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The first few steps in all approaches to the semantics of dependent type
theories remain insufficiently understood. The constructions which have
been worked out in detail in the case of a few particular type systems
by dedicated authors are being extended to the wide variety of type
systems under consideration today by analogy. This is not acceptable in
mathematics. Instead we should be able to obtain the required results
for new type systems by specialization of general theorems formulated
and proved for abstract objects the instances of which combine together
to produce a given type system.

One such class of objects is the class of C-systems introduced by John
Cartmell in his 1978 Ph.D. thesis [1] under the name “contextual cate-
gories”.
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By a (pre-)category C we mean a pair of sets Mor(C) and Ob(C) with
four maps

∂0, ∂1 : Mor(C)→ Ob(C)

Id : Ob(C)→Mor(C)

and
◦ : Mor(C)∂1 ×∂0 Mor(C)→Mor(C)

which satisfy the well known conditions of unity and associativity (note
that we write composition of morphisms in the form f ◦ g or fg where
f : X → Y and g : Y → Z). These objects would be usually called
categories but we reserve the name “category” for those uses of these
objects that are invariant under the equivalences.
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Definition 1 A C-system is a pre-category CC with additional struc-
ture of the form

1. a function l : Ob(CC)→ N,

2. an object pt of CC such that {pt} = l−1(0),

3. a map ft : Ob(CC) → Ob(CC) such that if l(X) > 0 then
l(ft(X)) = l(X)− 1 and ft(pt) = pt,

4. for each X ∈ Ob(CC) a morphism pX : X → ft(X),

5. for each X ∈ Ob(CC) such that l(X) > 0 and each morphism
f : Y → ft(X) an object f ∗X and a morphism

q(f,X) : f ∗X → X

such that the following additional conditions are satisfied:
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1. pt is a final object of CC

2. for X ∈ Ob(CC) such that l(X) > 0 and f : Y → ft(X) one
has l(f ∗(X)) > 0, ft(f ∗X) = Y and the square

f ∗X
q(f,X)−−−→ X

pf∗X↓ ↓pX
Y

f−→ ft(X)

(1)

is a pull-back square,

3. for X ∈ Ob(CC) such that l(X) > 0 one has id∗ft(X)(X) = X

and q(idft(X), X) = idX,

4. for X ∈ Ob(CC) such that l(X) > 0, g : Z → Y and f :
Y → ft(X) one has (gf )∗(X) = g∗(f ∗(X)) and q(gf,X) =
q(g, f ∗X)q(f,X).

For an alternative definition see [5].
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C-systems from monads on sets

For a mode general version of the following construction see [4]. Let R
be a monad on Sets. Let CC(R,R) be the pre-category whose set of
objects is Ob(CC(R,R)) = qn≥0Obn where

Obn = R(∅)× . . .×R({1, . . . , n− 1})
and the set of morphisms is

Mor(CC(R,R)) =
∐
m,n≥0

Obm ×Obn ×R({1, . . . ,m})n

with the obvious domain and codomain maps. The composition of mor-
phisms is defined in the same way as in the Kleisli category C(R) of R
such that the mapping Ob(CC(R,R)) → N which sends all elements
of Obn to n, is a functor from CC(R,R) to C(R). The associativity of
compositions follows immediately from the associativity of compositions
in C(R).
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Note that if R(∅) = ∅ then CC(R,R) = ∅ and otherwise the functor
CC(R,R)→ C(R) is an equivalence, so that in the second case C(R)
and CC(R,R) are indistinguishable as categories. However, as pre-
categories they are quite different.

The pre-category CC(R,R) is given the structure of a C-system as
follows. The final object is the only element of Ob0, the map ft is
defined by the rule

ft(T1, . . . , Tn) = (T1, . . . , Tn−1).
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The canonical pull-back square defined by an object (T1, . . . , Tn+1) and
a morphism

(f1, . . . , fn) : (R1, . . . , Rm)→ (T1, . . . , Tn)

is of the form:

(R1, . . . , Rm, Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,m+1)−−−−−−−−→ (T1, . . . , Tn+1)

(1,...,m)↓ ↓(1,...,n)

(R1, . . . , Rm)
(f1,...,fn)−−−−−→ (T1, . . . , Tn)

(2)

Proposition 2 With the structure defined above CC(R,R) is a C-
system.
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A special case - syntactic monads

Consider a signature Σ given by a set Op of operations and the arity
function Ar : Ob → list N. An operation Θ of arity (0, 1) should be
thought of as being of the form Θ(t1, x1.t2). For example, usual algebraic
operations will have arities of the form (0, . . . , 0) where the number of
0’s is the number of arguments and “quantifiers” such as ∀ and ∃ will
have arity 1. The λ-abstraction also has arity 1.

To any such signature Σ one associates a class of expressions with bind-
ings. Then the sets R(X) of such expressions with free variables from
the set X modulo the α-equivalence form a monad. For a universal char-
acterization of such monads see [2]. For a formal construction of such
monads using nominal sets see [4]. Applying the previous construction
we get a C-system defined by Σ.
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Type theories of Martin-Lof genus

For a signature Σ as above consider four classes of “sentences”. Sentences
in each class are of the form Γ ` J . In each case Γ, the context, is
a sequence of the form x1 : T1, . . . , xn : Tn for some n ≥ 0 where
Ti ∈ R({x1, . . . , xi−1}) and the J parts are:

Γ ` T type T ∈ R({x1, . . . , xn})
Γ ` t : T T, t ∈ R({x1, . . . , xn})
Γ ` T = T ′ T, T ′ ∈ R({x1, . . . , xn})
Γ ` t = t′ : T T, t, t′ ∈ R({x1, . . . , xn})

A type system of the Martin-Lof genus is specified by a choice of Σ and
by a choice of the subsets of derivable sentences of each class such that
a certain set of conditions holds.

This approach to formulating type theory through these four classes of
sentences was introduced by Per Martin-Lof in a remarkable paper called
”Constructive mathematics and computer programming”.
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Since we are only interested in the α-equivalence classes of judgements
we may assume that the variables declared in the context are taken from
the set of natural numbers such that the first declared variable is 1, the
second is 2 etc. Then, the set of judgements of the form

(1 : A1, . . . , n : An ` A type)

(in the notation of Martin-Lof “A type (1 ∈ A1, . . . , n ∈ An)”) can be
identified with the set of judgements of the form

(1 : A1, . . . , n : An, n + 1 : AB)

stating that the context (1 : A1, . . . , n : An, n + 1 : A) is well-formed.
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With this identification the type theory is specified by four setsC, C̃, Ceq
and C̃eq where

C ⊂
∐
n≥0

R(∅)× . . .×R({1, . . . , n− 1})

C̃ ⊂
∐
n≥0

R(∅)×. . .×R({1, . . . , n−1})×R({1, . . . , n})×R({1, . . . , n})

Ceq ⊂
∐
n≥0

R(∅)× . . .×R({1, . . . , n− 1})×R({1, . . . , n})2

C̃eq ⊂
∐
n≥0

R(∅)×. . .×R({1, . . . , n−1})×R({1, . . . , n})2×R({1, . . . , n})
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Theorem 3 There is a bijection between the quadruples of subsets
C, C̃, Ceq, C̃eq as above satisfying the conditions required from a
type theory of Martin-Lof genus and pair of the form (CC ′,∼) where
CC ′ is a C-subsystem of CC(R,R) and ∼ is a regular congruance
relation on CC ′.

Proof: See [5] and [4].

Corollary 4 Any type theory of Martin-Lof genus defines a C-system,
namely CC ′/sim.
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C-system from a universe in a category

Definition 5 Let C be a category. A universe on C is a morphism
p : Ũ → U together with a mapping which assigns to any morphism
f : X → U in C a pull-back square

(X ; f )
Q(f)−−→ Ũ

p(X,f)↓ ↓p

X
f−→ U

In what follows we will write (X ; f1, . . . , fn) for (. . . ((X ; f1); f2) . . . ; fn).
For details of the following construction see [3].

For C, a universe p in C and a final object pt of C we define a C-system
CC = CC(C, p) as follows:
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Objects of CC are sequences of the form (F1, . . . , Fn) where F1 ∈
HomC(pt, U) and Fi+1 ∈ HomC((pt;F1, . . . , Fi), U). Morphisms from
(G1, . . . , Gn) to (F1, . . . , Fm) are given by

HomCC((G1, . . . , Gn), (F1, . . . , Fm)) =

HomC((pt;G1, . . . , Gn), (pt;F1, . . . , Fm))

and units and compositions are defined as units and compositions in C
such that the mapping (F1, . . . , Fn)→ (pt;F1, . . . , Fn) is a full embed-
ding of the underlying category ofCC to C. The image of this embedding
consists of objects X for which the canonical morphism X → pt is a
composition of morphisms which are (canonical) pull-backs of p. We
will denote this embedding by int.
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The final object of CC is the empty sequence (). The map ft sends
(F1, . . . , Fn) to (F1, . . . , Fn−1). The canonical morphism p(F1,...,Fn) is
the projection

p((pt;F1,...,Fn−1);Fn) : ((pt;F1, . . . , Fn−1);Fn)→ (pt;F1, . . . , Fn−1)

The canonical pull-back square are of the form

(G1, . . . , Gn, f ◦ Fm+1)
q(f)−−→ (F1, . . . , Fm+1)

pG↓ ↓pF
(G1, . . . , Gn)

f−→ (F1, . . . , Fm)

(3)

where pF = p(F1,...,Fm+1), pG = p(G1,...,Gn,f◦Fm+1) and q(f ) is the unique
morphism such that q(f ) ◦ pF = pG ◦ f and

int(q(f )) ◦Q(Fm+1) = f ◦Q(Fm+1).

The unity and composition axioms for the canonical squares follow im-
mediately from the unity and associativity axioms for compositions of
morphisms in C.
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The final object of CC is the empty sequence (). The map ft sends
(F1, . . . , Fn) to (F1, . . . , Fn−1). The canonical morphism p(F1,...,Fn) is
the projection

p((pt;F1,...,Fn−1),Fn) : ((pt;F1, . . . , Fn−1), Fn)→ (pt;F1, . . . , Fn−1)

The canonical pull-back squares are of the form

(G1, . . . , Gn, Fm+1f )
q(f)−−→ (F1, . . . , Fm+1)

pG↓ ↓pF
(G1, . . . , Gn)

f−→ (F1, . . . , Fm)

(4)

where int(pF ) = p((pt;F1, . . . , Fn−1), Fn),

int(pG) = p((pt;G1, . . . , Gn−1), Fm+1 ◦ f )

and q(f ) is the morphism such that pFq(f ) = fpG and

Q(Fm+1)int(q(f )) = Q(Fm+1f ).
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Syntax and semantics of dependent type theories

1. Signature defines the monad of raw expressions.

2. Derivation rules define the subsets of the derivable sentences of four
kinds and, by the first of our constructions, a C-system CC(T).

3. Derivation rules also define additional operations on this C-system.

4. The Initiality Theorem asserts that C-system with these operations
is the initial object among all C-systems with such operations.
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5. A mathematical category with a special morphism in it (such as,
for example, the universal Kan fibration in well-ordered simplicial sets)
defines a C-system CC(C, p) by the second of our constructions.

6. Structures on this morphism arising from geometric or other math-
ematical considerations define on this C-system operations of the form
associated with the derivation rules of the type system.

7. By initiality theorem we obtain a homomorphism of C-systems

CC(T)→ CC(C, p)

i.e. a model for T.
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The (Π, λ)-structures on C-systems

Definition 6 Let CC be a C-system. A pre-(Π, λ)-structure on CC
is a pair of functions

Π : Ob≥2 → Ob

λ : Õb≥2 → Õb

such that:

1. ft(Π(Γ)) = ft2(Γ),

2. ∂(λ(s)) = Π(∂(s)).

For a pre-(Π, λ)-structure (Π, λ) and Γ ∈ Ob the function Π defines, in
view of the first condition of Definition 6, a function

ΠΓ : Ob2(Γ)→ Ob1(Γ)

and the function λ defines, in view of the first and the second conditions
of Definition 6, a function

λΓ : Õb2(Γ)→ Õb1(Γ)

20



The second condition also implies that the square:

Õb2(Γ)
λΓ

−→ Õb1(Γ)

∂↓ ↓∂

Ob2(Γ)
ΠΓ

−→ Ob1(Γ)

(5)

commutes. One can easily see that the notion of a pre-(Π, λ)-structure
could be equally formulated as two families of functions ΠΓ and λΓ such
that the squares (5) commute.
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Definition 7 A pre-(Π, λ)-structure is called a (Π, λ)-structure if
the following conditions hold:

1. for any Γ ∈ Ob≥2 the square (5) is a pull-back square,

2. for any f : Γ′ → Γ the square

Ob2(Γ)
ΠΓ

−→ Ob1(Γ)

f∗↓ ↓f∗

Ob2(Γ′)
ΠΓ′

−→ Ob1(Γ′)

(6)

commutes,

3. for any f : Γ′ → Γ the square

Õb2(Γ)
λΓ

−→ Õb1(Γ)

f∗↓ ↓f∗

Õb2(Γ′)
λΓ′

−→ Õb1(Γ′)

(7)

commutes.
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Theorem 8 Let C be a locally cartesian closed category with a final
object. Let p : Ũ → U be a morphism with a universe structure on
it. Let P , P̃ be a pair of morphisms that make the square:

HomU(Ũ , U × Ũ)
P̃−→ Ũ

↓p2 ↓p

HomU(Ũ , U × U)
P−→ U

a pull-back square.

Then one can construct, in a functorial way, a (Π, λ)-structure on
CC(C, p).

Proof: See [].
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[2] André Hirschowitz and Marco Maggesi. Modules over monads
and linearity. In Logic, language, information and computation,
volume 4576 of Lecture Notes in Comput. Sci., pages 218–237.
Springer, Berlin, 2007.

[3] Vladimir Voevodsky. A C-system defined by a universe in a category.
arXiv 1409.7925, submitted, pages 1–7, 2014.

[4] Vladimir Voevodsky. C-system of a module over a monad on sets.
arXiv 1407.3394, submitted, pages 1–20, 2014.

[5] Vladimir Voevodsky. Subsystems and regular quotients of C-systems.
arXiv 1406.5389, submitted, pages 1–11, 2014.

24

https://uf-ias-2012.wikispaces.com/Semantics+of+type+theory
https://uf-ias-2012.wikispaces.com/Semantics+of+type+theory

