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1 General theory

1 Motivation: the etale case

1.1 In l-adic cohomology, the formalism of the 6 operations (Rf∗, Lf ∗, Rf!, Rf !

for f : X → Y and
L
⊗, RHom) is a useful and compact way to look at the

functoriality of homology and cohomology and at Poincare duality. We want
to have a similar formalism for the motivic stable homotopy theory. There are
a number of dificulties. Among them: the lack of finiteness results parallel
to the preservation of constructibility by Rf∗ and Rf !, and the lack of an
analogue to the biduality theorem. This will force us to consider only the
first four operations which we will abbreviate as f∗, f ∗, f!, f !.

We begin by recalling the corresponding part of the l-adic formalism.
As this is only a template, we will gloss over some difficulties: can one use
unbounded complexes, can one really use an l-adic derived category or only
the Z/ln-derived categories from which it is obtained by a limiting process?
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What is said should at least be true for the category of separated schemes
X over a field k, and the Db(X,Z/ln). This is the bounded derived category
of the abelian category of sheaves of Z/ln-modules over the (small) etale site
Xet of X. Variants: replace b by + or − or drop it. Restrict to the case where
cohomology sheaves are constructible. Restrict to the finite Tor-dimension
case Db

ft.

1.2 We fix a noetherian scheme S and consider only schemes X of finite type
over S. For each X, we have the corresponding derived category D(X). For
f : X → Y we have four functors

f∗, f! : D(X)→ D(Y )

f ∗, f ! : D(Y )→ D(X).

we will separate properties they have in three groups: “basic”, “identities”
and “localization”.

A. Basic (i) For a composite morphism

gf : X → Y → Z

we have (gf)∗ = g∗f∗ and (gf)∗ = f ∗g∗ and similarly for “!”. The
“=” sign is an abuse of language, explained below.

(ii) (f ∗, f∗) and (f!, f !) are pairs of adjoint functors

(iii) For a cartesian square of schemes over S

X ′ g−−−→ X
⏐⏐"f

⏐⏐"f

Y ′ −−−→
g

Y

one has change of base isomorphisms

g∗f! = f!g
∗ and g!f∗ = f∗g

!,

exchanged by adjunction.

Here are two convenient ways to correctly state (i), (ii).
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1st way: For “!”: the D(X) organize as the fibers of a fibered and cofibered
category (SGA VI) over the category of schemes of finite type over S.
For “∗”: they organize as well as the fibers of fibered and cofibered
category over the opposite of the category of schemes of finite type
over S.

2d way: (i) The data (X %→ D(X), f %→ f∗, . . . ) and (X %→ D(X), f %→
f!, . . . ) are 2-functors from the category of schemes to the 2-
category of categories. The data (X %→ D(X), f %→ f ∗, . . . ) and
(X %→ D(X), f %→ f !, . . . ) are similarly 2-functors from the oppo-
site category of the category of schemes of finite type over S.

(ii) Adjunctions are the data of morphisms of functors

Id→ f∗f ∗ Id→ f !f!

f ∗f∗ → Id f!f ! → Id

satisfying suitable identities.

The first point of view avoids mentioning 2-categories and 2-functors. For
“∗”, and for the case of categories of sheaves, rather than derived categories,
morphisms from G to F , above a morphism of schemes f : X → Y , have a
simple description: a morphism is the data, for every commutative diagram

U −−−→ V
⏐⏐"

⏐⏐"

X −−−→ Y

with U etale over X and V etale over Y , of a map G(V ) → F (U), with a
compatibility for U ′ → U over X or V → V ′ over Y .

The second point of view allows replacing the 2-category of categories by
other 2-categories. This makes it possible , starting from symmetries in the
formulas, to use duality arguments. It will be our point of view.

B. Identities (i) For f separated, one has a morphism of functors

f! → f∗.

It is an isomorphism when f is proper.
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(ii) If f : X → Y is smooth, there is a self equivalence

Σf : D(X)→ D(X)

and an isomorphism of functors

f ! → Σff
∗.

If X/Y is everywhere (on X) of dimension d, the functor Σf is
K %→ K(d)[2d].

C. Localization The categories D(X) are triangulated. For i : Y → X a
closed embedding, and j the open embedding of the complement of Y
in X, one has maps

i∗i
∗K → (j!j

!K)[1]

j∗j
∗K → (i!i

!K)[1]

functorial in K which together with the adjunction maps give distin-
guished triangles

j!j
!K → K → i∗i

∗K → (j!j
!K)[1]

i!i
!K → K → j∗j

∗K → (i!i
!K)[1].

1.3 Let us assume that S = Spec(k) with k algebraically closed. The 4
operations formalism explained above suffices to define cohomology, plain
or with compact support, as well as homology, plain or Borel-Moore, with
coefficients in K ∈ D(S), and contains Poincare duality. The category D(S)
is here very explicit; it contains an object 1, the unit for the tensor product.
For p the projection from X to S, one defines:

Hn(X, K) = Hom(1, p∗p∗K[n]) Hn(X, K) = Hom(1, p!p!K[−n])

Hn
c (X, K) = Hom(1, p!p∗K[n]) HBM

n (X, K) = Hom(1, p∗p!K[−n])

with the Hom computed in D(S).
If X is smooth purely of dimension d, one has

H∗(X, K) = HBM
∗ (X, K(d)[2d])
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H∗
c (X, K) = H∗(X, K(d)[2d])

For Z/ln or Ql coefficients, one has on S that Hom(1, K) and Hom(K, 1)
are in duality (when K is of finite type), and for K = 1 this gives, still for
X smooth

Hn(X, 1) = Hom(1, p∗p
∗(1)[n]) = Hom(p∗(1), p∗(1)[n]) =

= Hom(p!(1), p!(1)[n]) = Hom(p!p
!(1), 1[n]) = Hom(p!p

!(1)[−n], 1) =

= dual of Hn(X, 1).

2 Generalities on 2-categories

2.1 The notion of 2-category comes in two flavors: strict and lax. We will
use the strict version. There are objects, 1-morphisms f : X → Y between
objects, and 2-morphisms between 1-morphisms with the same source and
target.

X Y

The 2-morphisms can be composed, turning each Hom(X, Y ) into a category
and composition of 1-morphisms is a functor

g, f %→ g ◦ f : Hom(Y, Z)×Hom(X, Y )→ Hom(X, Z)

The composition is associative with units (“on the nose”). If α : f → f ′ and
β : g → g′ are 2-morphisms, we write β ∗ α for the image of (β,α) by the
composition functor. It is a 2-morphism from gf to g′f ′. We write β ∗ f for
β ∗ Idf and similarly for g ∗ α.
Example: the 2-category of small categories: objects are small categories, 1-
morphisms are functors and 2-morphisms are natural transformations betwen
functors.

Definition 2.2 A 2-functor (also called: pseudo-functor) from a category C
to a 2-category D is:

(a) a map F : Ob(C)→ Ob(D);
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(b) for X, Y in C, a map from Hom(X, Y ) to the set of 1-morphisms from
F (X) to F (Y );

(c) for X
f→ Y

g→ Z in C, an invertible 2-morphism

c(g, f) : F (gf)→ F (g)F (f); (2.2.1)

it is called the composition isomorphism.

The data should satisfy:

(i) for a triple composite hgf in C, the diagram of isomorphisms deduced
from the isomorphisms (c)

F (hgf) −−−→ F (hg)F (f)
⏐⏐"

⏐⏐"

F (h)F (gf) −−−→ F (h)F (g)F (f)

is commutative.

(ii) for X in C, F (IdX) is an equivalence, that is, there exists u : F (X)→
F (X) such that u◦F (IdX) and F (IdX)◦u are isomorphic to the identity
of F (X).

Remark 2.3 This definition of a 2-functor is “lax”; equalities are only as-
sumed between 2-morphisms. As a consequence, if for each f in C we give a
1-morphism F (f)′ : F (X) → F (Y ) and an isomorphism α : F (f) → F (f)′,
one can uniquely organize the F (f)′ into a 2-functor F ′, in such a way that
α is a strict morphism of 2-functors F → F ′: one transports the composition
isomorphisms (2.2.1) from the F (f) to te F (f)′ using α.

Remark 2.4 A category can be viewed as a 2-category in which the only
2-morphisms are identities, and from this point of view 2.2 is a special case
of the notion of 2-functor between 2-categories. The definition of such a
2-functor is obtained by modifying 2.2 as follows: in (b), F is a functor
from Hom(X, Y ) to Hom(F (X), F (Y )), and in (c), c(g, f) is assumed to be
functorial in f and g. One composes 2-functors in the obvious way.
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Lemma 2.5 (i) If F is a 2-functor, then for each X ∈ Ob(C) there is a
unique isomorphism α : IdF (X) → F (IdX) such that the diagram

IdF (X)
=−−−→ IdF (X)IdF (X)⏐⏐"

⏐⏐"

F (IdX) = F (IdXIdX)
(2.2.1)−−−→ F (IdX)F (IdX)

(2.5.1)

commutes.

(ii) If, using the isomorphisms α−1 : F (IdX)→ IdF (X) we replace as in 2.3
each F (IdX) by IdF (X) keeping unchanged the other F (f), then, for the
2-functor F ′ so obtained, and for any f : X → Y , the morphisms

F ′(f) = F ′(f ◦ IdX)
(2.2.1)−→ F ′(f)F ′(IdX) = F ′(f)

F ′(f) = F ′(IdY ◦ f)
(2.2.1)−→ F ′(IdY )F ′(f) = F ′(f)

are the identity of F ′(f).

Proof:

(i) If α, β are isomorphisms from IdF (X) to F (IdX), the diagram of iso-
morphisms

IdF (X)
=−−−→ IdF (X)IdF (X)⏐⏐"β

⏐⏐"β∗α

F (IdX)
F (IdX)∗α−−−−−−→ F (IdX)F (IdX)

is commutative. For β = α, this shows that the commutativity of
(2.5.1) is equivalent to the equality c(IdX , IdX) = F (IdX) ∗ α.

By the assumption ii, F (IdX) is an equivalence, hence for any Y in D
the composition with F (IdX) is an equivalence of categories:

F (IdX)◦ : Hom(Y, F (X))→ Hom(Y, F (X))

Let us take Y = F (X). The isomorphism

c(IdX , IdX) : F (IdX)IdF (X) = F (IdX) = F (IdXIdX) −→ F (IdX)F (IdX)

comes from a unique isomorphism α : IdFX → F (IdX); it is the unique
isomorphism for which (2.5.1) commutes.
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(ii) By construction, the functor F ′ is such that F ′(IdX) = IdF ′(X) and that
c(IdX , IdX) is the identity. We have to show that for such a functor
the conclusions of (ii) hold. Let us apply i to f, IdX , IdX . We obtain
the commutativity of the square

F ′(f) = F ′(fIdXIdX) −−−→ F ′(fIdX)IdF (X)⏐⏐"
⏐⏐"

F ′(f)F (IdXIdX)
=−−−→ F ′(f)IdF (X)IdF (X) = F ′(f)

i.e. that the isomorphism c(f, IdX) is idempotent, hence the identity.
Considering i for IdY , IdY , f , one similarly sees that c(IdY , f) is the
identity.

Remark 2.6 This lemma shows the essential equivalence of our “lax” setting
with the “strictly unital” setting where 2-functors are assummed such that
F (IdX) = IdF (X) and that c(IdX , f), c(f, IdY ) are always the identity.

Remark 2.7 It is convenient to use 3-dimensional cell complexes to picture
compatibilities in a 2-category.

For ordinary categories, a 1-dimensional CW complex with oriented edges
is used to picture a system of arrows, and if one attaches to

a 2-cell with boundary, this 2-cell is said to be commutative if the top com-
posite equals the bottom composite.
Example: Two composable maps define a commutative triangle

gf

f g (2.7.1)

When we work in a 2-category, such a 2-cell will be given with a top and
a bottom, and will correspond to a 2-morphism from the top to the bottom
composite.
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Example: the datum 2.2.c of a 2-functor F : C → D attaches to the com-
mutative triangle 2.7.1 in C the triangle

F(g)F(f)

F(gf)

(2.7.2)

The 2-morphism 2.7.2 being a 2-isomorphism, it could be lablled .
A decomposition of the disc with boundary

with a 2-morphism given for each 2-cell into which the disc is decomposed,
will define a unique morphism from the top to the bottom composite if one
can go from top to bottom by a sequence of moves

Suppose that two such decompositions are given. They define decomposition
of S2, to which one can attach B3, This 3-ball will be said to be commutative
if the two 2-morphisms corresponding to the decompositions are equal.
Example: In a category C, a sequence of 3 composable maps defines a tetra-
hedron with commutative faces

f

g
h

hg

gf

hgf

If we apply to it a 2-functor, we obtain using 2.7.1, the 2-dimensional picture
(boundary of the 3-simplex)
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obtained by gluing f
g

hgf

h
gf and f

g

hgf

h
gh . The axiom 2.2.i in

the definition of a 2-functor can be expressed by saying that the 3-simplex
having this as a boundary is commutative.

Remark 2.8 To a 2-category D, one can attach another D1−opp (resp. D2−opp)
by reversing the direction of the 1-maps (resp. 2-maps). One can also reverse
both, obtaining D12−opp.

2.9 We will use the results of A. J. Power (see [3]).
Let Γ be a planar directed graph, given with an embeding in an oriented

plane. The complememnt of Γ in the plane has one unbounded connected
component whose boundary is called the boundary of Γ, and a number of
bounded connected components, the faces.

Power says that Γ is a pasting scheme if:

(i) There are on the boundary of Γ distinct vertices s and t called source
and target, such that for any vertex x there are paths from s to x
and from x to t. “Path” means “directed path”. It results from this
condition that Γ is connected.

(ii) If one goes clockwise around a face F , starting from some vertex v, one
obtains a sequence of oriented edges. One requires that there are on
the boundary of each F distinct vertices s(F ), t(F ) such that, starting
from s(F ), this sequence is a non-empty directed path σ(F ) from s(F )
to t(F ) followed by the inverse of a directed path τ(F ) from s(F ) to
τ(F ).

It follows from (i) and (ii) that the boundary of each face is S1, with no
identification:

no F nor F
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It looks like

The edges on the boundary of Γ are either

(a) adjacent to no face;

(b) adjacent to one face, and going clockwise around it;

(c) adjacent to one face, and going counter-clockwise around it.

Under the assumptions (i),(ii), the edges of type (a) or (b) (resp. (a) or (c))
form a path from s to t. It is called σ(Γ) (resp. τ(Γ)): the boundary looks
like:

The assumptions (i),(ii) also imply that Γ has no cycle.
If γ is any path from s to t, it cuts Γ into a part between σ(Γ) and γ and

a part between γ and τ(Γ). Those two halves are still pasting schemes. For
one, Γ1, one has

σ(Γ1) = σ(Γ), τ(Γ1) = γ

for the other, Γ2, one has

σ(Γ1) = γ, τ(Γ1) = τ(Γ).

If γ is distinct from σ(Γ) and τ(Γ), both Γ1 and Γ2 have faces, hence have
each less faces than Γ. This gives a reduction process to Γ’s with no faces:

s t (2.9.1)

or just one face:

s ta bF (2.9.2)
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2.10 Let T be a 2-category. A labelling of Γ with values in T , or a 2-diagram
of shape Γ in T , is an assignment D:

vertex x %→ object D(x) of T

edge e from x to y %→ 1-morphism D(e) from D(x) to D(y)

face F %→ 2-morphism D(F ) from the composite of the D(e), e in σ(F )
to the composite of the D(e), e in τ(F ).

Such a labeling defines a composite of D, which is a 2-morphism between
two 1-morphisms from D(s) to D(t). The source (resp. target) is the com-
posite of the D(e) for e in σ(Γ) (resp. in τ(Γ)). For Γ with no faces (2.9.1),
it is the identity. For Γ with just one face, as in (2.9.2), it is

(composite 1-morphism from D(b) to D(t))∗D(F )∗(composite 1-morphism
from D(s) to D(a))

If γ is a path from s to t, distinct from σ(Γ) and from τ(Γ), which as
explained above cuts Γ into Γ1 and Γ2, D restricts to labellings D1, D2 of
Γ1, Γ2, and

m(D) = m(D1)m(D2).

2.11 If in Γ we have two paths from a to b, meeting only at a and b

a b (2.11.1)

they limit a region R in the plane. The part of Γ in R̄ is a pasting scheme,
with source a and target b, denoted Γ ∩ R̄. If we remove from Γ the part in
R, we also get a pasting scheme, noted P (Γ, R), of which R is a face. It has
the same σ and τ as Γ.

A labelling D of Γ induces a labelling DR̄ of Γ ∩ R̄. It also induces a
labelling DP (Γ,R) of P (Γ, R): the only new face is R, and D(R) is defined to
be m(DR̄). One has:

m(D) = m(DP (Γ,R)) (2.11.2)

To check this, one chooses a path γ from s to a, a path δ from b to t and
one computes m(D) by cutting Γ along δσ(R)γ and δτ(R)γ:
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s ta bR
γ δ

Special case: suppose that an edge e is in the boundary of two faces F1 and
F2, and that it is the last edge of σ(F1) and the first of τ(F2). The faces F1

and F2 must then look as

F 1 F 2 (2.11.3)

and if we remove e from Γ, the resulting graph Γ−e is still a pasting scheme.
The two faces F1 and F2 join to form a single face of Γ− e.

If in addition e is not the whole of σ(F1) nor the whole of τ(F2) , then
chamging the direction of e also results in a pasting scheme.

Other cases when reversing the direction of e gives again a pasting scheme
are when

(a) e is the last edge of σ(Γ), not the whole of σ(Γ), and on at least one face

(b) e is the first edge of τ(Γ), not the whole of τ(Γ), and on at least one face.

Notation:

(i) It is convenient to sometimes use the standard orientation of the sheet
of paper on which the diagramm is drawn, sometimes the opposite.
This can be indicated by specifying σ(F ) and τ(F ) for any face F .

(ii) In a diagram of shape Γ, we will represent as −→ identity 1-morphisms.

3 Adjunctions in 2-categories

3.1 An adjunction between functors f : A→ B and g : B → A a functorial
bijection

Hom(fA, B) = Hom(A, gB). (3.1.1)

The data of an adjunction amounts to that of morphisms of functors

ϵ : IdA → gf and η : fg → IdB
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such that the resulting compositions

f → fgf → f and g → gfg → g

are identities. The morphisms ϵ and η are deduced from (3.1.1) as follows:
ϵ(A) : A→ gf(A) corresponds by (3.1.1) to the identity of f(A), and η(B) :
fg(B)→ B to the identity of B. See [2].

The second description of adjunction keeps making sense for functors
replaced by 1-morphisms in any 2-category. Terminology (in any 2-category):
g, given with ϵ and η, is a right adjoint to f ; f , given with ϵ and η, is a left
adjoint to g, (ϵ, η) is an adjunction between f and g (the left adjoint being
mentioned first).

In the language of pasting schemes, the axioms of an adjunction mean
that the composites of the pasting schemes

B B

A A

f fε
η g

B B

A A

gη
ε

are the identity of f and g resp.

Lemma 3.2 If (g, ϵ, η) and (g′, ϵ′, η′) are two right adjoints to f , there exists
a unique isomorphism α from g to g′ which transports (ϵ, η) into (ϵ′, η′).

Proof: Suppose that α : g
∼→ g′ transforms ϵ into ϵ′. Applied to the target

of Id : g → g, α transforms Idg into α : g → g′. Expressing Idg in terms of
(ϵ, η, ) we see that α is the composite of

g
B B

A A

g’η
ϵ′

This gives the unicity of α, and a formula for it. Let us check that this
formula gives indeed an ismorphism from g to g′ and that this isomorphism
transposes transports (ϵ, η) into (ϵ′, η′).

The inverse is obtained by permuting the roles of g and g′. The composite

g
B B

A A

g’
B

A

gη
ϵ′

η′

ϵ
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is the identity of g (compose first the inner parallelogram), and similarly with
g replaced by g′. The isomorphism obtained transposrts ϵ into ϵ′

B B

A A

g’

A

f η

ϵ′ϵ

is indeed ϵ′ (compose firts the left parallelogram). It also transports η into
η′. The composite

B

A

B

A

B
g’ fηη′

ϵ

is η′.

Remark 3.3 (i) This lemma is a justification for speaking of the right
adjoint of f , when such an adjoint exists: it is unique up to a unique
isomorphism.

(ii) The formula we obtained in the proof of 3.2 for the isomorphism of g
with g′ used only η and ϵ′. It follows that η′ is uniquely determined
by ϵ′, and that in any adjunction, ϵ uniquely determines η. Dually, η
determines ϵ. This justifies describing an adjunction by giving only ϵ,
or only η.

Example 3.4 (i) Suppose that f is an equivalence: that it has right and
left inverses u, v (fu and vf are isomorphic to the identities). The
inverses u and v are necessarily isomorphic (same proof as the unicity
of the inverse in a group: consider vfu), and an isomorphism fu→ Id
makes the inverse u right adjoint to f . An equivalence and its inverse
form an adjoint pair for which ϵ and η are isomorphisms.

(ii) Suppose that composable morphisms f and g have righta adjoints fr,
gr. Then grfr is righta adjoint to fg, with the adjunctions

ϵ : Id→ grg → grfrfg

η : fggrfr → ffr → Id.
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3.5 If f, g : A ! B form an adjoint pair in a 2-category, with f : A → B
the left adjoint, for any C,

f◦, g◦ : Hom(C, A) ! Hom(C, B)

form an adjoint pair of functors, and similarly for

◦g, ◦f : Hom(C, B) ! Hom(C, A)

Going back to the first description of adjunction, for functors, this means
that one has

(a) bijections
Hom(fx, y) = Hom(x, gy) (3.5.1)

functorial in x ∈ Hom(C, A) and y ∈ Hom(C, B);

(b) bijections
Hom(xg, y) = Hom(x, yf) (3.5.2)

functorial in x ∈ Hom(B, C) and y ∈ Hom(A, C).

Unravelling the definition of (3.5.1) one checks that u : fx→ y maps to the
composite (Idg ∗ u) ◦ (ϵ ∗ Idx) : x→ gfx→ gy. The inverse bijection maps
v : x→ gy to (η ∗ Idy) ◦ (Idf ∗ v) : fx→ fgy → y.

In the language of pasting schemes, (3.5.2) maps

C

A

B

x

y
fφ to the composite of C

A

B

x

y
φ

A
ε

g

C

A

B

x

y
gψ to the composite of C

A

B

x

y
ψ

B

f
η

Dual diagrams hold for (3.5.2). For instance

A

B

C

x

y
g φ maps to the composite of

A

B

C

x

y

A

f φ
ε
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In algebraic notations, (3.5.2) maps xg → y to x → xgf → yf and the
inverse maps x→ yf to xg → yfg → y.

Notations We will write

• (3.5.1) as φ %→ φg (from fx→ y to x→ gy),

• its inverse as ψ %→ fψ (from x→ gy to fx→ y),

• (3.5.2) as φ %→ φf (from xg → y to x→ yf),

• its inverse as ψ %→ gψ (from x→ yf to xg → y).

Given a 2-morphism
f1 . . . fr → g1 . . . gs,

we can use a sequence of those bijections to transmute it into a 2-morphism
between other composites, obtained by moving to the right some initial f ’s,
replacing them by right adjoints, and moving to the left some final g’s, re-
placing them by right adjoints. Principle: the order in which we do these
moves is immaterial. Basic case: assuming the required adjoints exist, the
following diagram is commutative. A right adjoint is denoted by an index r.

Hom(ab, cd)
(3.5.1)
−−−−−→ Hom(b, arcd)

(3.5.2)
⏐⏐"

⏐⏐"(3.5.2)

Hom(abdr, c)
(3.5.1)
−−−−−→ Hom(bdr, arc).

(3.5.3)

This is checked by composing

d a

b

c
d r a r

in two different ways. By 3.5.3 the notation drφar for dr(φar) = (drφ)ar is
unambiguous. Similarly for left adjoints.

Special case: if 1-morphisms f, g have righta adjoints fr, gr, a morphism
φ : f → g defines a morphism φr := grφfr from gr to fr.
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3.6 We now list computation rules. We mainly consider right adjoints; du-
ality gives similar statements for left adjoints.

3.6.1 Let D be a diagram of shape Γ, where Γ is a pasting scheme. Suppose
we have in Γ

• a−→ • b−→ •
and there are no other edges adjacent to the middle vertex. Let Γ′ be obtained
from Γ by substituting for this part of Γ

• c−→ •

We deduce from D a diagram D′ of shape Γ′, by defining D(c) = D(b)D(a)
and keeping the rest unchanged. The composites of D and D′ are equal. In
what follows, D(a) or D(b) will often be an identity.

3.6.2 Suppose that in a pasting scheme Γ an edge e is in the boundary of
faces F1 and F2, that it is the last edge in σ(F1), the first in τ(F2) and that
neither σ(F1) nor τ(F2) is reduced to e:

F 1 F 2e (*)

Let Γ′ be deduced from Γ by reversing the orientation of e. If D is a diagram
of shape Γ, and D(e)r a righta adjoint to D, we obtain a diagram D′ of shape
Γ′ by changing D(e), D(F1) and D(F2) as follows:

D′(e) = D(e)r; D′(F1) = D(F1)
D(e)r ; D′(F2) = D(e)rD(F2).

The composites of D and D′ are equal.

Proof: the story takes place withoin (*) and one considers

F 2F 1 e e
e’

3.6.3 If e is the last edge of σ(Γ), on at least one face F and is not the whole
of σ(Γ), we similarly can reverse the direction of e and define D′ using a right
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adjoint D(e)r to D(e). The conclusion is now that

(composite of D′) = (composite of D)D(e)r .

Proof:

e
e’

t(Γ)

t(Γ′)

The proof also shows that the statement can be modified when e = σ(Γ) by
inserting an identity.

3.6.4 Similarly for e the first edge of τ(Γ) one has

(composite of D′) = D(e)r(composite of D).

3.6.5 If f, g, h have right adjoints fr, gr, hr, for 2-morphisms f
φ→ g

ψ→ h,
one has

(ψφ)r = φrψr

Proof: in

g fh
φψ

change the direction of vertical arrows starting from the right.

Remark 3.7 Let D′ be the following sub-2-category of a 2-category D:

• objects: same as in D,

• 1-morphisms: the 1-morphisms of D admitting a right adjoint,

• 2-morphisms: all 2-morphisms between such 1-morphisms.

That D′ is a sub-2-category follows from the stability by compositions 3.4.ii,
and from the fact that equivalences - in particular identities - have adjoints.

The unicity of adjoints defines a natural isomorphism from (gf)r to frgr.
If we take it as the composition isomorphism, the assignment X %→ X, f %→
fr, φ %→ φr is a 2-functor from (D′)12−opp to D.

If F : C → D is a 2-functor from a category to a 2-category, such that
each F (f) has a right adjoint, composing F with this 2-functor we obtain a
new 2-functor from Cop to D.
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4 e-functors

4.1 Let C be a category provided with a class A of commutative squares.
This class is assumed to be stable by vertical as well as horizontal composi-
tions, and to contain the squares for which vertical (resp. horizontal) maps
are isomorphisms.

We will define 4 kinds of “e-functors” from C to a 2-category D. The
letter “e” is for “exchange”.

A. Lower e-functors The data are:

(a) two 2-functors H∗ and H! from C to D, with H∗(X) = H!(X) for
any X in C. We will write simply H(X) for H∗(X) = H!(X), f∗
for H∗(f) and f! for H!(f).

(b) For each square Q =

•
f ′
−−−→ •

g′
⏐⏐"

⏐⏐"g

•
f−−−→ •

in A, a 2-morphism

eQ : g!f
′
∗ → f∗g

′
!

!g’ g !

 f’*

f*

Axioms:

(i) compatibility for vertical and horizontal composition of squares.
For “vertical” this means commutativity of the solid

! !h’g’ h g! !
g’! g !

h !!h’

f’’*

f’*

f*

where the squares bear the 2-morphisms b and the triangles the
2-morphisms 2.2.c for H!.
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(ii) If both vertical or both horizontal morphisms are identities then
the exchange morphism is an isomorphism.

B. Upper e-functors: lower e-functors with values in D1−opp. The direc-
tion of the structural 2-morphisms remains the same. Each square Q
in A gives a 2-morphism

eQ : f
′∗g! → g

′!f ∗

 

!g’

f’*

g !

f*

C. e* and e! contradirectional functors : the data is that of a covariant
and a contravariant 2-functors H• , H•, and for each Q in A,

for ∗: eQ : f •g• → g′
•f

′
•

 f’
.

g’.

f.
g.

for !: eQ : g′
•f

′
• → f •g•

g’. g.

f.

f’. 

Axioms: same as for codirectional (upper and lower).

Remark 4.2 If in a lower e-functor, H! transforms identities to identities
and the composition isomorphisms c(Id, f), c(f, Id) are identities (cf. 2.5.ii),
and if Q is a square in A such that g and g′ are identities, then eQ = Id. If we
compose vertically Q with itself, one obtains from the vertical composition
axiom that e2

Q = eQ. Since eQ is an ismorphism it follows that eQ = Id.
Similar statement holds for H∗ and squares where f and f ′ are identities and
for upper and contradirectional e-functors.
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Remark 4.3 There is a number of “duality” operations around:

replace squares in A by their transposed

replace D by D1−opp or D2−opp

exchange ∗ and !, or H• and H•

Replacing D by D1−opp exchanges upper and lower e-functors. Replacing D
by D2−opp exchanges e* and e! cases of 2.8.C. We have also symmetries:

For upper (lower) e-functors:

A %→ Atr, * and ! exchanged, and D %→ D2−opp

In the contradirectional case:

A %→ Atr, • %→• and D %→ D1−opp

4.4 Example of a lower e-functor: take for A the commutative squares, for
H∗ a 2-functor, H! = H∗ and the obvious structural 2-isomorphisms.

4.5 Example: we will prove later that in the l-adic situation, (f∗, f!) is a lower
e-functor, (f ∗, f !) is an upper e-functor, and (f∗, f !) as well as (f!, f ∗) are e*-
functors for which the exchange morphisms are isomorphisms. Inverting the
exchange morphisms they can be viewed as e!-functors as well.

4.6 Suppose that a lower e-functor (H∗, H!) is such that each f! has a right
adjoint, and let us choose one, f !. By 3.7, the f ! organize into a contravariant
2-functor H !. For a square

Q =

•
f ′
−−−→ •

g′
⏐⏐"

⏐⏐"g

•
f−−−→ •

in A, the exchange map eQ transmutes into a map

g′!(eQ)g!
: f ′

∗g
′! → g!f∗

Those maps turn (H∗, H !) into a e!-functor. Let us check for instance com-
patibility with vertical composition. For (H∗, H!) the compatibility with
vertical composition asserts that the composite of exchange morphisms and
composition isomorphisms or their inverse given by
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(g′h′)!

h′
!

g′
!

f ′′
∗

f ′
∗

f∗

h!

g!

(gh)!

is the exchange morphism for

•
f ′′
−−−→ •

g′h′
⏐⏐"

⏐⏐"gh

•
f−−−→ •

Reversing the direction of arrows, in the order h, g, gh, g′, h′, g′h′, we obtain
the vertical composition axiom for (H∗, H !).

4.7 Similarly, if each f∗ has a left adjoint f ∗, and we choose one, we obtain
a e*-functor (H∗, H!).

When each f∗ has a left adjoint and each f! a righat adjoint f !, the
exchange morphisms for (H∗, H!) and (H∗, H !) are deduced from each other
by adjunction. If one is an isomorphism so is another. If this holds one
obtains new contradirectional functors by inverting the exchange morphisms,
an from those we obtain in the same way an upper e-functor (H∗, H !). The
system so obtained is called a cross functor.

4.8 Let A be a class of commutative squares in a category C , as in 4.1.
A cross-functor from C to a 2-category D, relative to A, is the following:

(a) an upper e-functor (H∗, H !) and a lower e-functor (H∗, H!) from C to D,
rel A. One supposes that the 2-functors H∗, H∗, H !, H! agree on objects.
For f : X → Y in C we will write f ∗, f∗, f !, f! for H∗(f), . . . ;

(b) for any f : X → Y in C, an adjunction bewteen f ∗ and f∗ as well as
between f! and f !. The left adjoints are f ∗ and f!.

The following axioms should hold:

(c) compatibility of adjunction with composition: an iterated bijection (3.5.1),
(3.5.2) transforms the isomorphism (gf)∗ → g∗f∗ into the inverse of the
isomorphism (gf)∗ → f ∗g∗ and similarly for !’s.

23



(d) given a square in A

•
f ′
−−−→ •

g′
⏐⏐"

⏐⏐"g

•
f−−−→ •

the corresponding exchange morphisms

g!f
′
∗ → f∗g

′
! and f ′∗g! → g

′!f ∗

transmute by (3.5.1), (3.5.2) into morphisms

f∗g! → g′
!f

∗ and g′
!f

′∗ → f ∗g!

which are mutually inverse.

Example 4.9 In the l-adic case,

smooth =⇒ strongly upper transversal

proper =⇒ strongly lower transversal

unramified =⇒ strongly upper cotransversal

separated =⇒ strongly lower cotransversal

5 Transversal and cotransversal morphisms

5.1 Let C be a category with fiber products and (H !, H∗) an upper e-functor
from C to D, rel. the class of Cartesian squares in C. It will be convenient
to normalize the 2-functors H ! and H∗ to be strictly unital, as in ??.

By application of the duality D %→ D1−opp, our constructions give parallel
constructions for lower e-functors. The duality D %→ D2−opp exchanges the
role of H ! and H∗.

Under the heading “etale example”, we will from time to time explain
how the notions introduced apply in the case of etale cohomology.

A monomorphism f : X → Y gives rise in C to a cartesian square

X X
∥∥∥

⏐⏐"

X −−−→ Y

(5.1.1)
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and in D to an exchange morphism in the square

H(X) H(X)
∥∥∥

⏐⏐"f !

H(X) −−−→
f∗

Y

(5.1.2)

that is to a 2-morphism

f ! → f ∗ for f a monomorphism (5.1.3)

This construction is self-dual (for D %→ D2−opp, exchanging ∗ and ! and
reversing 2-morphisms).

If f is an isomorphism, the corresponding morphism (5.1.3) is an isomor-
phism. Indeed, it is the exchange map rel a square in which the vertical maps
are isomorphisms.

Etale example: open embeddings and closed embeddings are monomorphisms.
For open embeddings, (5.1.3) is an isomorphism. For closed embeddings,
(5.1.3) is derived from the map, defined for any sheaf of abelian groups on Y

(sections with support on Y )→(sections on Y ).

We now list some compatibilities. In the diagrams used to justify them, we
will use the following convention to show in just one picture both a diagram
in C and one (often a pasting scheme) in D: each object X in C is to be
replaed by H(X), a map f in C is to be replaced by f ∗ or by f !, which
one being indicated by a mark ∗ or !, and relevant exchange 2-morphisms
are shown. Composition isomorphisms will often be omitted. For instance,
(5.1.1) and (5.1.2) would be compressed as

X X
∥∥∥

⏐⏐"!

X
∗−−−→ Y

(5.1.4)

When this ... non ambiguity, parallel maps in a diagram will sometimes be
denoted by the same letter.

Lemma 5.2 The formation of (5.1.3) is compatible with the composition of
monomorphisms.
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In other words, for a composite X
f−→ Y

g−→ Z, the composition isomorphisms
(gf)∗ → f ∗g∗ and (gf)! → f !g! identify (5.1.3) for gf with ((5.1.3) for
f)∗((5.1.3) for g).

Proof: Consider
X X X
∥∥∥

⏐⏐"!

⏐⏐"!

X
∗−−−→ Y Y

∥∥∥
∥∥∥

⏐⏐"!

X −−−→
∗

Y −−−→
∗

Z

and use the compatibility with vertical and horizontal composition.

Lemma 5.3 The formation of (5.1.3) is compatible with a base change h :
Y ′ → Y , using h∗ or h!

For a cartesian square

X ′ h′
−−−→ X

f ′
⏐⏐"

⏐⏐"f

Y ′ h−−−→ Y
this means the commutativity of

h
′∗f ! exchange−−−−−→ f

′!h∗

g
′∗∗(5.1.2)

⏐⏐"
⏐⏐"(5.1.2)∗g∗

h∗f ∗ −−−→ f
′∗h∗

and dually of

h
′!f ∗ ←−−− f

′∗h!

⏐⏐"
⏐⏐"

h!f ! −−−→ f
′!h!

(5.3.1)

Proof: It suffice to consider the first diagram. It is a special case of the
compatibility between exchange morphisms and change of base: .....

5.4 A morphism f : X → Y is said to be:

Transversal (rel H): if the exchange morphisms corresponding to the square

X ×Y X −−−→ X
⏐⏐"

⏐⏐"f

X −−−→
f

Y

(5.4.1)
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is an isomorphism;

strongly transversal (rel H): if for any g : Y ′ → Y the morphism pr2 :
X ×Y Y ′ → Y ′ deduced from f by the change of base g is transversal;

cotransversal (rel H): if the diagonal X → X ×Y X is transversal;

strongly cotransversal (rel H): if the diagonal X → X ×Y X is strongly
transversal;

bitransversal (rel H): if it is transversal and cotransversal;

strongly bitransversal (rel H): if it is strongly transversal and strongly co-
transversal;

A monomorphism f is transversal if and only if the 2-morphism (5.1.2):
f ! → f ∗ is an isomorphism.

Etale example: open embeddings are transversal monomorphisms.

Etale example: unramified morphisms are strongly cotransversal.

Etale example: etale morphisms are bitransversal for (f ∗, f !), proper mor-
phisms are bitransversal for (f∗, f!).

If f : X → Y is cotransversal, composing the exchange map for (5.4.1)
with the inverse of the isomorphism ∆! → ∆∗ we obtain a morphism

f ! → f ∗ (5.4.2)

which generalizes (5.1.3) from monomorphisms to cotransversal maps. We
will prove for (5.4.2) compatibilities similar to lemmas 5.2 and 5.3. The
following lemma gives a meaning to the question.

Lemma 5.5 (i) We have the following stabilities by composition:

(transversal monomorphism)◦(transversal) is transversal

(cotransversal)◦(strongly cotransversal) is cotransversal

(strongly cotransversal)◦(strongly cotransversal) is strongly cotransver-
sal
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(ii) Strongly cotransversal map is universally so

Proof: The first stability is clear from

•
∗−−−→ • •

!

⏐⏐"
⏐⏐"

⏐⏐"g!

•
∗−−−→ • •∥∥∥

∥∥∥
⏐⏐"f !

• −−−→
g∗

• −−−→
f∗ •

For the second and third, one uses that the diagonal map ∆X/Z for a com-
posite X → Y → Z is the composite first line of the diagram

X
∆X/Y−−−→ X2

Y −−−→ X2
Z⏐⏐"

⏐⏐"

Y
∆Y/Z−−−→ Y 2

Z

in which the square is cartesian, and one applies the first stability. The
statement (ii) is clear.

5.6 6.6 A morphism p : X → S and a section x : X → S define the following
two 1-morphisms H(S)→ H(S):

ΣX,x := x∗p! and ΩX,x := x!p∗

they are exchanged by the duality D %→ D2−opp.
As x is a monomorphism, it gives rise to a 2-morphism from x! to x∗.

Applying to it (−) ∗ p!, we obtain

(x! → x∗) : Id→ ΣX,x. (5.6.1)

Etale example: if X/S is smooth purely of relative dimension d, ΣX,x is
K %→ K(d)[2d] and (5.6.1) is the cup product with the Euler class of the pull-
back by x of the relative tangent bundle. The dual ΩX,x is K %→ K(−d)[−2d].
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For any f : X → Y , the diagonal map X → X2
Y is a section of pr1 : X2

Y →
X. We denote by Σf : H(X)→ H(X) the corresponding 1-morphism. The
diagram:

...

defines morphisms

f ! ∆∗∗(exchange)−−−−−−−−→ Σff
∗ (5.6.1)∗f∗

←−−−−− f ∗ (5.6.2)

If f is cotransversal, (5.6.1) is an isomorphism and (5.6.2) gives (5.4.2). To
unravel compatibilities obeyed by (5.4.2), thisdecomposition will be useful.

We now list compatibilities obeyed by (5.6.1). The choice of x will be
clear and we will write ΣX/S for ΣX,x.

5.6.3 Fix p : X → S and q : Y → S, with sections x and y, and let
f : X → Y be an S-morphism such that f(x) = y. Define K := S ×Y X.
The diagram

S
∗−−−→ K

∗−−−→ X
⏐⏐"!

⏐⏐"!

S
∗−−−→ Y

⏐⏐"!

S
defines a morphism

ΣX/S → ΣK/SΣY/S (5.6.4)

Lemma 5.7 The diagram

Id IdId

(5.6.1)

⏐⏐"
⏐⏐"(5.6.1)∗(5.6.1)

ΣX/S
(5.6.4)−−−→ ΣK/SΣY/S

is commutative.

Proof: We will write ... for .... With this notation the upper composite is

...
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while the lower composite is, by (5.2),

...

The compatibility to be checked in the square is (5.3) for the !-change of
base.

5.8 6.9 Fix p : X → S pointed by a section x and let X ′, p′, x′ be deduced
by a change of base h : S ′ → S. The diagram

S ′ ∗−−−→ S

∗
⏐⏐" x

⏐⏐"∗

X ′ ∗−−−→ X

!

⏐⏐" p

⏐⏐"!

S ′ ∗−−−→ S

defines a morphism
h∗ΣX/S → ΣX′/S′h∗ (5.8.1)

Lemma 5.9 (5.8.1) is compatible with (5.6.1):

h∗ (5.6.1)−−−→ h∗ΣX/S∥∥∥
⏐⏐"(5.8.1)

h∗ (5.6.1)−−−→ ΣX′/S′h∗.

Proof: Reduces to (5.3).

Proposition 5.10 (cf. 5.2) The formation of (5.4.2) is compatible with the
composition of strongly cotransversal morphisms.

More generally, a composite X
f−→ Y → gS is is cotransversal when g is

cotransversal and f strongly cotransversal (by 5.5) and the compatibility
5.10 holds in that setting.Proof: Let us consider the following diagram in
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the category of 1-morphisms from H(Z) to H(X) (explanation follows)

(gf)! −−−→ Σgf (gf)∗ ←−−−
(1)

(gf)∗

⏐⏐"∼=
⏐⏐"∼=

Σgff ∗g∗ ←−−− f ∗g∗
⏐⏐"

⏐⏐"
∥∥∥

ΣfΣΓf ∗g∗ ←−−− f ∗g∗

(2)

$⏐⏐
∥∥∥

f !g! −−−→ Σff ∗Σgg∗ ←−−−
(1)

f ∗g∗

(5.10.1)

The morphisms (1) are isomorphisms, and we have to show the commuta-
tivity of the boundary square, after they are inverted. The morphism (2)
will be shown to be an isomorphism (and ΣΓ will be defined). Once this is
shown, the required commutativity follows from that of each cell of (5.10.1).
We first consider the right side (5.10.1)r.

One defines ΣΓ by pr1 : X ×S Y → X with the section (idX , f), and
the morphism Σgf → ΣfΣΓ is defined by 5.6.3 applied to the morphism
X2

S → X ×S Y over X which gives rise to

X −−−→
∗

X2
Y −−−→∗ X2

S
⏐⏐"!

⏐⏐"!

X −−−→
∗

X ×S Y
⏐⏐"!

X

the commutativity of the middle square of (5.10.1)r being 5.7. The lower
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square is derived from 5.9 applied to

X −−−→
∗

Y
⏐⏐"∗ ∆

⏐⏐"∗

X ×S Y −−−→
∗

Y 2
S

⏐⏐"!

⏐⏐"!

X −−−→
∗

Y.

As Y → S is strongly cotransversal, both horizontal arows are isomorphisms,
and so is (2).

We now consider the left side (5.10.1)l of (5.10.1). We take the cartesian
square of X → Y → S over S and the pull-back of the left upper square by
∆ : Y → Y 2

S , as well as the diagonal X → X2
S:

...

(unmarked arrows should be marked ∗). The starting point is (gf)!, which
we obtain, modulo composition isomorphisms, by going from S to X (by !)
to X2

S to X. Its isomorphism with f !g! - similarly obtained by going from S
to Y (by !) to Y 2

S to Y to X (by !) to X2
Y to X - is the exchange morphism

for the face
X −−−→ Y ×S X −−−→ X
⏐⏐"!

⏐⏐"!

⏐⏐"!

Y −−−→ Y 2
S −−−→ Y

and the composition isomorphism for the back face of the cube. For these
we go to Σff ∗Σgg∗ (S to Y to Y 2

S (!) to Y to X to X2
Y (!) to X and then to

ΣfΣΓf ∗g∗. The identification with the other composite in (5.10.1)l is reduced
to the compatibility .... for the cube.

Proposition 5.11 (cf. 5.3) The formation of (5.4.2) for a strongly co-
transversal f : X → Y is compatible with a base change h : Y ′ → Y , using
h∗ or h!.

Proof: By duality, it suffices to consider h∗. One considers the product of
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the diagram
X X
∥∥∥

⏐⏐"∗

X
!−−−→ X2

Y −−−→∗ X

!

⏐⏐"
⏐⏐"!

X
∗−−−→ Y

which defines f ! → f ∗ and Y ′ ∗−→ Y and uses compatibilities (5.3.1) to show
the commutativity of the two cubes.

Lemma 5.12 If in a cartesian square

•
g′−−−→
∗ •

f ′
⏐⏐"! !

⏐⏐"f

•
g−−−→
∗ •

f or g is strongly bitransversal then the exchange morphism is an isomor-
phism.

Proof: By duality, we may assume that it is f which is strongly bitransversal.
By 5.11, the isomorphisms f ! → f ∗ and f

′! → f
′∗ transport th exchange

morphism into the composition isomorphism (fg′)∗ = (gf ′)∗. The exchange
morphism is hence an isomorphism.

6 The adjunction theorem

6.1 Let x : S → X be a section of f : X → S. We will write Ω and Σ for
ΩX = x!f ∗ and ΣX = x∗f !.

Suppose that f is transversal, that is the exchange morphism for the
square

X2
S

pr2−−−→
∗

X

!

⏐⏐"pr1 !

⏐⏐"

X −−−→
∗

S

(6.1.1)
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is an isomorphism. If one inverts this 2-morphism, the cartesian diagram

S −−−→
!

X −−−→
∗

S
⏐⏐"∗ 1

⏐⏐"∗
⏐⏐"∗

X
∆−−−→
!

X2
S

pr2−−−→
∗

X

!

⏐⏐"pr1 !

⏐⏐"

X −−−→
∗

S

(6.1.2)

defines a morphism δ from x∗∆!pr!
1f

∗ = x∗f ∗ = Id to ΩΣ. Dually, one
defines ϵ : ΣΩ → Id by exchanging the ∗ and !. In (6.1.2), the morphism 1
is IdX × (xf).

Here is a way to picture the objects and morphisms in (6.1.2) which will be
useful in more complicated cartesian diagrams. One first supposes that one is
in (Sets), and that S is one point. For each object in the diagram all maximal
sequences of monomorphisms starting at this object terminate at the same
object and hence we may consider each object as a subobject in one of the
“maximal” objects which are not starting points for any monomorphisms.

Each object and in particular each maximal object is the product of some
of the copies of X (in the case of (6.1.2) empty set of copies, the first copy,
the second copy or both). We denote a generic element in the first copy of
X by a and in the second copy of X by b. This gives us notations for the
generic elements of all maximal objects. All morphisms between the maximal
objects are projections and can be specified in the usual way by their action
on generic elements e.g. (a, b) %→ (a). The subobjects of the maximal objects
can be specified by the image of their generic elements in the the maximal
objects e.g. (a = b) for the diagonal in X2. Since the morphisms between all
objects are restrictions of projections between the maximal objects we get a
way to specify all morphisms in the diagram. The diagram (6.1.2) is encoded
as follows:

(x, x) −−−→ (a, x) −−−→ x
⏐⏐"

⏐⏐"
⏐⏐"

(a = b) −−−→ (a, b) −−−→ b
⏐⏐"

⏐⏐"

(a) −−−→ (•)
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Theorem 6.2 If f is universally transversl, (Σ, Ω) is an adjoint pair, for
the adjunctions morphisms δ and ϵ.

Proof: It suffice to prove that the composite

Ω→ ΩΣΩ→ Ω (6.2.1)

is identity. That Σ→ ΣΩΣ→ Σ is identity is the dual statement.
The morphism (6.2.1) is the composite of the following pasting diagram:

S −−−→ X −−−→ S −−−→ X
⏐⏐"

⏐⏐"
⏐⏐" ∗

⏐⏐"∆

X
∆−−−→
!

XX −−−→ X −−−→ XX −−−→ X
⏐⏐"

⏐⏐"
⏐⏐" !

⏐⏐"

X −−−→
∗

S −−−→
!

X −−−→
∗

S

(6.2.2)

where ∗ and ! are assumed to be the same for parallel maps at the same level
(resp. same column). If we fold (6.2.2) along the middle vertical , we obtain
two sides of the three dimensional cartesian diagram, described below:

... (6.2.3)

The diagram is made out of four cubes which we number as follows

1 2
3

4
(6.2.4)

We declare (6.2.3) to be viewed from above: 1, 2, 3 are the top cubes, 2,3,4
are the right cubes, 3,4 the front cubes.

We now describe each cube. Cube 4 consists of the fiber products of some
of the three copies of X, which we label the first copy (left of S), the second
(back) and the third (above S). The cube 3 is obtained from the top face of
4 by pull back by x. The cube 2 from the back face of 3 by pull back by ∆.
The cube 1 from the left side of 2 by pull-back by (∆, Id) : X2 → X3.

With the notations explained to describe the maps in (6.1.2), each object
in (6.2.3) is a subobject of the product of some of the three copies of X with
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the generic elements a, b and c respectively. The diagram (6.2.3) can be
encoded as follows:

... (6.2.5)

We label the three directions in (6.2.3) as

u :→ v :↓ w :↘,

and decorate each arrow with ∗ or !, the decoration being the same for maps
in the same direction and at the same level. Pattern used:

u :
!−→ ∗−→ v :

↓∗
↓! w :

∗
↘

!

↘

with this assignement, each face of each cube carries either an exchange
morphism (some of which are isomorphisms by the universal transversality
assumption), or a composition isomorphism.

Parallel faces at the same level are of the same type, and those types,
viewed in projection to the plane (v, w) (resp. (u, w), (u, v)) are as follows:

2 Cross functors on schemes

1 Complimentary pairs

1.0.6 The 2-category TR of triangulated categories is defined as follows:

Objects: triangulated categories

1-morphisms: additive functors F : D1 → D2 given together with a functo-
rial isomorphism α : FT1 → T2F where Ti are the translation functors
for Di, and carring diatinguished triangles to distinguished triangles.

2-morphisms: morphisms of functors for which

FT1 −−−→ T2F⏐⏐"
⏐⏐"

F ′T1 −−−→ T2F ′

is commutative.
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We assume that in the definition of a triangulated category the shift functor
T is given together with an inverse T−1. Then the opposite of a triangulated
category is again a triangulated category. This defines an isomorphism D %→
Dop : TR→ TR2−opp.

1.0.7 Suppose given a cross functor H from a category C to TR. The
following formalizes expected properties of the decomposition of a scheme
into a closed subscheme and its open complement. Consider in C:

U
j−→ X

i←− Z

where j is an upper transversal monomorphism, i a lower transversal monomor-
phism and H(U ×X Z) = 0. These assumptions are invariant by replacing
each H(Y ) by the opposite triangulated category and exchanging ! and ∗.

By transversality we have strings of adjunctions

j!, j! ∼= j∗, j∗

and
i∗, i∗ ∼= i!, i

!

For j, the composite Id → j!j! → j∗j! is the exchange isomorphism which
implies that the adjunction morphism Id→ j!j! is an isomorphism. Similarly,
j∗j∗ → Id is an isomorphism. It follows that j! and j∗ are fully faithful, with
left inverse j! ∼= j∗.

For i, the composite Id → i!i! → i!i∗ is an exchange isomorphism which
implies that Id→ i!i! is an isomorphism. Similarly for i∗i∗ → Id. It follows
that i∗ ∼= i! is fully faithful, with left inverses i! and i∗.

The cartesian square
Z ×X U −−−→ U

⏐⏐"
⏐⏐"

Z −−−→ X

provides (contradirectional) exchange isomorphisms showing that i∗j! = i!j∗ =
0 and j∗i! = 0. The latter can be rewritten using j! ∼= j∗ and i! ∼= i∗.

It follows that i!H(Z) = i∗H(Z) is left orthogonal to j∗H(U):

Hom(i!A, j∗B) = 0

and that i!H(Z) = i∗H(Z) is right orthogonal to j!H(U).
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Lemma 1.1 With the notations and assumptions as above, the following
conditions are equivalent:

(a) (j∗, i∗) is conservative,

(b) for any K in H(X), j!j!K → K → i∗i∗ can be extended to a distinguished
triangle,

(c) H(X) = j!H(U) ∗ i∗H(Z),

(a*) (j!, i!) is conservative,

(b*) for any K in H(X), i!i!K → K → j∗j∗ can be extended to a distin-
guished triangle,

(c*) H(X) = i!H(Z) ∗ j∗H(U).

The starred statements correspond to the unstarred ones by duality. We will
prove the implications (a)⇒ (b)⇒ (c)⇒ (a) and (c)⇒ (a∗) from which all
equivalences follow by duality.

The statement (a) is that if j∗(φ) and i∗(φ) are isomorphisms, so is φ. In
the triangulated setting we are in, this ammounts to K being zero as soon
as j∗K and i∗K are.

In (b), the boundary map i∗i∗K → j!j!K[1] completing the distinguished
triangle is necessarily unique, and natural in K. Indeed, if we choose one for
K and L in

j!j!K −−−→ K
u−−−→ i∗i∗K

v−−−→ j!j!K[1]
⏐⏐"

⏐⏐"
⏐⏐"

⏐⏐"

j!j!L −−−→ L −−−→ i∗i∗L −−−→ j!j!L[1]

the first two vertical maps on the left can be completed to a morphism of
distinguished triangles with the third map being (natural map)+w. We have
w ◦ u = 0, hence w factors through a map from j!j!K[1] to i∗i∗L such a map
vanishes by orthogonality j!H(U) ⊥ i∗H(Z) and hence w = 0.

In (c), the notation A ∗ B has the following meaning. For A, B sets of
objects in a triangulated category, A ∗ B is the set of objects e for which
there is a distinguished triangle

a→ e→ b→ a[1]
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with a in A and b in B (e is an “extension” of b by a). The octahedral axiom
implies that (A ∗B) ∗ C = A ∗ (B ∗ C).

Proof of Lemma 1.1: (a) ⇒ (b): Let us complete j!j!K → K to a distin-
guished triangle

j!j
!K → K →?→ j!j

!K[1]

the composite j!j!K → K → i∗i∗K vanishes by orthogonality j!H(U) ⊥
i∗H(Z), hence K → i∗i∗K factors through a morphism w :? → i∗i∗K. We
will deduce from (a) that w is an isomorphism.

If we apply j∗ = J !, the triangle

j!j!j
!K

∼=−→ j!K → j!?→ . . .

shows that j!? = 0, while j!i∗i∗ = 0 as well. If we apply i∗, j!j∗K gets killed

and we have isomorphisms i∗K
∼=−→ i∗?, i∗K

∼=−→ i∗i∗i∗K. Hence i∗w is an
isomorphism.

(b)⇒ (c): Trivial.

(c)⇒ (a): We have to show that if j∗K and i∗K vanish, so does K. Choose
a distinguished triangle

j!A→ K → i∗B → j!A[1]

Applying j! = j∗, we kill i∗B and obtain j!j!A = 0, hence A = 0. Applying
i∗, we kill j!A, obtain that i∗i∗B = 0, and hence B = 0. It follows that
K = 0.

(c) ⇒ (a∗): Suppose that j!K = i!K = 0. Let us show that for any L,
Hom(L, K) = 0. By the long exact sequence of Hom’s, it suffices to check
it for L of the form j!A and i!B, for which it is clear by adjunctions.

Remark 1.2 When the equivalent conditions of the lemma hold, we are
in the situation considered in [1, 1.4.3], where such a formalism is used to
construct a t-structure on H(X) from t-structures on H(U) and H(Z).

1.2.1 Fix a noetherian scheme S and let Sch/S be the category of separated
schemes of finite type over S. Let

(H, f ∗) : X %→ H(X) : f %→ f ∗

be a contravariant 2-functor from Sch/S to TR. We will impose the following
conditions:
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1. (0) H(∅) = 0

2. (right adjoint) for any f , f ∗ has a right adjoint f∗ and for a closed
embedding i the adjunction i∗i∗ → Id is an isomorphism

3. (left adjoint) if p is smooth, p∗ has a left adjoint p# and for any pull-
back square

X ′ f ′
−−−→ X

p′
⏐⏐"

⏐⏐"p

Y ′ −−−→
f

Y

the exchange morphism p′#f
′∗ → f ∗p# is an isomorphism

4. (locality) for a pair U
j−→ X

i←− Z where j is an open embedding, i is a
closed embedding and X = j(U)⨿ i(Z), the pair (j∗, i∗) is conservative

5. (homotopy invariance) if p is the projection A1
X → X, the adjunction

morphism Id→ p∗p∗ is an isomorphism

6. (stability) if s is the zero section of p : A1
X → X, p#s∗ is an equivalence

of H(X).

We will show that under these conditions f ∗ extends uniquely to a cross
functor (uniquely up to unique isomorphism in the category of cross functors
with the same H(X)). For this unique extension smooth morphisms are
upper transversal and proper morphisms are lower transversal.

Later, this will be applied to motivic triangulated categories, at least for
S of equal characteristic.

Etale example: In the l-adic setting conditions 1 and 2 are obvious and
conditions 4 and 5 are well known. To see 3 note that for smooth maps p∗

agrees with p! up to a shift and twist and hence p# is obtained from p! by
the inverse shift and twist. The second half of 3 follows from the proper base
change theorem. Property 6 holds because p#s∗ is K %→ K(1)[2].
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