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1. I n t r o d u c t i o n  

In this paper we suggest an approach to the construction of tile category of mixed 
motives. The word "motive" was introduced by A. Grothendieck almost thirty years 
ago to denote objects of the hypothetical semi-simple Q-linear abelian category 
where the "universal" cohomology theory on the category of smooth projective 
algebraic varieties takes values. Some fifteen years later the Grothendieck's idea 
was developed further by P. Deligne, A. Beilinson, S. Lichtenbaum and others to 
accommodate all algebraic varieties. These new "motives" were called "mixed 
motives" after the mixed Hodge structures and old Grothendieck's motives were 
renamed into "pure motives". For all these years the theory of motives was one 
of the most important unification concepts in algebraic geometry. In its modern 
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form it gives a very coherent picture of how cohomology theories on the category of 
algebraic varieties should behave. In particular, it provides a natural "explanation" 
for many apparently unrelated conjectures such as the Bloch-Kato conjecture in 
the 6tale cohomology, the Quilten-Lichtenbaum conjecture and the Beilinson-Soule 
vanishing conjecture in the algebraic K-theory, the Bloch conjecture on zero cycles 
and the Grothendieck standard conjectures in the theory of algebraic cycles etc. 

Unfortunately, until very recently, the theory of motives and especially the theory 
of mixed motives remained almost totally hypothetical. While quite a few results 
which confirmed the feeling that such a theory should exist were obtained no candi- 
dates for the category of mixed motives over an arbitrary field were suggested 1 and 
none of the "standard conjectures" were proved. A good overview of the present 
state of the theory of motives can be found in [1]. 

This paper is the first one in a series of related papers where we try to develop 
techniques necessary to construct the theory of (mixed) motives. The fundamental 
difference of the approach considered here with the one usually used is that we 
construct a trian9"alated category of mixed motives instead of the abelian category 
required by the standard conjectures. This basically means that the original prob- 
lem is divided into two independent parts - -  to construct the triangulated category 
and prove its basic properties and to show that this triangulated category is in fact 
the derived category of an abelian one. An important feature of this approach is 
that the construction of a triangulated category of mixed motives is a much more 
accessible problem that the construction of an abelian one. On the other hand 
many of the "motivic conjectures" do not require us to pass to the abelian level 
and can be seen as particular cases of certain basic properties of this triangula£ed 
category itself. Moreover, it can be shown that if we are working with integral or 
finite coefficients instead of the rational ones then the abelian category of mixed 
motives satisfying "standard conjectures" suggested by A. Beilinson does not exist 
and therefore the triangulated category is in this case the natural object to work 
with 2 . 

In this paper we construct for any noetherian base scheme S a triangulated cat- 
egory DM(S) and a functor M : Sch/S , DM(S) from the category of schemes 
of finite type over S to DM(S). This functor satisfies the usual properties of homo- 
logical theories. Denote by DMft(S) the full triangulated subcategory of DM(S) 
generated by the image of the functor M. Then the pair 

(DMft(S) ® Q, MQ: Sch/S , DMft(S) ® q) 
is universal among functors from the category Scfl/S to Q-linear triangulated cate- 
gories which satisfy some analog of the Eilenberg-Steenrod axioms for homological 

1 We m e a n  here all mi xed  motives .  Some candidates  for tile category of mixed  Tare mot ives  
were cons t ruc ted  in [3], [4]. 

It migh t  still be t rue  even for finite coefficients that  this  t r i angula ted  category is a derived 
category of an exact  category, bu t  in any  case the classical point  of view fails. 
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theories. 
According to Grothendieck's original approach to the theory of motives, it is nat- 

ural to call DMft(S) the triangulated category of (effective) mixed motives over S. 
The subcategory DMft(S)  is "dense" in the category DM(S), i.e. any object of the 
last category is a homotopy direct limit of objects of the former category. We call 
the category D M ( S) the homological category of schemes over S. 

Our construction of DM(S) is based on simple topological intuition. Consider 
a topological space X (which we assume to be homotopy equivalent to a CW- 
complex) and suppose that we want to assign to it its "motive" M(X) in the 
Grothendieck's sense. To do so we will have to specify first the class of cohomology 
theories with respect to which our motive should be universal. The most  obvious 
choice would be to consider all cohomology theories satisfying Eilenberg-Steenrod 
axioms. The solution of the corresponding universal problem in topology is well 
known. Namely, the "category of motives" in this case is the Spanier-Whitehead 
category and the "motive" of X is its stable homotopy type. However, if we want 
M(X) to be the "motive" of X in Grothendieck's sense we have to work with a 
smaller class of theories. The reason for that is that Grothendieck's motive of X is 
expected to be functoriat not only with respect to morphisms in X but  also with 
respect to correspondences. Topologically it means that we want to consider theories 
which have transfer maps with respect to a rather broad class of "coverings". It  
is known, that  the only theories satisfying this property are ordinary theories, i.e. 
the usual cohomology with coefficients in complexes of abelian groups. Thus, the 
universal category in this situation is the derived category of abelian groups and 
the "motive" of X is the class of its singular simplicial complex in this category. 
This reasoning, however contains an element of cheating - -  namely to describe our 
universal category we have to know in advance all the theories which factor through 
it. Properly, one should start  with a construction of the universal category with 
respect to "theories with strong transfers" and then show that it is equivalent to 
the derived category of abelian groups. The fact that  all such theories are ordinary 
cohomology with coefficients in complexes of abelian groups appears then as a 
natural corollary of this result. I t  turns out that if we follow this path carefully 
then all the topological constructions we have to use to define the required universal 
category have immediate algebro-geometrical analogs leading to the construction of 
DM(S) suggested in this paper. 

In the first section we describe a general construction which assigns, to any site 
T equipped with an object I + called "interval", a tr iangulated category H(T, I +) 
and a functor 

M : Z ~ H(T, I+). 

In particular if we set I + = A~, then for any Grothendieck topology t on the 
category Sch/S of schemes of finite type over a scheme S there is a "homological 
theory" 

M,: S h/S , 
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Unfortunately, when defined for the topologies usually used in algebraic geometry 
(like Zariski, dtale or flat topology) this functor does not satisfy the properties one 
would expect from the "theory of motives". 

In the next section we define two new" Grothendieck topologies on the cate- 
gories Seh/S which are called h- and qfh-topologies. We also prove some of their 
basic properties. We define the homologicaI category DM(S) of schemes over S 
to be the category H((Sch/S)h, A~). Though the main object of our interest is 
the h-topology and the associated theory M : Sch/S --~ DM(S) we have to use 
qfh-topology as an intermediate step and we mostly consider the theory Mqft,. in this 
paper. 

In the last section we prove basic properties of the theories M and Mqfh associ- 
ated with the h- and qfh-topologies. 

The original idea of the present construction appeared as a result of a joint 
attempt by M. Kapranov and the author to understand the possible role of simplicial 
sheaves in Beilinson's approach to motives through the idea of "motivic sheaves" 
and was developed in the author's Ph.D. thesis [16]. 

The final version of this paper was prepared during my stay at the Institute for 
Advanced Studies in Princeton a in 1993. Since then, a much better understanding 
of properties of the categories DM(S) was achieved for S being the spectrum of 
a field (see [17]). In particular it became clear that DM(S) is one of at least two 
possible categories of motives namely the category of motives "in the 6tale topol- 
ogy". The corresponding motivic cohomology groups should satisfy Lichtenbaum's 
axioms and not the Beilinson's axioms which were given for the Zariski topology 
case. A construction of the Zariski version of DM is given (in the case of a base 
field) in [17] 4. Some further results on h- and qfh-topologies can be found in [13], 
[14] and [6] where they were used as tools to study algebraic cycles. 

I am very grateful to David Kazhdan who was my thesis advisor and to A. Beilin- 
son, A. Goncharov and A. Levin for inspiring discussions. 

2. Genera l i t i e s  

2.1 F ree ly  g e n e r a t e d  sheaves  

Let T be a site and R a sheaf of commutative rings on T. We will only be interested 
in the case when R is the constant sheaf associated with a ring R. 

For any R we denote by R - mod(T) the abelian category of sheaves of R_- 
modules. 

3 Supported by NSF grant DMS-9100383 

4 It should be mentioned that the difference between ~tale and Zariski motives appears only in 
the torsion effects and that rationally the corresponding categories are equivalent. 



Voh 2 (1996) Homology of Schemes 115 

Proposition 2.1.1. Let T be a site and R_ be a sheaf of rings on T. Then there 
exists a fnnctor R_(*) : Sets(T) ~ R - m o d ( T )  which is left adjoint to the forgetful 
functor R -  mod(T) ~ Sets(T). 

Proof. For any sheaf of sets X on T we define the sheaf R(X) to be the sheaf 
associated with the presheaf U , R_(U)(X(U)), where R(U)(X(U) )  is the free 
_R(U)-module generated by the set X(U) .  The proof of the adjointness property is 
trivial. 

In the case when _R_ is the constant sheaf associated with a ring R, we will denote 
the functor R(*) just by R(*). The sheaf Z(X) is called the sheaf of abelian groups 
freely generated by the sheaf of sets X. 

We will also use the notation ~(*) ~br the funetor which takes a sheaf of sets X 
to the kernel of the rnorphism ~ ( X )  , R__(pt) induced by the canonical morphism 
from X to the final object of Sets(T). 

The following proposition summarizes the elementary properties of the func- 
tors  R_(*). 

Proposition 2.1.2, 
1. The functor R is right exact, i.e. it takes direct limits in Sets(T) to the 

direct limits in R - mod(T). In particular it preserves epimorphisms. 
2. The functor R preserves monomorphisms. 
3. Sheaves of the form R__(X) are fiat. 
4. For a pair X,  Y of sheaves of sets T one has a canonical isomorphism 

~ ( x  x Y) m _R(x) ® a_(Y). 

Proof. 1. It follows from the general properties of adjoint functors. 

2. One can easily see, that. the functor which takes a sheaf of sets X to the 
presheaf U ~ R_(U)(X(U)) preserves monomorphisms. The statement of the 
proposition now follows from the fact that the functor of the associated sheaf is 
exact. 

3. Easy. 

4. It follows directly from the construction of the functor R(*) and the definition 
of tensor products of sheaves of R-modules. 

Proposition is proved. 

Proposition 2.1.3. Let T be a site, R_ a sheaf of rings on T and L ( X )  the sheaf 
of sets representable by an object X o fT .  Then for any sheaf F of R-modules and 
any n >_ 0 one has canonical isomorphisms 

/-fb~ (X, F)  = Ext~_mo d (_R~(L(J~_~)),/~'). 
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Proof. It follows immediately from the adjointness property of the functor R and 
the description of cohomological groups in terms of injective resolutions of sheaves. 

Let f : X , Y be a morphism in Sets(T). Denote by R(C( f ) )  the complex of 
/~-modules of the form 

. . . .  xy x )   (prl)-R(pr ; R(& R(y) , 0 .  

P r o p o s i t i o n  2.1.4. For any mor'phism f : X ..... Y in the category Sets(T) the 
complex R(d(d)) is a resolution of the sheaf eoker(R(f)) .  

Proof. Easy. 

There is a different approach to the definition of the functor R which is sometimes 
more convenient than the one described above. 

Let U be an object of T. Denote by T / U  the site whose underlying category is 
the category of objects of T over U and the topology is defined in the obvious way. 
There is a natural morphism of sites p : T / U  , T such that the functor p-1 takes 
an object X of T to the object X x U , U of T/U.  

P r o p o s i t i o n  2.1.5. There ezists a functorp! : p*( t~)-mod(T/U)  , R - m o d ( T )  
l@ adjoint to the functor of the inverse image p*. 

Pro@ Let F be an object of the category p* ( R ) - m o d ( T / U ) .  Consider the presheaf 
p # ( F )  of//--modules on T of the form 

p#(F) (V)  = @ F ( f  : V , U). 
fEHomT(V,U) 

We define p~ (F) to be the sheaf associated with the presheaf p# (F). 
To prove that the functor p~ defined by this construction is indeed left adjoint 

to the functor of the inverse image, we have to show that for any pair of sheaves 
F E ob(p*(R)(T/U)),  G C ob(R(T))  there exists a natural bijection 

HOmp.(R)(T/U) (F,p* (G)) = Homs(,r ) (p, (F), G). 

By the adjointness property of the functor of the associated sheaf, the right-hand 
side is canonically isomorphic to Hom n(T)(p#(F),  G). Therefore a morphism a : 
p! (F) - - ~  G is a natural family of morphisms of the form 

,v:F(I:V ,a(V). 

On the other hand one has 

p*(G)(f  : V , U) = G(V) 

and therefore a morphism F , p*(G) is a family of morphisms of exactly the 
same form. Proposition is proved, 
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Propos i t ion  2.1.6.  The functorp! : p*(R)-mod(T/U)  , R - m o d ( T )  is exact. 

Proof. Since p! is left adjoint to p,  it is right exact by the general properties of 
adjoint functors. On the other hand the proof of Proposition 2.1.5 shows that p! is 
the composition of the functor p# with the functor of the associated sheaf. Since 
both functors are left exact, the same holds for p~. 

The connection between the functors p~ and the flmctors JR is given by the 
following proposition. 

Propos i t ion  2.1.7.  For any object U o fT  there is a canonical isomorphism 

(p* (R)) "~ R(L(U)) p! 

where p : T /U , T is the canonical morphism of sites and L(U) is the sheaf of 
sets representable by the object U. 

Proof. It follows immediately from the explicit constructions of the functors R 
and p~. 

2.2 The homological  category of  a site with interval 

Let T be a site. An interval in T is an object I +, such that there exists a triple of 
morphisms (# : I + x I + , I+,io,im : pt , I +) satisfying the conditions 

p(i0 x Id) = p(Id x/0) = iop 

/z(i l  × Id) = p(Id x i l )  = Id, 

where p : I + ~ pt is the canonical morphism. We will also assume that the 
morphism 

io H il : pt H pt ----~ I+ 

is a monomorphism. 
The goal of this section is, to assign to any site with interval, a tensor triangu- 

lated category H(T, I +) (or just H(T)) which is called the homological category of 
T and to prove its elementary properties. 

Let 11 be the kernel of the canonical morphism Z(I  +) ,. Z. Denote by D(T)  
the derived category of the category Ab(T) of sheaves of abelian groups on T con- 
structed by means of bounded complexes. It is known to be a, tensor triangulated 
category. 

We are going to define the homological category H(T) of (T, I +) as a localization 
of the category D(T) with respect to the class of "contractible" objects. 

Consider the morphism 

i=z( io)-z( i~):z  , r ~. 
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Since io L[ il is a monomorphism the morphism i is a monomorphism. Denote its 
cokernel by S I. We define I ~ (resp. S ~) to be the n-th tensor power of I ~ (resp. $t) .  
Note that there is a canonical morphism 

(9: S 1 , Z[I] 

in D(T) which corresponds to the extension of the sheaf S I by means of Z defined 
by the exact sequence 

0 , Z -  ~ , I i , S 1 , 0. 

De f in i t i on  2.2.1.  A sheaf of abelian groups F on T is called strictly contractible 
if there exists a morphism 

¢ : F ® I  1 , F 

such that the composition IdF ®i : F * F is the identity morphism. A sheaf of 
abelian groups F on T is called contractible if it has a left resolution which consists 
of strictly contractible sheaves. 

Denote by Contr(T) the thick subcategory (see [5, Appendix]) of the category 
D(T) generated by contractible sheaves. 

D e f i n i t i o n  2.2.2. The homological category H(T) of a site with interval (T , I+)  
is the localization of the category D(T) with respect to the subcategory Contr(T).  

The following lemma provides us with some trivial examples of strictly con- 
tractible sheaves. 

L e m m a  2 .2 .3 .  

1. The sheaf ker(Z((I+)  ") ~ Z) is strictly contractible for arty n >__ O. 
2. For any sheaf F and any strictly contractible sheaf G the sheaves F ® G, 

Hom(G,F )  are strictly contractible. 

P r o p o s i t i o n  2.2.4. Let X be an object of the category D(T) and Y an object of 
Contr(T).  Then X ® Y belongs to the category Contr(T).  

Proof. It follows easily from our definitions and Lemma 2.2.3(2). 

To get more sophisticated examples of contractible sheaves we need the following 
construction. 

Let f : ( 0 , . . . ,  n) ~ (0 , . . . ,  m) be a morphism in the standard simplicial cat- 
egory A, We define a morphism of sets ¢(.f) : { 1 , . . . , m }  , { 0 , . . . , n  + 1} as 
follows: 

f m i n { l C { 0 , . . . , n } l f ( 1  )>_i} if this set is not empty 
¢ ( f ) ( i )  [ n + 1 otherwise. 
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Denote by pr k : (I+) n , (I+) ~ the k-th projection and by p : (I+) n , pt the 
canonical morphism from (I+) ~ to the finial object of T. We define the morphism 
a ( f ) :  (I+) "~ , (I+) ~ setting 

Pr¢(f)(k) 

pr k on(f)  = io o p 

il op  

if ¢( f ) (k)  C { 1 , . . . , n }  

if ¢ ( f ) (k)  = n + 1 

if ¢( f ) (k)  = 0. 

One can easily see that for a composable pair of morphisms f,  g in A we have 
a ( f  o g) = a( f )  o a(9 ) and hence our construction gives a cosimpliciat object a : 
A , T in T. To be more specific we will denote it by a1+. 

Let F be a sheaf of abelian groups on T. Denote by C, (F) the complex of 
sheaves whose terms are the sheaves Hom(Z( ( I+)~) ,F )  and the differentials are 
the alternated sums of tile morphisms induced by the coface morphisms of the 
cosimplicial object ai+. 

L e m m a  2.2.5.  Let F be a sheaf of abelian groups on T such that the complex 
C . (F)  is exact. Then F is contractible. 

Pro@ It  follows easily from our definitions and Lemma 2.2.3. 

Denote by Ho(T) the localization of the category D(T)  with respect to the thick 
subcategory generated by objects of the form X ® I 1, X C ob(D(T)) .  

For any object X of Sets(T) denote by Z(X) the kernel of the natural mor- 
phism Z(X) , Z. We define the functor M : Sets(T) , H (T )  (resp. 2~I : 
Sets(T) , H(T) )  as the composition of the functor Z ( - )  (resp. 7,(-))  with the 
canonical functor Ab(T) ~ D(T) .  We wilt also use the notations M0, t~ro for the 
corresponding functors to the category H0(T). 

P r o p o s i t i o n  2.2.6.  Let X ,  Y E ob D(T) .  Then one has 

HOmHo(T)(X,Y) = l i~n  HomD(T)(X ® Sn, Y[n]) 

where the direct system on the right-hand side is defined by tensor multiplication 
of morphisms with 0 : S 1 , Z[1]. 

Pro@ Note first of all that the morphism c9 : S 1 - - ~  Z[1] is an isomorphism in 
H0 (T) and therefore there is a canonical morphism 

lim H O m D ( r ) ( X ® S n ,  Y[n]) , HomHo(T)(X,Y). 

Let F : D(T)  , D r be an exact functor from D(T)  to a triangulated category D' 
such that F(9  ) is an isomorphism for any morphism g whose cone lies in the thick 
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subcategory generated by objects of the form X @ t 1. Then there exists the unique 
extension of the map HomD(T) (X, Y) . ~ HomD,(F(X) ,  F ( Y ) )  to the map 

nli4noc H0mD(T) (X @ S ~, Y[n]) , HOmD, (F (X) ,  F ( Y ) ) .  

The universal property of localization implies that to prove our theorem it is suffi- 
cient to show that, for any object Y of the thick subcategory generated by objects 
of the form X ® [1, there exists n such that Idy  @c9@~ = 0. I t  is sufficient to show 
that the class of objects satisfying this property contains objects of the form X ® 11 
and is thick. 

Let Y = X N I ~. Then Idy G0 : Y ® S 1 ~ Y[1] can be included in the exact 
triangle 

Y ~. Y @ [~ .... Y @ S ~ ---~ Y[1]. 

The morphism # : 11 @ [1 , 11 gives us a splitting of the morphism Y . . . .  Y ® 11 
and, therefore Idz  @(9 = 0. 

Let us show now that our class of objects is indeed thick ([5, Appendix]). Let 
X , Y ,. Z ~ X[1] be an exact triangle such that for some rn and n one 
has Idx  @0 ®m = 0 and Idy  ®O ®~ = 0 (we can restrict ourself to this case because 
if Idu  ®0 ®~ = 0 for some n then the same holds for any U[k]). Let us show that 
Idz  @0 ®('~+~) = 0. Consider the diagram: 

Y ® S  ~ 

z [ q  

, z ® S '~--- , x[1] ® S '~ 

/ 
. z b ]  

The dotted arrow exists because the upper string is a part  of an exact triangle and 
Y @ S ~ ~ Y[n] is equal to zero. Denote it by c~. One obviously has 

Idz  ®0 ®('~+~) = ( Idz  @0 ® ' )  ® 0 ®'~ = (a  @ O ®'~) ( f  ® I d s - )  

and 
oz @ c9 ®'m = ct[rn] (Idx[l]®S~ ®0 m) 0. 

The proof of the second axiom of thick classes is similar to this one. 

C o r o l l a r y  2.2.7.  Let X ,  Y be a pair of objects of the D ( T )  such that .for any n 
and rn one has 

nom (T) (X ® Z Y[q)  = 0. 

Then 
Hom•(,(r) (X, Y[m]) = HOmD(-r) (X, Y[rn]). 
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Pro@ We have to show that the morphisms 

Uomm(T)(X ,Y[m])  , H o m ( X ® S r ~ , Y [ m + n ] )  

are isomorphisrns for all n. We will prove it by the induction on n. For n : 0 our 
statement is trivial. To make the inductive step consider the exact triangle 

X®S'r~-I  , X ® I I ® , S  ~-~ , X ® S  ~ , X ® S n - I [ 1 ] .  

It is sufficient to show that HomD(T) (X ® [ 1 ® S n- l ,  Y[m]) = 0. Obviously, if X 
satisfies the conditions of our proposition so does X ® 11. Therefore, by induction 
we have 

HOmD(T) ( X  ® 11 ® sn - I , y [ ITL] )  m HOmD(T)(X ® I 1 , Y [ m  - n]) = 0. 

Def in i t ion  2.2.8. An object Y C ob(D(T)) is called strictly homotopy invariant 
if for any X C ob(D(T)) one has Hom(X ® I l, Y) -- 0. 

P r o p o s i t i o n  2.2.9. Let Y E ob(D(T)) be a strictly homotopg invariant object. 
Then for any X one has 

HOmH(T) (X, Y) = HOmD(T) (X, Y). 

Pro@ Obvious. 

An object X of D(T) is called an object of finite dimension if there exists N 
such that for any F E ob(Ab(T)) and any n > N one has 

HOmD(T) (X,F[n])  = O. 

P r o p o s i t i o n  2.2.10. Let (T, I +) be a site with interval and X be an object o lD(T )  
such that the objects Z, X ®I  ~ are of finite dimension. Then for any Z e ob(D(T)) 
one has 

HOmH(T) (X, Z) = HOmH,, (T) (X, Z). 

Proof. It follows easily from our definitions and Proposition 2.2.6. 

Let (T1, [+), (T2, I +) be a pair of sites with interval. A morphism F :  (T1, I +) 
, (T~, ~+) is by definition a rnorphism of sites F :  T1 * T2 such that F -1 (I +) 

is isomorphic to I +. For example, if T1, T2 have the same underlying categories 
and the topology of T1 is stronger thaxl that of T2 and [+ ~- I +, then an identity 
functor is a morphism of sites with interval. 
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P r o p o s i t i o n  2.2.11.  Let F : (T1, I +) ,~ (T.2, I +) be a morphism of sites with 
interval. Then it induces an exact tensor functor 

. H(TI ) .  

Pro@ There is a functor F* : D(T.2) , D(Tj)  which is induced by the functor 
of inverse image of sheaves. One can easily see, using the universal property of 
localization, that the composition 

D( r2 )  . ] ) (Zl )  . H ( TI )  

factors through a functor H(F)  : H(T2) - - ~  H(T1) which obviously satisfies all the 
properties we need. 

There is an obvious analogue of this proposition for the categories Ho(T1), 
H0 (/'2). We denote the corresponding functor by H0 (F). 

3. T h e  h - t o p o l o g y  on  the  c a t e g o r y  of  s c h e m e s  

3.1 T h e  h - t o p o l o g y  

D e f i n i t i o n  3.1.1.  A rnorphism of schemes p : X . Y is called a topological 
epimorphism if the underlying topological space of Y is a quotient space of the 
underlying topological space of X,  i.e. if p is surjective and a subset A in Y is open 
if and only if the subset p - l ( A )  is open in X. 

A topological epimorphism p : X ~ Y is called a universal topological epi- 
morphism if for any morphism f : Z ~ Y the projection Z x v  X , Y is a 
topological epimorphism. 

One can easily see that any open or closed surjective morphism is a topological 
epimorphism in this sense and any surjective proper or flat morphism as well as 
any composition of such morphisms is a universal topological epimorphism. 

D e f i n i t i o n  3.1.2.  The h-topology on the category of schemes is the Grothendieck 
topology associated with the pretopology whose coverings are of the form {Pi : 
Ui , X},  where {Pi} is a finite family of morphisms of finite type such that the 
morphism I~ P{ : L[ Ui ~ X is a universal topological epimorphism. 

We will also use qfh-topology, which corresponds to coverings of the same type 
such that the morphisms Pi are quasi-finite. 

Examples. 
1. Any flat covering is an h-covering. Moreover, since any flat surjective mor- 

phism of finite type admits a section over a quasi-finite surjective flat mor- 
phism, even the qfh-topology is stronger than the flat one. 
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. 

3. 

. 

Any surjective proper morphism of finite type is an h-covering. 
Let X be a scheme and G a finite group acting on X.  Suppose that  there 
exist a categorical quotient X / G  (see [7, ex.5 n.1]). Then the canonical 
projection p : X , X / G  is a qfh-covering. 
Consider the blowup p : X~ , X of a surface X with center in a closed 
point x E X and let U = X~ - {x0} where x0 is a closed point over x. 
Then the natural  morphism Pu : U .... X is not an h-covering. In fact, 
let us consider a curve C in X such that p - l ( C )  : p - l ( {x} )  U d and 

d N p - l ( { x } )  = {x0}. Obviously, pu l (C  - {x}) is closed in U but C - {x} 
is not. Therefore Pu is not a topological epimorphism. 

We are going to define now a special class of h-coverings which are called cov- 
erings of normal form. The main result of this section is the theorem which says 
that any h-covering of an excellent noetherian scheme admits a refinement which is 
an h-covering of normal form. 

P r o p o s i t i o n  3.1.3.  Let {Ui P~ ~ X }  be an h-covering of a noetherian scheme X .  
Denote by [I Vj the disjoint union of irreducible components of L[ (u~ such that for 
any j there exists an irreducible component of Xi  of X which is dominated by Vj. 
Then the morphism q : [I Vj * X is surjective. 

Proof. Suppose first that X is irreducible. Let x E X be a point of X.  We want to 
prove that  x lies in the image of q. Considering the base change along the natural 
morphism Spec(O~) , X we may suppose that X is the spectrum of a local ring 
and x is the closed point of X. 

Denote by Z the closure of the image of those irreducible components of LI ui 
which are not dominant over X.  Since this image is a constructible set which does 
not contain the generic point of X one has Z ¢ X.  It follows from [9, 10.5.5 and 
10.5.3] that the set of points of dimension one is dense in X.  Therefore there exists 
a point y E X of dimension one which does not belong to Z. If x does not lie in the 
image of q then the preimage q-1 (y) is closed which implies that p71 (y) are closed 
as well, giving us a contradiction with the condition that {pi} is an h-covering since 
y is not dosed  in X = Spec(O~). 

Suppose now that X is an arbi t rary scheme and let Xred ~--- L.JXk be the decom- 
position of the maximal reduced subscheme of X into the union of its irreducible 
components. Consider the natural morphisms Xk , X and let { Ui x x Xi * Xi} 
be the preimages of our h-covering. Then the morphisms I~ ~ k  , Xk, where I/)k 
are the irreducible components of I~ U~ x x Xk which are dominant over Xk are 
surjective, implying that I_[ Vj , X is surjective since ~I Vj = LI I I  vjk. 

R e m a r k .  This proposition leads to the following generalization of example 4 above. 
Let Z be a closed subseheme of an integral scheme X and X z  , X the blowup 
with the center in Z. Suppose that, for an open subscheme U C X z ,  the composition 
U ~ X z  , X is an h-covering. Then U = X z .  To show this, let us consider the 



124 V, Voevodsky Selecl, a Math. 

base change along the projection X z  ~ X .  Then U x x X z  is an open subscheme 
in X z  x x X z .  This last scheme is a union of the diagonal A and a component, which 
is not dominant over X z .  According to our proposition (U x x X z )  N A ~ X z  is 
a surjection, which implies that U = X z .  

P r o p o s i t i o n  3.1.4.  Let {pi : Ui ~ X }  be a finite family of quasi-finite mor- 
phisms over a normal connected noetherian scheme X .  Then {Pi} is a qfh-covering 
~f and only if the subfamily {qj} consisting of those Pi which are dominant over X 
is surjective. In that case {qj} is also a qfh-covering of X .  

Proof. The "only if" part  follows immediately from the previous proposition. 
To prove the "if" part  it is sutficient to notice that in the case of a normal 

connected noetherian scheme X a dominant quasi-finite morphism is universally 
open [7, p. 24] and therefore a surjective family of such morphisms is an h-covering. 

R e m a r k .  The statement of the proposition above is false for schemes which are 
not normal. To show this, consider a surface X over an algebraically closed field 
and let z, y C X be two different closed points of X. Let Y be the scheme obtained 
from X by gluing the point x, y together. Let U = X - {x}. The natural morphism 
p : U , Y is dominant and surjective but it is not a qfh-covering. In fact, let us 
consider a curve C C X in X,  which contains z and does not contain y. Then the 
subscheme p-1 (C - {z}) is closed in U, while C - {z} is not dosed  in Y. 

D e f i n i t i o n  3.1.5.  A finite family ofmorphisms {Ui P~, X} is called an h-covering 
of normal form if the morphisms Pi admit  a factorization of the form Pi = 8 o f o ini, 
where {ini : Ui , ~)} is an open covering, f : U , X z  is a finite surjective 
morphism and s : X z  , X is the blowup of a closed subscheme in X.  

Beginning at this point, we restrict our considerations to excellent noetherian 
schemes (see [9, 7.8]). 

Let us recall several properties of excellent schemes, which we will use below 
without additional references. Any scheme of the form X = Spec(A) where A is 
a field or a Dedekind domain with the field of fractions of characteristic zero is 
excellent. If  a scheme X is excellent and Y , X is a morphism of finite type, 
then Y is excellent. Any localization of an excellent scheme is excellent. For any 
excellent integral scheme X and any finite extension L of the field of functions on 
X,  the normalization of X in L is finite over X. 

L e m m a  3.1.6.  Let f : Y ~ X be a finite morphism such that Y is an irreducible 
scheme. Then the underlying topological space of the diagonal Y C Y x x Y is an 
irreducible component of Y x x Y .  

Pro@ Obvious. 

L e m m a  3.1.7.  Let X be an ezcellent normal connected noetherian scheme and 
let L be a finite purely inseparable eztension of the field of.functions K(X)  of X .  
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Then the normalization f : Y ~ X of X in L is a universal homeomorphism (see 
Definit ion 3.2.4). 

Pro@ Since X is excellent, the morphism f is finite and surjective, which implies 
that it is universally surjective. It is sufficient to show that f is universally in- 
jective. According to [10, 3.7.1] it is equivalent to the surjectivity of the diagonal 
morphism A : Y ~ Y x x Y .  Since X is normal the morphism f is universally open 
([7, p. 24]). In particular, considering the base change along f we see that the pro- 
jection Y x x Y ~ Y is an open morphism. It implies that each irreducible com- 
ponent of Y × x  Y is dominant over Y. According to the previous lemma our star- 
meat would follow if we prove that the general fiber of the projection Y x x Y ~ Y 
is connected. This fiber is the scheme Z = Spec(L) Xspec(K(x)) Spec(L) and, since 
our extension is purely inseparable, one has Zred = Spec(L) which finishes the 
proof. 

Let Z be a closed subscheme of a scheme X. We denote by p z  : X z  , X the 
blowup of X with center in Z. For a scheme Y , X over X,  denote by P z ( Y )  the 
closure in Y X x X z  of the open subscheme Y x x X z  - pr~ 1 (pz 1 (Z)). The scheme 
Pz(Y) over X z  is called the strict transform of Y with respect to Pz.  

T h e o r e m  3.1.8 pla:dfication by blowup. Let f : Y ~ X be a morphism of finite 
type, which is fiat over an open subset U C X .  Then there exists a closed subscheme 
Z disjoint with U such that the strict transform $ z ( Y )  is fiat over X z .  

Pro@ See [12, 5.2]. 

T h e o r e m  3.1.9. Let {Ui _2a_~ X }  be an h-covering of an excellent reduced noe- 
therian scheme X .  Then there exists an h-covering of normal ]orm, which is a 

refnement 4 {Pal. 
Pro@ Suppose first, that X is a normal connected scheme and all the morphisms 
Pi are dominant and quasi-finite. Considering tile normalizations of the schemes U~ 
we may- suppose that Ui are normal and connected as well. Let/5i : ~ , X be the 
finite morphisms such tha t / J i  are normal and connected and there exist factoriza- 
tions of the form Ui im, [2 i ~ ,  X, where in~ are open immersions ([11, 1.1.8]). 

There exists a connected normal scheme t~" and a finite surjective morphism 
: V , X such that it can be factorized through all the morphisms/5i and there 

exists a factorization of ¢ of the form i ? ~, t£  f ,  X where 12f/" is a connected 
normal scheme and ~,.0 correspond to purely inseparable and Galois extensions of 
the fields of functions respectively. Let Vi = V x5~ U. The compositions {qi : 

V.i , lP ~ X} define an h-covering which is a refinement of the initial one. 
Let G be the Galois group of the extension of the fields which corresponds to 
the morphism ~. The group G acts on 1). Consider the open subsets cr(Vi) for 
cr E G. Since tJq~(~) = X and the morphism ~ defines a homeomorphism of the 
underlying topological spaces (Lemma 3.1.7), we have Uc~(Vi) = V. The covering 
{a(V/) , X} is of normal form and we claim that it is a refinement of the covering 
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{V/ , X}.  To see it it is sufficient to define a morphism from one to another as 
the family of morphisms ~r -1 : (7(1//) , V/. 

Let now X be a noetherian exellent reduced scheme and pi be flat quasi-finite 
morphisms. Consider the normalization Xnorm , X of X. It  is a finite morphism 
and Xnorm is a disjoint union of connected normal schemes Xj.  Applying the above 
construction to the covering Ui x x Xd ~ Xj  we obtain in this case the refinement 
we need. 

Consider now the case of the general h-covering {Pi : U~ ---,- X} of a noetherian 
exellent reduced scheme X. It follows from [9, 11.1.1] that there exists a dense open 
subscheme Xo of X such that all the morphisms Pi are flat over Xo. Let Z be a 
dosed  subscheme disjoint with X0 such that the morphism f : Pz(I] Ui) , X z  
is flat (Theorem 3.1.8). Since X z  x x  (I_IUi) , X z  is an h-covering and the 
closure of the complement X z  x x (L][ ui) -15z (H  f/h) lies over pz  I ( z )  and therefore 
is not dominant over any irreducible component of Xz ,  Proposition 3.1.3 implies 
that f is a surjection. There exists then a quasi-finite flat, surjective morphism 
U ~ ---* X z  which can be factorized through f .  The normal refinement for such 
type of coverings was constructed above. 

3.2 Representable  sheaves 

Denote by Sch /S  the category of separated schemes of finite type over a noetherian 
exellent scheme S. All through this section a scheme means an object of Sch/S  
and all morphisms of schemes are morphisms over S. 

Let L be a functor Sch/S  - -~  Shvh(S) which takes a scheme X / S  to the cor- 
responding representable sheaf, i.e L(X)  is the h-sheaf associated with the presheaf 
Y * Mors (X,  Y). We will also use the notation Lq#~ for the corresponding func- 
tot  with respect to the qfh-topology. 

Since both the h-topology and the qfh-topology are not subcanonical, the functors 
L and Lq/h are not full embeddings. The question we are interested in in this section 
is what can be said about the set of morphisms L(X) ~ L(Y)? Since this set 
coincides with the set of sections of the sheaf L(Y) over X to answer our question, 
we have to describe the sheaf L(Y) associated with the presheaf representable by Y. 

Let us recall first the general construction of the sheaf associated with a presheaf 
[11, 2.2], [2]. Let P be a presheaf. For any scheme X define an equivalence relation 
on the set P(X),  setting sections a, b E P(X)  to be equivalent if there exists a 
covering {p~ : [dh X} of X such that for any i one has p, (a) = p, (b). Denote 
by p t  the presheaf such that P ' ( X )  is the set of equivalence classes of elements of 
P ( X ) .  

For any covering/d = {Pi : U,i ~ X )  denote by H°(ld, P ' )  the equalizer of the 
maps I_[P'(Ui) ~ IJP'(Ui Xx  Uj) which are induced by the projections. For 
any refinement N' of/d there is defined an obvious map H°(ld, P') , H°(N ', P ' ) .  
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We set 
aP(X)  = lira H°(b/, P ' ) .  --+ 

It can be shown that aP is indeed a sheaf associated with P and the natural mor- 
phism of presheaves P~ , aP is injective. 

We are going to apply this construction to the representable presheaves. 

L e m m a  3.2.1.  Let X be a scheme and )(red its maximal reduced subscheme. Then 
the natural morphism Lqlh(i ) : Lqfh(Xred) , Lqlh(X ) is an isomorphism, 

Pro@ Since the morphism i : Xrea * X is a monomorphism in the category 
of schemes and the functor L is left exact, so is L(i). t~om the other hand, i is 
a qfh-covering which implies that L(i) is an epimorphism. Therefore L(i) is an 
isomorphism. 

L e m m a  3.2.2.  Let X be a reduced scheme and U ~ X an h-covering. Then it 
is epimorphism in the category of schemes. In particular for any reduced X and 
any Y the natural map Mors(X,  Y) ,. Mor(L(X),  L(Y))  is injective. 

Proof. It follows immediately from the fact that h-coverings are surjective on the 
underlying topological spaces of schemes. 

For a scheme X denote by Lo(X) the presheaf obtained on the first step of the 
construction of the sheaf L(X)  which was described above. Two previous lemmas 
shows that for any scheme Y one has Lo(X) (Y )  = Mors(Yred, X).  

L e m m a  3.2.3.  Let X = Spec(K),  where K is a field. Then for any scheme Y one 
has Mor(L(X),  L(Y))  = Mor(Lqih(X), Lqfh(Y)) = Y ( K ' ) ,  where K '  is a maximal 
purely inseparable extension of the field K.  

Proof. It follows immediately from the previous lemma and the remark that the 
extension L of K is purely inseparable if and only if the diagonal A : Spec(L) 

Spec(L) XSpec(g ) Spec(L) induces an isomorphism of Spec(L) with 
(Spec (L) XSp~c (K) Spec (L))red. 

D e f i n i t i o n  3.2.4.  Let f : X * Y be a morphism of finite type. It is called 
radicial (resp. universal homeomorphism) if for any scheme Z , Y over Y the 
morphism X ×y  Z * Z induces an immersion (resp. homeomorphism) of the 
underlying topological spaces. 

P r o p o s i t i o n  3.2.5.  Let f : X * Y be a morphism of finite type. Then one has 

1. The morphism L( f )  (resp. Lqfh(f)) is a monomorphism if and only is f is 
radicial. 

2. The morphism L ( f )  is an epimorphism if and only if f is a universal topo- 
logical epimorphism. 

3. The morphism L ( f )  (resp. Lqfh(f)) is an isomorphism if and only if f is 
a universal homeomorphism. 
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Pro@ It follows from Lemma 3.2.1 that we may suppose X , Y  to be reduced 
schemes. 

I. The "if" part follows from the trivial observation that any radicial morphism 
with the reduced source is a monomorphism in the category of schemes and left 
exactness of the functor L. The "only if" part follows from Proposition 3.2.2 and 
the criterion that the morphism is radicial if and only if it induces monomorphisms 
on the sets of geometrical points (see [J0]). 

2. It is easy to show that a morphism of schemes f : X , Y induces an 
epimorphism on the corresponding representable sheaves if and only if there exists a 
covering U , Y which can be factorized through f. It implies the result we need, 
since if there exists a universal topological epimorphism which can be factorized 
through f, then f itself is a universal topological epimorphism. 

3. Suppose that f is a universal homeomorphism. Then it is a qfh-covering, 
and, therefore, Lqih(f ) is a surjection. On the other hand, any universal homeo- 
morphism is a radicial morphism which implies, according to (1), that L( f )  is a 
monomorphism as well. Suppose now, that L( f )  is an isomorphism. Then by (1) 
and (2), f is a radiciaI universal topological epimorphism, which obviously implies 
that f is a universal homeomorphism. 

Let X, Y be a pair of schemes and f E Mor(L(X),  L(Y)) .  We say that an 
h-covering {pi : U,i ~ X }  realizes f if there exist morphisms fi : Ui ,. Y such 
that L(fi)  = f o L(pi). llt follows from Lemma 3,2.2 that in that case one has fi  o 
pr[ed = f j  opr~ ca, where pr~ ed are the restrictions of the projections Ui x x Uj .' Ui 
and Ui x x Uj , Uj to the maximal reduced subscheme (U~ x x Uj)r~d of the scheme 
Ui Xx Uj. Note that if {Vi~ ,. Ui - - +  X} is a refinement of the h-covering {Pi : 
Ui , X} and {Vii .... X} realizes f ,  then the coverings {Vij , Ui} realizes 

f o 

L e m m a  3.2.6.  Let X be a reduced scheme and f C Mor(L(X) ,L(Y))  be such a 
morphism that it can be realized on the open covering of X .  Then there exists a 
morphism f c Mors(X,  Y) such that L( f )  = f .  

Proof. Let X = UUi be the open covering in question and fi : U~; --+ Y the mor- 
phisms which realize f .  Since for open subschemes Ui, Uj of a reduced scheme X, 
one has 

U i X x  Uj -- Ui N Uj = (Ui × x  Uj)red 

and open coverings are effective epimorphisms in the category of schemes, there 
exists a morphism f : X -+ Y whose restriction to L[ u~ equal I_I fi  and therefore 

L( f )  = f .  
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L e m m a  3.2.7.  Let p : X ~ * X be an h-covering such that p , ( O x , )  = O x .  Then 
for any f C Mor(L(X) ,  L (Y ) )  which can be realized by p, there exists a morphism 

} e v o s(x, Y) s ch.that L(]) : f. 

Proof. Denote by f '  : X '  * Y the morphism such that L ( f ' )  = f o L(p). Then, 
since p is a topological epimorphism, there exists a continuous map f from the 
underlying topological space of X to the underlying topological space of Y such that 
as a cominuous map fr equals f o p .  Since p , (Ox , )  = (9x, the morphism of sheaves 
O z  * f f , (Ox,)  defines a morphism of sheaves Oy " f f , (Ox,)  = f , ( p , ( O x , ) )  = 
f ,  (Ox) ,  and, therefore f corresponds to a morphism of schemes, which obviously 
satisfies the condition we need. 

P r o p o s i t i o n  3.2.8. Let f E Mor(L(X) ,L(Y))  be a morphism of representable 
h-sheaves. Then there exists a finite surjective morphism p : X '  ~ X such that 

f o L(p) = n ( f ' )  for a morphism f ' :  X '  • Y .  

Proof. Let {Pi : Ui , X} be an h-covering which realizes f and let fi  : Ui , Y 
be the corresponding morphisms. According to Theorem 3.1.9 we may suppose 
that our covering is a covering of normal form. Let Ui in~, ~- ~, X z  r ,  X be 
the normal decomposition of Pi. Consider the morphism r o s. Since it is proper 
there exists the Stein decomposition of the form r o s=r ~ o s ~ where s ~ is a proper 
surjective morphism U , X t such that s~. (OCt) = ©x'  and r '  is a finite surjective 
morphism. Our proposition follows now from Lemmas 3.2.7 and 3.2.6. 

T h e o r e m  3.2.9.  The category L ( S c h / S )  (resp. Lqhf(Sch/S))  of representable h- 
sheaves (resp. qhf-sheaves) is a localization of the category S c h / S  of schemes over 
S with respect to the class of universal homeomorphisms. 

Pro@ It follows from Proposition 3.2.5(3) that it is sufficient to show that for any 
schemes X, Y and a morphism f E Mor(L(X),  L(Y) ) ,  there exists a universal home- 
omorphism X0 ~ X which realizes f .  Let p : X ~ , X be a finite morphism 
such that there exists a morphism f '  : X '  * Y satisfying L( f ' )  = f o L(p). Let 
us define a sheaf 7~ of finite Ox-algebras over X as follows. Let U be an open 
subset of X.  Then 7~(U) is a subalgebra in (9x , ( f f - I (U) )  which consists of func- 
tions g E Ox,  ( f , -1  (U)) such that there exists an element ~ E Mor(L(X),  L(At ) )  
satisfying L(g) = ~ o L(p). One can easily see that the morphism Spec(7~) , X 
is a finite surjective morphism, which realizes f .  To finish the proof it is sufficient 
to show that it is a universal homeomorphism. It is almost obvious. 

P r o p o s i t i o n  3.2.10.  Let S be a scheme of characteristic zero. Then there exists 
a functor R : L ( S c h / S )  , S c h / S  left adjoint to L. For a scheme X ,  the scheme 
R ( L ( X ) )  is a semi-normalization of X (see [15]). 

In particular for any seminormal scheme X and any scheme Y one has 

Mor(L(X),  L(Y) )  : Mors(X,  Z).  
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Pro@ Let X be a normal scheme of characteristic zero. Suppose that p : Y , X 
is a universal homeomorphism. Considering the base change along the immersion 
of the generic point of X,  we conclude that p is birational. On the other hand p 
is universally closed and quasi-finite which implies that it is finite. Then p is an 
isomorphism by [8, 4.4.9]. 

Therefore, for any scheme X of characteristic zero and any f C Mor(L(X),  L(Y))  
there exists a finite morphism p : X '  ~ X which realises f such that p is a 
universal homeomorphism and the normalization of X can be factorized through p. 
It follows easily from the results of [15] that the seminormalization of X is exactly 
the universal morphism satisfying this property, which finishes the proof. 

The situation in positive characteristic is a bit more complicated. Roughly 
speaking, there exists an analog of the functor R in that case. Namely R(L(X) )  for 
an integral scheme X should be a seminormalization of X in the maximal purely 
inseparable extension of its field of functions. The problem is that this scheme is 
not in general a noetherian scheme, and, therefore we can not construct R in the 
category of noetherian schemes. 

The following proposition provides us all the information we really need about 
the sets Mor(L(X) ,  L(Y))  in the general case. 

P r o p o s i t i o n  3.2.11. Let X be a normal connected scheme. Then for any scheme 
Y one has 

Mor(L(X),  L(Y))  = l i~ MorS(XL, Y)  
L 

where the limit is defined over the category of purely inseparable extensions of the 
field of functions of X and XL denotes the normalization of X in the extension L. 

Pro@ It follows almost automatically from the above results. 

P r o p o s i t i o n  3.2.12.  Let Y be a scheme of finite type over S. Then the natural 
morphism 

Mors(X,  Y) , Mor(L(X),  L(Y))  

is a bijection for any X if and only if Y is gtale over" S. 

Pro@ It follows from the valuative criterion for ~tate morphisms (see [9, ex.17]) 

3.3 Sheaves  Z(X) in h - topo logy  

Let X be a scheme over S. We denote by Z(X) (resp. Zqfh(X)) tile h-sheaf (resp. 
the qfh-sheaf) of abelian groups freely generated by the sheaf of sets L(X) .  We will 
also use notations N(X) ,  Nqfh(X) for the corresponding freely generated sheaves 
of abelian monoids. 

For an abelian monoid A, we denote by A + the abelian group associated with 
A in the obvious way. 
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P r o p o s i t i o n  3.3.1.  For any schemes X , Y  over S and a section a E ZqIh(X)(Y ) 
there exists a finite surjective morphism f) : ~f * Y such that ~*(a) = ~ a + - 

a[, , where a +, a[ correspond to morphisms ~f ~ X .  

Proof. According to the construction of the associated sheaf and Theorem 3.1.9 
above, for any a E Zqfh(X)(Y)  there exists a covering 

of normal form such that 

y 

where aij +, a~k- E Mors(Ui, X) are elements such that a + ¢ aik- for any j,  k. 
For a pair il ,  i2 of indices we have 

pr~ ( E a + j -  ~ a ~ k  ) : pr: ( E a + j -  ~ a ~ k  ) 

in Z q]h (X) (Ui~ x u Ui2). Since Ui~ x u Ui2 = Ui~ M U/2 is reduced it implies that this 
equality also holds on the level of formal sums of morphisms Ui * X.  It  means 
that with respect to some order on the set of indices one has 

pr~ a + = pr~ a + 
z12 ~23 

r *  - P i ai lk  = pr~ ai2 k. 

There exists then a family of morphisms 

+ 
aijlu~ 

a + 
ijlU.i 2 

a~lu~ ~ = 

a~tu~ 2 = 

The statment of our proposition follows 
open subschemes Ui of U. 

P r o p o s i t i o n  3.3.2. Let X be a normal connected scheme and let p : Y , X be 
the normalization of X in a Galois extension of its field of functions. Then for any 
qfh-sheaf F of abelian monoids the image of p* : F ( X )  , F ( Y )  coincides with 
the submonoid F ( Y )  a of Gatois invariant elements in F ( Y ) .  

Pro@ Obviously Ira(p*) lies in F ( Y )  a. Let a e F ( Y )  a be a Galois invariant ele- 
ment of F ( Y ) .  Consider the scheme Y Xx Y. It is a union of irreducible components 
of the form 

Y x x Y :  U Y g  
g C G  

a + - 
i j , a i k  E M o r s ( U i l  U U i 2 , X )  s u c h  t h a t  

~ a ~ -  " 
z13 

_~  a .~- . 
~23 

a~k  

a~k.. 

now by the induction by the number of 
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and Yg can be identified with Y in such a way that the restriction of the first 
projection Y x x Y * U becomes an identity and the restriction of the second one 

is the isomorphism Y --~ Y induced by 9 E G. To prove, that a E Im(p*) it is 

sufficient to show that pr~(a) = pr~(a) in F(Y Xx Y). Since the decomposition of 
Y x x ]z in the union of its irreducible components is a qfh-covering, it is sufficient 
to show that for any g C G one has pr~(a)]y~ = pr~(a)lyg , which means exactly that 

a is a Galois invariant. 

T h e o r e m  3.3.3.  Let X be a scheme and Y a normal  scheme. Then one has 

Z q f h ( X ) ( Y )  = Nqfh(X)(Y) +. 

Proof. Denote by F the presheaf of the form 

y . 

Obviously the qfh-sheaf associated with F is isomorphic to Zqfh(X) .  In particular, 
there is a natural map 

¢ :  N~h(X)(Y)  + , Z~Ih(X)(Y ) 

and we have to prove that it is a bijection for normal Y. Let us show first that ¢ is 
an injection. It follows immediately from the construction of the associated sheM, 
that it is sufficient to show that for any qfh-covering {Ui , Y} the natural map 

F(Z) • @F(u. , )  
i 

is injective. Note that according to the axioms of sheaf the map 

N~sh(X) (Y) , @ Nq~h(X)(U d 
i 

is injective. Our statment now follows easily from the following lemma: 

L e m m a  3.3.4.  Let  a, b C Nqz~(X)(Y) be a pair of  sections such that  a + x = b + a: 

.for some x E Nq . f h (X ) (Y ) .  Then a = b. 

Proof. There exists a covering {p~ : Ui , Y} of Y such that 

p t ( x )  = Z 

= x,,  
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where x~j, a~k, b~ E L(X)(Ui). 
Since Nqfh(X) is a sheaf, it is sufficient to show that p*(a) = p~(b). An equality 

E a~k + E x ij = ~ b~ + E x~j 

in Nq/h(X)(Ui) means that there is a covering {q~m : V~,~ 
m one has the equality 

~' Ui} such that for any 

E * a * x  * * x  qirn ik + E qirn "ij = E qirnbil + E qirn ij 

which holds on the level of formal sums of sections of the sheaf L(X) over l ,~. It 
implies that 

* a ~ * qim ik ~ qimbil 

and, therefore, p~ (a) = p~ (b). 
Let us prove now that in our case the map ¢ is also surjective. By Propo- 

sition 3.3.1, for any a E Zqlh(X)(Y ) there exists a finite surjective morphism 
/5 : C , Y such that/5*(a) = ~ a + - ~ a~-. We may suppose that Y is con- 
nected. Since Y is normal we may suppose that/5 admits a decomposition of the 
form 

C ~0~. CO ~l~ y 

where/)1 is the normalization of Y in a purely inseparable extension of its field 
of functions and t50 is the normalization of Co in a Galois extension of its field of 
functions with a Galois group G. For any g E G we have 

in Zqfh(X)(U) and, since C is reduced, the same equality holds on the level of the 
formal sums of morphisms C , X.  It implies that 

in Nq/h(X)(U) and, according to Proposition 3.3.2, there exist a pair ak, a- of 
elements of Nqfh(X)(C~o) such that p;(a +) = E a  + and /5;(a-) = E a [ .  By 

Lemma 3.1.7 we have Nq, fh(X)(Uo) = Nqfh(X)(Y) which finishes the proof. 



134 V. Voevodsky Selecta Math, 

T h e o r e m  3 .3 .5 ,  Let X be an afjine scheme over S. Then one has 

z ( x )  = 

Pro@ It  is sufficient to show that  for an affine scheme X the q]h-sheaf Zqfh(X) 
is an h-sheaf. By Theorem 3.1.9 we have to prove only that  Zqfh(X) satisfies the 
axioms of sheaf for h-coverings of normal  form. Let Y be a scheme over S and 
{Ui * C > Yz  , Y} its covering of normal  form. Let us show first that  the 
map u : Zqfh(X)(Y)  > ®,i Zqfh(X)(Ui) is injective. Let a C Zqfh(X)(Y)  be 
an element such that  u(a) = 0. By Proposi t ion 3.3.1 there exists a finite surjec- 
t i re  morph ism q :  I? ~ Y such that  •*(a) = ~ a + - ~ a [  where a +, a~- cor- 

respond to morphisms V ~ X.  Denote the morphism Yz , Y by s. Since 
{Ui . (7 " Yz}  is a qfh-covering an equali ty u(a) = 0 implies that  s*(a) = 0 in 
Zqfh(X) (Yz) .  Consider the fiber product  Yz x y 12 and let prl ,  pr 2 be the project ion 
to Yz  and 1), respectively. We have pr~ q* (a) = pr~ s* (a) = 0 in Yz  x y tP ". It  implies 
that  with respect  to a suitable order on the index set we have a + o pr 2 = a~- o pr 2 

as morphisms  (Yz Xy ~?)r~d ~ X.  Therefore, since (Yz  x y  l?)r~d " ~,ed is an 
epimorphism in the category of schemes, we have a + = ay  on ~Trred which implies, 

tha t  a = 0. 
Now let ai E Zqfh(X)(Ui) be a family of sections such that  pr~(ai) = pr~(aj)  

in Zqfh(X)(Ui Xv Uj) where pr 1 : Ui x y  Uj * Ui, pr2 : Ui x y  Uj * Uj are the 
projections.  We have to prove that  there exists an element a C Zqfh(X)(Y)  such 
that  its restriction on Ui is equal to ai. Passing to a refinement we may  suppose 
that  ai = ~ a + - ~ a ~  where a?:,j, a i-k correspond to morphisms U~ - - +  X.  As 
in the proof  of Proposi t ion a.a.1 we see *;hat there exists a family of morphisms 
a +, a[  C M o r s ( ¢ ,  X )  such that  

O, q- ~- a/~ jlU~ 

ak[ui -~ a~. 

Consider the Stein decomposi t ion (] f ,  W g+ Y of the morphism U , Yz 
, Y. Since f.(gcr = COw and X is affine over S, one has Mors (U- ,X)  = 

M o r s ( W , X ) .  Therefore there exists a family of morphisms b + , b [  : W , X 
such that  Sob? = 

Since 

f o bk ~- a £ .  

in Zqfh(U × y  U) and the natural  morphisrn U × y  ~- --~- W × y  W is an h-covering 
it follows fl 'om the injeetivity result  proved above that  the same equali ty holds 
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in Zqfh(W ×y W) .  Since W , Y is a finite surjective morphism and, therefore 
a qfh-covering, it implies that there exists an element a E Zqfh(X)(Y)  such that 
g*(a) = E b~ - E b; in z~sh(x)(w),  which finishes the proof. 

P r o p o s i t i o n  3.3.6.  Let X be a scheme over S such that there exist symmetric 
powers S n X  of X over S. Then the sheaves N ( X ) ,  Nqyh(X) are representable by 
the (ind-) scheme LI~>0 S n X .  

Proof. It  is obviously sufficient to prove our proposition in the case of qfh-topology. 
Note first that the sheaf representable by L[n>0 s n x  is a sheaf of abelian monoids. 
To prove the proposition, it is sufficient to show that it satisfies the universal 
property of Nqfh(X).  I t  means that for any q)q~-sheaf of abetian monoids G and 
any section a E G(X)  of G over X,  there should exist a unique element, f E 
Hom(L( I In>0  S'~X), G) = G(It,~>_o S '~X) which is a homomorphism of sheaves of 

abelian monoids and whose restriction on X = S I X  is equal to a. 
Consider the natural morphism q : X r~ , S ~ X  and let Yn = ~ff~pr~(a) E 

G ( x n ) ,  This element is obviously invariant with respect to the action of the sym- 
metric group S~. Exactly in the same way as in the proof of Proposition 3.3.2 one 
can show that there exists an element f,~ C G ( S n X )  such that q* (f~) = y,~. 

I t  is easy to see now that  an element l ® y l  O . . . ® y n  C On>oG(SnX) = 
G(I_lr~>o S '~X) satisfies our conditions. 

P r o p o s i t i o n  3.3.7.  Let Z be a closed subscheme of a scheme X and p : Y . Z 
be a proper surjective morphism of finite type which is an isomorphism outside Z. 
Then the kernel of the morphism of q/h-sheaves 

z~sh(v): z~sh(r) , z~h(x)  

is canonically isomorphic to the kernel of the morphism 

zqs~(p,z) : zqih(p-l(z)) - - -  z~s~(z) 

Proof. The inclusion of schemes p - l ( Z )  , Y induces a morphism of sheaves 

ker (Z~s~(pI~)) . ker (Z~s~(p)), 

which is obviously a monomorphism. I t  is sufficient to show that it is an epimor- 
phism. By Proposition 2.1.4 we have epimorphisms of sheaves 

z~s~(Y × x  Y) - - ~  ker (Z~s~(p)) 

z~s~(p-~(z)  × z  p - l ( z ) )  .... k e r  (zqs~(plz)). 

The last morphism is obviously zero on the diagonal Y C Y x x Y and the statement 
of our proposition follows fl'om the fact that the morphism 

A I I i : Y H P - ' ( Z ) × z P - I ( Z )  ' Y × x Y  

is a qfh-covering and hence induces an epimorphism of the corresponding freely 
generated sheaves of abelian groups. 
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T h e o r e m  3.3.8. Le t  X be a normal connected scheme and let f : Y ~ X be a 

finite surjective morphism of the separable degree d. Then there is a morphism 

t r ( f )  : Zqfh(X) * Zqfh(Y) 

such that Zqlh(f ) t r ( f )  = dIdZqfh(X ) 

Proof. We may suppose that Y is the normalization of X in a finite extension of the 
field of functions on X.  There is a decomposition f = f0 f l ,  where f l  corresponds to 
a separable and f0 to a purely inseparable extension, respectively. By Lemma 3.1.7 
aad Proposit ion 3.2.5, the morphism fo induces an isomorphism on the qfh-sheaves. 
It  implies that we may restrict our considerations to the case f0 = Id. Let f : 
t > * X be the normalization of X in a Galois extension which contains K(Y).  
The morphism Zq/h(X) , Zqfh(Y) is a section of the sheaf Zqlh(Y) over X.  Let 

G = Gal ( I> /X)  be the Galois group of Y over X and H = Ga l (Y /Y)  its subgroup 
which corresponds to Y. By Proposition 3.3.2, to construct such a section, it is 
sufficient to find a section a of Zq/h(Y) over Zqja(Y) which is G-invariaxit. We set 

a= E x(g), 
xcatt~ 

where g : I) ~ Y is the natural morphism. It  is easy to see that the corresponding 
section of Zqfh(Y) over X satisfies all tile properties we need. 

3.4 Comparison results and eohomologieal dimension 

T h e o r e m  3.4.1. Let X be a normal scheme and F be a qfh-sheaf of Q-vector 
spaces. Then one has 

F) = H t(X,F) 

Pro@ I t  follows from the Leray spectral sequence that to prove our theorem it is 
sufficient to show that, for any normal strictly local ring R, one has 

H ,h(Spec(R), r )  = 0 

for i > 0. I t  is easy to see that we actually need only to consider the case i = 1. Let 
a E H~f/,(Spec(R), F)  be a cohomological class. Then there exists a qfh-covering 
{Ui , Spec(R)} and a Cech cocycle {aij} E ®F(Ui Xspec(R)Uj) which represents 
a. To prove tha.t a = 0, it is sufficient to show that the natural surjection of 
sheaves of Q-vector  spaces z(IiI  ui) ® Q , z(Spec(R))  ® Q splits. I t  follows 
from Theorem 3.3.8 above and the next lemma. 
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L e m m a  3.4.2.  Let X be the spectrum of a strictly local ring and let {Pi : U~ 
X }  be a qfh-covering. Then there exists a finite surjective morphism p : 

V . X and a morphisrn s : V - - ~  I_[ U~ such that 

Proof. We may assume that U1 , X is finite and the image of all other Ui does 
not contain the closed point of X (see [11, 1.4.2]. We should prove that if our family 
of morphisms is a qfh-covering then U1 , X is surjective. Let us do it by the 
induction by dimension of X.  The result is obvious for dim X < 2. Let x ~ X 
be a point of dimension one. Considering the base change along the embedding 
Z~ , X ,  where Z~ is the closure of x we conclude that x lies in the image of U1. 
Therefore the image of U1 contains all points of dimension 1 in X. Since it is closed 
it implies that  it coincide with X. 

Our theorem is proved. 

L e m m a  a .4 .3 .  Let k be a separably closed field. Then for any qfh-sheaf of abelian 
groups F and any i > O, one has 

( s p e c ( k ) , r )  = 0 

Proof. Obvious. 

T h e o r e m  3.4.4.  Let X be a scheme and F a locally constant in the dtale topology 
sheaf on S c h / X .  Then F is a qfh-sheaf and one has 

H~Ih(X , F)  = Het (X  , F).  

Proof. The fact that F is a qfh-sheaf is obvious. To prove the comparison statment 
it is sufficient to show that  if X is a strictly henselian scheme then H~fh(X , F)  = 0 
for q > 0. 

Denote by Fini te(X) the site which objects are schemes finite over X and cov- 
erings are surjective families of morphisms. We have an obvious morphism of sites 

7 :  (Sch/X)cfh  . Finite(X).  

Lemma 3.4.2 implies that for any qfh-sheaf of abelian groups ~ on S c h / X  this 
morphism of sites induces isomorphisms 

Hfinite(X, 3/* (~)) = H~fh(Z, ~). 

Hence it is sufficient to show t h a t  H~nite(X,f.(F)) = 0 for i > 0. 



138 V. Voevodsky Selecta Math. 

Let x : Spec(k) , X be the closed point of X.  For any finite morphism 
Y - - ~  X,  the scheme Y is a disjoint union of strictly henselian schemes (see ([11])) 
and hence the number of connected components of Y coincides with the number of 
conected components of the fiber Y~ , Spec(k). This implies that the canonical 
morphism 

^/, (F) . x ,  (7 , (F) )  

of sheaves on the finite sites is an isomorphism. Lemma 3.4.3 implies now that one 
has 

i H~nit e (X, 7* (F))  = H~nit e (Spec(k),  7. (F))  = H~qih(Spec(k), F) = 0 

for any i > 0. 

T h e o r e m  3.4.5.  Let X be a scheme and F a locally constant torsion sheaf in dtale 
topology on S c h / X .  Then F is an h-sheaf and for any i >_ O, one has a canonical 
isomorphism 

H~(X,  F) = H~t(X, F).  

Proof. See [13]. 

R e m a r k .  The theorem above is false for sheaves which are not torsion sheaves, 
but it can be shown that it is still valid for arbi trary locally constant sheaves if X 
is a smooth scheme of finite type over a field of characteristic zero (we need this 
condition only to be able to use the resolution of singularities). 

T h e o r e m  3.4.6.  Let X be a scheme of the (absolute) dimension N.  Then for any 
h-sheaf of abelian groups and any i > n one has 

H (X, F) 0 Q = o. 

Pro@ We need first the following lemma. 

L e m m a  3.4.7. Let X be a scheme of the absolute dimension N.  
dtale sheaf of abetian groups F and any i > N one has 

Hh(x ,  F) ® q = o. 

Then for any 

Proof. (cf. [ l l , .p .  221]) We use an induction by N. For N = 0 our statment is 
obvious. Let x t , . . . ,  xk be the set of general points of X and inj : Spec(Kj)  , X 
the corresponding inclusions. Consider the natural rnorphism of sheaves on the 
small ~tale site over X: 

k 

F , O ( i n j ) , ( i n j ) * ( F ) .  
j = l  
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Then kernel and cokernet of this morphism have the support  in codimension at 
least one and, therefore, their cohomology vanish in the dimension greater than 
N - 1 by inductive assumption. To finish the proof it is sufficient now to notice that 
Hi(X, (in j ) ,  (inj)* (F)) ® Q = 0 by the Leray spectral sequence of the inclusions 
inj. 

I t  follows from this lemma and Theorem 3.4.1 above, that for a normal scheme 
X of the dimension N and any i > 1, one has H~Ih(X , F)  ® Q = 0. 

According to the spectral sequence which connects Cech and usual cohomology, 
to prove our theorem it is sufficient to show that /;/X(X, F)  ® Q = 0 for i > N. 
Let a E H~(X,F)  ® Q be a cohomology class and {Ui , /J ~ X z  .... ~ X} an 
h-covering of normal form which realizes a. Passing to a refinement we may suppose 
that  X z  is normal. Since {Ui ~ U * X z }  is a qJh-covering the restriction of a 
to X z  is equal to zero. I t  fotlows from Propositions 3.3.7 and 2.1.3, that there are 
two long exact sequences: 

. . . .  Ex t i - l (G,F)  , H~(X,F) , H~(Xz,  F) , E x t i ( G , F )  • . . .  

and 

. . . .  E x t i - I  (G, F)  , H~(Z,F) , H~(PNz ,F)  , E x t i ( G , F )  , . . .  

and, since dim(PNz) < dim(X) our result follows by the induction by dim(X).  

Corollary 3.4.8.  Let X be a scheme of absolute dimension N. Then for any 
~h-sheaf of abelian groups F on Sch /X  and any i > N one has 

F) = O. 

4. C a t e g o r i e s  DM(S)  

4.1 Definition and general properties 

Consider the category Sch/S  of schemes over a base S as a site with either h- or 
q]h-topology, It  has a structure of a site with interval if we set I + = A ) .  Morphisms 
(#, i0, i l)  from the definition of a site with interval are the multiplication morphism 
and the points 0, 1, respectively. 

Denote by A} the scheme S x sSpec  Z[x0 , . . . ,  z ~ ] / ~  xi = 1. One can easily see 
that A~ is (noncanonically) isomorphic to A}.  For any morphism f : [n] , [m] in 
the standard simplicial category A we denote by a~(f) : A} ~ A T the morphism 
which corresponds to the homomorphism of rings a I(f)* of the form 

{ ~ x j  such that f ( j ) = i  

a'(f)*(xi) = if f - i ( / )  7~ (~ 

0 otherwise. 

This constructions defines a cosimplicial object a ~ : A ~ Af t /S .  
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P r o p o s i t i o n  4,1.1.  The cosimplicial object a' is isomorphic to the cosimplicial 
as+ of the site with interval ( (Af t /S )d ,  A}) .  

Proof. Denote the functor as+ by a. We have to construct for' any n _> 0 an 
isomorphism 

such that for any morphism a : [n] ~ [m] in A, one has 

Cm o a'(~) = a ( ~ ) o ¢ ~ .  

Denote by y)~: [n] 

¢~ (k) = 

One can easily see that the morphisms 

ate<') 

, ,  [1],i = 0 , . . .  ,n  + 1 the morphisms of the form 

0 for k < i 

1 for k > i. 

: ( s+ )~  , ( s+)  ~+2 

We can define ¢~ by 

: ( z o . . . ,  z~) = zk, 

# n 
( ¢ i ) ( z o , .  

~(¢?)(.t,. { z~ for i ~ { 1 , . . . , n }  

. ,xn) = 1 f o r i = O  

0 f o r i = n + l  

{ \ j=O j=i ) 

' ~ )  = (o, 1) 

(1,o) 

for i C { 1 , . . . , n }  

for i = 0  

for i = n + l .  

E Zkl...~Zn . 
k=2 

f n + l  x 
: . 

are closed embeddings. This implies easily that it is sut~cient to construct isomor- 
phisms ¢~ such that 

for all n >_ 0 and i = 0 , . . . ,  n + 1. We obviously have 
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Proposition is proved. 

We define the category DMh(S)  (resp. DMqfh(S)) to be the homological cate- 
gory of the site with interval ((Sch/S)h,  A~) (resp. ((Sch/S)h,  A})). Let Mh, ~/Ih: 
S c h / S  ~ DMh(S)  (resp. Mqyh , f/Izfh) be the corresponding functors. We identify 
sheaves of abelian groups on S c h / S  with the corresponding objects of D M ( S )  and 
schemes with the corresponding representable sheaves of sets. We also omit the 
specification of topology in all the statements below which hold for both h- and 
qfl~-topologies, 

It follows immediately from our construction that the categories D M ( S )  are 
tensor triangulated categories, and for any morphism of schemes f : $1 ~ $2 
there is defined an exact, tensor functor f* : DM(S2) , DM(S1) such that for 
a scheme X over $2 one has f * ( M ( X ) )  = M ( X  Xs2 S1). The properties of the 
functor Z ( - )  imply that for any schemes X, Y over S one has 

(x II Y) : M(x/® M(Y/ 
M (X Xs Y)  = M ( X )  ® M ( Y ) .  

P r o p o s i t i o n  4.1.2. Let X = U tJ V be an open or closed covering of X .  Then 
there is a natural exact triangle in D M ( S )  of the form 

M(U N V) , M(U) ® M ( V )  ~ M ( X )  , M(U Cl V)[1]. 

Pro@ It, follows from Proposition 2.1.4, 

P r o p o s i t i o n  4.1.3. Let p : Y , X be a locally trivial (in Zariski topology) fibra- 
tion whose fibers are affine spaces. Then the morphism M(p) : M ( Y )  , M ( X )  
is an isomorphism.. 

Pro@ It follows from Proposition 4.1.2 and the obvious fact that for any scheme 
X the morphism M(prl)  : M ( X  x A n) ~ M ( X )  is an isomorphism. 

P r o p o s i t i o n  4.1.4. Let f : Y , X be a finite surjective morphism of normal 
connected schemes of the separable degree d. Then there is a morphism t r ( f )  : 
M ( X )  ~ M ( Y )  such that M(.f) tr( f )  = d IdM(x). 

Pro@ It follows from Theorem 3.3.8. 

P r o p o s i t i o n  4.1.5. Let Z be a closed subscheme of a scheme X and p : Y , X 
a proper surjective morphism of finite type which is an isomorphism outside Z, 
Then there is an exact triangle in DMh(S)  of the form 

Mh(X)[I] ~ M h ( p - l ( z ) )  " Mh(Z) • Mh(Z)  ~" Mh(X) .  

Pry@ It follows from the fact that p is an h-covering and from Proposition 2.1.4. 
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R e m a r k .  The above proposition is false for the qfh-topology. 
It follows easily from our construction that for any sheaf F on Sch /S  and any 

object X of this category we have canonical morphisms 

H i ( X , F )  , DM(M(X) ,F[ i ] ) .  

P r o p o s i t i o n  4.1.6.  Let F be a locally free in 6tale topology sheaf of torsion prime 
to the characteristic of S. Then for any scheme X one has a natural isomorphism 

D M  (M(X) ,  Fin]) = Hg~(X, F). 

Proof. It follows from Proposition 2.2.9, Theorems 3.4.4, 3.4.5 and the homotopy 
invariance of dtale cohomologies with locally constant coefficients (see [11, p. 240]). 

P r o p o s i t i o n  4.1.7.  Let S be a scheme of characteristic p > O. Then the category 
D M ( S )  is Z[1/p]-linear. 

Proof. It is sufficient to show that the sheaf Zip is isomorphic to zero in the 
category DM(S) .  Consider the Artin-Shrier exact sequence 

0 , Z /pZ * Ga F-I Ga , 0 

where Ga is the sheaf of abelian groups represented by A 1 and F is the geomet- 
rical Frobenius morphism. Since Ga is obviously a strictly contractible sheaf the 
existence of this sequence implies the result we need. 

The following two theorems tbllow easily from the results of [13]. 

T h e o r e m  4.1.8.  Let X be a scheme of finite type over C. Then one has canonical 
isomorphisms of abelian groups 

DMh (Z, M ( X )  ® Z/n[k]) = Hk (X(C) ,  Z/n) .  

Let us call an object X of the category DM(S)  a torsion object if there exists 
N > 0 such that N Idx = 0. 

T h e o r e m  4.1.9.  Let k be a field of characteristic zero. Denote by Dk the derived 
category of the category of torsion sheaves of abelian groups on the small dtale site 
of Spec(k). Then the canonical functor 

r :  Dk , DMh(Spec(k))  

is a full embedding and any torsion object in DMh(Spec(k)) is isomorphic to an 
object of the form r (K)  for K E ob(Dk). 

R e m a r k s .  
1. We do not know whether or not the analogs of the above two theorems hold 

for the qfh-topology. 
2. Using the resolution of singularities in positive characteristic, one can drop 

the condition char(k) = 0 in the last theorem, considering instead objects 
of torsion prime t,o char(k). 
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4.2 T a t e  m o t i v e s  

All through this section we are working with the categories DM(S)  with respect to 
qfh-topology. All the results below obviously hold for h-topology as well. Since the 
results of this section do not depend of the base scheme S, we will omit S in all 
notations below where it is possible. 

D e f i n i t i o n  4.2.1.  The Tare motive Z(1) is the object of the category D M  which 
corresponds to the sheaf G,~ shifted by minus one, i.e. 

Z(1) : G.~[-I]. 

We denote by Z(n) the n-tensor power of Z(1) and for any object X of DeVI by 
X(n) the tensor product X x Z(n). 

P r o p o s i t i o n  4.2.2.  For any n and k there exists an exact triangle of the form 
®n k Z(n) " . 

where #~n denotes the object of the category DM which corresponds to the n-th 
tensor power of the sheaf #k of k-th roots of unit. 

Proof. It is sufficient to show that one has an isomorphism Z(n )®Z/kZ  ~ • ®n =/~k , i.e. 
isomorphism G ~  ~ ® Z/kZ  ~- #~[n] (note that the tensor product on the left-hand 
side is a tensor product in the category D M  which corresponds to the L-tensor 
product on the level of the derive category of sheaves). 

Note first that p~ is, by d~finition, the kernel of the morphism of the sheaves 
Gm " Gm which corresponds to the morphism of schemes 

A 1 - 0 ---~ A 1 - 0 

which takes z to z k. In h-topology it is a surjection. Therefore one has G,~ ®r  
Z/kZ  "= #kill. To finish the proof of the proposition one should show that ~"®~ ~L 

..~ . ® ( n + l ) r ~ l  G m =  t~k Lx], which is easy. 

For any scheme X we define its motivic cohomology to be the groups 

HP(X, Z(q)) : D M ( M ( X ) ,  Z(q)). 

When it is necessary we will use the notations H~fh(X, Z(q)) and H~(X, Z(q)) for 
these groups defined with respect to qfh-and h-topology, respectively. 

There is defined an obvious multiplication of the form 

HP(X,Z(q)) ®HP'(X,Z(q')) , HP+P'(X,Z(q+q')) 

which satisfies all standard properties. In particular the direct sum 

@ t~P(X, Z(q)) 

P,q 

has a natural structure of a bigraded ring, which is commutative as a bigraded ring. 
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P r o p o s i t i o n  4.2.3.  Let X be a scheme. For any q and any k prime to character- 
istic of X one has a long exact sequence of the form 

®n . . .__,_HP(X,Z(q))  k HP(X,Z(q))____~H~t(X,#k ) ,Hp+I(X ,Z(q) )  . . . .  

Proof. It  follows from Proposition 4.2.2 that the only thing we have to prove is that 
under our assumptions one has an isomorphism 

P DM(M(X),p?n~p])  -~ Her(X, #~®~). 

It follows from Proposition 4.1.6 and the fact that #k ~ is a locally free in ~tale 
topology sheaf over Spec(Z[1/k]). 

Proposition 4.1.7 implies that for a schemes X of characteristic l > 0 the groups 
HP(X, Z(q)) are Z[1/l] modules. 

P r o p o s i t i o n  4.2.4.  Let X be a regular scheme o/exponential characteristic p. 
Then for any i >_ 0 one has a canonical isomorphism 

H~fh(X, Z(1)) = [f . i - l (x ,  Grn) @ Z[1/p]. 

Proof. I t  follows from our comparison results and homotopy invariance of ~tale 
cohomotogy with coefficients in G ~  over regular schemes. 

T h e o r e m  4.2.5.  The tautological section of the sheaf Gm over A 1 - {0} defines 
an isomorphism in D M  

~ / ( A  1 - {0}) = Z(1)[1]. 

Proof. Note first that the morphism 

¢ : Z ( A  1 - 0 )  " Gm 

defined by the tautological section of G,~ over A 1 - 0 is an epimorphism. I t  is 
sufficient to show that its kernel is a contractible sheaf. 

Let A" be the cosimplicial scheme over S whose terms are the schemes 

A ~ S 

and coface and codegeneracy morphisms are defined in the obvious way. 
Theorem 3.3.6 implies that the sheaf Z(A 1 - 0) is isomorphic to the sheaf of 

abelian groups associated with the sheaf of abelian monoids representable by the 
scheme L[ S n (  A1 -- 0). 

The scheme S~(A 1 - 0) for n > 0 is isomorphic to the scheme (A 1 - 0) x A ~-1 
and one can easily see that the sheaf ker(¢) is isomorphic to the sheaf of abelian 
groups associated with the sheaf of abelian monoids representable by the scheme 
A °° . It  implies easily that the complex of sheaves C.  (ker(¢)) is exact. Hence ker(¢) 
is contractible by Lemma 2.2.5. 
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C o r o l l a r y  4.2.6.  The morphism 2~/(P}) ....... G,~[1] which corresponds to the co- 
homological class in H I ( P  1, G~,) represented by the line bundle O ( - 1 )  is an iso- 
morphism in D MqSh( S) 

Pro@ I t  follows easily from the theorem by consideration of the open covering of 
p1 by means of two affine lines. 

T h e o r e m  4.2.7.  Let X be a scheme and E be a vector bundle on X.  Denote by 
P(E) , X the projectivization of E. One has a natural isomorphism in D M  

dian E-- 1 

M(P(E))  ~ ¢ M(X)(i)[2i]. 
i=0  

Pro@ We may suppose X to be our base scheme. Let O ( - 1 )  be the tautological 
line bundle on P(E) and a : M(P(E))  , Z(1)[2] the morphism in the category 
D M ( X )  which corresponds to the class of this bundle in H ~ (P(E), Gin). Using the 
morphism M(P(E))  , M(P(E))  ® M(P(E))  induced by the diagonal, we can 
define elements a ~ E DM(M(P(E)) ,  Z(i)[2i]) as tensor powers of a = a 1. We claim 
that the direct sum 

dim E--1 dim E--1 

¢ :  0 a i : M ( P ( E ) )  , 0 Z(i)[2i] 
i=0  i=0  

is an isomorphism in DM(X) .  
Consider a trivializing open covering X = UUi of X. Let us suppose for sim- 

plicity of notation that this covering consists only of two open subsets. By Propo- 
sition 4.1.2 we have an exact sequence of sheaves 

o , z ( u n v )  . z ( u ) e z ( v )  , z = z ( x )  ,o. 

Since our construction of the map ¢ is natural with respect to restrictions to open 

subsets, the existence of this exact sequence let us restrict our considerations to the 

case of a trivial bundle E. In other words we should consider a scheme P" over S 

and to prove that the morphism in DM(S) which is defined as the direct sum 

n 

i=0 

where a corresponds to the line bundle (_9(-1) is an isomorphism. We use an 
induction on n. For n = 0  our statement is trivial. Consider the covering of P~ of 
the form 

P ~ = p ~  - { 0 } U A  n 
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where {0} is the point with coordinates [1, 0 , . . . ,  0]. We have the following exact 
triangle in D M  

M(A n - {0}) , M(P 'n - {0}) ® M(A n) , M(P n) , M(A" - {0})[1]. 

Let us construct a morphism from this exact triangle to an exact triangle of the 

form 

n--i r~ 

@z(i)[2i]ez . @z(i)[2i] . 
i--0 i=0 

and show that it is an isomorphism on the first two terms, which would imply 
that it is an isomorphism of exact triangles. Define a cohomological class j 6 
H n-I (A n - {0}, G@m n) as follows. Consider the covering of the scheme A n - {0} of 

the form 
7% 

A ~ -  {0} = U A n - H {  
i=1 

where Hi is a hyperplane m{ = 0. A Cech cocycle in Z ~ - l ( A  n - {0}, G ~  ~) with 
7% n respect to this covering is a section of the sheaf G ~  '~ over N{=IA - Hi. We set %b 

to be the cohomological class which corresponds to the tautological section of the 
form 

( z l , . . . , z ~ )  , x l  ® " - ® x ~ .  

Define a morphism f : M ( A  n - {0}) . Z(n)[2r~ - 1] ® Z as the direct sum of the 
morphism which corresponds to ~b and the structural morphism. 

L e m m a  4.2.8.  f is an isomorphism. 

Pro@ Easy by the induction on r~ starting with Theorem 4.2.5 
Let p : P*~ - {0} , p n - t  be a natural projection whose fibers are affine lines. 

I t  is obviously an isomorphism in DM. Define now a morphism 

9: M( Pn - {0}) (9 M(A n) , (~ Z(i)[2i] (9 Z 
i=0 

as the direct sum of the morphism 

rz--1 

@M(p)at_1 
i=0 

and the structural morphism of A% Note ~that g is an isomorphism according to 
our inductive assumption. One can easily see that the family of morphisms f ,  9, ~b, 
f[1] is indeed a morphism of the exact triangles. 

Theorem is proved. 
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4.3 M o n o i d a l  transformations  

All through this section we are working with the qfh-topology. In particular the 
notation DM(S)  is used for the category DMfqh(S). All tile results below obviously 
hold for the h-topology as well. 

Let us recall some notations. For a scheme X and its closed subscheme Z 
we denote by X z  the blowup of X with center in Z and by pz : X z  ~ X the 
corresponding projection. 

By P N z  we denote the projectivization of the normal cone to Z in X and by 
p : P N z  - -~  Z the morphism which is the restriction of Pz. Let Ox (Z) be the 
kernel of the morphism of qfh-sheaves 

Zqfh(p) : Zqfh(PNz) - Zqfh(Z). 

By Proposition 3.3.7 it is naturally isomorphic to the kernel of the morphism 
z~sh(pz). 

T h e o r e m  4.3.1.  Let Z C X be a smooth pair over S. Then the sequence of 
sheaves 

ox(z) , z ~ s h ( x z )  , z q ~ ( x )  

defines an exact triangle in DM(S)  of the form 

o x ( z )  , M ( X z )  ~ M ( X )  , Ox(Z)[1]. 

In other words the coker'nel of the morphism Zqfh(pz) is isomorphic to zero in 
DM(S) .  

Proof. Let us prove first the following lemma. 

L e m m a  4.3.2. .  Let X U Ui be an open covering of X and X z  = UV~ the corre- 
sponding covering of Xz .  Consider the long exact sequences of sheaves which are 
defined by these coverings and the natural morphism between them 

o . zqlh(~v~) . . . . .  ez~h(~d) . z~lh(Xz) ...... o 

0 . zqsh(nu,,) . . . . . . .  ezqsh(ud . z~sh(x) . 0. 

Then the complex which is the cokernel of this morphism is exact. 

Proof. The exactness of the cokernel of this morphism is equivalent to the exactness 
of the kernel of this morphism. By Proposition 3.3.7 this kernel is isomorphic to 
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the kernel of the morphism of complexes 

0 .... Z(NV~ N P N z )  . . . . .  ®Z(Vi F1 P N z )  

Selecta Math. 

. Z ( P N ~ )  , o 

o , z ( n u ~  n z )  . . . . .  e z ( u ¢  N Z) , Z(Z)  , 0 

(here we use the notation Z ( - )  instead of Zq/h(--)). These two complexes are 
obviously exact, since they correspond to the covering of P N z  and Z respectively 
which are induced by {U~}. On the other hand in our case the normal cone to Z is 
a vector bundle and, therefore, the morphism P2¢~ , Z is flat. In particular it 
splits over some qfh-covering, which implies that the vertical arrows in the diagram 
above are surjections. Since the kernel of a surjection of exact complexes is exact, 
our lemma is proved. 

I t  follows from this lemma that it is sufficient to prove our proposition locally. 
More precisely, it is sufficient to construct an open covering X = UUi of X such that 
all the cokernels of the morphisms Zqfh(PZnV~) are isomorphic to zero in D M ( S ) .  
Since Z C X is a smooth pair, there exists a covering X = UUi such that, for 
any i, there is an 6tale morphism fi : Ui ~ A N satisfying Z N 5~ = f - l ( A k ) ,  
where N = dims X and k = dims Z (see [7, 2.4.9]). Let U be one of those open 
subschemes. It  is sufficient to prove that coker(Zqsh(PZnU)) is isomorphic to zero 
in D M ( S ) .  Denote the scheme U N Z by Y. Consider the diagram 

0 . Zqsh(U - Y) 

0 . zqsh(u  - v )  

Zqsh(UY) , Z q l h ( U y ) / Z q j h ( U -  Y )  , 0 

, z~f~(u)  , Z q ~ h ( U ) / Z ~ s h ( U  - Y )  , O. 

It  is easy to see that the morphism coker(a) - - +  coker(b) is an isomorphism. It  is 
sufficient, therefore, to prove, that coker(b) is isomorphic to zero in D M ( S ) .  We 
will need the following lemma. 

L e m m a  4.3.3.  Let Z ~ X be a closed embedding and f : U - - ~  X an dtale 
surjective morphism such that U × x Z ; Z is an isomorphism. Then one has a 
natural isomorphism, of sheaves 

Z ( U ) / Z ( U  - f - l ( z ) )  ---- Z ( X ) / Z ( X  - Z). 
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Pro@ Consider the diagram of sheaves: 

0 , Z(U - f - ' ( Z ) )  ~ ~ Z(U) - , Z ( U ) / Z ( U -  f -~ (Z) )  .... , 0 

149 

0 , z ( x  - z )  . z ( x )  . z ( x ) / z ( x  - z )  , o.  

We have to prove that the right vertical arrow is an isomorphism. It  is obviously an 
epimorphism, so it is sufficient to prove that ker Z ( f )  lies in Ira(i). Note that it is 
sufficient to prove this for presheaves of the form Z0(X)(W)  = ®Z(Hom(Wi,  X)) ,  
where Wi are the connected components of a scheme W. Let W be a connected 
scheme. Then ker(Z0(f))  is the group of formal sums of the form ~ic~ ni9i, where 
9i : W . . . .  U are morphisms such that there exists a decomposition I = I_[ Ik such 
that f o 9i = f o gj for i, j E [ k  and ~ i~I~  ni = 0 for any h. Therefore, we have 
to prove only that if f o 9 = f o h for some g ,h  : W ..... U then either g = h 
or 9 and h can be factorized through U - f - I  (Z). Let 9, h be such morphisms. 
Then there exists a morphism g x h : W * U Xx U, whose compositions with 
the projections are the morphisms g and h resp. To finish the proof it is suffi- 
cient to notice that under the assumptions of our lemma there is a decomposition 
of the form U × x  U = A(U)ILl U0 where A is the diagonal embedding and the 
projections p h , p r 2  : Uo , U can be factorized through U - f - l ( Z ) .  Lemma is 
proved. 

Let W = A N-k  × (A k A f (Y ) ) .  We may replace U by f - l ( W )  and suppose 
that f (U)  C W. Denote by V the product A N-k x Y. There is an 6tale morphism 
of the form 

IdAN-k )<flY : V " W. 

Consider the fiber product V x w U and let 

U' = (V Xw U) - ( p r ~ ( Z )  - Z~(Z)) 

where A(Z)  , V Xw U is the diagonal. One can easily see that both projections 
pr 1 : U' * V and pr 2 : U' , W satisfy the conditions of the lemma, above. 

Note now that since our construction is based on 6tale morphisms, it is natural 
with respect to blowups. It  implies that coker(b) is isomorphic to the cokernel of 
the morphism 

Z~dh(Z x (A{Voyk/(A N-k - {0}))) * Zq/h(Y x ( A N - k / ( A  N-~ - {0}))). 

We reduced our problem, therefore to the case of the blowup of a point on the 
affine space. It  is sufficient to show that the cokernel of the morphism Zqyh(A~0}) 

, Zqfh(A n) represents zero in DM(S) ,  or, equivalently, that the kernel of this 
morphism is isomorphic to its cone in DM(S) .  It  ~bllows from Proposition 3.3.7 
and the fact that A~0 } is isomorphic to the total space of the vector bundle (9[-1] 

on p n - 1  and, therefore, M(A~'o} ) is isomorphic to M ( P n - 1 ) .  Theorem is proved. 
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T h e o r e m  4.3.4. Let Z C X be a smooth pair over S.  Then one has a natural 
isomorphism in D M ( S) : 

M ( X z )  = M(X)  O (c°doZ- l  Z(i)[2i]) i:1 

Pro@ By Theorem 4.3.1 we have an exact triangle 

Ox(Z) , , M(Xz )  , M(X)  , Ox(Z)[l]. 

By definition Ox(Z)[1] is a cone of the natural morphism M(PNz)  , l!/J(Z). 
Since PN(Z)  is the projectivization of the normal bundle to Z in X it follows from 
Theorem 4.2.7 that 

codim Z - 1  

Ox(Z) ~- 0 Z(i)[2i]. 
i:I 

To prove our theorem it is sufficient to construct a splitting of the exact triangle 

above. Let io : X , X x A I be the embedding of the form io = Idx x{O}. 
Consider the diagram 

o x ( z )  , o x × A i ( z  × {0}) 

1 M ( X z )  ~° , M ( X  × Az×{o}) (1) 
I 

I 
M ( x )  ~o , M ( x  × A1). 

There is a canonical splitting of the morphism M(,pz×{o}) by the morphism M ( X  x 
1 A 1) ~ M ( X ) - - - , - M ( X  x Az×{o}) induced by the obvious lifting of the em- 

bedding Idx  x {1} : X , X x A 1. To define a splitting of the projection 
M ( X z )  , M(X)  (or, equivalently, of the embedding Ox(Z) , M(Xz) )  it is 
sufficient to define a splitting of the morphism Ox(Z) , OxxAl (Z  x {0}). Its 
existence (and, moreover a canonical choice) follows from Theorem 4.2.7. Theorem 
is proved. 

4.4 Gys in  exact  triangle 

The goal of this section is to prove the following theorem. As in the previous section 
we denote by D M  the category D•dqfh and again our results hold for the h-topology 
as well. 
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T h e o r e m  4.4.1.  Let Z C X be a smooth pair' over S and U = X - Z. Then there 
is defined a natural exact triangle in DM(S) of the form 

M(U) , M ( X )  ,. M(Z)(d)[2d] , M(U)[1] 

where d is codimension of Z. In other words we have a natural isomorphism 
M(X/U)  ~- M(Z)(d)[2 4 in DM(S).  

Proof. Let us construct first a morphism M(X/U)  * M(Z)(d)[2a~ in DM(S).  
Consider again the diagram (1). The morphism Id x l  : X , X × A t has a 

1 natural lifting to X x Azx{0}, which in the composition with the morphism M(pz) : 
M ( X z )  , M(X) ,  defines a morphism 

~ 1 i ,  : M ( X z )  , M ( X  × Az×~o~). 
One obviously has 

M (PZx {o})/i = M(pz)~; ,  

which implies that there exists a lifting of (o - /1 to a morphism M ( X z )  
* Ox x h 1 (Z x {0}). It  follows from Theorem 4.3.4 that this lifting is well defined. 

Its composition with the natural morphism 

o~×,,1 (z  × {o}) , o~×. , ,  ( z  × { o } ) / o x ( z )  

factors through a morphism M(X)  , OxxA 1 (Z x {O})/Ox(Z) which is also well 
defined by Theorem 4.3.4. We have by 4.2.7 

d--t 

Ox(Z)  ~- 0 M(Z)(i)[2i] 
i=1 

OX×AI(Z  x {0}) ~ OdM(Z)( i )[2 i]  
i=1 

and therefore 
O X x A  1 (Z × {O})/Ox(Z ) ~ M(Z)(d)[2d]. 

This construction provides us with a morphism M(X)  - -~  M(Z)(d)[2d]. Consider- 
ing it more carefully one can easily see that this morphism can, in fact, be factorized 
through M(X/U) .  Denote this last morphism 

M ( X / U )  . M(Z)(d)[2al 

by G(x,z). To finish the proof of our theorem it is sut~cient to show that it is an 
isomorphism in DM. 
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Consider the special case X = P~, Z = {x} where x is an S-point of pN. In 
this special case the diagram (1) has the following form 

~ / (p~- s )  , hT/(pn) 

~ - 

Mgpn ~ io,'h , M ( ( p n  xA1){z}x{o}) v {~}J 

M(p~)  M(io),M(i~), M ( p n  x A1). 

By Theorem 4.3.4 we have 

M(P{%}) ~- Z(i)[2i] ® Z(N)[2j (2) 
\ i = 0  "= 

M ( ( P  n x A1){x}x{0}) = Z(i)[2i @ Z(j)[2 . (3) 

Let us describe these isomorphisms explicitly. Denote by 

a,b • H ' ( ( P  '~ x A l b } x { 0 } , G ~ )  

the classes which correspond to the divisor _-1 ~pn-1 P(x}x{o}t x A 1) and the special 

divisor respectively. It is easy to see that the isomorphism (3) is of the form ®~=oai® 
1 ~ Gin) the elements which ®}ClbJ. Similarly, if we denote by a0,b0 • H (P{z}, 

correspond to p~} (p . -Z)  and the special divisor respectively, the isomorphism (2) 
n i n - - t  j can be written as (@i=oa0) ® (®j=z bo). 

One obviously has 
/oa = / ~ a  = a0 

(lb = O, (ob = bo 

which implies that with respect to the isomorphisms above the morphisrn hp~ {x} 
has the form hp~ {x} = b~. To prove that it is an isomorphism it is sufficient to 
show that b~ = a~. Since aobo = 0 it is equivalent to the equality (a0 - b0) ~ = 0. 

Consider the morphism q : P ~ }  . p ~ - i  which corresponds to the projection 

from the point x to p ~ - i  Let, c • H t ( P ~ - I , G , ~ )  be the class of a hyperplane. 
One can easily see that 

q* (c) = ao - bo 
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wh ich  imp l i e s  o u r  r e su l t ,  s ince  c ~ is o b v i o u s l y  zero.  

To  p r o v e  the  t h e o r e m  in the  gene ra l  case  one  shou ld  use  e x a c t l y  the  s a m e  loca l -  

i za t ion  t e c h n i q u e  as in the  p r o o f  of  T h e o r e m  4.3.1. 

T h e o r e m  is p r o v e d .  
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