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Foundations of Mathematics:
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Part 1ll. Univalent Foundations



now fo

n the first lecture we discussed the questions of what Is a foundation of mathematics and

Jundations of mathematics relate to mathematics.

While trying to answer the first question we observed that there are two streams In the
story of foundations. | called these streams “Foundations | and ‘Foundations 2.

form hierarchies of more complex structures and concepts'.

-oundations | Is defined as the study of "the basic mathematical concepts and how they

-oundations 2 Is defined as the study of "the fundamentally important structures that
form the language of mathematics also called metamathematical concepts'.



https://en.wikipedia.org/wiki/Language_of_mathematics
https://en.wikipedia.org/wiki/Metamathematics
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What we have In the Univalent Foundations Is the continuation of the development of
the “general theory of forms” that Hermann Grassmann spoke about In his | 844 work

and that Georg Cantor started to make precise in his theory of sets.

Forms here are being understood In the sense of shapes - this Is what homotopy types
are, the most fundamental invariants of higher dimensional shapes.

The general "manifolds’or “forms” are called in the Univalent Foundations “types”.



The most important new concept of the Univalent Foundations is the concept of h-level.
There Is only one, up to the univalent equality, type of h-level 0. It is the one point type.
Types of h-level | are propositions. Logic is the study of types of h-level |.

Types of h-level 2 are sets. [ he study of such types Is the theory of sets and the study of
structures on such types Is the set-theoretic mathematics.

ypes of h-level 3 are the kind of types that are formed by objects in a category. The
study of structures on types of h-level 3 Is closely related to category-level mathematics.
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ow do we know that we have the right idea of what types of h-level 4 and higher are?

After all, we have very little direct experience with such types.

Our certainty comes from tr
set-level mathematics in the -

The theory of homotopy typ

ﬁ

e remarkable fact that types of all h-levels appeared in the
orm of homotopy types.

es or homotopy theory (not to be confused with the

homotopy type theory!) Is a well established field of mathematics that originated with the
work of Poincare on the fundamental group.

equivalence relation of being

omotopy types are equivalence classes of topological spaces with respect to the

homotopy equivalent.

After their discovery, homotopy types have been appearing in many different areas of

modern mathematics. [ here |

s a rich and substantial body of knowledge about homotopy

types including a large number of highly non-trivial computations.
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Here Is the table of the first homotopy groups of spheres - an important example of
mathematical reality that does not depend on the choice of foundations but requires
advanced foundations to be discovered.
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From http://en.wikipedia.org/wiki/Homotopy groups_of spheres
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http://en.wikipedia.org/wiki/Homotopy_groups_of_spheres

Univalent Foundations are currently formalized in several styles of Martin-Lof Type Theory.
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nigher categorical mathematics belongs to Michael Makkal (see Iin particular his
unpublished paper FOLDS from 1995).

advance that made Univalent Foundations possible Is the
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As a part of Univalent Foundations we now have a formalization of set theory In the
form of the theory of types of h-level 2 in MLT 1.

| believe that this Is the first adequate formalization of the set theory that Is used In pure
mathematics.

Next year | am starting a project of univalent formalization of my proof of Milnor’s
Conjecture using this formalization of set theory as the starting point.

This project should show that one can conveniently work with classical set-theoretic
mathematics in the Univalent Foundations.

[t will also provide mathematicians working in the area of homotopy theory and abstract
algebraic geometry with the first tools that they can use in their real life work.
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All these are done with the proof assistant Cog and can be found on GrtHub under the
name UniMath.
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_et me try to explain now my current understanding of why the theory of sets has not
been adequately formalized so far.
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The concept of ar

usage.

abstract set that Is used In mathematics is different from the concept
of a set of things that Is familiar to us from the everyday

The latter presupposes a given universe of things and then by a set with two elements

one understands any of the sets of two things from t

NIS universe.

The concept of an abstract set does not presupposes any such given universe of things.
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Clearly any two such abstract objects are in some sense equal to each other. And the
same applies to sets with more than two elements.

CAN YOU NAME ALL THE DWARFS FROM SNOW LHITE?
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T HAVE THIS PROBLEM WHERE ALL SETS OF SEVEN THINGS ARE INDISTINGUISHABLE. To ME.

From http://xkcd.com/1417/
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ects considered by Zermelo can be defined inductively saying that there is a
ished Zermelo object called @ and that any non-empty collection of pairwise

Zermelo objects Is a Zermelo object.

~very Zermelo object defines a set. @ s said to define the empty set, while a composite

/ermelo object defines the set of the Zermelo objects from which it i1s built.

We can also say that a Zermelo object defines a set with a Zermelo structure, where a
Zermelo structure on a set Is an assignment of Zermelo objects to elements of the set In
such a way that different elements are assigned different Zermelo objects.

Since Zermelo objects from which a composite Zermelo object is built are all different
two Zermelo objects can be equal to each other in no more that one way - Zermelo
objects are "things'.
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/ermelo objects are more versatile than well-ordered sets and one can define the main
constructions that one need to perform on sets on the level of Zermelo objects.

This almost made 1t possible to hide the fact that Zermelo objects are not the same as
sets. The difference became apparent in two ways.

-Irstly, relations could be defined between Zermelo objects that made no sense in the
anguage of sets. For example, one could always ask whether @ is an element of a given
Zermelo object X. This can not be asked of an abstract set corresponding to X because

some of the sets In a bijective correspondence with X will have @ as an element anc
some won't.

Secondly, anyone using Zermelo objects to represent sets was forced to make a lot of
arprtrary choices. For example, the number | encoded in set theory as the set with one
element could be encoded by many, non equal, Zermelo objects.
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Here Is a screenshot of an actual
development Iin the proof
assistant Coqg based on the
univalent foundations.

This page provides the definition
of a topological space together
with some technical
constructions that are needed
for this definition such as the
constructions of the union and
intersection of a family of sub-
types.

Aquamacs File Edit Options Tools Coq Proof-General Holes Window Help

VEO DO 1 =0
®@00

QP X 4 P> Y MPFEHK-O v N & 609

State Context Goal Retract Undo Next Use Goto Qed Home Find Info Command Prooftree Interrupt Restart Help

topologyl.v

! *Proof General Welcome* ‘9 topologyl.v |

1 Require Export Foundations.hlevelZ.finitesets.

2

3 Unset Automatic Introduction.

4

5

6

7 (** To hProp.v *)

8

9 Definition forallinhprop { T : UWU } CF : T -> hProp ) : hProp.
10 Proof. intros. split with ( forall C t : T ) , Ft ) . apply impred . intro t . exact C pr2 ( F t ) ) . Defined.
11

12

13 (** To hSet.v *)

14

15 (** Union of subtypes. *)
16

17 Definition union { X T : WU } C F : T -> hsubtypes X ) : hsubtypes X := fun x : X = ishinh ( total2 ( fun t : T=F t x ) ) .
18

19 (** Intersection of types. *)

20

21 Definition intersect { X T : UU } C F : T -> hsubtypes X ) : hsubtypes X := fun x : X => forallinhprop ( fun t == F t x ) .
22

23

24

25 (** Point-set topology *)

26

27

28 Definition topologydata ( X : UU ) := ( X => hProp ) -> hProp .

29 Notation isopen := topologydata .

30

31 Definition opensets { X : UU } ( TD : topologydata X ) := total2 TD .

32

33 Definition opensetstosubsets { X : UU } ( TD : topologydata X ) : opensets TD -> hsubtypes X := prl .

34 Coercion opensetstosubsets : opensets >-> hsubtypes .

35

36

37 Definition openunioncond { X : UU } ( TD : topologydata X ) := forall ( T : UU ) CF : T -> opensets TD ) , isopen ( union F ) .
38

39 Definition openintcond { X : UU } C TD : topologydata X ) :=

Adforall C T s UU ) C1is : isfinite T ) ( F : T -> opensets TD ) , isopen ( intersect F ) .

41

42

43 Definition istopology { X : UU } C TD : topologydata X ) := dirprod ( openunioncond TD ) ( openintcond TD ) .
44

45pefinition topology ( X : UU ) := total2 ( fun TD : topologydata X => istopology TD ) .

46

-:**- topologyl.v Top (45,0) (Coq Holes)

Beginning of buffer
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In the Univalent Foundations we accept Godel's results not simply as correct ones but as
natural ones.

We know that any foundation will be incomplete and we are not concerned with the
impossible task of finding one complete foundation.

Instead, we are concerned with creating a practical foundation which we can use now and
establishing a process which can ensure a healthy grows and transformation of this

foundation In the future.

We are close to having a practical foundation that we can use now. Work on such a
foundation continues with the two main issues at hand being the implementations of a
strong substitutional equality and efficient universe management.
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The computer software used In the process of association of formal objects with
thoughts and of verification of the formal properties of these objects I1s becoming
oenerally known as computer proof assistants.

There are many proof assistants in use and development today.  he most interesting thing
happening In connection with the development of proof assistants are the ongoing

changes In what methods of reasoning are allowed at the thought level in the framework
of rigorous mathematical arguments.

Prior to the appearance of the univalent foundations the main innovations in this area
were related to:

|. The use of complex dependencies of types.

2. The use of complex inductive constructions way beyond the complexity allowed by
tradrtional foundations.
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The univalent foundations brought yet another aspect to these changes - the ability to

reason about structures on the higher analogs of sets using Univalence Axiom. The work
being done In particular, by Thierry Coguand and his colleagues leads to concrete

alsorithms which show that the Univalence Axiom can be used not only consistently but
also constructively.

expect that this process of addition of new sophisticated methods of reasoning at the

thought level, made possible by the ability of computers to ensure that these methods are
used correctly, will continue Iin the coming years.

There I1s one iImportant thing that we can and should do to make this great process of
innovation to advance smoothly. We need to make sure that the consistency of these new

methods of reasoning Is grounded In the consistency of the known methods of reasoning
through the use of classical formal methods aided by computers.
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-xplicitly speaking we should:

Create the Infrastructure for formalization, in the framework of established formal
deduction systems, of the mathematical meta-theory of new formal deduction systems
that can be used to connect the newly emerging sophisticated methods of reasoning to
the systems of reasoning whose consistency has been established through many years,
decades and centuries of use.
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n practical terms, we should be looking for the system when a newly invented reason
baradigm, e.g. a new class of higher induction-recursion, described formally as a collecti
of syntax-based rules for the construction of new classes of sentences and inferences

with these sentences, can undergo a formal consistency certification process.

In that process, possibly through the construction of sophisticated models, certain
combinations of the new rules with the existing ones will be certified as being equi-
consistent with one of the etalons of consistency such as, for example, ZFC.

After that there remains the issue of faithful implementation of these rules in a proof
assistant but that issue Is of a lesser order of complexity.
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Such a system will give us a real freedom to experiment with new methods of reasoning relying
only on our intuition of their consistency because we will know that our intuition is based on
brevious experience which has been certified to be free of errors and because we will know
that it is safe to make mistakes since these mistakes will be localized on later stages of
develobment and options for their correction, without the need to re-work all that has been
done, will be provided.
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