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In the first lecture we discussed the questions of what is a foundation of mathematics and 
how foundations of mathematics relate to mathematics.	


While trying to answer the first question we observed that there are two streams in the 
story of foundations. I called these streams “Foundations 1” and ‘Foundations 2”. 	


Foundations 1 is defined as the study of  “the basic mathematical concepts and how they 
form hierarchies of more complex structures and concepts”.	


Foundations 2 is defined as the study of  “the fundamentally important structures that 
form the language of mathematics also called metamathematical concepts”. 
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https://en.wikipedia.org/wiki/Language_of_mathematics
https://en.wikipedia.org/wiki/Metamathematics


In the late 19th - early 20th century Foundations 1 went through a momentous 
transformation. A part of the general theory of forms envisioned by Grassmann was 
articulated and made precise in the work of Cantor and Dedekind and became known as 
set theory. New hierarchy of mathematical concepts based on set theory was highly 
successful and remains in place today.	


Foundations 2 went through a period of turbulent development starting with the work of 
Boole.  The discoveries of Kurt Godel freed it from the fruitless search of absolute 
certainty.  Later Foundations 2 became closely associated with the theory and practice of 
programming languages.
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The synthesis of new developments in Foundations 1 and Foundations 2 was attempted 
in the first decades of the 20th century and led to the development of an interesting and 
important formal theory called ZFC.	


It was later accepted as a postulate that ZFC successfully formalized set theory.	


The further development of mathematics proved this postulate to be false. While 
concepts of set theory such as a set, a subset, a function, and a bijection,  took their place 
as the basis of the new hierarchy of mathematical concepts, ZFC remained known only to 
specialists in Foundations 2 and played little role in the development of mathematics.
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What we have in the Univalent Foundations is the continuation of  the development of 
the “general theory of forms” that Hermann Grassmann spoke about in his 1844 work 
and that Georg Cantor started to make precise in his theory of sets. 	


Forms here are being understood in the sense of shapes - this is what homotopy types 
are, the most fundamental invariants of higher dimensional shapes.	


The general “manifolds”or “forms” are called in the Univalent Foundations “types”. 
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The most important new concept of the Univalent Foundations is the concept of h-level.	


There is only one, up to the univalent equality, type of h-level 0. It is the one point type. 	


Types of h-level 1 are propositions. Logic is the study of types of h-level 1.	


Types of h-level 2 are sets. The study of such types is the theory of sets and the study of 
structures on such types is the set-theoretic mathematics.	


Types of h-level 3 are the kind of types that are formed by objects in a category. The 
study of structures on types of h-level 3 is closely related to category-level mathematics.
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BTW - there is an important distinction between categorical mathematics and category-
level mathematics.	


Categorical mathematics is a style of doing set-level mathematics.  When working in this 
style, the class of objects under study is given the structure of a category and the relevant 
properties of these objects are expressed in terms of the properties of the 
corresponding objects as objects of an abstract category. 	


The lower-level analogy of this approach is the study of a class of “things” by defining a 
partial ordering on the collection of all things of this class and formulating relevant 
properties of “things” in terms of their position relative to this partial ordering. 	


Category-level mathematics is the study of structures on categories. 
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How do we know that we have the right idea of what types of h-level 4 and higher are? 
After all, we have very little direct experience with such types. 	


Our certainty comes from the remarkable fact that types of all h-levels appeared in the 
set-level mathematics in the form of homotopy types.	


The theory of homotopy types or homotopy theory (not to be confused with the 
homotopy type theory!) is a well established field of mathematics that originated with the 
work of Poincare on the fundamental group. 	


Homotopy types are equivalence classes of topological spaces with respect to the 
equivalence relation of being homotopy equivalent.	


After their discovery, homotopy types have been appearing in many different areas of 
modern mathematics. There is a rich and substantial body of knowledge about homotopy 
types including a large number of highly non-trivial computations. 
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Here is the table of the first homotopy groups of spheres - an important example of 
mathematical reality that does not depend on the choice of foundations but requires 
advanced foundations to be discovered. 
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From http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres 

http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres


Univalent Foundations are currently formalized in several styles of Martin-Lof Type Theory. 	


Martin-Lof introduced his Constructive Type Theory in 1972. It was inspired, in part, by 
the Automath language created by De Brujin for computer-checkable formalization of 
mathematics.	


The insight that Martin-Lof  Type Theory (MLTT) can be used to formalize categorical and 
higher categorical mathematics belongs to Michael Makkai (see in particular his 
unpublished paper FOLDS from 1995).	


The main mathematical advance that made Univalent Foundations possible is the 
univalent model of MLTT in the category of simplicial sets that I discovered in 2005 and 
completed in 2009.  
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As a part of Univalent Foundations we now have a formalization of set theory in the 
form of the theory of types of h-level 2 in MLTT.	


I believe that this is the first adequate formalization of the set theory that is used in pure 
mathematics. 	


Next year I am starting a project of univalent formalization of my proof of Milnor’s 
Conjecture using this formalization of set theory as the starting point.	


This project should show that one can conveniently work with classical set-theoretic 
mathematics in the Univalent Foundations. 	


It will also provide mathematicians working in the area of homotopy theory and abstract 
algebraic geometry with the first tools that they can use in their real life work. 
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We already have a practical formalization of the basic univalent theory of general types, of 
the basic logic and of the basic set theory. We also have formalization of the basic abstract 
algebra up to localizations of commutative rings.  This is the point where constructive 
theory starts to substantially diverge from the classical one - there are four interesting 
constructive concepts that project to the classical concept of a field.	


And we have a formalization of the basic category theory.	


All these are done with the proof assistant Coq and can be found on GitHub under the 
name UniMath.	


All the formalizations that we have done so far are constructive.  For the Milnor's 
Conjecture Project we are going to allow the use of the Axiom of Excluded Middle (for 
types of h-level 1) and of the Axiom of Choice (for types of h-level 2) in order to get to 
interesting areas of pure mathematics sooner. 
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Let me try to explain now my current understanding of why the theory of sets has not 
been adequately formalized so far. 
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The concept of an abstract set that is used in mathematics is different from the concept 
of a set of things that is familiar to us from the everyday usage.	


The latter presupposes a given universe of things and then by a set with two elements 
one understands any of the sets of two things from this universe.	


The concept of an abstract set does not presupposes any such given universe of things. 	


An abstract set with two elements refers to an object in the realm of abstract objects 
that has exactly those properties that are common to all sets of two things and that can 
be the object of all manipulations that can be applied to all sets of two things. 
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Clearly any two such abstract objects are in some sense equal to each other.  And the 
same applies to sets with more than two elements.
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From http://xkcd.com/1417/

http://xkcd.com/1417/


More generally, an abstract set corresponding to a given set of things X is an abstract 
object that has exactly those properties that are common to all sets of things that can be 
put into a bijective correspondence with X and that can be the object of all constructions 
that can be performed on such sets. 	


But an abstract set is not the class of all sets of things that it is an abstraction of. 	


An equality between two abstract sets is not a relation but a structure. It is not expressed 
by a an assertion of a proposition but by presenting an element of a set of possible 
equalities.	


For example, the abstract sets corresponding to the sets {A,B} and {C,D} can be equal 
either through the correspondence that takes A to C and B to D or through the one that 
takes A to D and B to C.  This is one of the ways in which abstract sets are not “things”. 
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Logic, at least logic that I am familiar with, can only reason about things and relations 
between things. 	


To make logic applicable to abstract sets one has to make “things” from them.  This 
requires a solution to the problem of multiple equalities outlined above. Two such 
solutions were found.	


Georg Cantor developed a theory of well-orderings on sets. Choosing a well-ordering 
turns a set into a “thing” because two sets with well-orderings can be equal to each other 
in no more than one way. Cantor called these “things” transfinite numbers.
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Objects considered by Zermelo can be defined inductively saying that there is a 
distinguished Zermelo object called  Ф and that any non-empty collection of pairwise 
different Zermelo objects is a Zermelo object. 	


Every Zermelo object defines a set. Ф is said to define the empty set, while a composite 
Zermelo object defines the set of the Zermelo objects from which it is built. 	


We can also say that a Zermelo object defines a set with a Zermelo structure, where a 
Zermelo structure on a set is an assignment of Zermelo objects to elements of the set in 
such a way that different elements are assigned different Zermelo objects.   	


Since Zermelo objects from which a composite Zermelo object is built are all different 
two Zermelo objects can be equal to each other in no more that one way - Zermelo 
objects are “things”. 
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Zermelo objects are more versatile than well-ordered sets and one can define the main 
constructions that one need to perform on sets on the level of Zermelo objects. 	


This almost made it possible to hide the fact that Zermelo objects are not the same as 
sets.  The difference became apparent in two ways.  	


Firstly, relations could be defined between Zermelo objects that made no sense in the 
language of sets. For example, one could always ask whether Ф is an element of a given 
Zermelo object X. This can not be asked of an abstract set corresponding to X because 
some of the sets in a bijective correspondence with X will have Ф  as an element and 
some won’t. 	


Secondly, anyone using Zermelo objects to represent sets was forced to make a lot of 
arbitrary choices.  For example, the number 1 encoded in set theory as the set with one 
element could be encoded by many, non equal, Zermelo objects. 
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Here is a screenshot of an actual 
development in the proof 
assistant Coq based on the 
univalent foundations. 	


This page provides the definition 
of a topological space together 
with some technical 
constructions  that are needed 
for this definition such as the 
constructions of the union and 
intersection of a family of sub-
types. 
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In the rest of this lecture I want to discuss some of the issues that I consider important 
for foundations of mathematics and mathematics as a whole.
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In the Univalent Foundations we accept Godel’s results not simply as correct ones but as 
natural ones. 	


We know that any foundation will be incomplete and we are not concerned with the 
impossible task of finding one complete foundation.	


Instead, we are concerned with creating a practical foundation which we can use now and 
establishing a process which can ensure a healthy grows and transformation of this 
foundation in the future. 	


We are close to having a practical foundation that we can use now. Work on such a 
foundation continues with the two main issues at hand being the implementations of a 
strong substitutional equality and efficient universe  management. 
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The computer software used in the process of association of formal objects with 
thoughts and of verification of the formal properties of these objects is becoming 
generally known as computer proof assistants. 	


There are many proof assistants in use and development today. The most interesting thing 
happening in connection with the development of proof assistants are the ongoing 
changes in what methods of reasoning are allowed at the thought level in the framework 
of rigorous mathematical arguments. 	


Prior to the appearance of the univalent foundations the main innovations in this area 
were related to:	


1. The use of complex dependencies of types.	


2. The use of complex inductive constructions way beyond the complexity allowed by 
traditional foundations. 
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The univalent foundations brought yet another aspect to these changes - the ability to 
reason about structures on the higher analogs of sets using Univalence Axiom. The work 
being done in particular, by Thierry Coquand and his colleagues leads to concrete 
algorithms which show that the Univalence Axiom can be used not only consistently but 
also constructively. 	


I expect that this process of addition of new sophisticated methods of reasoning at the 
thought level, made possible by the ability of computers to ensure that these methods are 
used correctly, will continue in the coming years. 	


There is one important thing that we can and should do to make this great process of 
innovation to advance smoothly. We need to make sure that the consistency of these new 
methods of reasoning is grounded in the consistency of the known methods of reasoning 
through the use of classical formal methods aided by computers.  
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Explicitly speaking we should:	


Create the infrastructure for formalization, in the framework of established formal 
deduction systems, of the mathematical meta-theory of new formal deduction systems 
that can be used to connect the newly emerging sophisticated methods of reasoning to 
the systems of reasoning whose consistency has been established through many years, 
decades and centuries of use.  
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In practical terms, we should be looking for the system when a newly invented reasoning 
paradigm, e.g. a new class of higher induction-recursion, described formally as a collection 
of syntax-based rules for the construction of new classes of sentences and inferences 
with these sentences, can undergo a formal consistency certification process. 	


In that process, possibly through the construction of sophisticated models,  certain 
combinations of the new rules with the existing ones will be certified as being equi-
consistent  with one of the etalons of consistency such as, for example, ZFC.	


After that there remains the issue of faithful implementation of these rules in a proof 
assistant but that issue is of a lesser order of complexity. 
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Such a system will give us a real freedom to experiment with new methods of reasoning relying 
only on our intuition of their consistency because we will know that our intuition is based on 
previous experience which has been certified to be free of errors and because we will know 
that it is safe to make mistakes since these mistakes will be localized on later stages of  
development and options for their correction, without the need to re-work all that has been 
done, will be provided. 
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