
A type system with two kinds of identity types

by Vladimir Voevodsky

at Institute for Advanced Study in Princeton, NJ.

February 25 , 2013

1

Motivating example - semi-simplicial types

If we let STn denote the type of semi-simplicial types of dimension n in
universe U then for small n we have intuitively simple explicit definitions:

ST0 := {X0 : U}

ST1 := {X0 : U ;X1 :
∏

(x0 x1 : X),U}

ST2 := {X0 : U ;X1 :
∏

(x0 x1 : X),U ;

X2 :
∏

(x0 x1 x2 : X0)(x01 : X1 x0 x1)(x02 : X1 x0 x2)(x12 : X1 x1 x2),U}

So far no one was able to write a definition for STn in Coq!

2

Semi-simplicial types (cont.)

Several approaches lead to constructions which at some point require
some object expression to have type T (m) while its actual type is T ′(m).
Here m is a natural parameter and remarkably for each individual m

one has T (m)
d
= T ′(m).

However the length of the reduction sequence one needs to perform to
connect T (m) with T ′(m) grows withm. Therefore in the context where
m is a variable T is not definitionally equal to T ′.

Possible solution: to make it possible to prove definitional equality
by induction.

3

Attempt 1: definitional η-rule for natural numbers

One of the first ideas is to add definitional ”η-rule” for the type of natural
numbers N:

Γ, n : N ⊢ f : T
Γ, n : N ⊢ g : T

Γ ⊢ f [O/n]
d
= g[O/n] : T [O/n]

Γ, n : N ⊢ (f
d
= g : T) ⇒ (f [Sn/n]

d
= g[Sn/n] : T [Sn/n])

Γ ⊢ a : N

Γ ⊢ f [a/n]
d
= g[a/n]

4

Problem with definitional η-rule for natural numbers

As was pointed out by Peter Lumsdaine, implication in the premises of
an inference rule leads to a structure which is not essentially-algebraic
and hence, need not have an initial algebra. Therefore it is likely that

no precise meaning can be given to such a rule.

5

Another approach - two identity types

Id - an ”extensional” identity type satisfying the ”reflexion principle”

i.e. such that if Id x1 x2 is inhabited then x1
d
= x2.

Paths - a ”univalent” identity type such that the system is consistent
with the univalence axiom relative to a inverse U and Paths.

Problem: Using eliminators JId and JPaths it is easy to prove that Id
and Paths will be logically equivalent. It is further easy to show that
an identity type Id satisfying the reflexion rule also satisfies UIP. Hence
the system will not be compatible with the univalence.

6

Third ingredient - notion of fibrant types

The solution to the problem suggested by the standard univalent model.
If we introduce exact equality Id then we can use it to form display maps
mapped by the model to arbitrary (up to an isomorphism) functions
between simplicial sets corresponding to the contexts. Unless all contexts
are mapped to discrete sets most such functions will not be fibrations.

Solution: Two identity types Id and Paths and new class of judge-
ments Γ ⊢ T Fib.

7

A comment on notations

I will sometimes use a technical system of notation for expressions with
bound variables:

[name](x1.xn1.S1, . . . , x1.xnm.Sm)

is an expression with the head label name and branches S1, . . . , Sm. The
prefix x1.xni. in front of Si means that variable names x1, . . . , xni
are bound in Si.

For example, instead of
∏

x : T1, T2 I will sometimes write [
∏
](T1, x.T2).

This system of notation is has the following two main advantages:

1. Allows for constructors with complex schemes of variable bindings.

2. Reflects the way in which α-equivalence classes are represented through
de Bruijn indexes.

8

Homotopy type system - HTS

Disclaimer: While I feel that some important pieces fall into place in
this definition some are still missing.

Structural rules

The usual structural rules together with the rule

Γ ⊢ T Fib

Γ, x : T▷

9

Rules for dependent products

The usual rules for
∏
, ev, λ with the rules for the propagation of the

definitional equality and β- and η- rules. In addition the rule:

Γ ⊢ T1 Fib Γ, x : T1 ⊢ T2 Fib

Γ ⊢ [
∏
](T1, x.T2) Fib

10

Rules for exact equality types Id

The usual rules with Id as the name of the types, refl as the name
of the constructor and J as the name for eliminator together with the
reflexion rule

Γ ⊢ o1 : X Γ ⊢ o2 : X Γ ⊢ o : [Id](o1, o2)

Γ ⊢ o1
d
= o2 : X

11

Rules for path equality types Paths

The type forming rule of the form

Γ ⊢ X Fib Γ ⊢ o1 : X Γ ⊢ o2 : X

Γ ⊢ [Paths](o1, o2) Fib

followed by the usual rule for the constructor named idpath and the
eliminator rule of the form:

Γ ⊢ X Fib Γ ⊢ o1 : X
Γ, x : X, x′ : X, e : [Paths](x, x′) ⊢ P Fib Γ ⊢ o2 : X
Γ, x0 : X ⊢ s0 : P [x0/x, x0/x′, [idpath](x0)/e] Γ ⊢ eo : [Paths](o1, o2)

Γ ⊢ [JF](X, x.x′.e.P, x0.s0, o1, o2, eo) : P [o1/x, o2/x′, eo/e]

together with the computation rule of the standard form.

12

Rules for the universe of all types U

Usual rules for universe U which is itself a fibrant type, the element
forming constructor El, the operation forall corresponding to

∏
and

id corresponding to Id together with the rule

Γ ⊢ o : U Γ ⊢ o′ : U Γ ⊢ [El](o)
d
= [El](o′)

Γ ⊢ o
d
= o′ : U

13

Rules for the universe of fibrant types UF

Usual rules for universe UF which is itself a fibrant type, the element
forming constructor ElF , the operation forallF corresponding to

∏
and paths corresponding to Paths together with the rule

Γ ⊢ o : UF Γ ⊢ o′ : UF Γ ⊢ [ElF](o)
d
= [ElF](o

′)

Γ ⊢ o
d
= o′ : UF

14

Rules for universe inclusion

Γ▷
Γ ⊢ [j] : [

∏
](UF , x.U)

Γ ⊢ o : UF

Γ ⊢ [ElF](o)
d
= [El][ev]([j], o)

15

Resizing rules

Γ ⊢ T Fib Γ ⊢ p : Weq(T, [ElF](t
′))

Γ ⊢ [rr0](T, t′, p) : UF

Γ ⊢ T Fib Γ ⊢ p : Weq(T, [ElF](t
′))

Γ ⊢ [ElF][rr0](T, t′, p)
d
= T

Γ ⊢ T Fib Γ ⊢ p : Ishprop(T)

Γ ⊢ [rr1](T, p) : UF

Γ ⊢ T Fib Γ ⊢ p : Ishprop(T)

Γ ⊢ [ElF][rr1](T, p)
d
= T

16

The system described above is the smallest system where some inter-
esting mathematics can be developed. One can also consider additional
constructions discussed in the following slides.

17

The unit type and dependent sums

The inference rules are the usual ones. The η-rules saying that x
d
=

pair (pr1x) (pr2x) for x in a dependent sum and x
d
= x′ for x, x′ in the

unit type are derivable.

The unit type is fibrant and the dependent sum where both arguments
are fibrant is fibrant.

There are ”unit” as object of UF and dependent sum operation on fam-
ilies of objects of U (reps. UF) parametrized by types given by object of
U (reps. UF).

18

The empty type and disjoint union

The inference rules are the usual ones. The η-rules are derivable.

The empty type is fibrant and the disjoint union of two fibrant types is
fibrant.

There are ”empty” as object of UF and obvious disjoint union operation
on objects of U (reps. UF).

19

Recursive types

As far as I understand the material of the last section of the ”Notes
on Type systems” can be made precise in this type systems. Namely,
there is a way to express any strictly positive inductive definition as a
combination of the constructions already discussed with parametrized
W-types. The later correspond to the inductive definitions of Coq of the
form

Inductive IC(A:Type)(a:A)(B:A →Type)(D:forall x:A, (B x → Type
))(q:forall x:A, forall y:B x, forall z: D x y, A):= c: forall b:B a, forall f
: (forall d: D a b, IC A (q a b d) B D q), IC A a B D q .

and introduced by the inference rule

Γ ⊢ a : A Γ, x : A, y : B, z : D ⊢ q : A

Γ, w : [IC](A, a, x.B, x.y.D, x.y.z.q)▷

20

Recursive types (cont.)

The inference rules for the constructor and for the eliminator can be
more or less copied from then form of the corresponding definition in
Coq and the type of ICrect printed by Coq. Similarly one can write
down the computation rule (definitional equality associated with the
eliminator) from the general such rules used in Coq.

21

Recursive types (cont.)

The type IC is fibrant if all the arguments are fibrant i.e. if one has

Γ ⊢ A Fib Γ, x : A ⊢ B Fib Γ, x : A, b : B ⊢ D Fib

There are obvious versions of IC on the level of the universes U and UF .

In particular, in this system the datatypes such as the types of natural
numbers or binary trees can be expressed through the W-types obtain-
ing types which have both the computation rules obtained in the strictly
positive formalism as well as recursive η-rules which allow to prove def-
initional equality by induction.

It will be very interesting to extend to this system the formalism of more
general inductive definitions (such as inductive-inductive and inductive-
recursive).

22

Multiple universes

The system of multiple universes connected by explicit inclusions as
in the specification of TS0 is easy to add to HTS. There will be two
universes for each universe - one for all types and one for fibrant types.

23

Univalence axiom

Univalence axiom can be formulated in the usual way. It should use
path equalities and UF .

24

Implementation notes

The type system HTS is partly extensional. In particular derivability of
a sentence (a context together with a judgement) is not decidable. How-
ever it is clear that a proof assistant based on HTS should keep enough
additional data with the sentences to make independent decidable proof
verification possible.

One approach to this issue is to consider the system formed by extended
sentences. Extended sentences are sequences of expressions of the form

Γ▷
Γ ⊢ T Fib

Γ ⊢ p : o : T

Γ ⊢ p : T = T ′

Γ ⊢ p : o = o′ : T

25

Implementation notes (cont.)

The additional components p in these extended sentences are secondary
witnesses which are constructed in such a way that there is a bijec-
tion between α-equivalence classes of extended sentences and derivation
trees. Dan Grayson and I are currently working on an implementation
of simple test typing system TTS with secondary witnesses which is
formally defined in the note called TTS which is now in the wiki.

26

A conjecture

Note that the subsystem of HTS generated by the inference rules which
do not mention Fib, U and Id is just the usual Martin-Lof type system.
The following conjecture makes sense both assuming univalence axiom
in both systems and without it.

Conjecture Let T be a type expression in the empty context in the
Martin-Lof type system. Let o be an object of HTS of type T . Then
there exists a Martin-Lof object o′ of type T and an HTS object of type
[Paths](o, o′).

27

