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1 E-functors

1.1 First definitions

1.1.1 Let C be a category with fiber products and D a 2-category. A
covariant codirectional e-functor H from C to D is given by:

Data

1. 2-functors H∗ and H! wich coincide on objects of C. The common value
of H∗ and H! on X ∈ ob(C) is denoted by H(X)

2. for any pull back square Q =

 X ′ h0→ X
v0 ↓ ↓v1
Y ′ h1→ Y

 a 2-morphism

eQ : H!(v1)H∗(h0)→ H∗(h1)H!(v0)

called the exchange morphism or the e-morphism associated with Q.

Axioms

1. for a horizontally composable pair of of pull back squares

X ′′ g0→ X ′ h0→ X
v0 ↓ v1 ↓ ↓v2
Y ′′ g1→ Y ′ h1→ Y

the diagram

H(Y’)

H(X’)

H(X’’) H(X)

H(Y)

H (v) H (v)

H (v)

!

!

!

H (hg)

H (h) H (g)

H (g)H (h)

H (hg)

*

*

**

* *

H(Y’’)
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commutes in D.

2. for a vertically composable pair of pull-back squares

X ′ h0→ X
v0 ↓ ↓v1
Y ′ h1→ Y
w0 ↓ ↓w1

Z ′ h2→ Z

the diagram

H (h)*

H (h)*

H (h)*

H (wv)!

!H (v)

!H (w) !H (w)

!H (v)

H(X’)

H(Y’)

H(Z’)

H(Y)

H(Z)

H(X)

commutes in D.

3. for a morphism v : X → Y the diagram

IdH(X)
H(X)

H(Y)

H (v)!

H (id   )X

YH (id  )

IdH(Y)

H (v)!

*

*

H(Y)

H(X)

commutes in D

4. for a morphism h : X ′ → X the diagram

IdH(X’) IdH(X) H (id   )X’

H(X)

H(X)

!

H (h)*

H (h)*

H(X’)

H(X’)

XH (id  )!

commutes in D
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1.1.2 If H is an e-functor with values in D and D2−op is the 2-category
obtained from D by the inversion of the direction of 2-morphisms then we
have an e-functor Hop : C → Dop such that (Hop)! = H∗ and (Hop)∗ = H!

which we call the e-functor dual to H.

1.1.3 Let f : X → Y be a monomorphism in C. Then the square
X → X
↓ ↓f
X

f→ Y

with the identity morphisms from X to X is a pull-back square

and thus the exchange morphism H∗(Id)H !(f) → H !(Id)H∗(f) is defined.
Together with the canonical isomorphisms H∗(Id) = Id and H !(Id) = Id
which are a part of the 2-functor structures on H! and H∗ it gives us a
canonical 2-morphism H !(f) → H∗(f) for any monomorphism f . The fol-
lowing properties of these morphisms can be easily seen from the e-functor
axioms.

1.1.4 Lemma For a composable pair of monomorphisms X
f→ Y

g→ Z
the square

H !(gf) → H∗(gf)
↓ ↓

H !(f)H !(g) → H∗(f)H∗(g)

commutes.

1.1.5 Lemma For any object X the diagram

H !(IdX) → H∗(IdX)
↓ ↓

IdH(X) = IdH(X)

commutes.

1.1.6 Lemma Consider a pull-back square

Q =

 X ′ h0→ X
v0 ↓ ↓v1
Y ′ h1→ Y


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If vi are monomorphisms then the diagram

H∗(h0)H
!(v0) → H∗(h0)H

∗(v0)
eQ ↓ ↓ ∼=

H !(v1)H
∗(h1) → H∗(v1)H

∗(h1)

commutes.
If hi are monomorphisms then the diagram

H !(h0)H
!(v0) → H∗(h0)H

!(v0)
cong ↓ ↓ eQ

H !(v1)H
!(h1) → H !(v1)H

∗(h1)

commutes.

1.1.7 Lemma If in a pull back square Q =

 X ′ h0→ X
v0 ↓ ↓v1
Y ′ h1→ Y

 the mor-

phisms hi or the morphisms vi are isomorphisms then the exchange morphism
eQ is an isomorphism.

1.1.8 Corollary For any isomorphism f : X → Y in C the canoni-
cal morphism H !(f) → H∗(f) is an isomorphism. These isomorphisms are
compatible in the sense of Lemmas 1.1.4-1.1.6 with compositions of isomor-
phisms, identities and the exchange morphisms in the pull-back squares which
consist of isomorphisms.

1.2 Loops and suspensions

1.2.1 Let f : X → S be a morphism and x : S → X a section of p.
Pairs (p, x) form the category (C/S)• of pointed objects over S. A morphism
f : (p1, x1)→ (p2, x2) in this category is a morphism f : X1 → X2 such that
p2 ◦ f = p1 and x2 = f ◦ x1. Below we use the notation (X, x) instead of
(p, x) for the object given by a pair of morphisms (p : X → S, x : S → X).

1.2.2 For any object (X, x) in (C/S)• define 1-endomorphisms of H(S)

ΣH
(X,x) = H∗(x)H !(p)

ΩH
(X,x) = H !(x)H∗(p).
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1.2.3 Σ and Ω are dual in the sense that ΣH
(X,x) = ΩHop

(X,x). Thus all the
properties of Σ’s proven below have immediate counterparts for Ω′s with the
directions of all 2-morphisms inverted.

1.2.4 For any morphism f : (X1, x1) → (X2, x2) in (C/S)• and any
pull-back square based on f of the form

ker(f) → X1

↓ ↓f
S

x2→ X2

the marked diagram
S

∗→ ker(f)
∗→ X1

↓ ! ↓ !

S
∗→ X2

↓ !

S

defines a 2-morphism

ϵ(f) : Σ(X1,x1) → Σker(f)Σ(X2,x2)

1.2.5 We have a canonical 2-isomorphism Σ(S,id) → Id and for the iden-
tity morphism Id(X,x) : (X, x)→ (X, x) the diagram

Σ(X,x)
ϵ(id)→ Σ(S,id)Σ(X,x)

∼= ↓ ↙
IdΣ(X,x)

commutes.

1.2.6 Lemma For a composable pair of morphisms

(X1, x1)
f→ (X2, x2)

g→ (X3, x3)

in (C/S)• and pull-back squares

ker(f) → X1

↓ ↓f
S

x2→ X2

ker(g) → X2

↓ ↓g
S

x3→ X3

ker(gf) → X1

↓ ↓gf
S

x3→ X3
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based on f , g and gf respectively the diagram

Σ(X1,x1)
ϵ(gf)→ Σker(gf)Σ(X3,x3)

ϵ(f) ↓ ↓ ϵ(h)∗Id

Σker(f)Σ(X2,x2)
Id∗ϵ(g)→ Σker(f)Σker(g)Σ(X3,x3)

where h is the canonical morphism ker(gf)→ ker(g), commutes.
Proof: Follows from the axioms in view of the marked diagram

S
∗→ ker(f)

∗→ ker(gf)
∗→ X1

↓ ! ↓ ! ↓ !

S
∗→ ker(g)

∗→ X2

↓ ! ↓ !

S
∗→ X3

↓ !

S

1.2.7 For any object (X, x) the canonical morphism (S, id) → (X, x)
defines by 1.2.4 and 1.2.5 a 2-morphism ϵ(X,x) : Id→ Σ(X,x) which coincides
with the morphism given by the composition

Id
∼=→ H !(x)H !(p)→ H∗(x)H !(p) = Σ(X,x)

where the seond arrow is the 2-morphism of 1.1.3 associated with the monomor-
phism x : S → X.

1.2.8 Lemma In the notations of 1.2.4 and 1.2.7 the diagram

Id
ϵ(X1,x1)−→ Σ(X1,x1)

↓ ↓ϵ(f)
Id Id

ϵker(f)∗ϵ(X2,x2)−→ Σker(f)Σ(X2,x2)

commutes.

1.2.9 For an object (X, x) of (C/S)•, a morphism f : S ′ → S and any
pull-back square

X ′ → X
↓ ↓
S ′ f→ S
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the marked diagram
S ′ ∗→ S
↓ ∗ ↓∗
X ′ ∗→ X
↓ ! ↓!
S ′ ∗→ S

defines a 2-morphism H∗(f)Σ(X,x) → Σ(X′,x′)H
∗(f).

1.2.10 Lemma For a morphism f : (X1, x1) → (X2, x2) in (C/S)•, a
morphism S ′ → S in C, a pull-back square based on f of the form

ker(f) → X1

↓ ↓f
S

x2→ X2

and pull-back squares

X ′
1 → X1

↓ ↓
S ′ f→ S

X ′
2 → X2

↓ ↓
S ′ f→ S

ker(f)′ → ker(f)
↓ ↓
S ′ f→ S

the diagram

H∗(f)Σ(X1,x1) → Σ(X′
1,x

′
1)
H∗(f)

↓ ↓
H∗(f)Σ(X2,x2)Σker(f) → Σ(X′

2,x
′
2)
H∗(f)Σker(f) → Σ(X′

2,x
′
2)
Σker(f)′H

∗(f)

commutes.
Proof:

X1

X2

2X’

1X’ker(f)’

ker(f)

S’

S

S

S’

S’

S

*

*

***

* *

* *

*

*

*

!!

!

!

!

!
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1.2.11 Lemma In the notations of 1.2.7 and 1.2.9 the diagram

H∗(f) Id
Id∗ϵ(X,x)−→ H∗(f)Σ(X,x)

∼=
↗

H∗(f) ↓
∼=
↘

IdH∗(f)
ϵ(X′,x′)∗Id−→ Σ(X′,x′)H

∗(f)

commutes.

1.2.12 For a morphism f : X → S and a pull-back square of the form

X ×S X
pr2→ X

pr1 ↓ ↓ f

X
f→ S

the pair (pr1 : X ×S X → X,∆ : X → X ×S X) is an object of (C/X)•.
We denote the corresponding suspension and loop functors by Σ∆f

and Ω∆f

respectively. The marked diagram

X
∆ ∗→ X ×S X

∗→ X
↓ ! ↓ !

X
∗→ S

defines a 2-morphism H !(f)→ Σ∆f
H∗(f).

1.2.13 Lemma For a composable pair of morphisms X
f→ Y

g→ S and
pull-back squares

X2
S → X
↓ ↓ gf

X
gf→ S

Y 2
S → Y
↓ ↓ g

Y
g→ S

X2
Y → X
↓ ↓ f

X
f→ Y

XY
prY→ Y

prX ↓ ↓ g

X
gf→ S

the diagram

H !(gf) → Σ∆gf
H∗(gf) → Σ∆gf

H∗(f)H∗(g)
↓ ↓

H !(f)H !(g) → Σ∆f
H∗(f)Σ∆gH

∗(g) → Σ∆f
ΣΓH

∗(f)H∗(g)
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where ΣΓ is the suspension associated with the pair (XY → X,X
id×f→ XY )

and the right lower horizontal arrow is defined according to 1.2.4 by the pull-
back square

X2
Y → X2

S

↓ ↓
X → XY

commutes.
Proof:

* *

*

*

* *

* *

*

*

**

*

*

*

!

!

!! ! !
!

!!

!

!

X X 2
Y X

X Y

Y2
S

YX S

Y

XXYX
2
S

XY

1.3 Transversal morphisms

1.3.1 A morphism f : X → S in C is calledH-transversal if the exchange
morphism associated with the pull-back square

X ×S X → X
↓ ↓
X → S

is an isomorphism. It is called universally H-transversal if for any g : S ′ → S
the projection X ×S S ′ → S ′ is H-transversal.

1.3.2 An isomorphism is a universally transversal morphism by 1.1.7.

1.3.3 Lemma Let X
f→ Y

g→ S be a composable pair of morphisms such
that g is transversal and f is universally transversal. Then the composition
gf is transversal. If g is also universally transversal then the composition is
universally transversal.
Proof: ????
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1.3.4 Let p : X → S be a morphism and x : S → S a section of p.
Consider a marked diagram

S
x !→ X

p ∗→ S
x ↓ ∗ x′ ↓ ∗ x ↓ ∗

X
∆!→ X ×S X

pr2 ∗→ X
pr1 ↓ ! p ↓ !

X
p ∗→ S

(1)

where all three squares are pull-back squares. The 1-morphism H(S)→ H(S)
given by the right vertical and the upper horizontal sides of this diagram
coincides with the composition Ω(X,x)Σ(X,x) and the 1-morphism given by
the lower left “stairs” is canonically isomorphic to the identity 1-morphism
of H(S). The exchange morphisms associated with the upper left square
and the lower right square go in opposite directions such that in general
this diagram does not give any 2-morphism between Ω(X,x)Σ(X,x) and the
identity. If p is (H-)transversal then the exchange morphism associated with
the lower right square has an inverse wich can be composed with the exchange
morphism given by the upper left square. Thus for any transversal morphism
p and any section x of p there is a canonical 2-morphism Id→ Ω(X,x)Σ(X,x).
Similarly from the marked diagram

S
x ∗→ X

p !→ S
x ↓ ! x′ ↓ ! x ↓ !

X
∆ ∗→ X ×S X

pr2 !→ X
pr1 ↓ ∗ p ↓ ∗

X
p !→ S

(2)

obtained from the first one by the exchange of ∗’s and !’s we get for any
transversal p and any section x of p a canonical 2-morphism Σ(X,x)Ω(X,x) →
Id.

1.3.5 Theorem If p : X → S is a universally H-transversal morphism
and x is a section of p then the 2-morphisms

Id→ Ω(X,x)Σ(X,x)

Σ(X,x)Ω(X,x) → Id
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satisfy the adjunction axiom.
Proof: We have to verify that the compositions

Ω(X,x) → Ω(X,x)Σ(X,x)Ω(X,x) → Ω(X,x)

and
Σ(X,x) → Σ(X,x)Ω(X,x)Σ(X,x) → Σ(X,x)

coincide with the corresponding identity 2-morphisms. One can easily see
that these two compositions are dual in the sense of 1.2.3 and therefore it
is sufficient to show that the first one equals identity. The main marked
diagram for the proof looks as follows:

36!

S X S

X XxX  X

XxX XxXxX XxX

X XxX X

X S

XxX X

X XXxX

X S

29! 30*

2*

31* 32* 33*34! 35!

10!

11! 13!

3!

4*

5!

7*

8!

9*

12*

6! 14!

1!

16!

18*

19*

17! 20!

21* 22*

23*

24!

25!

26!

27!

28*

38*

39* 40*
41*

42* 43* 44*

37!

15!

For the convenience of further reference we numbered all the arrows. The
right vertical face of the diagram is the diagram (2) defining the 2-morphism
Id → ΩΣ and the upper horizontal face is the diagram (1) defining the 2-
morphism ΣΩ→ Id. The whole diagram is the union of the front part which
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is the product of

X
∆!→ X ×S X

pr2∗→ X
id!

↘ pr1 ↓ ! ↓!
X

∗→ S

with S
x!→ X

p∗→ S and the back part which is the product of

S
x!−→ X

x ↓ ∗ ∆ ↓ ∗
id∗
↘

X
id×x !−→ X ×S X

pr1 ∗→ X

with X
∆!→ X ×S X

pr2∗→ X over X along
X

id×x ↓ !

X ×X
pr1 ↓ ∗

X

×X

(
X

∆!→ X ×X
pr2∗→ X

)
=

(
X

∆!→ X ×X
pr2∗→ X

)
×S


S

x ↓ !

X
p ↓ ∗

S


Consider the following diagram whose vertices are 1-morphisms given by

paths in our main diagram:
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31*1!2*13!27!22*

31*10!12*27!22*

34!39*16!21*9*

34!39*15!17!21*9*

34!39*7*8!9*

29!30*33*3!4*5!

29!30*36!44*5!

34!37!43*24!9*

34!42*25!24!9*

34!37!40*28*24!9*

31*1!2*3!4*5!

29!30*33*13!27!22*

34!42*8!9*

34!39*7*25!24!9*

34!39*15!28*24!9*

=

= tr

= tr

=

=

= un. tr.

=

=

==

=

= = 

= tr

I

II III

IV V

VI

The edges of this diagram are the 2-morphisms represented by appropriate
combinations of the exchange 2-squares and composition isomorphisms which
can be seen directly from the main diagram. The equality sign idicates that
the corresponding 2-morphism is an isomorphism. The mark “tr” after the
equality sing means that it is an isomorphism because p is a transversal
morphism. The mark “un. tr.” means that it is an isomorphism because
p is universally transversal. The 2-morphisms with unmarked equalities are
isomorphisms either because they are just the composition isomorphisms of
the 2-functors H∗ and H ! or because they are exchange morphisms associated
with the squares where one pair of morphisms consists of identities.

Let us show that each of the polygons (I)-(VI) is commutative. The
square (I) is commutative by the 2-category axioms. The commutativity of
(II) and (III) can be seen respectively using the e-functor axioms from the
following two subdiagrams of our main diagram:
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XxXX

XxXxXXxX XxX

XxX

X

X

1! 2*

X

X

XXxX

X

S

S

S

31*

34!

39*

16!

21*

9*

5!

3!

4*

XxXX

XxXxXXxX XxX

XxX

X

X

1! 2*

X S

S S

XxX XX

X

4*

3!

5!

31*

9*

24!

43*

37!

34!

The commutativity of pentagons (IV) and (V) follows directly from the ver-
tical and horizontal composition axioms. Finally the square (VI) is again
commutative by the 2-category axioms.
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Observe now that commutativity of (IV) together with the fact that the
arrows marked by the equality sign are isomorphisms imply that the ver-
tical arrow 34!39∗7∗25!24!9∗ → 34!39∗15!28∗24!9∗ is an isomorphism. The
commutativity of (V) now implies that the arrow

34!39∗15!28∗24!9∗ → 34!37!40∗28∗24!9∗

is also an isomorphism. From this it is easy to see that the composition

31∗10!12∗27!22∗ → 31∗1!2∗13!27!22∗ → 29!30∗33∗13!27!22∗ →

→ 29!30∗33∗3!4∗5! → 29!30∗36!44∗5!

equals the composition

31∗10!12∗27!22∗ → 34!39∗16!21∗9∗ → 34∗39∗7∗8!9∗ → 34!42∗8!9∗ →

→ 34!42∗25!24!9∗ → 34!37!43∗24!9∗ → 29!30∗36!44∗5!

where we use the inverses to isomorphisms where necessary.

1.3.6 As one can see from the proof of 1.3.5 it remains valid under
slightly weaker conditions. Namely instead of requiring p to be universally
transversal it is sufficient to require both p and the projection X ×S X → X
to be transversal.

1.4 Cotransversal morphisms

1.4.1 A morphism f : X → S is called H-cotransversal if the diago-
nal morphism ∆f : X → X ×S X is H-transversal. A morphism is called
universally H-cotransversal if the diagonal morphism ∆f : X → X ×S X is
universally H-transversal.

A morphism f : X → S is called H-bitransversal if it is H-transversal
and H-cotransversal. A morphism is called universally H-bitransversal if it
is universally H-transversal and universally H-cotransversal.

1.4.2 A monomorphism is a universally cotransversal morphism by 1.3.2.
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1.4.3 Lemma Let X
f→ Y

g→ S be a composable pair of universally co-
transversal morphisms. Then the composition gf is universally cotransver-
sal.
Proof: The diagonal morphism ∆gf : X → X×SX for gf is the composition
of the diagonal morphism ∆f : X → X ×Y X for f and the morphism
X ×Y X → X ×S X which fits into the pull-back square

X ×Y X → Y
↓ ↓∆g

X ×S X → Y ×S Y

The statement of the lemma follows now from 1.3.3.

1.4.4 For a cotransversal morphism f the 2-morphism Id→ Σ∆f
of 1.2.7

is an isomorphism. The composition of the morphism H !(f)→ Σ∆f
H∗(f) of

1.2.12 with its inverse gives a morphism H !(f)→ H∗(f). If f is a monomor-
phism this morphism coincides with the morphism defined in 1.1.3.

1.4.5 Lemma Let X
f→ Y

g→ S be a composable pair of universally
cotransversal morphisms. Then the square

H !(gf) → H∗(gf)
↓ ↓

H !(f)H !(g) → H∗(f)H∗(g)

commutes.
Proof: Consider the diagram

H !(gf) → Σ∆gf
H∗(gf) ← H∗(gf)
↓ ↓

Σ∆gf
H∗(f)H∗(g) ← H∗(f)H∗(g)

↓ ↓ ↓∼=
Σ∆f

ΣΓH
∗(f)H∗(g) ← H∗(f)H∗(g)
↑ ↑∼=

H !(f)H !(g) → Σ∆f
H∗(f)Σ∆gH

∗(g) ← H∗(f)H∗(g)

The left hand side hexagon is the commutative diagram of 1.2.13. The upper
square on the right commutes by axioms of a 2-category, the middle square
commutes by 1.2.8 and the lower square by 1.2.11. Since f is cotransversal
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and g is universally cotransversal all the horizontal arrows on the right hand
side are isomorphisms. Thus the up-going arrow is an isomorphism which
together with the commutativity of the hexagon and the squares implies the
statement of the lemma.
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