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First, let me state the following over simplified, but, I believe, 
important for the understanding thesis:  
!
The main idea of the Univalent Foundations is how to 
interpret type-theoretic universes mathematically.!
!
In answering this question I was strongly influenced by the 
paper of M. Makkai "First Order Logic with Dependent Sorts, 
with Applications to Category Theory”.  There Makkai 
discusses what he sees as the future foundations of 
mathematics and even gives them a name: “Invariant 
Foundations”.



He then writes: 
!
”The universe of the Invariant Foundation is not clearly 
defined as yet. It should contain ana-n-categories for all 
natural n’s; the totality of ana-n-categories, with 
their morphisms, etc., will form an ana-n+1-category.” 
!
It is a very natural idea and it took me a lot of effort to 
understand that it is wrong and that the universe of the new 
foundations of mathematics should not be the ∞-category of 
∞-categories but instead the ∞-groupoid of ∞-groupoids and 
their equivalences. 



Unlike ∞-categories, which we still do not have a good 
understanding of, the ∞-groupoids are easy to understand 
due to the reversal of an idea of A. Grothendieck which he 
expresses as follows: 

… the intuition appeared that ∞-groupoids should constitute 
particularly adequate models for homotopy types, the n-
groupoids corresponding to truncated homotopy types (with 
π_i = 0 pour i > n). ! !

A. Grothendieck "Esquisse d'un Programme” 1984.



According to this “Grothendieck correspondence”, which M. 
Kapranov and I provided a wrong formulation of but which 
remains true with correct definitions, ∞-groupoids are models 
for homotopy types. 
!
Hence, there should be a homotopy type corresponding to 
the ∞-groupoid of ∞-groupoids and their equivalences.  
!
What is it? 



Note that the previous line of reasoning is done in an 
inconsistent reasoning system which assumes that there is 
such a thing as an ∞-groupoid of *all* ∞-groupoids. 
!
In a more complex system of ZFC, which we believe to be 
consistent, the reasoning becomes more complex. Instead of 
talking about the ∞-groupoid of all ∞-groupoids we should fix 
two set-theoretic universes U0 and U1, such that U0 is an 
element of U1, and talk about ∞-groupoids and their 
equivalences in U0 as an ∞-groupoid in U1. 
!
This ∞-groupoid should correspond to a well-defined 
homotopy type U=U(U0) in U1. 
!
Can we construct this homotopy type directly?



The main thing we know about U is that there should be a 
fibration U’ -> U over U which corresponds to the fibration 
over the ∞-groupoid of ∞-groupoids whose fiber over an 
object is the ∞-groupoid representing this object.  
!
In the simplified reasoning system where there is a set of all 
sets this would be the universal fibration i.e. the fibration 
which classifies all fibrations. 
!
In the more complex reasoning system with universes this 
fibration should still satisfy the “uniqueness” part of the 
definition of “universal” but not the “for all” part. 
!
Fibrations which satisfy the “for all” part but not the 
uniqueness part are known in algebraic geometry as “versal 
fibrations”. 



!
I was looking for a word to use for fibrations which satisfy the 
uniqueness part but not the “for all” part and decided to call 
them “univalent”. And this is why the foundations are called 
Univalent Foundations.  
!
But there is a little more to the story of this name.  
!
When I decided to check something in the Russian 
translation of the Boardman and Vogt book “Homotopy 
Invariant Algebraic Structures on Topological Spaces” I 
discovered that in this book the term “faithful functor” was 
translated as ‘univalent functor” (“унивалентный функтор”).  



!
Since I have tried to read this 
book in my youth many times 
there was probably another 
meaning associated in my 
mind with the word “univalent” 
- “faithful”. 
!
Indeed these foundations 
seem to be faithful to the way 
in which I think about 
mathematical objects in my 
head.  



!
The main ideas of Univalent Foundations have now been 
used in at least two libraries of formalized mathematics in 
Coq - the “HoTT library” and the “UniMath library”. 
!
There have also been interesting proofs using the univalent 
ideas done in Agda. 
!
But it appears that further progress in the direction of 
developing of proof assistants for the everyday use by 
mathematicians requires us to find ways to collaborate with 
the communities using other proof assistant architectures.   



One such collaboration may be approaching reality now 
thanks in a large part to the help of Bill Richter - a homotopy 
theorist turned HOL Light programmer. 
!
His mediation is supporting an interaction which has recently 
started between me and John Harrison and opened up for 
me the ideas of the LCF-architecture.  
!
The slides in the rest of my talk are more technical and only 
partially complete. They are just pointers to the ideas which I 
think require further attention. 



What does one need in a type-theoretic proof system in order 
to express the main ideas of Univalent Foundations? 
!
1. A universe U. 
!
2. Dependent products. 
!
3. Dependent sums. 
!



Do we need a sequence of embedded universes? 
!
Yes - if we a looking for a consistent system, 
!
No - if we do not care about formal consistency. 
!
Let me explain why the second perspective is very important. 
We want to have the ideas of univalence to be useful not only 
in mathematics but also in computer science. 
!
This means designing “univalent programing languages”. 
!
And most successful programming languages are 
inconsistent deduction systems - it is possible to write non-
terminating programs in these languages.  



Building a type system where we can experiment with 
univalence and which has a universe which is an object of 
itself (i.e. such that  -| U:U is a valid sequent) is an 
experiment with combining inconsistency with univalence. 
!
This also makes the system to be much easier to implement.  
!
In addition, building various proofs of inconsistency in such a 
system provides a good testing ground for implementations.



Of course adding a U:U universe is only one way in which 
inconsistency helps to make things more simple. 
!
Another way is to have inductive types and match/fixpoint 
machinery with weaker than what is necessary for 
consistency termination rules.  
!



This relates to the currently ongoing controversy about 
termination checking in Coq and Agda.  
!
Maybe we can have different “modes” there? A mode with 
fast computation which is known to be inconsistent ( “Type in 
Type” and lax termination checking) and a mode with slow 
computation which is known to be consistent ( sequence of 
universes and eliminators )?  
!
And then we can study the examples of proofs which are too 
slow in the slow mode and based on these examples find 
ways to extend or modify the slow mode while preserving its 
consistency?



!
This would allow us to use some of the advantages of the 
LCF-style approach.  
!
For example, HOL Light is a system with two modes like this - 
the fast mode is OCaml, the slow mode is the equality 
version of Church’s “simple theory of types”.   



Another context where the question of allowing the possibility 
of non-terminating computation arises is the context of 
adding substitutional (“extensional”, “strict”) identity types to 
polymorphic (having a universe) systems. 
!
A system of identity types is a construction which for every 
two objects “x1 x2” of a type “T” produces a type “Id T x1 
x2”. 
!
Note that this is the second, after the universe, way of 
producing types which depend on objects.  



Let’s say that “Id” is a substitutional system of identity types if 
for derivable sequents   
!
“Gamma |- e : Id U T1 T2” 
“Gamma |- t : T1”  
!
the sequent  
!
“Gamma |- t : T2” is derivable. 



!
In a system with substitutional identity types one can build a 
non-normalizable well-typed lambda-term: 
!
T:U, e:Id U T (T->T) |- (lambda x:T, x x) (lambda x:T, x x) : T . 
!
 



!
Strict Prop (a type of objects whose structure is never used in 
computation). 






