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Let me recall first the basic concepts related to the notion of a simplicial
set. For a non-negative integer n ≥ 0 let [n] be the set

[n] = {0, . . . , n}

Let MonFun([m], [n]) be the set of non-decreasing functions from [m]
to [n] i.e. the set of functions f : [m]→ [n] such that for all x, y ∈ [m]
satisfying x ≤ y one has f (x) ≤ f (y).

Let ∆ be the category whose set of objects Ob(∆) is the set of sets of
the form [n] for n ≥ 0 and whose set of morphisms is

Mor(∆) = q[m],[n]∈Ob(∆)MonFun([m], [n])

The domain and codomain functions as well as the identity and compo-
sition functions are defined in the obvious way.
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Note that for [m], [n] ∈ Ob(∆) the set

∆([m], [n]) = {f ∈Mor(∆) | dom(f ) = [m] and codom(f ) = [n]}

of morphisms from [m] to [n] in ∆ is not the set MonFun([m], [n]) but
the set of pairs of the form ([m], ([n], f )) where f ∈MonFun([m], [n]).

Sending ([m], ([n], f )) to f one obtains a bijection of the form

∆([m], [n])→MonFun([m], [n])

and sending f to ([m], ([n], f )) one obtains the inverse bijection.

It is customary to use these bijections to “identify” the sets ∆([m], [n])
andMonFun([m], [n]) and I will do the same in this lecture. I will allow
myself many other similar imprecisions because otherwise the exposition
would become very hard to follow.
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When one starts to formalize mathematics using a computer proof as-
sistant one has to be explicit about such details.

The example that you have just seen is one of the reasons why it is so
hard to formalize categorical constructions in set theory.

Indeed, in set theory, it is in general impossible, given a set Ob and a
family of sets Mor(X, Y ) for X, Y ∈ Ob to define a global set Mor
with two functions dom, codom : Mor → Ob such that

Mor(X, Y ) = {f ∈Mor | dom(f ) = X and codom(f ) = Y }

for all X and Y .
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For example, suppose that there are two objects X and Y with X 6= Y
and Mor(X,X) = Mor(Y, Y ) 6= ∅. It is an exercise to prove that in
this case it is impossible to find a set Mor and functions

dom, codom : Mor → Ob

such that

Mor(X,X) = {f ∈Mor | dom(f ) = X and codom(f ) = X}

and

Mor(Y, Y ) = {f ∈Mor | dom(f ) = Y and codom(f ) = Y }
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In the univalent foundations this particular problem of building a cat-
egory when the sets of morphisms between objects are given is easily
resolved since there one can directly operate with families of sets (and
more generally families of types). So in the univalent foundations we
can have a category ∆ where

∆(X, Y ) = MonFun(X, Y )

in the sense of the “strict” or “substitutional” equality.
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However, univalent foundations are so complex that they can not be
intuitively seen to be consistent.

We can only show that univalent foundations are consistent relative to
set theory and this requires proving it mathematically.

Of course, one can not use univalent foundations to prove that univalent
foundations are consistent. Nor is it sufficient to use informal mathe-
matics for this because it is too important and complex and must be
verified formally before it can be trusted.
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Therefore, the most important task in the univalent foundations today
is to prove all the theorems that are needed in order to show that these
new foundations are consistent relative to set theory.

These theorems have to be formulated and proved with meticulous pre-
cision in the framework of set theory. Some of these theorems have
already been proved in the “formalization ready” style in a series of my
papers that can be found on the arXiv.

Now they have to be formalized and formally verified in set theory or in
an equally simple and reliable theory such as HOL.

The results related to the univalent morphisms that I will speak about
today is another part of what will have to be proved in the same style.
Today I will only outline some of these results on a very informal level.
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Definition. A simplicial set is a a contravariant functor

X : ∆op → Sets

from the category ∆ to the category of sets. One denotes the category
of simplicial sets by ∆opSets.

A good book about simplicial sets that also contains a lot of other useful
material is by Peter Gabriel and Michael Zisman. You can easily find it
on the web.

One denotes the functor represented by [n] by ∆n and calls it the n-
dimensional simplex. The 0-dimensional simplex is called the point and
often denoted by pt and the 1-dimensional simplex ∆1 is called the
interval and often denoted by I1.
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Every simplicial set is “glued” from simplexes - the precise statement
is that there is a construction that, for every simplicial set, provides
a diagram of simplexes and an isomorphism from the colimit of this
diagram to the original simplicial set.

By mapping simplexes ∆n to the topological spaces

∆n
top = {(x0, . . . , xn) ∈ Rn+1

≥0 |
∑
i

xi = 1}

and then extending this mapping to all simplicial sets such as to preserve
the way in which general simplicial sets are glued from simplexes one
obtains a functor

| | : ∆opSets→ Top

that is called the functor of geometric realization.
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This functor takes pt to a one point space, I1 to a space homeomorphic
to the unit interval [0, 1] and preserves not only the way things are glued
together (colimits) but also products.

One can use this functor to translate the intuition related to spaces, such
as the intuition of the classical homotopy theory, into concepts related
to simplicial sets.

From now on I will assume that the listeners are familiar with this
translation and that I can use the main concepts of homotopy theory in
the category of simplicial sets. I will sometimes say “space” instead of
“simplicial set” as is customary in this field.
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One construction that will be important below and that is not widely
known is the construction of the relative Hom-object. For two mor-
phisms f : Y → X , f ′ : Y ′ → X one defines HomX((Y, f ), (Y ′, f ′)) as
the object whose sets of n-simplexes are given by

HomX((Y, f ), (Y ′, f ′))n = qa:∆n→XHomX((∆n, a)×X (Y, f ), (Y ′, f ′))

and whose action on morphisms of ∆ is defined in the obvious way.

The morphism that maps (a, f ) to a is denoted as

f � f ′ : HomX((Y, f ), (Y ′, f ′))→ X

and together with this morphism this space is the internal Hom-object
in the slice category ∆opSets/X .
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One has:

1. f � f ′ is a Kan fibration if f ′ is a Kan fibration,

2. ifX = pt and πY : Y → pt, πY ′ : Y ′ → pt are the unique morphisms
then

HomX((Y, πY ), (Y ′, πY ′)) ∼= S(Y, Y ′)

where S(Y, Y ′) is the usual simplicial function space,

3. in general, a point (zero simplex) of HomX((Y, f ), (Y ′, f ′)) is given
by a point x in X and a morphism f−1(x)→ (f ′)−1(x).
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Let us remind the following standard definition.

Definition 1 Let f : Y → X and f ′ : Y ′ → X be two morphisms
and g : Y → Y ′ a morphism over X. Then g is called a fiber-wise
weak equivalence if for any x ∈ X the corresponding morphism
between the homotopy fibers of f and f ′ is a weak equivalence.

For two morphisms f : Y → X and f ′ : Y ′ → X let EqX(f, f ′) be the
space of fiber-wise weak equivalences from Y to Y ′ over X .

It is fibered over X such that the fiber of EqX(f, f ′)→ X over x ∈ X
is (homotopy equivalent to) the space of homotopy equivalences between
the homotopy fibers f−1(x) and (f ′)−1(x).
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In the construction of EqX(f, f ′) one should first replace f and f ′ by
equivalent Kan fibrations

fKan : YKan → X

f ′Kan : Y ′Kan → X

Then consider the intermediate object

Int = HomX((YKan, fKan), (Y ′Kan, f
′
Kan))

A point of this object is a pair (x, g) where x is a point of X and
g : f−1

Kan(x) → (f ′Kan)−1(x) is a morphism. One verifies easily that if
(x, g) is such that g is a homotopy equivalence and (x′, g′) is in the same
connected component of Int as (x, g) then g is a homotopy equivalence.
One defines EqX(f, f ′) as the union of such connected components of
Int that contain points (x, g) where g is a homotopy equivalence.
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For a morphism f : Y → X consider the morphisms

f × IdX : Y ×X → X ×X

IdX × f : X × Y → X ×X
Let

E(f ) = EqX×X(f × Id, Id× f )

and let pre(f ) : E(f )→ X ×X be the canonical projection. The fiber
of pre(f ) over (x, x′) is the space of homotopy equivalences between the
homotopy fibers of f over x and x′. In particular, pre(f ) has a canonical
section wf over the diagonal corresponding to the identity:

X
wf−→ E(f )

‖ ↓pre(f)

X
∆X−−→ X ×X
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Definition 2 A morphism f : Y → X is called univalent if

wf : X → E(f )

is a fiber-wise homotopy equivalence over X ×X.

The homotopy fiber of the diagonal ∆X : X → X×X over (x, x′) is the
space P (X ;x, x′) of paths from x to x′ in X . Therefore, f is univalent
if and only if for any x, x′ the canonical morphism from P (X ;x, x′) to
the space of homotopy equivalences between the homotopy fibers u−1(x)
and u−1(x′) is an equivalence.
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Here are some examples of univalent morphisms :

1. There are only four univalent morphisms between sets. They are
∅ → ∅, ∅ → pt, pt → pt and pt → pt

∐
pt. Of these four the

last one is the universal one since the other three are obtained from
it by pull-back. These four morphisms are also the only univalent
morphisms of h-level 1.

2. For n > 0 the morphism BSn−1 → BSn where Sn−1 → Sn is
the standard embedding of symmetric groups, is univalent. The
homotopy fiber of this morphism is the set with n elements.
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3. For n ≥ 0 the inclusion of the distinguished point pt → K(Z/2, n)
is univalent. For n = 0 one gets the morphism pt → pt

∐
pt from

the first example and for n = 1 one gets the morphism BS1 → BS2

of the second example. I do not know at the moment any other
examples of univalent morphisms whose domain is the point.

4. A morphism X → pt is univalent iff X has no symmetries i.e. iff
the space of homotopy auto-equivalences of X is contractible. For a
group G it means that the morphism BG → pt is univalent if the
center and the group of outer automorphisms of G are trivial. In
particular, for n > 2 the morphism BSn → pt is univalent.
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To describe some properties of univalent morphisms it is convenient to
use the following concept of h-level that is a generalization of the known
concept of homotopy n-type.

Definition 3 Define the property of a space to be of h-level n in-
ductively as follows:

1. X is of h-level 0 if and only if X is contractible,

2. X is of h-level n > 0 if and only if for any x, x′ ∈ X the paths
space P (X ;x, x′) is of h-level n− 1.

Definition 4 A morphism f : Y → X is called a morphism of h-
level n if for any x ∈ X the homotopy fiber f−1(x) is of h-level
n.
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Let us state some elementary properties of univalent maps.

Lemma 5 Consider a (homotopy) cartesian square

Y ′ −→ Y

f ′↓ ↓f
X ′

g−→ X

such that f is univalent. Then f ′ is univalent if and only if g is a
morphism of h-level 1.
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Proposition 6 If for a given univalent f : Y → X and a given
f ′ : Y ′ → X ′ there exists a (homotopy) cartesian square of the form

Y ′ −→ Y

f ′↓ ↓f
X ′ −→ X

then such a square is unique up to an equivalence.
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Theorem 7 For any map f : Y → X there exists a unique homo-
topy cartesian square

Y −→ Ũn(f )

f↓ ↓un(f)

X
g−→ Un(f )

such that un(f ) is univalent and g is surjective on π0.
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There is relatively simple way to prove the previous theorem but it
requires the use of the axiom of choice. So far nobody knowns how to
give a constructive proof of this theorem and this is one of the important
open problems in the univalent foundations.
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