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Let me start by saying a few general worlds about the concept that we refer to 
by the name “foundation of mathematics”. 

I have formulated previously, in the my 2014 IAS Faculty Lecture the following 
description of the three main components any foundation of mathematics 
should, in my opinion, have:
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The first component is a formal deduction system:  a language and rules of 
manipulating sentences in this language that are purely formal, such that a 
record of such manipulations can be verified by a computer program. 

The second component is a structure that provides a meaning to the sentences 
of this language in terms of mental objects intuitively comprehensible to 
humans. 

The third component is a structure that enables humans to encode 
mathematical ideas in terms of the objects directly associated with the 
language. 
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In ZFC-based foundations the first component is the system corresponding to 
the predicate logic theory ZFC with one predicate of two variables, which we 
usually write using the infix notation “x∈y”, and the list of familiar axioms. 

To specify the formal deduction system one has to specify the rules that allow 
one to prove sentences and there are some choices to be made here for 
example, of the sequent formulation versus the natural deduction style 
formulation, but they lead to equivalent concepts of provability.  

We often confuse the terminology by using the name ZFC both for the 
predicate logic theory and for the foundations of mathematics that are based 
on it and I will do it here as well.
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The second component in ZFC probably varies depending on a person. 

I like to think of the objects that ZFC describes as of rooted trees without 
automorphisms and such that the length of each branch is finite.  Let us call 
such trees Zermelo-Fraenkel objects.

One has “x∈y”  if “x” is isomorphic, necessarily in a unique way, to a branch of 
“y” at the root, i.e., elements of “y” are its root branches. 

The axiom of infinity postulates existence of such a tree with infinitely many 
root branches, which is easy to imagine - any tree whose root branches form 
an infinite set of pair-wise different Zermelo-Fraenkel objects will do. 
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The third component in the ZFC tells us how to encode mathematical 
concepts in term of the objects directly addressed by the ZFC sentences. 

It starts with encoding definitions and constructions related to sets, which is 
probably why ZFC is often called a set theory. 

This third component is very complicated. As an example, try to represent in 
the ZFC the function x    2x on natural numbers. 
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The univalent foundations started their growth supported by two needs.

The first one was felt most strongly by mathematicians who worked with 
categorical and then higher-categorical constructions. It was and still remains to 
be difficult to articulate but it certainly has something to do with our concept 
of equality of abstract objects. 

The second need was felt mostly by people from very different slice of the 
academic community. Originally it was articulated as the need to be able to use 
computers to verify complex mathematical constructions for mistakes.
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Later the growth of the univalent foundations became supported by a third 
need that is articulated as the need to have a better foundation for 
constructive mathematics. 

It was and is felt most strongly by yet another slice of the academic community 
that has some intersection with the second one but also very little intersection 
with the first slice. 
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Returning to the first need I remember discussing it many times with Michael 
Kapranov back in late 1980’s and a typical discussion we had then can be 
summarized in this form 

“We need to have a language where we the objects of a category are never 
equal. …. But obviously X is equal to X so this is impossible.”

at that the discussion would either loop or die out.
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In all approaches to the formal deduction system of univalent foundations that 
are being developed today this conundrum is resolved by the existence of two 
concepts of equality.

The first one is the concept of the substitutional equality. 

The second one is the concept of the transportational equality.
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In the intensional Martin-Lof type theories there is one substitutional and one 
transportational equality.

The substitutional one is the definitional equality.

The transportational one is the one witnessed by elements of the Martin-Lof 
identity types. 
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Only substitutional equalities are equalities from the point of view of Leibniz 
“principle of substitution of equivalents”. 

In the Martin-Lof type theories definitional equality can not be required, but 
only checked. 

The feeling that “objects of a category are never equal” is resolved into the fact 
that a true, substitutional, equality of two objects of a category can not be 
postulated.

The fact that “X=X” remains true as X is definitionally equal to itself, which can 
be easily checked. 
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From this one sees immediately that in the intensional Martin-Lof type theories 
the assertion that 

“objects of a category are never equal” 

can be extended to the assertion that 

“elements of any type are never equal” 

since one is not allowed to require substitutional equality between elements of 
any type.

This fact is the source of the main technical weakness of such theories. 
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The transportational equality in the MLTT is very different from what Leibniz 
would understand under the word “equality”. In particular, there can be many 
different “equalities” between two elements.

This is what makes the Univalence Axiom possible, but this is also what makes 
the use of the transportational equality much more difficult.
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The reason that the transportational equality in the Martin-Lof type theories is 
useful at all lies in the fact that if A is transportationally equal to B then B can 
be substituted for A directly in the type part of the sentence while the element 
part part must be replaced by a new expression using the so called transport 
function.

This transport function takes as one of its arguments the “witness” for the 
equality, but even more importantly it takes as another a “type family” that 
connects the substituted and unsubstituted type parts. 
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To be more precise, let us see what we have to do to make use of a witness to  
the transportational equality between elements A and B of type T, that is, of an 
element “e” of the Martin-Lof identity type “Id T A B”. 

Suppose that our goal is to construct an element of type P1 and A occurs in 
the expression for P1 such that we can view P1 as P[A/X] where P is now a 
type family that depends on a parameter X:T. 

We can use the transport function to change our goal from P1 to P2=P[B/X] 
because if R:P2 is an element of P2 then 

(transportb X.P e R):P2 
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This is precisely what the “rewrite” tactic of the proof assistant Coq is trying to 
do when you run Coq over the command “rewrite e.”

You may experiment with it and you will see that in many cases this tactic 
instead does nothing or returns an error message. 

The main reason is that Coq does not know how to find a type family P such 
that P1=P[A/X]. 
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Quite often, simply replacing the subexpression A by a variable X and 
extending the context by declaring X as a variable of type T will lead to a badly 
formed expression P[X] because the type-checking of P requires more 
properties of A than the fact that it has type T.

18



A simple example is with the identity type itself. 

For the expression Id T Y Y to be well-formed one must have Y:T. If I substitute 
a variable X of type U, where U is the universe, for T while leaving Y unchanged 
the expression will become badly formed because the type judgement

X:U |- Y:X

is invalid. 
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There is currently a lot of work being done in the direction of trying to extend 
a Martin-Lof type theory with stronger substitutional equality.

This is difficult, in part because one wants to preserve decidability of type-
checking and that necessarily means decidability of the question whether or 
not two elements of a type are substitutionally equal.
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I suggest that one may consider version of equality that is a transportational 
equality but of a very simple kind. 

It comes with its own identity types Id0 but in order to use an element e:Id0 T 
A B one does not have to find and record a type family connecting P1 and 
P2=P1[B/A] and instead can write for R:P2 the expression transportb0 R e that 
will have type P1.
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