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Introduction

After Goedel’s famous results there developed a ”schism” in mathemat-
ics when abstract mathematics and constructive mathematics became
largely isolated from each other with the ”abstract” steam growing into
what we call ”pure mathematics” and the ”constructive stream” into
what we call theory of computation and theory of programming lan-
guages.

Univalent Foundations is a new area of research which aims to help to
reconnect these streams with a particular focus on the development of
software for building rigorously verified constructive proofs and models
using abstract mathematical concepts.

This is of course a very long term project and we can not see today how
its end points will look like. I will concentrate instead its recent history,
current stage and some of the short term future plans.
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Elemental, set-theoretic and higher level mathematics

1. Element-level mathematics works with elements of ”fundamental”
mathematical sets mostly numbers of different kinds.

2. Set-level mathematics works with structures on sets.

3. What we usually call ”category-level” mathematics in fact works
with structures on groupoids. It is easy to see that a category is a
groupoid level analog of a partially ordered set.

4. Mathematics on ”higher levels” can be seen as working with struc-
tures on higher groupoids.
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To reconnect abstract and constructive mathematics we
need new foundations of mathematics.

The ”official” foundations of mathematics based on Zermelo-Fraenkel set
theory with the Axiom of Choice (ZFC) make reasoning about objects
for which the natural notion of equivalence is more complex than the
notion of isomorphism of sets with structures either very laborious or
too informal to be reliable.

More importantly to formalize constructive arguments about higher
level objects in ZFC one is forced to use inherently non-constructive
parts of ZFC such as Axiom of Choice. This means that large parts
of abstract mathematics which are in fact constructive can not be con-
structively formalized using ZFC.

Because of these issues ZFC is not usable for constructive formalization
of abstract mathematics.
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Homotopy theory enters the picture

1. New foundations must provide a way to work constructively not only
with sets but also with higher analogs of sets.

2. The objects of set-theoretic mathematics which most closely cor-
respond to ”higher sets” are higher groupoids. By Grothendieck’s
insight groupoids of all levels may be considered as homotopy types.

3. We conclude that in order to build constructive foundations for con-
temporary abstract mathematics we need to have a formal deduc-
tion system which can be used to work constructively with homotopy
types.
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Here a little miracle happens - a whole class of such deduction systems
has been known since 1970-ies and moreover systems of this class are be-
ing widely used in theoretic computer science to reason about programs.
However, it was not recognized until very recently that they can be used
to work with homotopy types and homotopy types with structures.
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Martin-Lof type theories

Deduction systems of this class are called Martin-Lof type theories. The
first such theory was introduced by Per Martin-Lof in the 70-ies as a basis
for new foundations of constructive mathematics. Two most important
for us features of his theory are:

1. Identity types or types of ”intensional equality”, together with the
associated ”induction principle” and ”computation rules” which are
defined for any pair of terms of a given type X ,

2. A universe U which is used to quantify over types.
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Martin-Lof type theories (cont.)

It was originally assumed that Martin-Lof theory is something like a
constructive set theory. Types were interpreted as sets and constructions
on types as corresponding constructions on sets.

It was soon observed however that it is not a very good formalization
of the world of sets because many of the natural properties expected
from sets were not provable in the Martin-Lof theory. Adding axioms
which made the objects of his theory to behave more like sets led to the
deterioration of its constructive nature.

Consequently it has not become popular with mathematicians or even
with constructive mathematicians.
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Martin-Lof type theories (cont.)

Instead, the ideas of Martin-Lof found their way into theoretical com-
puter science in part through Thierry Coquand’s Calculus of Construc-
tions and its extension - Calculus of Inductive Constructions .

This later variant of Martin-Lof type theory , more complex and more
convenient for practical use because of its sophisticated machinery of in-
ductive definitions became the basis for proof assistant Coq - the proof
assistant which is now used to teach courses on the theory of program-
ming languages in many leading universities.
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Martin-Lof theory and homotopy theory

The first hint that Martin-Lof type theory may have something to do
with homotopy types appeared in 1996 when Martin Hofmann and
Thomas Streicher constructed a new semantics for a version of this the-
ory which interpreted types not as sets but as groupoids.

In 2005 Steve Awodey discovered the connection between the Martin-Lof
”induction principle” for the identity types and factorization axioms of
the abstract homotopy theory. This led to the interpretation of identity
types as path spaces.

At about the same time I understood that the universe U is to be inter-
preted as the base of a universal univalent fibration.
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It all came together in the fall of 2009. Combining the ideas of Steve
Awodey on the interpretation of the identity types with my ideas on the
interpretation of the universes I have constructed the univalent model
of the calculus of inductive constructions.

This model provides a semantics for the Calculus which allows one to
use it to do exactly what was needed from the hypothetical language for
new foundations of mathematics which was discussed above.
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Some of the key univalent concepts

1. There is a filtration on types , or rather on type expressions, by their
”h-level”.

(a) Types of h-level 0 are equivalent to the one point type.

(b) Types of h-level 1 correspond to propositions.

(c) Types of h-level 2 correspond to sets.

(d) Types of h-level 3 correspond to groupoids.

(e) Types of higher levels correspond to higher groupoids or, equiva-
lently, to more general homotopy types.
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Some of the key univalent concepts (cont.)

2. Types with decidable equality such as natural numbers, trees etc.
have level ≤ 2 e.g. the usual inductive types are sets.

3. Typical examples of types of level > 2 are universes.

4. Constructions translated into CIC using univalent semantics are in-
variant under weak equivalences between types.

5. The univalent model satisfies a new axiom which is called the univa-
lence axiom. It imposes the condition that the identity type between
two types is naturally weakly equivalent to the type of weak equiva-
lences between these types.
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Some of the key univalent concepts (cont.)

6. The univalence axiom implies the functional extensionality both for
”straight” functions and for dependent functions. It also implies that
two logically equivalent ”propositions” (types of h-level 1) are equal.

7. The univalence axiom implies that the universe of types of h-level n
has h-level n+ 1. In particular, the type of ”propositions” is a ”set”
and the type of ”sets” is a ”groupoid”.

8. The univalence axiom implies similar statements for types with struc-
tures e.g. one can prove using the univalence axiom that the identity
type between two groups is equivalent to the type of isomorphisms
between these groups.
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Some of the key univalent concepts (cont.)

9. Unlike many other axioms (e.g. the axiom of excluded middle), the
univalence axiom is expected ”to have computational content”. In
other words decidable normalization should be extendable in a cer-
tain sense to terms which involve the univalence axiom. For example
there is the following precise:

Conjecture 1. There exists a terminating algorithm which for any
term expression t of type [ nat ] (natural numbers) constructed using
the univalence axiom returns a term expression t′ of type [ nat ] which
does not use univalence axiom and a term expression of the identity
type [ Id nat t t’ ] which may use the univalence axiom.
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In February 2010 I started to write a Coq library of formalized mathe-
matics based on the univalent model.

See http://github.com/vladimirias/Foundations/ .

There is also an HTML version of the library which can be found at my
web-page http://www.math.ias.edu/~vladimir

Currently the basic properties of types and functions such as contractibil-
ity, h-levels, weak equivalences and their behavior relative to the main
constructions of type theory are formalized. I also formalized some ba-
sic algebra culminating at the moment in the formal construction of
localization for commutative rings.

In addition there are files with basic natural and integer arithmetic and
basic theory of finite sets developed as particular cases of general con-
structions.
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There will be a full year program on Univalent Foundations topic at
the Institute for Advanced Study in 2012-2013 co-organized by Steve

Awodey, Thierry Coquand and myself. For information on the
program see http://www.math.ias.edu.
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Some idea of the near future the Univalent Foundations can be obtained
from the list of topics which we plan to address during the program:

1. Practical formalization of set-level mathematics in Coq based on the
univalent approach.

Goals: developing skills for collective work on libraries of formalized
mathematics, locating the points of ”tension” between constructive
and non-constructive approaches especially in the formalization of
analysis, creating libraries for future use.

2. Computational issues in constructive type theory related to the uni-
valence axiom.

Goals: looking for approaches to the proof of the ”main computa-
tional conjecture” of the univalent approach with a special focus on
looking for practical algorithms for automatic construction of fully
constructive terms from terms build with the help of extensionality
axioms.
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3. Formalization of advanced homotopy-theoretic structures in con-
structive type theory.

Goals: looking for approaches to formalize higher coherence struc-
tures (simplicial types, H-types, n-1-categories and n-1-functors etc.).
Looking for possible syntax and computation rules for higher induc-
tive definitions. Looking for the constructions of elements in homo-
topy groups of spheres as mappings between the corresponding loop
”functors”.

4. Relation of constructive type theory to set-theoretic foundations.

Goals: formalizations of type theories and known constructions of
their models in ZFC and related theories. Looking for new models
of constructive type theories, especially for non-standard models of
the univalence axiom.
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