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A1

Vladimir Voevodsky

Abstract. A1-homotopy theory is the homotopy theory for algebraic
varieties and schemes which uses the affine line as a replacement for the
unit interval. In the paper I present in detail the basic constructions
of the theory following the sequence familiar from standard texbooks on
algebraic topology. At the end I define motivic cohomology and algebraic
cobordisms and describe algebraic K-theory in terms of this theory.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
2 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
3 Unstable homotopy category . . . . . . . . . . . . . . . . . . . . . . . . 584
4 Spanier-Whitehead category . . . . . . . . . . . . . . . . . . . . . . . . . 587
5 Spectra and the stable homotopy category . . . . . . . . . . . . . . . . . 591
6 Three cohomology theories . . . . . . . . . . . . . . . . . . . . . . . . . 595

6.1 Motivic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 595
6.2 Algebraic K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
6.3 Algebraic cobordism . . . . . . . . . . . . . . . . . . . . . . . . . . 601

7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

1 Introduction

In my talk I will outline the foundations of the A1-homotopy theory. This theory
is based on the idea that one can define homotopies in the algebro-geometrical
context using the affine line A1 instead of the unit interval. My exposition will
follow the sequence familiar from the standard textbooks on topological homotopy
theory which roughly looks as follows.

Let C be a category which we want to study by means of homotopy theory.
Usually C itself is not “good enough” and first one has to choose a convenient
category of “spaces” Spc which contains C and has good categorical properties (in
particular has internal Hom-objects and all small limits and colimits). In topol-
ogy C may be the category of CW-complexes and Spc the category of compactly
generated spaces ([8, §6.1]). Then one defines the class of weak equivalences on
Spc. The localization of the category of spaces with respect to this class is then
the (unstable) homotopy category H . To make the localization procedure effective
one usually chooses in addition classes of cofibrations and fibrations such as to get
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580 Vladimir Voevodsky

a closed model structure in the sense of Quillen (see [8, Def. 3.2.3] for the modern
formulation of Quillen’s axioms).

Next one considers suspension functors. Stabilizing with respect to these
functors in the naive way one obtains a new category SW called the Spanier-
Whitehead category. If the suspensions satisfy some natural conditions this new
category is additive and triangulated. As a result it is more accessible to study
than the original unstable category. One of the necessary conditions for this to
work is that the categoryH should be pointed i.e. its initial and final object should
coincide. Thus one always applies the stabilization construction to the homotopy
category of pointed spaces.

The Spanier-Whitehead categories lack an important property - they do not
have infinite coproducts (= infinite direct sums). This is a result of the naive
procedure used to invert the suspension functors. To obtain a category where
suspensions are inverted and which still has infinite direct sums one uses the idea
of spectra. This approach produces another triangulated category which is called
the stable homotopy category SH . The reason infinite direct sums are so important
lies in the fact that once we have them we can apply to SH the representability
theory of in [16], [17] and [18].

Thus the standard sequence of constructions in homotopy theory leads to a
sequence of categories and functors of the form

C → Spc → H → SW → SH

In what follows I will construct such a sequence starting with the category Sm/S
of smooth schemes over a Noetherian base scheme S. A reader who is more
comfortable with the language of algebraic varieties may always assume that S =
Spec(k) for a field k in which case C is the category of smooth algebraic varieties
over k. At the end I will define three cohomology theories on Spc(S) for any
S - algebraic K-theory, motivic cohomology and algebraic cobordism. In each
case one defines the theory by giving an explicit description on the spectrum
which represents it. Algebraic K-theory defined this way coincides on Sm/S with
homotopy algebraic K-theory of Chuck Weibel [27], motivic cohomology coincide
for smooth varieties over a field of characteristic zero with higher Chow groups of
S. Bloch [2] and algebraic cobordism is a new theory originally introduced in [26].

Modulo the general nonsense of the abstract homotopy theory all the state-
ments of this paper except for Theorem 6.2 have simple proofs. The hard part
of the work which was needed to develop the theory presented here consisted in
choosing among many different plausible variants of the main definitions. I believe
that in its present form the A1-homotopy theory gives a solid foundation for the
study of cohomology theories on the category of Noetherian schemes.

Individual constructions which remind of A1-homotopy theory go back to the
work of Karoubi-Villamayor on K-theory and more recently to the work of Rick
Jardine [9],[10] and Chuck Weibel [27]. For me the starting point is [21] where
the first nontrivial theorem showing that this theory works was proven. The first
definition of the unstable A1-homotopy category equivalent to the one presented
here was given by Fabien Morel. A1-homotopy theory for varieties over a field of
characteristic zero was the main tool in the proof of the Milnor conjecture given
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in [26]. The current work on the Bloch-Kato conjecture which is a generalization
of Milnor conjecture to odd primes uses even more of it.

This text was written during my stay at FIM which is a part of ETH in Zurich.
I am very glad to be able to use this opportunity to say that this was a very nice
place to work. My special thanks go to Ruth Ebel for her help with all kinds of
everyday problems.

2 Spaces

The main problem which prevents one from applying the constructions of abstract
homotopy theory directly to the category Sm/S of smooth schemes over a base
S is nonexistence of colimits. In classical algebraic geometry this is known as
nonexistence of “contractions”. One can solve this problem for particular types of
contractions by extending the category to include nonsmooth varieties, algebraic
spaces etc. For our purposes it is important to have all colimits which is not
possible in any of these extended categories.

There is a standard way to formally add colimits of all small diagrams to a
category C. Consider the category of contravariant functors from C to the category
of sets. Following Grothendieck one calls such functors presheaves on C. We
denote the category of all presheaves by PreShv(C). Any object X of C defines
a presheaf RX : Y "→ HomC(Y,X) which is called the presheaf representable
by X . By Yoneda Lemma the correspondence X "→ RX identifies C with the
subcategory of representable presheaves on C. The category PreShv(C) has all
small colimits (and limits). Moreover any presheaf is the colimit of a canonical
diagram of representable presheaves. Thus PreShv(C) is in a sense the category
obtained from C by formal addition of all small colimits.

It is quite possible to develop homotopy theory for algebraic varieties taking
the category PreShv(Sm/S) as the category Spc of spaces. However this approach
has a disadvantage which can be illustrated by the following example. For two
subspaces A,B of a space X denote by A ∪B the colimit of the diagram

A ∩B → A
↓
B

(1)

where A ∩ B = A ×X B is the fiber product of A and B over X . This is the
categorical definition of union which makes sense in any category with limits and
colimits. Consider now a covering X = U ∪ V of a scheme X by two Zariski open
subsets U and V . The square

U ∩ V → U
↓ ↓
V → X

(2)

is a pushforward square in Sm/S and thus X is the categorical union of U and V
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in Sm/S. However the corresponding square of representable presheaves

RU∩V → RU

↓ ↓
RV → RX

(3)

is not a pushforward square in PreShv(Sm/S) unless U = X or V = X . Thus if
we define spaces as presheaves the union U ∪PreShv V of U and V as spaces is not
the same as X . There is a morphism jU,V : U ∪PreShv V → X but it is not an
isomorphism.

Definition 2.1 An elementary distinguished square in Sm/S is a square of the
form

p−1(U) → V
↓ ↓ p

U
j
→ X

(4)

such that p is an etale morphism, j is an open embedding and p−1(X−U) → X−U
is an isomorphism (here X −U is the maximal reduced subscheme with support in
the closed subset X − U).

An important class of elementary distinguished squares is provided by coverings
X = U ∪V by two Zariski open subsets. In this case p = jV is an open embedding
and the condition that p−1(X−U) → X−U is an isomorphism is equivalent to the
condition that U ∪ V = X . One can easily see that an elementary distinguished
square is a pushforward square in Sm/S i.e. X is the colimit of the diagram

p−1(U) → V
↓
U

(5)

We want to define our category of spaces in such a way that elementary distin-
guished squares remain pushforward squares when considered in this category of
spaces. The technique which allows one to add new colimits taking into account
already existing ones is the theory of sheaves on Grothendieck topologies.

Definition 2.2 A contravariant functor F : Sm/S → Sets (= a presheaf on
Sm/S) is called a sheaf in Nisnevich topology if the following two conditions hold

1. F (∅) = pt

2. for any elementary distinguished square as in Definition 2.1 the square of
sets

F (X) → F (V )
↓ ↓

F (U) → F (p−1(U))
(6)

is Cartesian i.e. F (X) = F (U)×F (p−1(U)) F (V ).
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Denote the full subcategory of PreShv(Sm/S) which consists of sheaves in Nis-
nevich topology by ShvNis(Sm/S). This is our category of spaces. Because
elementary distinguished squares are pushforward squares in Sm/S any repre-
sentable presheaf belongs to ShvNis(Sm/S). Thus the functor X "→ RX fac-
tors through an embedding Sm/S → ShvNis(Sm/S). We will use this embed-
ding to identify smooth schemes with the corresponding spaces (= representable
sheaves). By Yoneda Lemma and our definition the square of representable sheaves
corresponding to an elementary distinguished square is a pushforward square in
ShvNis(Sm/S). The following result is a corollary of the general theory of sheaves
on Grothendieck topologies.

Theorem 2.3 The category ShvNis(Sm/S) has all small limits and colimits. The
inclusion functor ShvNis(Sm/S) → PreShv(Sm/S) has a left adjoint aNis :
PreShv(Sm/S) → ShvNis(Sm/S) which commutes with both limits and colim-
its.

The functor aNis is called the functor of associated sheaf. To compute a colimit in
ShvNis(Sm/S) one first computes it in PreShv(Sm/S) and then applies functor
aNis. Starting from this point we denote the category ShvNis(Sm/S) by Spc or
Spc(S) and its final object i.e. the space corresponding to the base scheme S by
pt.

We will need a definition of a subcategory Spcft of spaces of finite type in
Spc whose objects play the role of compact spaces in topology. We define Spcft

as the smallest subcategory in Spc which satisfies the following two conditions

1. spaces corresponding to smooth schemes over S belong to Spcft

2. if in a pushforward square
A

i
→ X

↓ ↓
B → Y

spaces A, X and B belong to Spcft

and i is a monomorphism then Y belongs to Spcft.

The following proposition shows that spaces of finite type are compact objects of
Spc in the sense of the categorical definition of compactness.

Proposition 2.4 For any space of finite type X and any filtered system of spaces
Xα the canonical map colimα Hom(X,Xα) → Hom(X, colimαXα) is a bijection.

A pointed space (X,x) is a space togther with a morphism x : pt → X .
We will also denote by x the subspace x(pt) = Imx of X . For a space X and
a subspace A ⊂ X denote by X/A the “quotient space” i.e. the colimit of the
diagram

A → X
↓
pt

(7)

We always consider X/A as a pointed space with the distinguished point given by
the canonical morphism pt → X/A. For two pointed spaces (X,x), (Y, y) define
their smash product as (X,x) ∧ (Y, y) = X × Y/(X × y) ∪ (x× Y ).
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As an example of how all these definitions work consider Thom spaces of
vector bundles. For a vector bundle E → U over a smooth scheme U over S set
Th(E) = E/(E − s(U)) where s : U → E is the zero section. For two vector
bundles E → X and F → Y we have

Th(E × F ) = E × F/(E × F − s(X × Y )) = Th(E) ∧ Th(F )

Note that in order to have this equality we need to know that

E × F − s(X × Y ) = ((E − s(X))× F ) ∪ (E × (F − s(Y )))

i.e. that the square

(E − s(X))× (F − s(Y )) → (E − s(X))× F
↓ ↓

E × (F − s(Y )) → E × F − s(X × Y )
(8)

is a pushforward square. It is true in our case because this is the elementary
distinguished square associated to a Zariski open covering.

3 Unstable homotopy category

To do homotopy theory in Spc we have to define classes of weak equivalences,
fibrations and cofibrations. We start with the class of weak equivalences. We shall
proceed in the same way as one does in homotopy theory of simplicial sets. We
first define an analog of Kan simplicial sets and Kan completion functor. Then
the analog of homotopy groups and then define weak equivalences as morphisms
inducing isomorphisms on homotopy groups. Theorem 3.6 below shows that this
definition is equivalent to another, more technical one, given in [14].

Denote by ∆n
S the closed subscheme in An+1

S given by the equation
∑n

i=0 xi =
1. Clearly ∆n

S is a smooth scheme over S which is noncanonically isomorphic
to An

S . For any map of sets φ : {0, . . . , n} → {0, . . . ,m} define a morphism
φS : ∆n

S → ∆m
S setting φ∗

S(xi) =
∑

j∈φ−1(i) xj . This gives us a functor from
the standard simplicial category ∆ to Sm/S and thus to Spc. Since Spc has all
colimits this functor has the right Kan extension |− |S : ∆opSets → Spc which is
characterized by the properties that it commutes with colimits and |∆n|S = ∆n

S .

Example 3.1 Let ∂∆2 be the boundary of the standard 2-simplex i.e. the sim-
plicial set whose geometrical realization looks like the boundary of an equilateral
triangle. Then |∂∆2|S is the space which is a union of three affine lines in the form
of a triangle with sides extended to infinity. Similarly |∂∆3|S is the union of four
affine planes in the form of a tetrahedra.

For a space X and a smooth scheme U consider the sets Singn(X)(U) =
Hom(U × ∆n

S , X). Since ∆•
S is a cosimplicial space these sets form a simpli-

cial set Sing∗(X)(U) which is a direct analog of the singular simplicial set of a
topological space in the A1-theory.
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Definition 3.2 A space X is called almost fibrant if for any open embedding
j : V → U of smooth schemes over S the associated morphism of simplicial sets
Sing∗(X)(U) → Sing∗(X)(V ) is a Kan fibration.

Note in particular that for any almost fibrant space X and any smooth scheme U
the simplicial set Sing∗(X)(U) is a Kan simplicial set.

Let ink : Λn
k → ∆n be the inclusion of the “hat” simplicial set to the standard

simplex and let j : V → U be an open embedding of smooth schemes over S.
Consider the following embedding of spaces

in,k,j : U × |Λn
k |S ∪V×|Λn

k
|S V × |∆n|S → U × |∆n|S

These embeddings for all n, k and j : V → U form the set of elementary “anodyne”
morphisms which we can use to define our analog of Kan completion functor. For
a space X let AX be the set of all triples of the form (Λn

k → ∆n, j : V → U, f :
U × |Λn

k |S ∪V ×|Λn
k
|S V × |∆n|S → X). We have a canonical diagram

∐

AX
U × |Λn

k |S ∪V ×|Λn
k
|S V × |∆n|S → X

↓
∐

AX
U ×∆n

S

(9)

and we define Ex1(X) as the colimit of this diagram. Clearly Ex1(X) is func-
torial in X and there is a canonical morphism X → Ex1(X). Set Exn(X) =
Ex1(Exn−1(X)) and Ex∞(X) = colimnExn(X). Proposition 2.4 immediately
implies the following fact.

Lemma 3.3 The space Ex∞(X) is almost fibrant for any space X.

Let X be a space, U a smooth scheme and x an element in Sing0(X)(U) =

Hom(U,X). Define homotopy “groups” πA1

i,U (X,x) as homotopy groups of the
Kan simplicial set C∗(Ex∞(X))(U) with respect to the base point x.

Definition 3.4 A morphism of spaces f : X → Y is called an A1-weak equiva-
lence (or just weak equivalence) if for any smooth scheme U , any x ∈ Hom(U,X)
and any i ≥ 0 the corresponding map of homotopy groups

πA1

i,U (X,x) → πA1

i,U (Y, f(x))

is a bijection.

Definition 3.5 The A1-homotopy category HA1

(S) of smooth schemes over S is
the localization of the category of spaces over S with respect to the class of weak
equivalences.

The following is the list of basic properties of weak equivalences. They can either
be deduced from [14] using Theorem 3.6 or proven directly.

1. the canonical morphism ∆1
S → pt is a weak equivalence
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2. if f : X → Y and f ′ : X ′ → Y ′ are weak equivalences then f×f ′ : X×X ′ →
Y × Y ′ is a weak equivalence

3. if in a pushforward square
X

f
→ Y

g ↓ ↓ g′

X ′ f ′

→ Y ′

f is a weak equivalence and

either f or g is a monomorphism then f ′ is a weak equivalence

4. let (Xα, fαβ : Xα → Xβ) be a filtered system of spaces such that the mor-
phisms fαβ are weak equivalences. Then the morphisms Xγ → colimXα are
weak equivalences.

Another approach to homotopy theory of spaces over S based on the use of
homotopy theory of simplicial sheaves is developed in [14]. The following result
shows that these two approaches are equivalent and therefore we can use the
techical results of [14] in the context of definitions given above.

Theorem 3.6 A morphism of spaces is a weak equivalence in the sense of defi-
nition 3.4 if and only if its is an A1-weak equivalence in the sense of [14]. The

category HA1

(S) defined above is equivalent to the category HA1

(S) defined in
[14].

Let W be the class of weak equivalences. Define the class of cofibrations C
in Spc as the class of all monomorphisms and the class of fibrations F as the class
of morphisms having the rigtht lifting property with respect to morphisms from
C ∩W (see [8, p.26]). As a corollary of Theorem 3.6 we have.

Theorem 3.7 The classes (W,F,C) form a proper closed model structure on
Spc.

Once we know the notions of weak equivalences, fibrations and cofibrations for
spaces we can define them for pointed spaces. A morphism of pointed spaces is
called a weak equivalence, fibration or cofibration if it is a weak equivalence, fibra-
tion or cofibration as a morphism of spaces with forgotten distinguished points.
Standard reasoning shows that so defined classes form a proper closed model struc-
ture on the category Spc• of pointed spaces. We denote the pointed homotopy cat-
egory byHA1

• (S). Properties 2 and 3 of weak equivalences from the list given above
imply that the smash product gives a symmetric monoidal structure ([11, p.180])

on HA1

• (S). The unit object of this monoidal structure is the space (S
∐

S, iS)
which one denotes S0 and calles 0-sphere.

The functor | − |S from simplicial sets to spaces takes weak equivalences of
simplicial sets to weak equivalences of spaces and thus defines a functor from the
ordinary homotopy category Htop to HA1

(and from Htop
• to HA1

• ). For any
two simplicial sets X,Y one has a canonical morphism |X × Y |S → |X |S × |Y |S
which is not an isomorphism but always a weak equivalence. Therefore the functor
from Htop to HA1

commutes with products and the functor from Htop
• to HA1

•

commutes with smash products.
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Define the simplicial circle S1
s as |∆1/∂∆1|S . Geometrically S1

s is the space
obtained from the affine line A1 by identification of points 0 and 1. The smash
product with S1

s is the simplicial suspension functor. We denote (S1
s )

∧n by Sn
s .

This is the space obtained from An
S by contraction of the union of hyperplanes

xi = 1, xi = 0, i = 1, . . . , n to the point. One can use the simplicial suspension
to describe homotopy groups πA1

i,U (X,x) in terms of morphisms in the pointed
homotopy category as follows.

Lemma 3.8 For any pointed space (X,x), smooth scheme U and i ≥ 0 one has

πA1

i,U (X,x) = Hom
HA1

•

(Si
s ∧ U+, (X,x))

where U+ is the pointed space (U
∐

S, iS).

The notion of almost fibrant space turns out to be too restrictive in concrete
applications. For example the Eilenberg-MacLane spaces used in Section 6.1 to
build the Eilenberg-MacLane spectrum representing motivic cohomology are not
almost fibrant. A wider class of quasi-fibrant spaces defined below turns out to be
more useful.

Definition 3.9 A space X is called quasi-fibrant if for any smooth scheme U over
S which is quasi-projective over an affine open subset in S the map of simplicial
sets Sing∗(X)(U) → Sing∗(Ex∞(X))(U) is a weak equivalence.

The role of quasi-fibrant spaces in the theory is partly explained by the following
corollary of Lemma 3.8.

Proposition 3.10 Let (X,x) be a pointed quasi-fibrant space and U be a smooth
scheme over S which is quasi-projective over an affine open subset in S. Then for
any i ≥ 0 one has HomHA1 (Si

s ∧ U+, (X,x)) = πi(Sing∗(X)(U), x).

4 Spanier-Whitehead category

One of the fundamental differences between H = HA1

and the ordinary homotopy
category Htop lies in the fact that besides the simplicial circle S1

s there is another
circle S1

t which we call Tate circle and which is defined as the space A1 − {0}
pointed by 1. The following lemma shows how different types of “spheres” can be
expressed in H• in terms of Sn

t and Sn
s .

Lemma 4.1 There are canonical isomorphisms in H• of the form

(An − {0},1) ∼= Sn
t ∧ Sn−1

s ; Pn/Pn−1 ∼= An/An − {0} ∼= Sn
t ∧ Sn

s ;

The Spanier-Whitehead category SW = SWA1

(S) is the category obtained from
H• by stabilization with respect to the suspensions associated to the circles S1

s and
S1
t . For technical reasons it is more convenient to talk about stabilization with

respect to one suspension associated with S1
s ∧ S1

t which leads to an equivalent
category. Note that by Lemma 4.1 S1

t ∧ S1
s is canonically weakly equivalent to

A1/A1 − {0} and to (P1,∞).
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The construction of SW from H• is an example of a very simple general
construction which allows one to “invert” an object in a symmetric monoidal
category. Let (C,∧,1) be a symmetric monoidal category (here ∧ denotes the
monoidal structure and 1 is the unit object) and T an object in C ([11, p.157,180]).
Denote by C[T−1] the category whose objects are pairs of the form (X,n), X ∈
ob(C), n ∈ Z and morphisms are given by

Hom((X,n), (X ′, n′)) = colimm≥−n,−n′HomC(T
∧(m+n) ∧X,T∧(m+n′) ∧X ′)

One can easily define composition of morphisms and check that C[T−1] is indeed
a category. The assigment X "→ (X, 0) gives us a functor from C to C[T−1].

Definition 4.2 SW = H•[(S1
s ∧ S1

t )
−1].

The next step is to define a symmetric monoidal structure on C[T−1] such that the
canonical functor from C is a symmetric monoidal functor and the object (T, 0)
is invertible in C[T−1]. It turns out that there is an obvious obstruction to the
existence of such a structure. Indeed, the group of automorphisms of an invertible
object in a symmetric monoidal category is necessarily abelian. Thus the cyclic
permutation on T ∧ T ∧ T being in the commutatnt of Σ3 must become identity
in AutC[T−1]((T, 0)). If one tries to extend directly the monoidal structure from C
to C[T−1] one discovers that this condition is indeed necessary and sufficient for
the obvious constructions to be well defined. Thus one gets the following general
result.

Theorem 4.3 Let (C,∧,1) be a symmetric monoidal category and T an object
such that the cyclic permutation on T ∧T ∧T equals identity in C[T−1]. Then there
exists a symmetric monoidal structure ∧ on C[T−1] such that (X,n) ∧ (Y,m) =
(X ∧ Y, n+m).

The canonical functor C → C[T−1] is then a symmetric monoidal functor
and the object T = (T, 0) is invertible with the canonical inverse given by T−1 =
(1,−1).

Lemma 4.4 The cyclic permutation on (S1
s ∧ S1

t )
∧3 equals identity in H•.

Combining Theorem 4.3 and Lemma 4.4 we get:

Proposition 4.5 The category SW has a structure of a symmetric monoidal cat-
egory (∧, S0) such that the canonical functor (H•,∧, S0) → (SW,∧, S0) is sym-
metric monoidal and ((X,x), n) ∧ ((Y, y),m) = ((X,x) ∧ (Y, y), n+m).

Denote the object (S0, n) of SW by T n and objects of the form ((X,x), 0) simply
by (X,x). Then for any n ∈ Z one has a canonical isomorphism ((X,x), n) =
T n ∧ (X,x) which we will use to avoid notations of the form ((X,x), n) below.

Proposition 4.6 The category SW is an additive category.

To get the abelian group structures on the Hom-sets in SW one observes that the
image of S2

s in SW is an abelian cogroup object which is invertible with respect
to the monoidal structure.

Documenta Mathematica · Extra Volume ICM 1998 · I · 579–604



A1-Homotopy Theory 589

The last structure on SW which we want to describe is a structure of a tri-
angulated category ([6, ch.IV]). To specify a triangulated structure on an additive
category D one has to describe two things. One is an additive autoequivalence
S : D → D which is called the shift functor and denoted by X "→ X [1]. Another
one is a class of diagrams of the form X → Y → Z → X [1] called distinguished
triangles (all such diagrams are called triangles). These data should satisfy some
conditions listed for example in [6, p.239]. These conditions have the following fun-
damental corollary which makes triangulated structure into a surprisingly effective
tool to produce long exact sequences and, more generally, spectral sequences.

Lemma 4.7 Let X → Y → Z → X [1] be a distinguished triangle in a triangulated
category and U be any object of this category. Then the sequences of abelian groups

→ Hom(U,X [n]) → Hom(U, Y [n]) → Hom(U,Z[n]) → Hom(U,X [n+ 1]) →

→ Hom(Z[n], U) → Hom(Y [n], U) → Hom(X [n], U) → Hom(Z[n− 1], U) →

are exact.

All known long exact sequences can be traced back to this lemma applied to
distinguished triangles in different triangulated categories. In our case we will
construct the Mayer-Vietoris, Gysin and blow-up long exact sequences in homology
and cohomology as the long exact sequences associated with distinguished triangles
in the Spanier-Whitehead category SW (see Propositions 4.11-4.13).

Let us describe now the triangulated structure on SW . We define the shift
functor by X [1] = X ∧ S1

s . To define distinguished triangles we have to recall
the notion of cofibration sequences in our context. Let f : (X,x) → (Y, y) be a
morphism of pointed spaces. Define cone(f) as the colimit of the diagram

(X,x)
Id∧1
−→ (X,x) ∧∆1

S

↓
(Y, y)

(10)

where the vertical arrow is f and ∆1
S
∼= A1

S is considered as a pointed space with
the distinguished point 0. We have a canonical morphism (Y, y) → cone(f) which
we denote ηf . For any commutative square

(X,x)
f
→ (Y, y)

↓ ↓

(X ′, x′)
f ′

→ (Y ′, y′)

(11)

we have a canonical morphism cone(f) → cone(f ′) which makes the diagram

(Y, y)
ηf
→ cone(f)

↓ ↓

(Y ′, y′)
ηf′

→ cone(f ′)

(12)
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commutative. In particular for any f we have a canonical morphism cone(f) →
cone((X,x) → pt). The space on the right hand side is canonically isomorphic to
(X,x) ∧ S1

s and therefore to any f we assigned in a canonical way a sequence

(X,x)
f
→ (Y, y)

ηf
→ cone(f)

ϵf
→ (X,x) ∧ S1

s

which is called the cofibration sequence of f . The idea of the following definition
is that the distinguished triangles in SW are exactly the triangles isomorphic to
suspensions of images of cofibration sequences from Spc•.

Definition 4.8 A sequence of morphisms of the form A → B → C → A[1] in
SW is called a distinguished triangle if there exist a morphism f : X → Y in Spc•,
an integer n and isomorphisms

φ1 : T n ∧X → A; φ2 : T n ∧ Y → B; φ3 : T n ∧ cone(f) → C

in SW such that the following diagram commutes

T n ∧X
Id∧f
→ T n ∧ Y

Id∧ηf
→ T n ∧ cone(f)

α◦(Tn∧ϵf )
→ (T n ∧X)[1]

φ1↓ φ2↓ φ3↓ φ1[1]↓

A → B → C → A[1]

(13)

(here α = αTn,X is the canonical isomorphism T n ∧X [1] → (T n ∧X)[1]).

Theorem 4.9 The category SW with the shift functor and the class of distin-
guished triangles defined above is a triangulated category.

The main application of Theorem 4.9 is that in combination with Lemma 4.7
it implies that any distinguished triangle in SW generates two long exact sequences
of Hom-groups. To take advantage of this fact one has to have a way to produce
interesting distinguished triangles. At the moment we know of three main types of
such triangles which generate correspondingly Mayer-Vietoris, Gysin and blow-up
long exact sequences. They are described in Propositions 4.11-4.13 below. In all
three cases the proof is based on an unstable result from [14] combined with the
following general lemma.

Lemma 4.10 Consider a commutative square in Spc•

(A, a)
i
→ (X,x)

p ↓ ↓ p′

(Y, y)
i′

→ (Z, z)

(14)

such that i is a monomorphism (= cofibration) and the canonical morphism
(X,x) ∪(A,a) (Y, y) → (Z, z) is a weak equivalence. Then there is a canonical
morphism (Z, z) → (A, a) ∧ S1

s in H• such that the sequence

(A, a)
p⊕i
→ (Y, y)⊕ (X,x)

i′⊕p′

→ (Z, z) → (A, a)[1]

is a distinguished triangle in SW .
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In the propositions below we denote by X+ the pointed space (X
∐

pt, ipt) asso-
ciated with a space X .

Proposition 4.11 For any elementary distinguished square as in Definition 2.1
there is a canonical distinguished triangle in SW of the form

p−1(U)+ → U+ ⊕ V+ → X+ → p−1(U)+[1]

In particular for the distinguished square associated to a Zariski open covering
X = U ∪ V we get the Mayer-Vietoris distinguished triangle

(U ∩ V )+ → U+ ⊕ V+ → X+ → (U ∩ V )+[1]

Proposition 4.12 Let i : Z → X be a closed embedding of smooth schemes
over S and N the normal bundle to Z in X. Then there is a canonical Gysin
distinguished triangle of the form (X − Z)+ → X+ → Th(N) → (X − Z)+[1].

Proposition 4.13 Let i : Z → X be a closed embedding of smooth schemes over
S and p : XZ → X the blow-up of Z in X. Then there is a canonical blow-up
distinguished triangle of the form

p−1(Z)+ → Z+ ⊕ (XZ)+ → X+ → p−1(Z)+[1]

The following Connectivity Theorem is the basis for the proof of convergence
results for spectral sequences in the homotopy theory of algebraic varieties.

Theorem 4.14 Let (X,x) be a pointed smooth scheme over S, (Y, y) a pointed
space and m ∈ Z an integer. Then one has

HomSW ((X,x), Sn
s ∧ Sm

t ∧ (Y, y)) = 0

for any n > dim(X) where dim(X) is the absolute dimension of X

Denote by SW ft the full subcategory in SW which consists of objects iso-
morphic to objects of the form T n ∧ (X,x) for (X,x) ∈ Spcft. By definition of
cofibration sequences and spaces of finite type this is a triangulated subcategory
of SW . Lemma 4.10 implies that it coincides with the triangulated subcategory
generated by objects of the form T n ∧ (X,x) for smooth schemes X over S. This
category actually plays more important role in the theory than the category SW
itself which is a wrong category to work with if we are interested in spaces not
of finite type. The correct replacement for SW is the stable homotopy category
SH = SHA1

(S) discussed in the following section.

5 Spectra and the stable homotopy category

The stabilization construction used to define the Spanier-Whitehead category in
the previous section has a serious drawback. One of the good properties of the
homotopy category H = HA1

• (S) is the existence of infinite coproducts. For
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any collection of pointed spaces (Xα, xα) the space ∨α(Xα, xα) represents the
coproduct of (Xα, xα)’s in H i.e. for any (Y, y) one has

HomH(∨α(Xα, xα), (Y, y)) =
∏

α

HomH((Xα, xα), (Y, y))

When we invert S1
s ∧S1

t to get the Spanier-Whitehead category we lose this prop-
erty. For a family of objects like {T−i}i≥0 there is clearly no coproduct (= direct
sum) in SW . Moreover for an infinite family of pointed spaces (Xα, xα) the space
∨α(Xα, xα) considered as an object of SW is not the coproduct of (Xα, xα)’s in
this category because infinite colimits do not commute with infinite products.

There is another way to stabilize H with respect to the suspension functor
(X,x) "→ T ∧ (X,x) associated to any pointed space T . The resulting category
which we denote by H [[T−1]] is called the stable homotopy category of T -spectra
or just the T -stable homotopy category. It has all coproducts and the canonical
functor Σ∞

T : H → H [[T−1]] takes ∨α(Xα, xα) to the direct sum of (Xα, xα)’s in
H [[T−1]]. Unfortunately no one knows how to construct a category H [[T−1]] with
properties described above from H . Instead we will have to build it directly from
spaces.

Let T be a pointed space of finite type. A T-spectrum E is a sequence of
pointed spaces Ei, i ≥ 0 which are called terms of E and morphisms ei : T ∧Ei →
Ei+1 which are called the assembly morphisms of E. A morphism of T-spectra
E → F is a collection of morphisms of pointed spaces Ei → Fi which commute
with the assembly morphisms. Denote the category of T-spectra by Sp(Spc•, T ).
For a T-spectrum E define a family of functor En : Spcft• → Sets, n ∈ Z setting

En(X,x) = colimi≥max{0,−n}HomH(T∧i ∧ (X,x), T∧(i+n) ∧ Ei)

where the maps in the inductive system are defined by the assembly morphisms of
E. A morphism of T-spectra E → F is called a stable weak equivalence if the cor-
responding natural transformations of functors En(−) → Fn(−) are isomorphisms
for all n ∈ Z.

Definition 5.1 The category H [[T−1]] is the localization of Sp(Spc•, T ) with re-
spect to the class of weak equivalences.

The category of T-spectra has all small limits and colimits which are defined
termwise. In particular for a collection of spectra Eα = (Ei,α, ei,α) their coproduct
in Sp(Spc•, T ) is given by ⊕αEα = (∨αEi,α, (δi◦(∨ei,α))) where δi is the canonical
isomorphism T ∧ (∨αEi,α) → ∨α(T ∧ Ei,α). One can verify easily that it is also
the direct sum in H [[T−1]] i.e. that for any spectrum F one has

HomH[[T−1]](⊕αEα,F) =
∏

α

HomH[[T−1]](Eα,F)

For a pointed space (X,x) denote by Σ∞
T (X,x) the T-spectrum (T∧n ∧

(X,x), Id). The functor Σ∞
T takes weak equivalences to stable weak equiv-

alences and for any collection of spaces we have a canonical isomorphism
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Σ∞
T (∨α(Xα, xα)) → ⊕αΣ∞

T (Xα, xα). One can also verify easily that the func-
tor H → H [[T−1]] admits a canonical decomposition of the form H → H [T−1] →
H [[T−1]] where the second functor takes ((X,x), n) to the spectrum

Σ∞((X,x), n)i =

{

pt for i < −n
T∧(i+n) for i ≥ −n

(15)

The following result is the main technical thing one needs to know to be able to
use the construction described above.

Theorem 5.2 For any space of finite type (X,x) and any T-spectrum E one has

HomH[[T−1]](Σ
∞
T (X,x),E) = colimnHomH(T∧n ∧ (X,x), En)

where the maps in the inductive system are defined by the assembly morphisms of
E.

Corollary 5.3 Let (X,x), (Y, y) be spaces of finite type. Then one has

HomH[[T−1]](Σ
∞
T (X,x),Σ∞

T (Y, y)) = colim
n

HomH(T∧n ∧ (X,x), T∧n ∧ (Y, y))

For a T-spectrum E define E[1] to be the spectrum (Ei ∧ S1
s , ei ∧ IdS1

s
). For a

morphism of T-spectra f : E → F define the associated cofibration sequence

E → F → cone(f) → E[1]

in exactly the same way as we did for morphisms of pointed spaces in the previous
section setting E ∧ ∆1

S to be the spectrum of the form (Ei ∧ ∆1
S , ei ∧ Id∆1

S
).

A sequence of morphisms in H [[T−1]] is called a distinguished triangle if it is
isomorphic to the image of the cofibration sequence for a morphism in Sp(Spc•, T ).

Proposition 5.4 For any pointed space T of finite type the category H [[(S1
s ∧

T ′)−1]] is additive and the shift functor and the class of distinguished triangles
defined above satisfy the axioms of a triangulated structure.

The following technical result allows one to apply the general representablility
theorems proven in [16], [17], [18] to the stable homotopy category of algebraic
varieties.

Proposition 5.5 For any space of finite type T and any Noetherian base scheme
S the category H [[T−1]] is compactly generated and suspension spectra of spaces
of finite type are compact. If in addition S can be covered by affine open subsets
Ui = Spec(Ri) such that Ri are countable rings then the subcategory of compact
objects in H [[T−1]] is equivalent to a countable category.

Theorem 5.6 Let T be a space of finite type such that the cyclic permutation
on T∧3 equals identity in H [T−1]. Then the category H [[T−1]] has a symmetric
monoidal structure (∧,1) such that:
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1. for a spectrum E and a pointed space (X,x) the spectrum E ∧ Σ∞
T (X,x) is

canonically isomorphic to (Ei ∧ (X,x), ei ∧ Id(X,x))

2. for a collection of spectra Eα and a spectrum F there is a canonicall isomor-
phism

(⊕αEα) ∧ F → ⊕α(Eα ∧F)

3. for a cofibration sequence E → F → cone(f)
ϵ
→ E[1] and a spectrum G the

sequence E∧G → F∧G → cone(f)∧G → E∧G[1] where the last morphism
is the composition of ϵ ∧ IdG with the canonical isomorphism E[1] ∧ G →
(E ∧G)[1] is isomorphic to a cofibration sequence.

All the results of this section except for Theorem 5.6 have simple proofs. I
know of two ways to prove Theorem 5.6. One is to explicitly construct the sym-
metric monoidal structure on H [[T−1]] starting with the obvious badly defined
smash product in Sp(Spc•, T ) and checking that all the ambiguities disappear
when one passes to the homotopy category. In the case of the ordinary topological
stable category a detailed exposition of this approach is given for example in [1,
pp. 158-190]. It takes Adams thirty pages to verify that nothing goes wrong and
it is terrible. Also it is hard to see that the cyclic permutation condition is indeed
the key. Another way to prove Theorem 5.6 is to use the idea of symmetric spectra
introduced recently by Jeff Smith (see [8] for an exposition in the context of sim-
plicial sets and topological spaces). In this approach one defines first the category
SpΣ(Spc•, T ) of so called symmetric T-spectra and the associated stable homotopy
category which I denote H [[T−1,Σ]]. These categories have symmetric monoidal
structures for any T and one can construct a functor H [[T−1]] → H [[T−1,Σ]]
which commutes in the obvious sense with the suspension spectrum functors. The
cyclic permutation condition is then necessary and sufficient for this functor to be
an equivalence [19].

This ends our discussion of the general stabilization construction H "→
H [[T−1]]. Now we specialize to the only case which we are really interested in
namely T = S1

s ∧ S1
t . For the reasons which will become clear in the next section

when we consider concrete examples of spectra we choose (P1,∞) as the model
for S1

s ∧ S1
t used in the definition of SH .

Definition 5.7 The stable A1-homotopy category over S is the category

SH (S) = HA1

• (S)[[(P1,∞)−1]]

We denote SH (S) simply by SH and the suspension spectrum functor Σ∞
(P1,∞) by

Σ∞. The canonical functor SW → SH described on objects by (15) respects both
the symmetric monoidal and the triangulated structures. In particular Proposi-
tions 4.11-4.13 have straightforward analogs in SH and in view of Theorem 5.2
the same is true for the Connectivity Theorem 4.14.

According to Theorem 5.6(1) and Lemma 4.1 for any n ≥ 0 we have canonical
isomorphisms

Σ∞(Sn
s ) ∧ Σ∞(Sn

t ,−n) ∼= 1; Σ∞(Sn
t ) ∧ Σ∞(Sn

s ,−n) ∼= 1
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and therefore we can define objects Sn
s and Sn

t of SH for all n ∈ Z as follows

Sn
s =

{

Σ∞(Sn
s ) for n ≥ 0

Σ∞(Sn
t ,−n) for n ≤ 0

Sn
t =

{

Σ∞(Sn
t ) for n ≥ 0

Σ∞(Sn
s ,−n) for n ≤ 0

(16)

6 Three cohomology theories

To any object E of SH we assign a cohomology theory Ep,q(−) and a homology
theory Ep,q(−) on Spc• given by

Ep,q(X,x) = HomSH(Σ∞(X,x), Sp−q
s ∧ Sq

t ∧E)

Ep,q(X,x) = HomSH(Sp−q
s ∧ Sq

t ,E ∧ Σ∞(X,x))

The reason for this somewhat strange indexing is hidden in connections with the
theory of motives. Propositions 4.11-4.13 together with Lemma 4.7 imply that
any cohomology or homology theory constructed in this way has three types of
long exact sequences called respectively Mayer-Vietoris, Gysin and blow-up exact
sequences.

One can give a formal definition of a cohomology theory as a collection of
functors Spc• → Ab satisfying some simple axioms and use Theorem 5.5 together
with [16, Th. 3.1] to prove that any such theory is of the form Ep,q for an ob-
ject E of SH . Usefulness of this construction is restricted by the fact that in
any formulation I know one has to start with a family of functors defined on the
category of all spaces or, at least, on the subcategory of spaces of finite type and
not just on the category of smooth schemes over S. On the other hand as the
example of algebraic cobordism considered below shows the direct correspondence
E "→ (Ep,q(−))p,q∈Z allows one to give simple definition for theories which would
otherwise be hard to construct. The possibility to use the stable homotopy cat-
egory to produce theories with desired properties is one of the key ingredients in
the proof of the Milnor conjecture given in [26].

6.1 Motivic cohomology

Let us first define the Eilenberg-MacLane spectrum HZ which represents a theory
Hp,q

Z (−) = Hp,q(−,Z) called motivic cohomology (with integral coefficients). It
is an analog of ordinary cohomology in the A1-homotopy theory. The theory
of motivic cohomology described here was developed in [5] and [25] before the
A1-homotopy theory was introduced. The first definition in terms of the stable
homotopy category was given in [26]. The only technical result about motivic
cohomology which we can not obtain as a specialization of general results in A1-
homotopy theory is Theorem 6.2. If we knew how to prove this theorem without
going through all the moves of [24] and [5] a major part of these papers would
become obsolete at least as far as the theory of motivic cohomology is concerned.
But we do not.

The tricky part in getting theA1-analog of the topological Eilenberg-MacLane
spectrum is to guess what the Eilenberg-MacLane spaces in Spc• are. The obvious
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idea to take a space K(Z, n) which has the property that for any connected U

πi,U (K(Z, n)) =

{

0 for i ̸= n
Z for i = n

(17)

does not work. To build a spectrum out of K(Z, n)’s we would have to specify
assembly morphisms (P1,∞) ∧ K(Z, n) → K(Z, n + 1) but a simple computa-
tion shows that any morphism of the form (P1,∞) ∧ (X,x) → K(Z, n + 1) is
trivial in the A1-homotopy category. The correct approach was discovered by
A. Suslin around 1987. The idea is to define the A1-analogs of the Eilenberg-
MacLane spaces through the Dold-Thom Theorem. For a pointed topological
space (T, ∗) let Symm∞(T, ∗) be its infinite symmetric product Symm∞(T, ∗) =
colimn Symmn(T, ∗) where Symmn(T, ∗) = (T, ∗)×n/Σn and the maps Symmn →
Symmn+1 send (x1, . . . , xn) to (x1, . . . , xn, ∗). The Dold-Thom Theorem [4] says
that for a connected pointed CW-complex (T, ∗) the space Symm∞(T, ∗) is weakly
equivalent to the product

∏

i>0 K(Hi(T ), i) where Hi(T ) are the integral homol-
ogy of T . To formulate Dold-Thom Theorem for spaces which are not necessarily
connected one considers Symm∞(T, ∗) as a topological monoid with respect to the
obvious addition and takes its group completion (Symm∞(T, ∗))+. The general
Dold-Thom theorem then says that

(Symm∞(T, ∗))+ ∼=
∏

i≥0

K(Hi(T ), i)

for any T and that in the case of a connected T the group completion does not
change the homotopy type of Symm∞(T, ∗). In particular one way to define
K(Z, n) for all n ≥ 0 is to set

K(Z, n) = (Symm∞(Sn))+

Once we understand the correct analog of the symmetric product construc-
tion in the A1-context this definition works perfectly well and gives us Eilenberg-
MacLane spaces which fit together into the Eilenberg-MacLane spectrum repre-
senting motivic cohomology.

Assume for a moment that the base scheme S is regular. For a smooth
scheme X over S and a smooth connected scheme U define c(U,X) as the free
abelian group generated by closed irreducible subsets Z of U ×X which are finite
and surjective over U . For any morphism U1 → U2 over S one can define the
base change homomorphism c(U2, X) → c(U1, X) which makes c(−, X) into a
contravariant functor from Sm/S to abelian groups. One can verify easily that
this functor takes elementary distinguished squares to Cartesian squares i.e. that
it is a space in the sense of our definition. We consider it as a pointed space with
the distinguished point given by zero and denote by L(X). If S is not regular the
correct definition of c(U,X) and L(X) becomes more technical and requires the
theory of realtive equidimensional cycles developed in [22]. In the notations of that
paper c(U,X) = c(U ×S X/U, 0) ([22, p.30]). The graph of any morphism U → X
is an element of c(U,X) which gives us canonical maps Hom(U,X) → c(U,X) i.e.
a morphism of spaces X → L(X).
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It turns out that the space L(X) plays the role of (Symm∞(X+))+ in our
context. Intuitively one can see this as follows. Assume S = Spec(k) and X is a
smooth variety over k. Consider first the subspace Leff (X) in L(X) which consists
of formal linear combinations of closed subsets with nonnegative coefficients. A
point in Leff (X) i.e. an element in HomSpc(pt, Leff (X)) = ceff (Spec(k), X) is,
by definition, a formal linear combination of closed points of X with nonnegative
coefficients which is exatly what one would expect from points of the infinite
symmetric product. The whole space L(X) is clearly obtained from Leff (X) by the
naive group completion with respect to the obvious abelian monoid structure on
Leff (X). A detailed discussion of how L(X) relates to usual symmetric products
for quasi-projective varieties over a field k can be found in [21, §6] and especially
in [21, Th. 6.8] where

zeff0 (Z) =

{

L(Z) if char(k) = 0
L(Z)[1/char(k)] if char(k) > 0

(18)

To define Eilenberg-MacLane spaces we should apply this construction to our
spheres Sn

s ∧Sm
t . To do it we have to say what L(X) is for a space which is not a

smooth scheme. Instead of giving a general definition we only consider spaces of
the form X/(∪n

i=1Zi) where X is a smooth scheme and Zi’s are smooth subschemes
in X such that all the intersections of Zi’s are also smooth over S. We call such
spaces scheme-like. This class includes in particular the spaces Sn

s ∧ Sm
t for all

n,m ≥ 0 and it is closed under smash products. We set

L(X/(∪n
i=1Zi)) = (L(X)/(

n
∑

i=1

L(Zi)))ab

where the subscript ab indicates that we take the quotient in the category of
abelian group spaces and then forget the abelian group structure. It can be shown
that any morphism of scheme-like spaces f : X → Y induces homomorphism
L(f) : L(X) → L(Y ) and that for an A1-weak equivalence f the morphism L(f)
is also an A1-weak equivalence.

Definition 6.1 K(Z(n), 2n) = L((P1,∞)∧n)

The notation K(Z(n), 2n) has the same origin as the indexing in the definition of
Ep,q’s and as Theorem 6.3 below shows is consistent with this indexing. In view
of Lemma 4.1 and previous discussion this definition reads

K(Z(n), 2n) ∼= (Symm∞((S1
s ∧ S1

t )
∧n))+

One can show that the “wrong” Eilenberg-MacLane space K(Z, n) specified by
(17) is weakly equivalent to L(Sn

s ).
For any smooth schemes X , Y over S there is a billinear morphism L(X)×

L(Y ) → L(X × Y ) defined by external product of relative cycles (see [22, p. 54])
which is natural in X and Y . This implies that for scheme-like spaces X , Y we
have a canonical morphism L(X) ∧ L(Y ) → L(X ∧ Y ). In particular we have
canonical morphisms

mm,n : K(Z(m), 2m) ∧K(Z(n), 2n) → K(Z(n+m), 2n+ 2m)
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Composing m1,n with the morphism i ∧ Id where i is the canonical morphism
(P1,∞) → L(P1,∞) we get the assembly morphisms of the Eilenberg-MacLane
spectrum HZ

en : (P1,∞) ∧K(Z(n), 2n) → K(Z(n+ 1), 2n+ 2)

The main thechnical result about the motivic cohomology spectrum is the
following theorem. This is the only theorem in the paper for which we do not
know a good proof.

Theorem 6.2 Let S be a smooth variety over a field k of characteristic zero.
Then the spaces K(Z(n), 2n) are quasi-fibrant (Definition 3.9) and the morphisms

ẽn : K(Z(n), 2n) → Ω1
(P1,∞)K(Z(n+ 1), 2n+ 2)

adjoint to the assembly morphisms are A1-weak equivalences.

Conjecturally the statement of Theorem 6.2 should be true for any regular base
scheme S. There is an example of a normal surface over C with an isolated
nonrational singularity for which the second half of the theorem does not hold.
The only reason the condition on the characteristic of the base field appears in
the theorem is because the proof is based on techniques developed in [5] and in
particular requires [5, Lemma 5.4] which in turn uses Hironaka’s resolution of
singularities. Theorem 6.3 has the following corollary.

Theorem 6.3 Let U be a smooth quasi-projective variety over a field of charac-
teristic zero. Then for any n, i ≥ 0 there is a canonical isomorphism

H2n−i,n
Z (U+) = πi(Sing∗(K(Z(n), 2n)(U), ∗))

The groups on the right hand side can be easily identified with the motivic co-
homology groups defined in [5, Definition 9.2] where the notation Hp(−,Z(q)) is
used instead of Hp,q

Z (−). Together with [5, Th. 8.2, Th. 8.3(1)] and [25, Prop.
4.2.9] this gives the following comparison between our motivic cohomology and
higher Chow groups introduced by S. Bloch in [2].

Theorem 6.4 Let U be a smooth quasi-projective variety over a field of charac-
teristic zero. Then there are canonical isomorphisms

Hp,q
Z (U+) = CHq(U, 2q − p)

6.2 Algebraic K-theory

The next cohomology theory which we are going to discuss is algebraic K-theory.
This theory is the best known one of the three theories considered here and it is
also the least convenient one to define in terms of the stable homotopy category.
The first definition of higher K-groups which works properly for all Noetherian
schemes was given by B. Thomason in [23]. An A1-homotopy invariant version
of algebraic K-theory which agrees with Thomason K-theory for regular schemes
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was defined by C. Weibel in [27]. What follows gives a description of a spectrum
BGL which represents a theory which after reindexing coincides on Sm/S with
Weibel’s homotopy K-theory. The construction given here is very ugly and I am
sure that there exists a better way to do it.

Denote by BGL(d) the infinite Grassmannian BGL(d) = colimN≥dG(d,N)
where G(d,N) is the Grassmannian of linear subspaces of dimension d in the
standard linear space of dimension N which we denote by ON . The maps
G(d,N) → G(d,N + 1) take L ⊂ ON to L ⊕ {0} ⊂ ON ⊕ O. We have canonical
monomorphisms BGL(d) → BGL(1+ d) which take L ⊂ ON to O⊕L ⊂ O⊕ON

and we denote by BGL the colimit colimd≥0BGL(d). The spectrum representing
algebraic K-theory is defined as follows

BGL = (ExA1

(BGL × Z), e : (P1,∞) ∧ ExA1

(BGL × Z) → ExA1

(BGL× Z))

where BGL × Z =
∐

i∈Z BGL and ExA1

(BGL × Z) is a fibrant replacement
of BGL × Z in the sense of the closed model structure of Theorem 3.7. The
reason we have to take ExA1

(BGL × Z) instead of BGL × Z itself is that the
only way I know to define the assembly morphism is to define first a morphism
ē : (P1,∞) ∧ (BGL × Z) → BGL × Z in the homotopy category and then say
that any morphism in the homotopy category with values in a fibrant object can
be lifted to the category of spaces. It is a little ugly but it works. To specify e we
will use the following result proven in [14].

Theorem 6.5 For any smooth scheme X over S and any i ≥ 0 there is a canonical
map

Ki(X) → HomH•
(Si

s ∧X+, BGL× Z)

which is a bijection if S is regular (the K-groups on the left are Thomason K-groups
[23]).

For a pointed scheme (X,x) denote by Kn(X,x) the subgroup of Kn(X) which
consists of elements vanishing on x. For a pair of pointed smooth schemes (X,x),
(Y, y) denote by Ki((X,x) ∧ (Y, y)) the subgroup in Ki(X × Y ) which consists of
elements vanishing on X × {y} ⊂ X × Y and on {x} × Y ⊂ X × Y . Note that
this is always a direct summand in Ki(X × Y ). Theorem 6.5 has the following
corollary.

Corollary 6.6 Let (X,x), (Y, y) be pointed smooth schemes over S. Then for
any i ≥ 0 there is a canonical map

Ki((X,x) ∧ (Y, y)) → HomH•
(Si

s ∧ (X,x) ∧ (Y, y), BGL× Z)

which is a bijection if S is regular.

To define the assembly morphism of the spectrum BGL we want to use Corollary
6.6 to compute the set of morphisms (P1,∞) ∧ (BGL × Z) → BGL × Z in the
A1-homotopy category. Unfortunately BGL is not a smooth scheme but a colimit
of filtered system of such schemes which makes us to use the following lemma.
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Lemma 6.7 Let (Xn, in : (Xn, xn) → (Xn+1, xn+1)) be an inductive system of
pointed spaces such that all the morphisms in are monomorphisms and (Y, y) be a
pointed space such that all the maps

HomH(S1
s ∧ (Xn+1, xn+1), (Y, y)) → HomH(S1

s ∧ (Xn, xn), (Y, y))

induced by Id ∧ in are surjective. Then the canonical map

HomH(colimn (Xn, xn), (Y, y)) → limnHomH((Xn, xn), (Y, y))

is bijective.

Projective bundle theorem for algebraic K-theory together with standard geomet-
rical constructions imply that the embeddings of Grassmannians G(d,N) → G(1+
d, 1+N+1) induce surjections of K-groupsKn(G(1+d, 1+N+1))→ Kn(G(d,N))
for all n ∈ Z. The same projective bundle theorem appplied to the trivial bundle
of dimension one implies that Kn((P1,∞) ∧ (X,x)) = Kn(X,x) for any pointed
smooth scheme (X,x) over S. Thus Lemma 6.7 implies that for a regular scheme
S one has

HomH((P1,∞) ∧ (BGL× Z), BGL × Z) =

= limdHomH((P1,∞) ∧ (
d
∐

i=−d

G(d, 2d)), BGL × Z) =

limdK0((P
1,∞) ∧ (

d
∐

i=−d

G(d, 2d))) = lim
d

K0(
d
∐

i=−d

G(d, 2d)) =

lim
d

HomH(
d
∐

i=−d

G(d, 2d), BGL × Z) = HomH(BGL× Z, BGL × Z)

Denote by e the morphism (P1,∞)∧ (BGL×Z) → BGL×Z corresponding under
these identifications to the identity morphism of BGL×Z and define the assembly
morphism of the spectrum BGL as a morphism of spaces which projects to e in
the homotopy category. This defines BGL for regular base schemes S. To get
BGL for any S one uses the inverse image functor on the homotopy categories
associated with the canonical morphism S → Spec(Z). As an easy corollary of
this construction of BGL we get the following periodicity theorem.

Theorem 6.8 There is a canonical isomorphism BGL = S1
s ∧ S1

t ∧BGL.

Thus from the point of view of the A1-theory algebraic K-theory is periodic with
period (2, 1) which is why it is usually written with only one index instead of two.
While the construction of BGL presented here is not very nice it is actually easy
to prove comparison theorems with it.

Theorem 6.9 For any Noetherian base scheme S and any smooth scheme X over
S one has canonical isomorphisms

BGLp,q(X+) = KH2q−p(X)
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where KH is the homotopy K-theory of [27]. In particular for a regular base S
one has

BGLp,q(X+) = K2q−p(X)

where K is the K-theory of [23].

6.3 Algebraic cobordism

Algebraic cobordism was introduced in [26] as one of the tools necessary for the
proof of the Milnor conjecture. According to our current understanding it is
the universal cohomology theory which has direct image homomorphisms for all
smooth proper morphisms. It is represented by a spectrumMGL = (MGL(n), en)
completely analogous to the Thom spectrum representing complex cobordism in
the topological homotopy theory.

Recall that for a vector bundle E over X we defined its Thom space as
Th(E) = E/(E − s(X)) where s : X → E is the zero section. For any mor-
phism f : X → Y and a vector bundle E over Y we have a canonical morphism
of spaces Th(f∗E) → Th(E). Let En,N be the universal bundle over the Grass-
mannian G(n,N). The embeddings G(n,N) → G(n,N + 1) induce morphisms
Th(En,N) → Th(En,N+1) and we define MGL(n) as colimN Th(En,N). To define
assembly morphisms note that if O is the trivial bundle of dimension one then
Th(O⊕E) = (A1/A1 − {0})∧ Th(E). For the embeddings f : G(n,N) → G(1 +
n, 1+N) we have canonical isomorphisms f∗(E1+n,1+N ) = O⊕En,N which implies
that we have canonical morphisms e′n : (A1/A1−{0})∧MGL(n) → MGL(n+1).
Since the elementary distinguished square corresponding to the standard cover-
ing P1 = A1 ∪ A1 is a pushforward square the morphism of quotient spaces
A1/(A1 − {0}) → P1/(P1 − {0}) is an isomorphism. The inverse gives us a mor-
phism φ : (P1,∞) → A1/(A1 − {0}). We define the assembly morphisms of the
Thom spectrum MGL as compositions en = e′n ◦ (φ ∧ Id).

Since algebraic cobordism is a new theory we can not formulate here a com-
parison theorem as we have done with motivic cohomology and algebraic K-theory.
Instead I will end this section with a conjecture which describes a part of algebraic
cobordisms in terms of the usual complex cobordism ring MU∗.

Conjecture 1 For any S there is a natural homomorphism ⊕∞
i=−∞MU2i →

⊕∞
i=−∞MGL2i,i(S) which is an isomorphism if S is local and regular.

7 Concluding remarks

This paper outlines the very basics of the A1-homotopy theory. One reason I did
not say more about concrete computations such as the description of the motivic
Steenrod algebra is that at the moment these computations can only be done in
the case when S is a variety over a field of characteristic zero. This is partly due
to the conditions of Theorem 6.2 and partly to technical difficulties in the proof
of Spanier-Whitehead duality.

One of the two major directions of current work on the theory is to eliminate
this restriction. There are two sources of new techniques which I believe will allow
us to do it. One is related to the study of functoriality of the stable homotopy
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categories with respect to S. There is a theory here which is largely parallel to
the functoriality for the constructible sheaves in the etale topology [13, Ch.VI].
It allows in particular to prove the Spanier-Whitehead duality for smooth proper
schemes over any base. However, just as in the etale theory there are certain
statements which apparently require some kind of resolution of singularities (in the
etale case this is for example the theorem saying that Rp∗(Z/n) is constructible for
any morphism p of finite type [13, VI.5.7]). Surprisingly the same kind of problems
comes up when one tries to generalize Theorem 6.2. I am rather optimistic about
these problems at the moment. My optimism is mostly based on the amazing proof
which Spencer Bloch gave for his localization theorem for higher Chow groups in
[3]. It seems that he found a way to use Spivakovsky’s solution of Hironaka’s
polyhedra game ([20]) instead of resolution of singularities to deal with problems
essentially similar to the ones mentioned above.

The second main direction of current work can be described as an attempt to
find an algebro-combinatorial description of A1-homotopy types. We do have a
very hypothetical theory of rational homotopy type. The rational homotopy type
of a scheme S is a differential graded Hopf algebra (commutative, not cocommu-
tative) HQ(S) over Q such that the derived category of modules over HQ(S) is
equivalent to the triangulated subcategory DM lc(S,Q) of local systems in the de-
rived category DM(S,Q) of modules over the Eilenberg-MacLane spectrum HQ

over S.
In topological context HQ(T ) is the differential graded Hopf algebra associ-

ated with the cosimplicial Hopf algebra C∗(Ω1T ) of singular cochains on the first
loop space of T and DM lc(T,Q) is the full subcategory of complexes with locally
constant cohomology sheaves in the derived category of consructible sheaves of
Q-vector spaces on T .

In the particular case S = Spec(k) the (weak) K(π, 1)-conjecture says that
HQ(S) is the Hopf algebra of functions on a proalgebraic group GalM,Q(k) (in
particular it sits entirely in grading zero). This group is called the motivic Galois
group of k. The category DM lc(S,Q) is in this case equivalent to the whole cat-
egory DM(S,Q) and the equivalence of the derived categories mentioned above
becomes the known hypothetical correspondence between motives and represen-
tations of the motivic Galois group [15]. This wonderful picture whose origins go
back to Grothendieck’s idea of motives ([7], [12], [15]) must have an analog for
integral homotopy types. All my attempts to find such an analog even in the case
when S is the spectrum of an algebraically closed field of characteristic zero so far
failed. We have a lot of knowledge about torison effects in the motivic category
and this knowledge does not want to fit into any nice scheme.
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