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Recalling the previous lecture 2

In the last lecture we have outlined, for each category T , the construction
of functions

LwCs : Lw(T )→ CsN(T op)

CsLw : CsN(T op)→ Lw(T )

and stated the lemma that they are mutually inverse bijections. From
these functions we derived the functors

LC : LW (U)→ CSN(U)

CL : CSN(U)→ LW (U)

and, using the lemma, proves the theorem stating that these functors a
mutually inverse isomorphisms of categories for any universe U .

This provides a description, in terms familiar to categorical logic, of the
simplest class of C-systems - the l-bijective C-systems, i.e., the C-systems
for which the length function l : CC → N is a bijection.



1-generated C-systems 3

There is a larger class of C-systems that can be described in similar
terms.

Definition 1 A C-system is called 1-generated if it coincides with
its smallest subsystem that contains all objects of length 1.

I expect to be able to construct, for any set S, an isomorphism between
the category of S-sorted Lawvere theories and pairs of the form (CC,Φ)
where CC is 1-generated C-system and Φ : Ob1(CC) → S a bijection
between the set of objects of CC of length 1 and S.

This will provide a classical description for the class of 1-generated C-
systems.



1-generated C-systems 4

Intuitively, 1-generated C-systems correspond to type theories without
dependent types. So their connection with more classical objects of
categorical logic is not entirely unexpected.

We now proceed to the description of a construction that generates C-
systems that are not 1-generated and takes us out of the realm of classical
categorical logic. It is called the presheaf extension of a C-system.



Presheaf extension of a C-system 5

Let CC be a C-system and F : CCop → Sets a presheaf on the category
underlying CC. We will construct a new C-system CC[F ] which we call
the F -extension of CC.

We will first construct a C0-system CC[F ] and then show that it is a
C-system.

Problem 2 Given a C-system CC and a presheaf

F : CCop → Sets

to construct a C0-system that will be denoted CC[F ] and called the
F -extension of CC.



Presheaf extension of a C-system 6

Construction 3

We set

Ob(CC[F ]) = qX∈CCF (ftl(X)(X))×. . .×F (ft2(X))×F (ft(X)) (1)

where the product of the empty sequence of factors is the one element
set.

We will write elements of Ob(CC[F ]) as (X,Γ) where X ∈ CC and
Γ = (T0, . . . , Tl(X)−1).

Note that ftl(X)(X) = pt for any X and therefore all the products in
(1) start with F (pt).
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We set
Mor(CC[F ]) = q(X,Γ),(Y,Γ′)MorCC(X, Y )

We will write elements of Mor(CC[F ]) as ((X,Γ), (Y,Γ′), f ). When
the domain and the codomain of a morphism are clear from the context
we may write f instead of ((X,Γ), (Y,Γ′), f ).

We define the composition function by the rule

((X,Γ), (Y,Γ′), f )) ◦ ((Y,Γ′), (Z,Γ′′), g) = ((X,Γ), (Z,Γ′′), f ◦ g)

and the identity morphisms by the rule

IdCC[F ],(X,Γ) = ((X,Γ), (X,Γ), IdCC,X)

The associativity and the identity conditions of a category follow easily
from the corresponding properties of CC. This completes the construc-
tion of a category CC[F ].
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We define the length function as

l((X,Γ)) = l(X)

If l((X,Γ)) = 0 then X = ptCC and Γ = () where () is the unique
element of the one point set that is the product of the empty sequence,
i.e., ptCC[F ] = ((ptCC, ())).

We define the ft-function on (X,Γ) such that l(X) > 0 as

ft((X, (T0, . . . , Tl(X)−1)) = (ft(X), (T0, . . . , Tl(X)−2))

which is well defined because l(ft(X)) = l(X)− 1. We will write ft(Γ)
for (T0, . . . , Tl(X)−2) so that ft((X,Γ)) = (ft(X), ft(Γ)).

We define the p-morphisms as

p(X,Γ) = ((X,Γ), ft(X,Γ), pX)
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For (Y,Γ′) such that l((Y,Γ′)) > 0 and f : (X,Γ) → ft(Y,Γ′) where
Γ = (T0, . . . , Tl(X)−1) and Γ′ = (T ′0, . . . , T

′
l(Y )−1) we set

f ∗((Y,Γ′)) = (f ∗(Y ), (T0, . . . , Tl(X)−1, F (f )(T ′l(Y )−1))). (2)

In the same context as above we define the q-morphism as

q(f, (Y,Γ′)) = (f ∗((Y,Γ′)), (Y,Γ′), q(f, Y ))

This completes the construction of the elements of the structure of a
C0-system.

For the proof that they satisfy the axioms of a C0-structure see “C-
system of a module over a Jf -relative monad.”



Presheaf extension of a C-system 10

Lemma 4 The functions

Ob(CC[F ])→ Ob(F )

Mor(CC(F ))→Mor(CC)

given by
(X,Γ) 7→ X

and
((X,Γ), (Y,Γ′), f ) 7→ f

form a functor trF : CC[F ]→ CC and this functor is fully faithful.

Proof: Straightforward from the construction.



Presheaf extension of a C-system 11

Lemma 5 The C0-system of Construction 3 is a C-system.

Proof: By Proposition 3 from the first lecture it is sufficient to prove
that the canonical squares of CC[F ], i.e., the squares

f ∗((Y,Γ′))
q(f,(Y,Γ′))−−−−−→ (Y,Γ′)

pf∗((Y,Γ′))↓ p(Y,Γ′)↓
(X,Γ)

f−→ ft((Y,Γ′))

are pull-back squares. The functor of Lemma 4 map these square to
canonical squares of the C-system CC that are pull-back squares. Since
this functor is fully faithful we conclude that the canonical squares in
CC[F ] are pull-back squares. The lemma is proved.

This completes the construction of the presheaf extension of a C-system.
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For any two objects of CC[F ] of the form (X,Γ), (X,Γ′) the formula

canX,Γ,Γ′ = ((X,Γ), (X,Γ′), IdX)

defines a morphism which is clearly an isomorphism with canX,Γ′,Γ being
a canonical inverse. Therefore, all objects of CC[F ] with the same image
in CC are “canonically isomorphic”.

If F (ptCC) = ∅ then CC[F ] = {ptCC[F ]}. On the other hand, the choice
of an element y in F (ptCC) defines distinguished elements

yX = F (πX)(y)

in all sets F (X) and therefore distinguished objects

(X,ΓX,y) = (X, (y, . . . , yft2(X), yft(X)))

in the fibers of the object component of trF over all X .



Presheaf extension of a C-system 13

Mapping X to (X,ΓX,y) and f : X → Y to ((X,ΓX,y), (Y,ΓY,y), f )
defines, as one can immediately prove from the definitions, a functor
tr!
F,y : CC → CC[F ].

This functor clearly satisfies the conditions tr!
F,y ◦ trF = IdCC.

One verifies easily that the morphisms

canX,Γ,Γ(X,y)
: (X,Γ)→ tr!

F,y(X,Γ)

form a natural transformation. We conclude that trF and tr!
F,y is a pair

of mutually inverse equivalences of categories.

However these equivalences are not isomorphisms unless F (X) is a one
element set for all X and as a C-system CC[F ] is often very different
from CC, for example, it may have many more C-subsystems.
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The proofs of the following two lemmas are straightforward:

Lemma 6 The functor tr : CC[F ] → CC is a homomorphism of
C-systems.

Lemma 7 For any y ∈ F (pt), the functor trF,y : CC[F ] → CC is
a homomorphism of C-systems.



Subsystems of C-systems and B-systems 15

Next we will explain a method for constructing subsystems of C-systems
that leads us to a very important area of exploration - the theory of B-
systems. A similar method exists for constructing sub-quotients but
we will restrict our attention to the case to subsystems and refer to
“Subsystems and regular quotients of C-systems” for the sub-quotients.



B-sets of a C-system 16

Let CC be a C-system. Define B(CC) as Ob(CC) and B̃(CC) as the
subset in Mor(CC) of the form:

B̃(CC) =

{s ∈Mor(CC) | dom(s) = ft(codom(s)) and s ◦ pcodom(s) = Iddom(s)}
that is, elements of B̃(CC) are sections of the p-morphisms of CC.

The sets B(CC) and B̃(CC) are called the B-sets of CC.

Note that B(CC) is another notation for Ob(CC) that we also abbre-

viate sometimes to CC. In some of my papers I write Õb(CC) instead

of B̃(CC).

We let ∂ : B̃(CC)→ B(CC) denote the function s 7→ codom(s) such
that

s : ft(∂(s))→ ∂(s)



The relations ≥ and > on objects of a C-system 17

Define the relation ≥ on CC by the condition that Y ≥ X if and only
if l(Y ) ≥ l(X) and

ftl(Y )−l(X)(Y ) = X.

Define the relation > on CC by the condition that Y > X if and only
if Y ≥ X and l(Y ) > l(X).

Lemma 8 For any C-system CC one has

1. the relation ≥ is a partial order relation, i.e., it is reflexive,
transitive and antisymmetric,

2. the relation > is a strict partial order relation, i.e., it is transi-
tive and asymmetric.



Generalized p-morphisms and q-morphisms 18

An object Y is said to be an object over X if Y ≥ X . In this case the

composition of the canonical projections Y
pY→ ft(Y )

pft(Y )→ . . . → X is
denoted by pY,X .

For a morphism f : X ′ → X one defines f ∗(Y ) by induction using the
f ∗ structure of the C-system. One also defines by induction a morphism
q(f, Y ) : f ∗(Y )→ Y .

For Y, Y ′ ≥ X a morphism g : Y → Y ′ is said to be a morphism over X
if pY,X = g◦pY ′,X . For such a morphism g and a morphism f : X ′ → X
there is a unique morphism f ∗(g) : f ∗(Y )→ f ∗(Y ′) over X ′ such that
the square

f ∗(Y )
q(f,Y )−−−→ Y

f∗(g)↓ ↓g

f ∗(Y ′)
q(f,Y ′)−−−→ Y ′

commutes.
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Consider the following sets where we write B and B̃ instead of B(CC)

and B̃(CC):

Tdom ⊂ B ×B Tdom = {X, Y ∈ B, l(X) > 0, Y > ft(X)})

T̃dom ⊂ B × B̃ T̃dom = {X ∈ B, s ∈ B̃, (X, ∂(s)) ∈ Tdom}

Sdom ⊂ B̃ ×B Sdom = {r ∈ B̃, Y ∈ B, Y > ∂(r)}

S̃dom ⊂ B̃ × B̃ S̃dom = {r, s ∈ B̃, (r, ∂(s)) ∈ Sdom}

δdom ⊂ B δdom = {X ∈ B, l(X) > 0}
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Consider now the following operations defined on these sets

T : Tdom → B T (X, Y ) = p∗X(Y )

T̃ : T̃dom → B̃ T̃ (X, s) = p∗X(s)

S : Sdom → B S(r, Y ) = r∗(Y )

S̃ : S̃dom → B̃ S̃(r, s) = r∗(s)

δ : δdom → B̃ δ(X) = sIdX
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Operation T is well defined because for (X, Y ) ∈ Tdom we have Y >
ft(X) and therefore Y is over ft(X).

Operation T̃ is well defined because

s : ft(∂(s))→ ∂(s)

is a section of p∂(s) and therefore a morphism over ft(∂(s)). On the

other hand for (s,X) ∈ T̃dom, one has ∂(s) > ft(X) which implies that
ft(∂(s)) ≥ ft(X) and therefore ft(∂(s)) is an object over ft(X) and
so the morphism s is a morphism over ft(X).

Similar arguments show that S, S̃ and δ are well defined. For more
detail see the upcoming updated version of “B-systems”.
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Given a C-subsystem CC ′ of CC let

B(CC ′) = Ob(CC ′)

and
B̃(CC ′) = Mor(CC ′) ∩ B̃(CC).

Theorem 9 The mapping CC ′ 7→ (B(CC ′), B̃(CC ′)) defines a bi-

jection between C-subsystems of CC and pairs of subsets (B′, B̃′) in

the B-sets of CC that are closed under operations ft, ∂, T, T̃ , S, S̃, δ
and such that B′ contains ptCC.

For the proof see “Subsystems and regular quotients of C-systems”.


