morphism g and a morphism $f: X^{\prime} \rightarrow X$ there is a unique morphism $f^{*}(g): f^{*}(Y) \rightarrow f^{*}\left(Y^{\prime}\right)$ over X^{\prime} such that the square

$$
\begin{array}{rll}
f^{*}(Y) & \xrightarrow{q(f, Y)} & Y \\
f^{*}(g) \downarrow & & \downarrow g \\
f^{*}\left(Y^{\prime}\right) & \xrightarrow{q\left(f, Y^{\prime}\right)} & Y^{\prime}
\end{array}
$$

commutes.

Consider the following sets where we write B and \widetilde{B} instead of $B(C C)$ and $\widetilde{B}(C C)$:

$$
\begin{array}{ll}
T_{d o m} \subset B \times B & \left.T_{d o m}=\{X, Y \in B, l(X)>0, Y>f t(X)\}\right) \\
\widetilde{T}_{d o m} \subset B \times \widetilde{B} & \widetilde{T}_{d o m}=\left\{X \in B, s \in \widetilde{B},(X, \partial(s)) \in T_{d o m}\right\} \\
S_{d o m} \subset \widetilde{B} \times B & S_{d o m}=\{r \in \widetilde{B}, Y \in B, Y>\partial(r)\} \\
\widetilde{S}_{d o m} \subset \widetilde{B} \times \widetilde{B} & \widetilde{S}_{d o m}=\left\{r, s \in \widetilde{B},(r, \partial(s)) \in S_{d o m}\right\} \\
\delta_{d o m} \subset B & \delta_{d o m}=\{X \in B, l(X)>0\}
\end{array}
$$

Consider now the following operations defined on these sets

$$
\begin{array}{ll}
T: T_{d o m} \rightarrow B & T(X, Y)=p_{X}^{*}(Y) \\
\widetilde{T}: \widetilde{T}_{d o m} \rightarrow \widetilde{B} & \widetilde{T}(X, s)=p_{X}^{*}(s) \\
S: S_{d o m} \rightarrow B & S(r, Y)=r^{*}(Y) \\
\widetilde{S}: \widetilde{S}_{d o m} \rightarrow \widetilde{B} & \widetilde{S}(r, s)=r^{*}(s) \\
\delta: \delta_{d o m} \rightarrow \widetilde{B} & \delta(X)=s_{I d_{X}}
\end{array}
$$

Operation T is well defined because for $(X, Y) \in T_{d o m}$ we have $Y>$ $f t(X)$ and therefore Y is over $f t(X)$.
Operation \widetilde{T} is well defined because

$$
s: f t(\partial(s)) \rightarrow \partial(s)
$$

is a section of $p_{\partial(s)}$ and therefore a morphism over $f t(\partial(s))$. On the other hand for $(s, X) \in \widetilde{T}_{\text {dom }}$, one has $\partial(s)>f t(X)$ which implies that $f t(\partial(s)) \geq f t(X)$ and therefore $f t(\partial(s))$ is an object over $f t(X)$ and so the morphism s is a morphism over $f t(X)$.
Similar arguments show that S, \widetilde{S} and δ are well defined. For more detail see the upcoming updated version of "B-systems".

Given a C-subsystem $C C^{\prime}$ of $C C$ let

$$
B\left(C C^{\prime}\right)=O b\left(C C^{\prime}\right)
$$

and

$$
\widetilde{B}\left(C C^{\prime}\right)=\operatorname{Mor}\left(C C^{\prime}\right) \cap \widetilde{B}(C C)
$$

Theorem 9 The mapping $C C^{\prime} \mapsto\left(B\left(C C^{\prime}\right), \widetilde{B}\left(C C^{\prime}\right)\right)$ defines a bijection between C-subsystems of $C C$ and pairs of subsets $\left(B^{\prime}, \widetilde{B}^{\prime}\right)$ in the B-sets of $C C$ that are closed under operations $f t, \partial, T, \widetilde{T}, S, \widetilde{S}, \delta$ and such that B^{\prime} contains $p t_{C C}$.

For the proof see "Subsystems and regular quotients of C-systems".

